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Summary

It is of central interest for tumour biology to explore the
mechanisms of tumour cell proliferation. In this study,
methods of spatial statistics were used to study the spatial
distribution of proliferating cells within tumour tissue
quantitatively and objectively. Mammary cancer tissue was
studied as an example. It was attempted to clarify whether
cell division occurs entirely at random (random labelling), i.e.
the process of division occurs at random, independently from
the state of the neighbouring nuclei, or whether the spatial
distribution of proliferation is more complex, e.g. in the form of
actively proliferating clusters alternating with relatively silent
zones. In the case of random labelling, the reduced second
moment functions K (r ) of the labelled and the unlabelled
nuclei would be identical. The same would hold for the pair
correlation functions g(r ). The alternative hypothesis is that
the second-order properties of the processes of the labelled and
the unlabelled nuclei are different. Twenty cases of invasive
ductal mammary carcinomas were studied. The nuclei of
proliferating cells were stained immunohistochemically with
the monoclonal antibody MIB-1, which detects specifically
the proliferation-associated nuclear antigen Ki 67. The planar
coordinates of the tumor cell nucleus profiles from two
rectangular visual fields per case were recorded. For each
visual field, the following investigations were performed:
estimation of the explorative summary characteristics K (r )
and g(r ), fitting of the parameters of a stationary Strauss
hard-core model to the observed point patterns, estimation
of two distance-dependent Simpson indices and Monte Carlo
tests of all individual patterns on the null hypothesis of
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random labelling. Significant differences between the mean
K-functions and the mean g-functions of the labelled and the
unlabelled nuclei were found. Moreover, the mean interaction
parameter γ of the stationary Strauss hard-core model was
significantly higher for the labelled nuclei than for the
unlabelled nuclei. The estimates of the two distance-dependent
Simpson indices showed a tendency of points with the same
label towards a positive spatial correlation. In the Monte
Carlo tests, the null hypothesis of random labelling was
rejected for the majority of the visual fields. These four lines
of investigation led to the concordant conclusion that the
labelling of mammary carcinoma nuclei by MIB-1 is not simply
random. The data suggest that the second-order properties
of the point process of the labelled nuclei are significantly
different from those of the unlabelled nuclei. In particular,
the process of the labelled nuclei shows a higher degree of
clustering (increased strength of interaction) than the process
of the unlabelled points.

Introduction

In tumour biology, the proliferative behaviour of the neoplastic
cells in malignant tumours is of central interest. High
proliferative activity of the tumour cells is often associated
with rapid tumour progression and poor prognosis. A major
target of tumour therapies, such as anti-neoplastic agents and
irradiation, is a significant decrease or total stop of tumour cell
proliferation. Hence, it is of fundamental scientific importance
to understand the principles that are governing tumour cell
proliferation. This process can be studied on the sub-cellular
level using methods of molecular biology and biochemistry.
Another basic approach is the morphological (microscopical)
study of cell division. Here, one wants to find out how
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large the fraction of dividing cells is and in which manner
the proliferative activity is spatially distributed within the
tissue.

In diagnostic histopathology, it is a routine application
to use immunohistochemical stains to study the labelling
pattern of the tumour cell nuclei. Using such methods, it is
possible to classify observed tumour cell nucleus profiles on
histological sections in a binary manner into two categories,
i.e. stained versus unstained nuclei (labelled vs. unlabelled
and positive vs. negative nuclei). In the domain of tumour
biology, a popular immunohistochemical marker is the MIB-1
stain (Gerdes et al., 1992). In this method, a monoclonal
antibody versus the antigen Ki 67 is used, which is specifically
expressed in the nuclei of proliferating (dividing) cells, whereas
the nuclei of non-dividing cells are negative (Figs 1a and
b). In diagnostic histopathology, it is usually sufficient to
perform a semiquantitative estimation of the percentage of
positively labelled nucleus profiles. For a closer evaluation
of such images, spatial statistics may help in two ways.
First, the percentage of positively labelled nucleus profiles
may be objectively counted (quantitation) after interactive
or automatic segmentation of all nuclei. Second, spatial
statistics may help to clarify whether the proliferation is
governed by certain deterministic or stochastic principles,
or, alternatively, whether the process of cell division occurs
purely at random in the tumour cells. For example, it would
be plausible to assume that proliferation starts from clusters
(nests) of actively proliferating cells, whereas other regions
scarcely divide. In some cases, e.g. in the follicles of the lymph
nodes, this clustering is so obvious that it can be discerned
by microscopical inspection without sophisticated statistical
analyses.

In malignant epithelial tumours arising from glands
(adenocarcinomas), the centres of the tumour cell nucleus
profiles on sections may usually be considered as stationary
and isotropic planar point processes. Random labelling means
here that the binary marks (label 0 or 1) are ascribed to the
points independently at random (Diggle, 2003, pp. 48–49).
Mammary carcinoma (breast cancer) is the most frequent
malignant tumour in women. It was the aim of this study
to find out whether the null hypothesis of random labelling
applies to the proliferating subset of the tumour cells in the
most frequent type of mammary carcinoma, i.e. invasive
ductal mammary cancer. Usually, the fraction of MIB-1-
labelled nuclei is rather low in such tumours (5–10%), and by
visual inspection alone, one cannot safely determine whether
they occur randomly in the tissue or in groups (Figs 1a and
b). Hence, further progress necessitates the use of methods
of spatial statistics here. In the case of random labelling, the
reduced second moment functions K(r) of the labelled and the
unlabelled points would be identical (Diggle, 2003, pp. 48–
49). The same would hold for the pair correlation functions
g(r). From these reasons, it was decided to focus the attention
on these two second-order summary statistics. In the related

Fig. 1. (a) Histological section of a case of an invasive ductal mammary
carcinoma. By means of the immunohistochemical MIB-1 stain, the nuclei
expressing the proliferation-associated antigen Ki-67 are specifically
stained. As a result, the dividing nuclei are stained brown (positive). The
non-dividing nuclei remain in the background colour, blue (negative). (b)
Same visual field as depicted in Fig. 1(a) but here the nuclei have already
been detected (marked). The unlabelled nuclei (blue) are marked with
black dots; the labelled nuclei (brown) are marked with red dots.

context of the independence of two point processes, several
studies on replicated point patterns arising in microscopy have
been published recently (Diggle et al., 2006; Eglen et al., 2006;
Webster et al., 2006).

Materials and methods

Materials

Twenty cases of invasive mammary ductal carcinomas were
studied by light microscopy using paraffin sections. The best
section in each case containing tumour tissue was selected for
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Fig. 2. (a) Point pattern of the unlabelled (negative) nuclei in a window of the size 1240 × 1000 pixels. (b) Same as Fig. 2(a) but for the labelled (positive)
nuclei. (c) The complete marked point pattern is shown, with the coordinates of the unlabelled nuclei as black crosses and the coordinates of the labelled
nuclei as red crosses.

the MIB-1 stain according to technical quality criteria. Two
rectangular visual fields of the size 1240 × 1000 pixels per
case were recorded and directly stored in computer memory
after image acquisition with a CCD camera. This size amounts
to 440 μm × 354 μm at the level of the tissue. The planar
coordinates of the centres of tumor cell nucleus profiles were
recorded (384–1387 points per field, of which 3–27% were
labelled) together with the marks (Figs 2a–c).

For each visual field, the investigations were performed as
described in sections ‘Explorative Analysis of Point Patterns’,
‘Parametric Modelling’, ‘Distance-Dependent Characteristics
of Diversity’ and ‘A Monte Carlo Rank Test on Random
Labelling’ below. First, the patterns of the unlabelled and
the labelled points were considered separately. In section
‘Explorative Analysis of Point Patterns’, we consider an
explorative analysis of the two kinds of point patterns, i.e.
they are explored without assuming any particular point
process model. In section ‘Parametric Modelling’, parametric
modelling of both types of patterns was performed on
the basis of Strauss hard-core processes (Mattfeldt et al.,
2007). Thereafter, computations are described in which
the unlabelled and the labelled points were considered

simultaneously for each field. For this purpose, we suggest
using two distance-dependent Simpson indices (section
‘Distance-Dependent Characteristics of Diversity’) and a
Monte Carlo rank test, in which the integral deviation between
the K-functions of the unlabelled and the labelled points is used
as test statistics (section ‘A Monte Carlo Rank Test on Random
Labelling’).

Explorative analysis of point patterns

Usually, exploratory methods of data analysis are the first step
to characterize a planar point process quantitatively. The most
basic information is an estimate of the intensity λ of the point
process, i.e. the mean number of points per area. If X = {Xn}
is a stationary and isotropic point process and W is a sampling
window, then λ = E (X(W))

|W| , where X(W) is the number of
points of X in W, and |W| denotes the area of W. A natural
estimator for the intensity λ is given by λ̂ = X(W)

|W| . Although
the intensity is a single quantity, first-order functions and
second-order functions (summary statistics) provide a series of
values in which the latter ones are functions of the inter-point
distance r. As examples of first-order functions, let us mention
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the nearest-neighbour distribution function, the empty-space
function and the J-function that can be used to study the
spatial structure of a point pattern. Moreover, the K-function
and the pair correlation function are examples of second-order
functions (see, e.g. Stoyan et al., 1995; Diggle, 2003; Illian
et al., 2008). In particular, Ripley’s K-function K(r) (reduced
second moment function) is one of the most popular functions
of explorative spatial point pattern analysis (Ripley, 1988;
Stoyan et al., 1995; Illian et al., 2008). Intuitively, K(r) is the
mean number of other points of the process lying within a
circle of radius r, centred about a typical point of the process,
divided by the intensity of the process:

K (r ) =
E (number of other points of X within distance

r from (x, y) | X has point at (x, y))
λ

, (1)

where the symbol ‘|’ denotes ‘conditional to’. In analogy to
a probability density function, which is the derivative of a
cumulative distribution function, there is a counterpart to the
K-function, namely the ‘pair correlation function’ g(r), which
may be obtained after differentiation and normalization of
K(r):

g(r ) = 1
2πr

d K (r )
d r

. (2)

In the case of a planar Poisson point process, we obtain
g(r ) ≡ 1 for all r. Values above 1 indicate clustering, whereas
values below 1 are related to regularity in the pattern. The pair
correlation function may also be defined as the product density
of second order of the point process divided by the square of the
intensity for the purpose of normalization (Stoyan & Stoyan,
1994, p. 249; Stoyan et al., 1995, p. 129; Illian et al., 2008,
p. 219). Hence, another estimator for g(r) is given by

ĝ(r ) = �̂(2)(r )

λ̂2
, (3)

where

�̂(2)(r ) = 1
2πr

∑
Xi ,X j ∈Wi �= j

kh(r − ||Xi − X j ||)
|WXi ∩ WX j |

(4)

is an estimator for �(2)(r ), the product density of second
order. In the estimator �̂(2)(r ), the denominator |WXi ∩ WX j |
is used for edge correction, where WXi = W + Xi denotes the
sampling window shifted by Xi (see Stoyan & Stoyan, 1994,
p. 284). The term kh(x) denotes a kernel function, which is
used for smoothing. We used the Epanechnikov kernel

kh(x) = 3
4h

(
1 − x2

h2

)
1(−h,h)(x), (5)

with a bandwidth h = 0.1/
√

λ̂ according to Krasnoperov
& Stoyan (2004). The estimation of the K-function
was performed using the translation-corrected estimator
according to eq. (15.11) in Stoyan & Stoyan (1994) (see also
Illian et al., 2008, p. 228, eq. (4.3.27)). Our estimator of g(r) in
Eqs (3) and (4) is the same as in eq. (15.15) in Stoyan & Stoyan

(1994) (see also Illian et al., 2008, p. 230, eq. (4.3.29)). For
the explorative point pattern analysis, the software package
SPATSTAT was used (Baddeley & Turner, 2005, 2006; Mattfeldt
et al., 2006, 2007).

In addition to these computations, each estimated
g-function per visual field was evaluated with a method
published by Stoyan & Schnabel (1990) (see also Stoyan &
Stoyan, 1994, pp. 250–258; Mattfeldt et al., 2006; Illian et al.,
2008, p. 241). This procedure includes identification of the
first maximum gmax and the next following minimum gmin,
with the corresponding r values rmax and rmin for each g-
function, where rmin > rmax. From these data, the statistic

M = gmax − gmin

rmin − rmax
(6)

is computed (Stoyan & Stoyan, 1994, p. 251; Illian et al., 2008,
p. 241). The statistic M is related to the global degree of order
in the spatial point pattern. Large values indicate a high degree
of order and may be expected, e.g. in the case of point patterns
with an element of long-range order. The statistic may be used
as a non-parametric index to summarize the course of the
g-function by a single quantity. Even simpler is the difference
value �g = gmax − gmin.

Ultimately, the methods of this section lead to the estimation
of four g-functions per case (two patterns with g-functions
related to the unlabelled and two to the labelled points,
respectively). From these four estimates, the two mean
g-functions were computed for each case, with equal weights
ascribed to the estimates from both patterns. After averaging
in this manner, 20 mean g-functions for the unlabelled and the
labelled points were obtained. Another possibility would have
been to compute a weighted mean and have the number of
points as weights. It was attempted to test the mean g-functions
of the unlabelled points and the labelled points r-wise for
significant differences. As the g-functions are estimated from
the same visual fields, one has to deal with paired observations.
As a normal distribution of the differences between the values
of the g-functions of the two types for a given r could not be
safely surmised, the non-parametric Wilcoxon matched-pairs
signed-rank test (Sachs, 2003, pp. 411–413) was used instead
of a paired t-test. As these rank tests were performed for 22
selected values of r (see Table 1), the significance levels were
adjusted by applying the Bonferroni correction. A result was
considered as significant at the level of 0.05 when the P value
was less than 0.05/22 = 0.0023.

Parametric modelling

Gibbs processes (Markov point processes) are flexible models
for point processes with interaction (Stoyan & Stoyan, 1994;
Stoyan et al., 1995; Baddeley & Turner, 2000; Van Lieshout,
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Table 1. Local comparisons of g-functions. For the r values in the left
column, the mean values of the g-functions are given for the unlabelled
and the labelled nuclei.

Unlabelled Labelled Difference P value
r ¯̂g(r ) ¯̂g(r )

5 0.00000 0.29258 0.29258 <0.001
10 0.00127 0.70074 0.69947 >0.05
15 0.24768 1.33178 1.08410 <0.001
20 1.13593 1.94351 0.80758 <0.001
25 1.46384 2.33754 0.87370 <0.001
30 1.35353 2.29150 0.93797 <0.001
35 1.22940 2.00732 0.77792 <0.001
40 1.17549 1.77813 0.60265 <0.001
45 1.16746 1.61141 0.44395 >0.05
50 1.15192 1.50813 0.35621 >0.05
55 1.13997 1.42883 0.28886 >0.05
60 1.13603 1.35491 0.21888 >0.05
65 1.12911 1.30302 0.17391 >0.05
70 1.11672 1.28056 0.16385 >0.05
75 1.10675 1.27387 0.16712 >0.05
80 1.09886 1.28003 0.18117 >0.05
85 1.10246 1.26078 0.15832 >0.05
90 1.10575 1.22666 0.12091 >0.05
95 1.08833 1.17965 0.09132 >0.05
100 1.10102 1.13606 0.03504 >0.05
150 1.05846 1.13965 0.08120 >0.05
200 1.04896 1.07587 0.02691 >0.05

2002; Diggle, 2003; Møller & Waagepetersen, 2004; Illian
et al., 2008). In the present context, we decided to use the
‘stationary Strauss hard-core point process’ as a candidate
model because it takes into account a hard-core property and
allows repulsion as well as clustering of the points at different
domains of r values, depending on the model parameters (see
Takacs & Fiksel, 1986; Diggle et al., 1994; Goulard et al.,
1996; Baddeley & Turner, 2000; Mattfeldt et al., 2007; Illian
et al., 2008, and references therein). The classical Strauss
model and the Strauss hard-core model are both examples of
the Gibbs processes. These processes may be defined in terms
of their pair potential or of their probability density (Takacs &
Fiksel, 1986; Goulard et al., 1996; Baddeley & Turner, 2000;
Illian et al., 2008). The probability density of the stationary
Strauss hard-core process in a sampling window W (e.g. of
unit area) is given by

f (x|(r0, R, β, γ )) = αβn(x)γ sR(x)1{|xi −xj |>r0:∀{xi ,xj }⊆x, xi �=xj },
(7)

where n(x) is the number of points in the pattern x = {xi}, and
sR(x) is the number of distinct unordered pairs of points that
have a distance to each other that is less or equal to R. Note that
α is a (usually intractable) normalizing constant and that the
Strauss hard-core process can be completely defined by its four
model parameters r 0, R, β and γ , where r 0 is the hard-core

distance, R is the interaction range (interaction radius), β is
a constant factor contributed by each point to the probability
density and related to the intensity and γ is the strength of
interaction (see Baddeley & Turner, 2005; Mattfeldt et al.,
2007). The meaning of the indicator function 1 in Eq. (7)
is that it becomes 0 if the point configuration x contains at
least one point pair {xi, xj} ⊆ x with a distance less or equal
to r 0, otherwise the indicator function equals 1. For point
pairs of a distance between r 0 and R, values of γ > 1 indicate
clustering, whereas γ < 1 is related to regularity. If γ = 1,
a pure hard-core process is obtained. For point pair distances
larger than R, there is no more pairwise interaction. Note
that contrary to the case of a classical Strauss process, for
Strauss hard-core processes, the interaction parameter γ can
assume any non-negative value, in particular, a value larger
than 1.

For practical modelling, the software package SPATSTAT

(Baddeley & Turner, 2005, 2006) was used with R 2.2.0
under Linux. The tumour cell nucleus profile’s mid-point
coordinates of all 40 images were read into a computer and
the fitting procedure described below was performed for each
individual image. The hard-core distance r 0 was estimated for
each visual field as the minimum value of the observed inter-
point distances, which is a maximum likelihood estimator.
For simulations of the hard-core Strauss process, the largest
integer number below this value was used as model parameter
for r 0. The interaction radius R was estimated according to the
profile pseudo-likelihood method (Baddeley & Turner, 2005,
2006). This procedure was used to find the value of R between
20 and 100 pixels in steps of 1 pixel with the maximum pseudo-
likelihood for a given image. Edge correction was performed
by translation correction (for details, see Ohser, 1983). The
estimated value of R was then used together with that of
r 0 for the subsequent model fitting, which ultimately yielded
an estimate of γ (Baddeley & Turner, 2005, 2006; Mattfeldt
et al., 2007). For comparison between the model parameters
estimated pairwise per case for the two classes of point patterns,
the non-parametric Wilcoxon matched-pairs signed-rank test
was used (Sachs, 2003).

Distance-dependent characteristics of diversity

A well-established statistical measure for the degree of
diversity of a marked point process is the global Simpson index
D. Let us consider a marked random point process with m types
of points. The Simpson index is generally defined as follows:

D = 1 −
m∑

i=1

λ2
i

λ2
. (8a)

For the special case of two types of marks, which we consider
here, we have m = 2, hence:

D = 1 − λ2
1 + λ2

2

λ2
, (8b)
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where λ1 and λ2 are the intensities of the unlabelled and the
labelled points, respectively. For m = 2, the index reaches
its maximum value if λ1 = λ2 = λ/2, and in this case, we
obtain D = 0.5. The larger the difference between the two
intensities, the lower becomes D. A high D value indicates a
state near the equilibrium of the intensities of the two kinds
of points. If one of the two point types dominates strongly,
D is lowered as compared with the maximum value 0.5. The
diversity is then said to be low, as only few point pairs will have
points of different kinds in this situation, just as ‘diversity’ in
everyday language indicates the amount of mixing of different
types of things. In the form of Eqs (8a) and (8b), D is a distance-
independent (global) characteristics of diversity. It is easy to see
that D is the distance-independent probability to select a point
pair at random belonging to different components because we
have D = 1 − λ2

1/λ2 − λ2
2/λ2. In our material, we found,

on average, approximately 10.7% of the tumor cell nucleus
profiles labelled and 89.3% of the profiles unlabelled, leading
to D = 1 − 0.8932 − 0.1072 = 0.191.

The concept of a global Simpson index has been generalized
to the distance-dependent Simpson indices (Shimatani, 2001;
Eckel et al., 2007). Let us first consider the summary statistics
α(r ) for marked point processes with m types of points:

α(r ) = 1 −
m∑

i=1

λ2
i Ki i (r )
λ2 K (r )

, (9a)

which reduces for the case m = 2 to

α(r ) = 1 − λ2
1 K11(r )
λ2 K (r )

− λ2
2 K22(r )
λ2 K (r )

, (9b)

where K 11(r ) is the K-function of the unlabelled points,
K 22(r ) is the K-function of the labelled points and K(r)
is the K-function of all points. This function is related to
the probability to select a point pair at random belonging
to different components conditional to the event that it
has distance less than r. Under random labelling, we have
K 11(r ) = K 22(r ) = K (r ) (Diggle & Chetwynd, 1991; Diggle,
2003); hence, α(r ) ≡ D for all values of r. If α(r ) < D ,
the point pattern has a smaller diversity at distances r than
in the case of random labelling. In other words, the points
are less mixed than one would expect if the labelling were
random. If α(r ) < D , this indicates that the two classes of point
processes are more clustered together with their own species
than in the case of pure random labelling. This behaviour
was observed for our data and, in general, in cell biology, it
seems more relevant than α(r ) > D . Theoretically, however,
the case α(r ) > D is also conceivable. It would mean that
the point pattern has a larger diversity at distances r than in
the case of random labelling. This would imply that cell types
with different marks are more often associated than in the
case of random labelling, which seems unlikely for biological
cells.

In the same spirit, another distance-dependent indicator of
diversity has been defined (Eckel et al., 2007):

β(r ) = 1 −
m∑

i=1

λ2
i gi i (r )
λ2g(r )

and (10a)

β(r ) = 1 − λ2
1g11(r )
λ2g(r )

− λ2
2g22(r )
λ2g(r )

, (10b)

where g 11(r ) is the g-function of the unlabelled points, g 22(r )
is the g-function of the labelled points and g(r) is the g-function
of all points. The quantity β(r ) is related to the probability to
select a point pair at random belonging to different components
conditional to the event that it has distance r. Under random
labelling, we obtain β(r ) ≡ D for all r. If β(r ) < D , the point
pattern has a smaller diversity at distance r than in the case of
random labelling. If β(r ) > D , the point pattern has a larger
diversity at distance r than in the case of random labelling.
For the estimation of the distance-dependent Simpson indices,
the software package GEOSTOCH, a Java-based open-library
system, was used (Mayer et al., 2004). To compute 90%
confidence intervals for α(r ) and β(r ), 1000 simulations of
random labelling were performed for each real pattern.

A Monte Carlo rank test on random labelling

In this section, we suggest a simulation-based test on random
labelling for all the 40 individual marked point patterns. We
proceed again from the well-known fact that in the case of
random labelling, we have K 11(r ) = K 22(r ) = K (r ) (Diggle &
Chetwynd, 1991; Diggle, 2003, pp. 48–49). Hence, a natural
test statistic to test for random labelling should be the integral
deviation of the estimated K-functions for the unlabelled and
the labelled points of a binary point pattern. It may be estimated
as follows:

TK =
s∑

l=1

|K̂11(rl ) − K̂22(rl )| �r , (11)

where �r is the increment of r values at which the K-functions
are computed; here,�r =1. The larger is TK , the stronger is the
deviation of the marked point pattern from random labelling.
To implement this idea in practice, 999 realizations of the
empirical point pattern based on independent labelling were
simulated. Given the observed locations (the coordinates) and
the observed values of the labels, the new labels were assigned
at random to the locations, which were kept unchanged. The
number of labelled and unlabelled points was held constant,
i.e. random labelling was simulated by permutation (Fig. 3).
For each simulation, the functions K 11(r ) and K 22(r ) were
estimated at the distances r 1, . . . , rs. In practice, we estimated
K 11(r ) and K 22(r ) from r 1 = 1 to rs = 50 pixels in steps
of �r = 1 pixel (see Fig. 4). Then, the values of the test
statistic TK for the 999 simulations were computed according
to Eq. (11). In the same manner, TK was computed for the
single real pattern. The resulting 999 + 1 = 1000 values of TK
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Fig. 3. Simulation of random labelling. Upper panel: a real pattern
with unlabelled points in black and labelled points in red. Lower panel:
simulation of random labelling applied to the same field.

were sorted by size in ascending order. The rank of the value
of TK originating from the real pattern in this sequence was
determined. The hypothesis of random labelling was rejected
for the pattern if the rank of this TK value was ∈ [951, 1000].
For the simulations needed for the Monte Carlo rank tests,
the software package SPATSTAT was used (Baddeley & Turner,
2005, 2006).

Results

Explorative point pattern analysis

For practically all 40 patterns, it was visually obvious that
the g-functions of the unlabelled and the labelled nuclei were
different. Usually the g-function of the labelled points rose
steeper and attained a higher first maximum than the g-
function of the unlabelled points of the same pattern (Fig. 5a).
This difference was significant for the mean g-functions
per class, estimated by r-wise averaging between the cases
(Fig. 5b). Statistical comparison using the Wilcoxon matched-
pairs signed-rank test disclosed significant differences between
the mean g values forr =5 andr =15 tor =40 pixels (Table 1).
Note distinctly higher mean values of g(r) for the labelled nuclei
at small distances r. For higher r values, significant differences

Fig. 4. Further illustration of simulation of random labelling. Upper
panel: the two K-functions for the real pattern (black: unlabelled nuclei;
red: labelled nuclei). Lower panel: the two K-functions obtained from a
simulation of random labelling of the same pattern.

could not be found any more. Analogous changes were found
with respect to the mean K-functions of both processes (Fig.
6). Moreover, significant differences were found between
the g-functions of the unlabelled and the labelled nuclei in
terms of various non-parametric summary characteristics,
i.e. gmax, rmin and �g (see Table 2). No significant differences
were found with respect to rmax, gmin and M. The intensity
of the labelled points was much lower than the intensity
of the unlabelled points (see Table 3). This difference was
accompanied by a significantly higher hard-core distance for
the process of the labelled points.

Parametric modelling

The model parameters of the two groups are shown in
Table 3. The interaction parameter γ of the Strauss hard-
core model was strongly increased for the labelled points as
compared with the unlabelled points. By contrast, there was no
significant difference with respect to the interaction distance
R between the two kinds of point processes.

Distance-dependent Simpson indices

The estimates of the two mean distance-dependent Simpson
indices are shown in Figs 7(a) and (b). Both show a concordant
behaviour. The curves lie distinctly below the horizontal line
at D, which corresponds to random labelling. Hence, for small
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Fig. 5. (a) Pair correlation functions obtained from a selected visual field.
Pair correlation function for the unlabelled nuclei: solid; for the labelled
nuclei: dashed. (b) Mean pair correlation functions of all 20 cases for the
unlabelled nuclei: solid; for the labelled nuclei: dashed.

distances r, the mixed point pattern shows less diversity than
one would expect for random labelling. This difference is
significant, as the mean curves lie outside a 90% pointwise
confidence interval in which α (r ) and β (r ) should lie in the
case of random labelling. Note that the difference from D is
significant but not very large for both indices.

The Monte Carlo rank tests

The Monte Carlo rank tests yielded a significant result for the
majority of the 40 individual patterns. The null hypothesis of
random labelling was rejected for 26 patterns and accepted for
14 patterns.

Discussion

Labelling pattern of the proliferating tumour cell nuclei

All four lines of investigation led to the concordant conclusion
that the labelling of mammary carcinoma nuclei by MIB-1

Fig. 6. Mean K-functions for the two types of nuclei. Mean K-function of
the unlabelled nuclei: continuous; mean K-function of the labelled nuclei:
dashed. The Poisson case is shown in red for comparison.

Table 2. Comparison of labelled and unlabelled nuclei in terms of
explorative statistics. Summary characteristics of g-functions are given
as mean values for the unlabelled and the labelled nuclei. The symbols
rmax, gmax, rmin, gmin, M and �g are explained in section ‘Explorative
Analysis of Point Patterns’. The difference between the mean values of
these quantities was tested for significance by the Wilcoxon matched-pairs
signed-rank test (right column). x̄: mean value, SD: standard deviation.

Unlabelled nuclei Labelled nuclei

Estimate x̄ SD x̄ SD P value

rmax (pixel) 25.70 3.55 27.13 5.66 >0.05
gmax 1.582 0.295 2.559 0.655 <0.001
rmin (pixel) 40.46 6.53 53.18 12.69 <0.001
gmin 1.113 0.162 1.244 0.377 >0.05
M 0.035 0.017 0.051 0.030 >0.05
�g 0.469 0.191 1.314 0.699 <0.001

does not simply result from a random labelling of the nuclei.
A battery of methods was used for our study, which gives
more reliability than a test based on a single criterium. The
data suggest that the second-order properties of the point
process of the labelled nuclei are significantly different from
those of the unlabelled nuclei. This finding is not compatible
with random labelling. In particular, the process of the
labelled nuclei shows a higher degree of clustering for low
r values than the process of the unlabelled points. This
can be concluded from the higher values of g max and �g

for the labelled points. From the viewpoint of parametric
modelling, the stronger clustering tendency of the labelled
points is corroborated by a highly significant increase of
the interaction parameter γ of the Strauss hard-core model,
which indicates the strength of interaction between the points.
Also, in previous investigations on another biomedical point
process, we found that changes of g max and γ went into the
same direction (Mattfeldt et al., 2007).
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Table 3. Comparison of unlabelled and labelled nuclei in terms of parametric modelling. The estimated model
parameters of the Strauss hard-core point processes are given as the mean values for the unlabelled and the labelled
nuclei. The symbols λ, r 0, R and γ are explained in section ‘Parametric Modelling’. The difference between the mean
values of these quantities was tested for significance by the Wilcoxon matched-pairs signed-rank test (right column).
N(nucl/field): number of nucleus profiles per visual field, x̄: mean value, SD: standard deviation.

Unlabelled nuclei Labelled nuclei

x̄ SD x̄ SD P value

Intensity
N (nucl/field) 741 217 89 47 <0.001
λ (points/pixel2) 0.0005957 0.000175 0.00007177 0.0000379 <0.001

Strauss hard-core model
r0 (pixel) 14.75 1.18 18.25 1.81 <0.001
R (pixel) 39.12 18.94 44.52 14.28 >0.05
γ 0.874 0.334 3.164 2.010 <0.001

Fig. 7. (a) Mean estimated distance-dependent Simpson index α̂(r ) for all
20 cases (red curve). The classical distance-independent Simpson index
D̂ is plotted as a horizontal black line. The blue curves above and below
this line indicate 90% confidence intervals of α(r ) for the case of random
labelling for the value D̂ = 0.191, i.e. the mean estimated value of D for
our 20 cases. (b) The analogous plot for the mean estimated distance-
dependent diversity index β̂(r ).

The distance-dependent Simpson indices show in which
manner the labelling pattern of our points differs from random
labelling. Both indices are lowered as compared with D, which
means that for small distances r, the mixed point pattern shows

less diversity than one would expect for random labelling. This
statement indicates that both unlabelled and labelled points
aggregate more strongly together with points of their own
kind, than one would expect at random labelling. Biologically,
it favours the hypothesis that in mammary carcinomas, cell
division occurs in clusters of proliferative activity. Actively
proliferating zones seem to alternate with relatively silent
zones. This behaviour is known from many normal tissues
such as the normal lymph node in which proliferation is
practically restricted to the lymph follicles. It is also seen in
normal epithelial tissues such as the gut mucosa or the skin
in which the proliferation is largely concentrated in the basal
layers.

On the whole, the results of the Monte Carlo rank test
also support the conclusion that the labelling of proliferating
tumour cell nuclei is not random. For the majority of
the individual patterns (26/40), the hypothesis of random
labelling was rejected. One may however wonder why the
null hypothesis was not rejected for a still higher number, or
even for all patterns. It can be seen from the results on the
distance-dependent Simpson indices that the deviation of the
labelling from randomness is statistically significant but the
difference is only small. In this constellation, the power of
hypothesis tests on individual patterns will be relatively low.
We conclude that the labelling of the points is presumably
structured in all patterns but our Monte Carlo test does not
detect this structure in all patterns. Probably, it fails for those
patterns in which the deviation from random labelling is the
lowest. Moreover, it is typical for biological data that variation
between individuals is large, and this may make it difficult to
find differences between groups.

The methods presented in this paper are not new from
the viewpoint of spatial statistics but we consider them as
innovative in the context of histopathology. A microscopical
application that has been studied rather thoroughly consists
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of testing patterns of cells for independence of two point
processes (see Diggle et al., 2006; Eglen et al., 2006, and
references therein). However, this concept must be sharply
distinguished from random labelling (see Diggle, 2003, pp. 48–
49). If the hypothesis of independence of two point processes
is considered, we have two point processes, each of which has
(or is labelled with) a different binary mark. In this case, the
null hypothesis is: are the two processes independent, i.e. are
the two types of events generated by a pair of independent
univariate processes? (Diggle, 2003, p. 48). The classical
example from microscopy are the amacrine cells of the retina
in which two populations can be distinguished, the ‘on-cells’
and the ‘off-cells’ (Diggle et al., 2006; Eglen et al., 2006). None
of the two may be considered as a subset of the other. By
contrast, if we consider random labelling, we have only one
point process, of which a subset is positively labelled, whereas
the remainder is negative. Notably, from the viewpoint of
histopathology, the latter case is much more relevant. In
routine histological work, immunohistochemical methods
are used that stain a specific subset of the cells (or of the
nuclei), whereas the others remain unstained (see Fig. 1a).
Only one antibody (one stain) is used for a section. Hence,
one obtains only unlabelled or labelled cells but not two
different labels. Thus, the natural approach for a statistical
analysis of cells stained by routine immunohistochemical
methods is to test them on random labelling, and one would
not test on independence. Using immunohistochemistry, a
test on the independence of two labelled point processes
would surmise the application of two stains to the same
section, which is unusual in routine procedures. A test on
random labelling in the context of immunohistochemistry
was performed here for the first time, as far as we could
determine.

Furthermore, the distance-dependent indices of diversity
have scarcely been used in applications to real data before
at all (Shimatani, 2001; Eckel et al., 2007). As far as we know,
our contribution is the first paper in which the indices α(r ) and
β(r ) have been applied to histopathological data. The battery of
methods presented in this paper is by no means restricted to the
study of proliferation. It can be used whenever particles such as
cell nuclei are stained in such a manner that all nucleus profiles
can be classified in a binary manner as negative or positive.
This holds not only for the MIB-1 stain but also for many
other immunohistochemical stains used in normal histology
and histopathology, such as, stains for hormone receptors
in mammary carcinomas. Only the model assumptions of
isotropy and stationarity must be surmised. Note that for other
cases, there are anisotropic versions of the K- and g-functions
as well as a non-stationary version of the K-function. This
opens a wide field of applications in practice. Hence, although
our results are related to a specific case series (labelling for MIB-
1 in mammary cancer), the methodology appears to be widely
applicable.

Methodological aspects

Simulation of random labelling. Simulation of random labelling
by permutation of the marks is not the only solution for this
problem. In addition to random permutation of the marks (i.e.
sampling without replacement), it is also possible to sample
with replacement as follows. Given the observed locations
(the coordinates), each point is labelled as 0 or 1, uniformly
and independently at random. The probability of labelling is
selected according to the estimated labelling fraction of the
individual pattern for which the simulations were performed.
This method leads to slightly varying numbers of labelled
points in the simulations, whereas the number of labelled and
unlabelled points is constant if the permutation method is
used. On the whole, the permutation method is more usual.
Sampling with replacement was performed in this manner
in the present context too. It led to exactly the same results
in the Monte Carlo test on random labelling (rejection of the
hypothesis of random labelling in 26 of 40 patterns).

Choice of the test statistics. In this paper, the attention was
focused on the functions K 11(r ) and K 22(r ) when testing
for random labelling. It is also possible to estimate the cross
K-function K 12(r ). Under random labelling, all three functions
should be identical, i.e. K 11(r ) = K 22(r ) = K 12(r ) (see Diggle &
Chetwynd, 1991, eq. (3); Diggle, 2003, eq. (4.12)). Hence, one
is free to decide whether one bases a test on random labelling on
a comparison of K 11(r ) and K 22(r ), on a comparison of K 11(r )
and K 12(r ) or on a comparison of K 12(r ) and K 22(r ) (Diggle
& Chetwynd, 1991). For this study, the function K 12(r ) was
estimated with SPATSTAT using the function Kcross, and plotted
for all the 40 patterns. In the majority of the patterns, the plot
of K 12(r ) lay quite near to the plot of K 11(r ), whereas K 22(r )
usually lay distinctly more separate (Fig. 8). On the other hand,
K 11(r ) and K 22(r ) were needed for the Monte Carlo rank tests
and for the estimation of α(r ) anyway, and their meaning is
easier to grasp intuitively than the meaning of K 12(r ). Hence,
we preferred to work with K 11(r ) and K 22(r ) (see also Diggle &
Chetwynd, 1991). Analogous considerations led us to favour
the estimation of g 11(r ) and g 22(r ) instead of g 12(r ).

Choice of the kernel parameters. For the estimation of the
second-order function g(r), kernel smoothing is strongly
recommended. The choice of the kernel type and the
bandwidth strongly influences the estimate of g(r). It was
decided to use the popular Epanechnikov kernel. It is
the default kernel implemented in SPATSTAT, in which the
recommendations given in Stoyan & Stoyan (1994, pp.
284–285) are exactly followed. Our bandwidth was selected
according to the formula hλ̂− 1

2 , with h = 0.1, which is a default
value (see, e.g. Krasnoperov & Stoyan, 2004). However, it
should be pointed out that in some cases, other kernels, such
as the box kernel, may lead to slightly more favourable results

C© 2009 The Authors
Journal compilation C© 2009 The Royal Microscopical Society, Journal of Microscopy, 235, 106–118



1 1 6 T . M A T T F E L D T E T A L .

Fig. 8. Plots of estimates of K11(r ) (blue, continuous), K22(r ) (green) and
K 12(r ) (red) from a selected pattern.

(Stoyan & Stoyan, 2000, pp. 649–650). The latter kernel is
also implemented in SPATSTAT and can be used with the syntax
‘kernel = rectangular’. We are currently exploring the benefits
and drawbacks of the Epanechnikov kernel, the box kernel and
other kernels for our data but this methodological comparison
is beyond the scope of this paper.

Validation of the point process model assumptions. The patterns
of the unlabelled and the labelled nucleus profiles were
parametrically modelled as stationary Strauss hard-core
processes. To check whether this model was realistic for our
point patterns, 99 simulations were performed per pattern
using SPATSTAT on the basis of the four estimated model
parameters for the pattern (λ̂, r̂0, γ̂ and R̂). The goodness of
fit was judged graphically from the plots of the K-function
estimated from the real patterns and the plots of the envelopes
of the K-functions obtained from the simulations, in a range
up to r = 250 pixels. A perfect fit was found in 47 of the
80 patterns in which the K-function of the real pattern lay
everywhere between the envelopes of the K-functions from
the simulated patterns (Figs 9a and b). In other patterns,
slight deviations of the empirical K-function below the lower
or above the upper envelopes were noted (Fig. 9c). Drastic
discrepancies were found for some patterns but they were the
exception. It must be admitted that not all patterns are entirely
explained by the model. The intensity, the hard-core distance
and the general course of the K-function were, however,
generally well preserved. From our point of view, the Strauss
hard-core process does not yields an absolutely perfect fit but
may be considered as a realistic approximation for practical
purposes, which may be superimposed by unknown other
processes. Nevertheless, a word of caution seems appropriate.
For the Strauss processes, it may happen that simulated
realizations of the model tend to be more clustered than
the observed pattern (see, e.g. Møller, 1999). However, as
the main aim of the present study was merely to compare the
degree of regularity/clustering between the different patterns,
this special methodological problem was not attacked here.

Merits of the K-function and the pair correlation function in
studies on random labelling. In section ‘Explorative Analysis
of Point Patterns’, a major emphasis was put on the
estimation of the pair correlation function g(r). While K(r) is
monotonically increasing, g(r) has a non-monotonic course
in which characteristic points can be identified, such as
the first maximum and the first minimum. This yields two
uniquely defined points by which a particular estimate of
g(r) can be numerically characterized. In contrast to the
model parameters γ and R mentioned in section ‘Parametric
Modelling’, the coordinate values of these two points are
entirely non-parametric indicators and do not surmise any
particular point process model. Such characteristic points,
however, can only be identified from g(r) and not from K(r)
(see Figs 5 and 6). They can be used for group comparisons.
On the other hand, K(r) is indispensable for the Monte Carlo
rank tests of the individual marked point patterns on random
labelling. The distance-dependent indices of diversity can be
computed on the basis of both K(r) and g(r). On the whole,
these considerations lead to the recommendation to estimate
both summary statistics if the question of random labelling is
considered.

Computational aspects

Some of the investigations described in this paper belong to
the category of computer-intensive methods. Typical for this
domain is that rather simple calculations are performed with
a very high number of replications (Mattfeldt & Fleischer,
2006). In particular, this holds for simulation and re-sampling
techniques that can be performed in an acceptable time
limit only with computers of high performance (Møller &
Waagepetersen, 2004; Mattfeldt & Fleischer, 2006). For
the present study, this statement applied, in particular, to
the computations described in sections ‘Distance-Dependent
Characteristics of Diversity’ and ‘A Monte Carlo Rank Test on
Random Labelling’: computation of the distance-dependent
Simpson indices with confidence intervals by simulations
and the Monte Carlo rank tests on random labelling for
individual marked point patterns. It should be noted that this
data structure (a limited number of equally structured low-
dimensional samples) is rather typical for biomedical studies.
If the analysis of each sample needs computer-intensive
methods, such data are ideally suited for high-performance
clusters. Such a cluster was also used in this study (a Linux
cluster with 32 nodes, each node equipped with 2 AMD
Opteron single-core or dual-core processors (AMD, Markham,
ON)). In such an architecture, parallel processing of the data
sets (here our 40 point patterns) can be simply performed on
the cluster by processing the computations in batch mode.
The parallelization can be achieved here by ascribing separate
batch jobs to the statistical analysis of individual patterns.
Proceeding like this, the increase of speed due to the multiple
nodes of the cluster is fully exploited, without any modification
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Fig. 9. Graphical test of selected patterns of tumour cell nuclei on compatibility with the model of a stationary Strauss hard-core process. The lower
envelope, mean and upper envelope of the K-functions obtained from 99 simulated patterns of the model are shown in green, red and blue, respectively.
The K-function estimated from the real pattern is shown in black. (a) From a selected pattern of unlabelled nuclei: perfect fit. (b) From a selected pattern
of labelled nuclei: perfect fit. (c) From a selected pattern of unlabelled nuclei: slight deviation of the K-function of the real pattern from the K-function of
the simulated model.

of the program code. In this setting, shell scripts using, e.g. R
and SPATSTAT, which run on a stand-alone Linux workstation,
can be executed without any changes in the cluster, as there is
no necessity to make adaptations of the source code to parallel
programming libraries, such as Message Passing Interface
(MPI) or other libraries (Sloan, 2005).

Stereological considerations

In this study, the labelling pattern of tumor cell nucleus profiles
on sections was studied by methods of spatial statistics. It must
be borne in mind that these points are not the nuclei but
traces of the nuclei on sections. It would be naive to surmise
that our functions ĝ(r ) and K̂ (r ) are unbiased estimators
of the functions g 3(r ) and K 3(r ) of the true nuclei. These
are the second-order summary statistics of the mid-points
of the particles living in 3D space, i.e. the 3D versions of
the functions investigated here. It is easy to see that direct
inference is not possible in this way for general particles if

no assumptions on their shape and size distribution can be
made (Mattfeldt, 2005). However, if some model assumptions
are valid, we have g 3(r ) ≈ g(r). This relation holds in good
approximation if we deal with sections of spherical particles
with constant diameters or spherical particles with limited
size variation (Stoyan et al., 1995, pp. 377ff.) This shape
model is not too unrealistic for mammary carcinoma cell
nuclei, which look mostly nearly circular on sections (see
Fig. 1a). Also, in our cases, giant nucleus profiles, strongly
exceeding the size of the average population in terms of their
diameter, did not emerge (see Fig. 1a). Such nuclei are well
known to pathologists from other tumour types, but in our
cases, (ductal adenocarcinomas of the mammary gland), they
play no role. These qualitative observations indicate that our
analysis on planar sections is probably valid also for the true
nuclei in the first approximation. The true labelling pattern
would be the marked 3D point pattern of the proliferating and
non-proliferating nuclei in the 3D tissue. Such patterns are,
however, difficult to visualize directly, which would require
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special 3D microscopic methods. For the time being, one has
to live in routine applications with planar sections. The afore-
mentioned conclusions should hold, bearing in mind that they
are based on the model of roughly spherical nuclei with limited
size variation.
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