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Abstract

We consider Euclidean first-passage percolation on a large family of connected
random geometric graphs in the d-dimensional Euclidean space encompassing
various well-known models from stochastic geometry. In particular, we establish
a strong linear growth property for shortest-path lengths on random geometric
graphs which are generated by point processes. We consider the event that
the growth of shortest-path lengths between two (end-) points of the path
does not admit a linear upper bound. Our linear growth property implies
that the probability of this event tends to zero sub-exponentially fast if the
direct (Euclidean) distance between the endpoints tends to infinity. Besides,
for a wide class of stationary and isotropic random geometric graphs, our linear
growth property implies a shape theorem for the Euclidean first-passage model
defined by such random geometric graphs. Finally, this shape theorem can
be used to investigate a problem which is considered in structural analysis
of fixed-access telecommunication networks, where we determine the limiting
distribution of the length of the longest branch in the shortest-path tree
extracted from a typical segment system if the intensity of network stations
converges to zero.
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1. Introduction

We investigate a first-passage percolation model on a large class of connected, stationary and isotropic
random geometric graphs, where the edge-passage times are given by the Euclidean lengths of the edges.
The classical first-passage percolation model due to J. Hammersley and D. Welsh [14] considers shortest-
path lengths on a randomly weighted lattice, where the edge weights form a sequence of independent and
identically distributed (i.i.d.) non-negative random variables. More recently, the analysis of the asymptotic
behaviour of such shortest-path lengths has been extended to geometrically irregular random geometric
graphs, such as Poisson-Delaunay graphs, see Figure 1 for an illustration. While [27, 31, 32] consider the
classical scenario of i.i.d. edge weights, such connected random geometric graphs give rise also to another
natural first-passage percolation model, where the edge weights are determined by the Euclidean length of
the edge [1, 2, 3, 5].

In the present paper, building on the work of [1, 3, 11], we show that not only the Poisson-Delaunay
graph, but in fact a considerably larger class of connected random geometric graphs satisfies a strong linear
growth property. To be more precise, considering the event that the growth of shortest-path lengths between
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two (end-) points does not admit a linear upper bound in the Euclidean distance between the endpoints, we
show in Theorem 1 that its probability tends to zero at least sub-exponentially fast as this distance tends
to infinity.

Figure 1: Realisation of a Delaunay graph generated by a homogeneous Poisson point process (cutout)

We continue to elaborate a variety of further implications of the strong linear growth property stated in
Theorem 1. First, for a rather general class of stationary and isotropic random geometric graphs in Rd,
we show that this growth property implies a shape theorem for the Euclidean first-passage model defined
by such random geometric graphs (Theorem 2). In particular, we extend the classical shape theorem,
which has been derived in [18] for first-passage percolation on the lattice Zd (with i.i.d. edge weights), to a
framework involving geometrically complex random graphs with non-independent edge lengths. Furthermore,
in a two-dimensional setting, the growth property stated in Theorem 1 can be used to deduce the almost
sure (a.s.) boundedness of cells defined by planar random geometric graphs (Theorem 3). In this way, the
a.s. boundedness of cells of the creek-crossing graphs (Gn)n≥2 introduced in [15] can be shown.

We also show how Theorem 2 can be used to investigate a problem which is considered in structural
analysis of (wired) fixed-access telecommunication networks. In those networks, access points are located
along the roads of urban or rural regions and each access point is dedicated to providing service to all users
in some bounded region of the plane, which is referred to as its serving zone. Physical links from network
users to access points are deployed along the shortest Euclidean path in the road graph, thus giving rise
to a shortest-path connection tree representing the subgraph inside a serving zone, see e.g. [13, 33]. Cost
estimation of the telecommunication network requires knowledge of structural properties of this tree. In the
present paper, we show how our shape theorem stated in Theorem 2 (in conjunction with an asymptotic
distributional result due to P. Calka [8]) can be used to determine the limiting distribution of the length of
the longest branch in the shortest-path tree associated with a randomly chosen serving zone as the intensity
of access points converges to zero (Theorem 4).

The present paper is organised as follows. First, in Section 2 we state our main results and introduce
some general conditions on the considered random geometric graphs and the underlying point processes,
which are used later on in the proofs of our results. In Section 3 we show that these conditions are satisfied
for various well-known classes of random geometric graphs and point processes from stochastic geometry.
Then, in Section 4, we provide a proof for the strong linear growth property stated in Theorem 1. Section 5
is devoted to the proof of the shape theorem and the boundedness of cells stated in Theorems 2 and 3,
respectively. Finally, we conclude the paper with Section 6, where a proof of Theorem 4 is presented.
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2. Main results

2.1. Random geometric graphs based on point processes

In classical models of first-passage percolation, one considers shortest-path lengths in independently
marked lattices, but more recently also first-passage percolation on the Poisson-Delaunay graph has received
considerable attention. While the papers [27, 31, 32] consider the scenario of independently marked edges,
in [1] a spatially dependent marking using the Euclidean edge length is investigated not only for the Poisson-
Delaunay graph, but in fact for a more general class of connected random geometric graphs whose vertices are
given by a homogeneous Poisson point process in R2. However, even in two dimensions important examples
of connected random geometric graphs, such as the Poisson-Voronoi tessellation, are not based on a Poisson
point process of vertices. Therefore, in the present paper, we state our results using the following general
notion of random geometric graphs.

Denote by M the family of all line segments in Rd. This family forms a topological space in the Fell
topology [30] and we denote by M the Borel σ-algebra on M generated by this topology. We write G for
the family of all simple counting measures ϕ on Rd ×M such that ϕ(B ×M) is finite for every bounded
Borel set B ⊂ Rd. Furthermore, we denote by G the σ-algebra on G that is generated by the evaluation
maps ϕ 7→ ϕ(B ×M), where B ⊂ Rd is a Borel set in Rd and M ∈ M. Random variables with values in G
are called random segment processes or random geometric graphs. It will be convenient to identify elements
ϕ ∈ G with their support, so that we can represent ϕ as ϕ = {(xn, un)}n≥1 for some xn ∈ Rd and un ∈M.

In order to deal with a large variety of commonly used connected random geometric graphs, we do not
need the notion of random segment processes in its entire generality, but it is convenient to introduce a more
specific and restricted subclass. To be more precise, we consider random geometric graphs that are obtained
from point processes in a deterministic way. For instance, the edge set of the Delaunay tessellation forms
a geometric graph in Rd whose vertices are given by a point process and whose edges are constructed by
applying a deterministic connection rule. This observation also applies to the creek-crossing graphs (Gn)n≥2

introduced in [15] which form a class of subgraphs of the Delaunay tessellation approximating the minimal
spanning forest. Similarly, the Voronoi graph is defined as the edge set of a tessellation which is constructed
from a given point process of cell centres by a deterministic rule.

All of these random geometric graphs have two important attributes in common. On the one hand,
local changes in the underlying point process typically lead to local changes in the structure of the random
geometric graph and, on the other hand, the resulting random geometric graphs consist of a single connected
component with probability 1. We show that for such random geometric graphs shortest-path lengths along
the edges grow at most linearly in the Euclidean distance of the endpoints of the paths.

Denote by N the family of all locally finite sets in Rd. In the following, we consider random geometric
graphs in Rd of the type G = g(X), where X denotes a point process in Rd which is stationary, isotropic and
m-dependent, and g : N → G is a measurable mapping which is motion-covariant. In other words, we have
g(α(ψ)) = α(g(ψ)) for all ψ ∈ N and all rigid motions α : Rd → Rd. Note that since g is motion-covariant,
the random geometric graph G inherits from X the properties of stationarity and isotropy.

In the arguments used in the present paper, we need to make further suitable assumptions on G. In
the following, it will be convenient to think of an element {(xn, un)}n≥1 of G as the subset of Rd formed
by the union

⋃
n≥1(un + xn). First, we need a certain growth condition allowing us to control the total

length of the random geometric graph G inside cubic sampling windows (the total length in big windows
should be positive and not too large, with high probability). Formally, the standard length of a line segment
can be measured using the 1-dimensional Hausdorff measure ν1. Furthermore, the random geometric graph
G = g(X) should satisfy a suitable stability condition with respect to X, so that the configuration of G
inside a bounded sampling window W ⊂ Rd does not depend on the configuration of X far away from the
set W . Finally, we require a strong connectivity condition, in the sense that any two points on G ∩W can
be connected by a path on G which is contained in a suitable neighbourhood of the sampling window W . In
order to state these additional assumptions on G more precisely, we use the following notion of occurrence
with high probability. Let (Aa)a>1 be a family of events in a certain probability space (Ω,F ,P), which is
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assumed to be complete. We say that the events Aa occur with high probability (whp) if

lim inf
a→∞

log (− log (1− P(Aa)))

log a
> 0. (1)

Note that the latter inequality is equivalent to the existence of constants c1, c2 > 0 such that 1 − P (Aa) ≤
c1exp(−ac2) for all a > 1. Furthermore, we use the following notation. For x ∈ Rd and r ∈ (0,∞] we denote
by Qr(x) = [−r/2, r/2]d + x the cube of side length r and centre x.

In the following, the existence of a suitable radius of stabilisation for the construction rule g will be crucial.
Putting Z+,∞ = ((0,∞) ∩ Z) ∪ {∞} and denoting by o the origin in Rd, a radius of stabilisation is defined
to be a measurable function b : N→ Z+,∞ such that with probability 1, it holds that

g(X) ∩Q1(o) = g
(
(X ∩Qb(X)(o)) ∪ ψ

)
∩Q1(o) (2)

for all locally finite ψ ⊂ Rd \Qb(X)(o), and that

min{b(X), n+ 1} = min{b(X ∩Qn(o) ∪ ψ), n+ 1}, (3)

for all n ∈ [1,∞)∩Z and locally finite ψ ⊂ Rd\Qn(o). While (2) guarantees that the intersection g(X)∩Q1(o)
only depends on the point process X in the window Qb(X)(o), we use (3) in order to ensure that for n ≥ 1

the event {b(X) ≤ n} only depends on the point process X in the window Qn(o). Now, assume that

(G1) the events A
(1)
a = {G ∩Qa(o) 6= ∅} ∩ {ν1 (G ∩Q1(o)) ≤ a} occur whp (growth condition),

(G2) the events A
(2)
a = {b(X) ≤ a} occur whp (stability condition),

(G3) the events A
(3)
a = {G ∩Qa/2(o) is contained in a connected component of G ∩Qa(o)} occur whp (con-

nectivity condition).

In Section 3, we verify that these conditions are satisfied for the previously discussed examples of random
geometric graphs. Note that condition (G3) is a modification of the asymptotic essential connectedness
property introduced by D. Aldous, see [1]. Furthermore, the Borel-Cantelli lemma shows that condition
(G3) implies a.s. connectivity of G.

The asymptotic behaviour of shortest-path lengths is a recurring theme in first-passage percolation and is
also the content of the main result of the present paper. This result deals with the sub-exponential decay of
the probability that such path lengths along the edges of G increase superlinearly in the Euclidean distance
of their endpoints. To formulate it precisely, we put e1 = (1, 0, . . . , 0)> and q(x) = argminy∈G|x − y| for

any x ∈ Rd. If this is not unique, we take the lexicographically smallest point on G with this property.
Furthermore, for x, y ∈ Rd we denote by `(x, y) the length of the shortest Euclidean path between q(x) and
q(y) on G.

Theorem 1. Let G denote a random geometric graph in Rd of the form G = g(X) satisfying the conditions
(G1)–(G3). Then there exists u0 ≥ 1 with

lim inf
ur→∞

u≥u0,r≥1

log (− logP (`(o, re1) ≥ ur))
log(ur)

> 0. (4)

The proof of Theorem 1 is postponed to Section 4. Note that this theorem is an extension of a similar result
which has been derived by D. Aldous for a class of planar graphs, see [1, 3]. Before we move on, we also
remark that Theorem 1 contains two interesting special cases. On the one hand, we may fix r and consider
the asymptotic behaviour of the tail probabilities P(`(o, re1) ≥ ur) as u→∞. In this case, Theorem 1 yields
sub-exponential decay of the tail function of the length of the shortest path between two points at predefined
locations of distance r, i.e. there exist constants c1, c2 > 0 such that P (`(o, re1) ≥ ur) ≤ c1exp(−uc2) for all
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u > 1. On the other hand, we can also fix u ≥ u0 and let r →∞. Then, as r →∞ the shortest-path length
between points at distance r grows at most linearly in r whp.

We believe that Theorem 1 is useful for future research, since the issue of existence of short paths in
random geometric graphs occurs in rather diverse contexts, such as the non-triviality of Bernoulli percolation
on the Gabriel and relative neighbourhood graphs [6, 7] or the transience of random walks on random
geometric graphs [29]. Furthermore, note that the framework of Theorem 1 can be extended to include also
random geometric graphs generated by curved fibres, such as the dead leaves model or the Johnson-Mehl
tessellation [17, 23]. However, as proving Theorem 1 only for random geometric graphs consisting of line
segments simplifies the exposition, we restrict our attention to this special class of random fibre processes.

2.2. A general class of random geometric graphs

It turns out that the strong linear growth property (4) is satisfied not only by the random geometric
graphs considered in Theorem 1, but also by the isotropic Poisson line tessellation in R2, which does not
fit into the framework of condition (G2), see Section 3.3. Therefore, in the present section we assume that
G is an arbitrary stationary, ergodic and isotropic random geometric graph in Rd for which (4) holds and
which satisfies conditions (G1) and (G3). Theorems 2 and 3, whose proofs are postponed to Sections 5.1
and 5.2, respectively, provide two implications of property (4). For r > 0 and x ∈ Rd, we denote by Br(x)
the d-dimensional Euclidean ball with centre x and radius r and similarly, by BGr (x) = {y ∈ Rd : `(x, y) ≤ r}
the ball of radius r and centre x in the metric induced by the shortest-path lengths `(x, y).

Theorem 2 supports the intuition that the notion of distance defined by the shortest-path lengths `(x, y)
behaves asymptotically as a scalar multiple of the ordinary Euclidean metric. This result can be regarded as
a shape theorem for the first-passage percolation model, in which the passage time of an edge in G is given
by its length. We refer the reader to [18, Theorem 1.7] for the classical statement in the situation of i.i.d.
weights on the lattice Zd.

Theorem 2. There exists a constant (the time constant) ξ ≥ 1 such that for every ε > 0

P
(
B(1−ε)r(o) ⊂ BGξr(o) ⊂ B(1+ε)r(o) for all sufficiently large r

)
= 1. (5)

The second implication of property (4) deals with the a.s. boundedness of cells defined by random
geometric graphs in R2, where for a planar random geometric graphG in R2 we call the connected components
of R2 \G the cells of G.

Theorem 3. Let d = 2. Then, with probability 1, all cells of G are bounded.

2.3. An application to shortest-path trees in spatial telecommunication networks

Last but not least, for d = 2 we provide an application of Theorem 2 to a problem which is considered in
structural analysis of fixed-access telecommunication networks. In particular, we show how Theorem 2 can
be used to determine the limiting distribution of the length of the longest branch in a typical shortest-path
tree if the intensity of access points converges to zero.

We start by recalling some notation and definitions related with this kind of problems and refer the reader
to [25] for details. Let G be a stationary, isotropic and ergodic random geometric graph in R2 satisfying (4)
and conditions (G1) and (G3) of Section 2.1. We write γ = Eν1

(
G ∩ [0, 1]2

)
> 0 for its length intensity, and

G∗ for the Palm version of G with respect to ν1(· ∩G). Recall that G∗ is a random geometric graph whose
distribution is determined by

Eh(G∗) =
1

γ
E
∫
G∩[0,1]2

h(G− x)ν1(dx),

where h : G → [0,∞) is any G-measurable function. By Xλ we denote a Cox process on G∗ whose random
intensity measure is given by λν1(· ∩ G∗), for some linear intensity λ > 0. Denote by Ξ0,λ the zero-cell of
the Voronoi tessellation on Xλ ∪ {o} and write S∗ = Ξ0,λ ∩ G∗ for the typical segment system within Ξ0,λ.
Since shortest paths do not contain cycles, they induce a natural tree structure on the set of points of G∗

for which the shortest path to o is unique. This tree is sometimes referred to as shortest-path tree.
For practical applications to telecommunication networks it is desirable to have knowledge about a variety
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of distributional properties of typical segment systems. Such properties could help to find useful approximate
simulation algorithms (deduced from limit theorems) that allow for a rapid creation of such graphs without
having to implement concepts of stochastic geometry. In the following, we denote by Z(λ) = supx∈S∗ `(o, x)
the length of the longest shortest path among all shortest paths emanating from the origin o and ending
at an element of S∗. Although there is only little hope to obtain an explicit analytical formula for the
distribution of Z(λ) when considering general values of λ ∈ (0,∞), we show how Theorem 2 in conjunction
with a distributional result due to P. Calka [8] on the circumradius of typical Poisson-Voronoi cells can be
used to obtain an explicit asymptotic formula in the case when λ→ 0.

Theorem 4. Let R be the radius of the smallest circle centred at the origin and containing the zero-cell of
the Voronoi tessellation on Y ∪{o}, where Y is a homogeneous Poisson point process with intensity γ. Then√
λZ(λ)

D−→ ξR as λ→ 0, where ξ = limn→∞ E`(o, ne1)/n is the time constant appearing in Theorem 2.

The proof of Theorem 4 will be provided in Section 6. To go further in the analysis of connection trees, it
seems promising to consider not only the longest shortest path in a typical serving zone, but e.g. also the
joint distribution of the lengths of the main branches in each of the two subtrees rooted at the origin. They
may be considered as backbones of the entire connection tree. This problem is considered in [16] and [24] in
greater detail from a theoretical and practical point of view, respectively.

Moreover, for practical applications to telecommunication networks, it is important not only to know the
behaviour of the longest shortest path as λ → 0, but also to have some information about its length for
arbitrary values of λ > 0. Since it seems rather unlikely that there exists an explicit analytical formula
for the distribution of the longest shortest-path length Z(λ), parametric density functions are fitted to
simulated data [24]. However, these approximative densities rely on Monte Carlo simulations, which become
increasingly time-consuming as one approaches the asymptotic setting. Hence, our result is useful for certain
parameter constellations, where standard Monte Carlo simulations are not be feasible.

3. Examples of connected graphs

In this section, we show that many well-known connected random geometric graphs satisfy the growth,
stability and connectivity conditions (G1)-(G3) introduced in Section 2.1. We consider the Delaunay graph,
the family of creek-crossing graphs (Gn)n≥2 introduced in [15] and the Voronoi graph in arbitrary dimensions.
Finally, we show that the (two-dimensional) isotropic Poisson line tessellation has property (4). Note,
however, that the Poisson line tessellation does not fit naturally into the framework of point-process-based
random geometric graphs described in Section 2.1 and also exhibits long-range dependencies which are
incompatible with the stability condition (G2) of Section 2.1.

3.1. Delaunay graph Del and the creek-crossing graphs Gn, n ≥ 2

For ϕ ⊂ Rd locally finite and B ⊂ Rd a Borel set, we denote the number of elements of ϕ in B by
ϕ(B) = # (ϕ ∩B). In the following we assume that X is a stationary, isotropic and m-dependent point
process in Rd satisfying the following additional conditions. Suppose that

(D1) for a > 1 the events {X ∩Qa(o) 6= ∅} ∩ {X(Q1(o)) ≤ a} occur whp, and

(D2) the second factorial moment measure of X is absolutely continuous with respect to 2d-dimensional
Lebesgue measure and its density ρ(x, y) is bounded from above by some constant c > 0.

The homogeneous Poisson point process in Rd with intensity λp > 0 obviously satisfies the above conditions.
Recall that for any ϕ ⊂ Rd locally finite, the Delaunay graph Del(ϕ) denotes a graph with vertex set

ϕ, where two vertices x, y ∈ ϕ are connected by an edge in Del(ϕ) if there exists a ball B ⊂ Rd such that
x, y ∈ B but ϕ ∩ intB = ∅. Here intB denotes the topological interior of B. Furthermore, for any ϕ ⊂ Rd
locally finite, Gn(ϕ) denotes a graph with vertex set ϕ, where two vertices x, y ∈ ϕ are connected by an
edge in Gn(ϕ) if there do not exist an integer k ≤ n and vertices x0 = x, x1, . . . , xk = y ∈ ϕ such that
|xi − xi+1| < |x − y| for all i ∈ {0, . . . , k − 1}, see [15]. To begin with, we state an easy result for the
maximum length of the edges in Del(X) that intersect a given bounded set. Since Gn(X) ⊂ Del(X) this also
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yields useful information for the creek-crossing graphs Gn(X), n ≥ 2. For c1, c2 > 0 we define

bc1,c2(ϕ) = inf
{
n ≥ c2 : ϕ ∩Qn,i 6= ∅ for all i ∈ {1, . . . , bnc1cd}

}
, ϕ ∈ N, (6)

where Qn,1, . . . , Qn,bnc1cd denotes a subdivision of Qn(o) into bnc1cd congruent sub-cubes. Note that bc1,c2
satisfies (3).

Lemma 1. Let β ∈ (0, 1) be an arbitrary fixed number and write bβ instead of b1−β/2,c. Then, there exists
c′ > 1 such that for all c > c′ for a > 1 the events {bβ(X) ≤ a} occur whp. Furthermore, with probability
1 it holds that |X1 − X2| < bβ(X)β or [X1, X2] ∩ Q1(o) = ∅ for all locally finite ψ ⊂ Rd \ Qbβ(X)(o) and

X1, X2 ∈
(
X ∩Qbβ(X)(o)

)
∪ ψ such that [X1, X2] forms an edge in Del

((
X ∩Qbβ(X)(o)

)
∪ ψ
)
.

Proof. For n > 1 subdivide Qn(o) into k = bn1−β/2cd congruent sub-cubes Qn,1, . . . , Qn,k of side length
n/bn1−β/2c. Next, observe that there exists c > 1 such that for all n ≥ c, any ball which intersects
Q1(o) and whose diameter is at least nβ contains at least one of the cubes Qn,1, . . . , Qn,k. Furthermore,
if X1, X2 ∈ (X ∩ Qn(o)) ∪ ψ are such that [X1, X2] ∩ Q1(o) 6= ∅ where |X1 − X2| ≥ nβ and X1, X2 are
connected by an edge in Del(X ∩ Qn(o) ∪ ψ), then there exists a ball B of diameter at least nβ satisfying
(X∩Qn(o)∪ψ)∩intB = ∅. Finally, note that for every a > 1 we have P(bβ(X) > a) ≤

∑k
i=1 P(X∩Qbac,i = ∅),

so that condition (D1) implies that for a > 1 the events {bβ(X) ≤ a} occur whp.

We now verify the conditions (G1)-(G3) of Section 2.1 for the graphs Del(X) and Gn(X), respectively.

Lemma 2. Let n ≥ 2 be an arbitrary fixed number. Then, for a > 1 the events Gn(X) ∩ Qa(o) 6= ∅ and
therefore also the events Del(X)∩Qa(o) 6= ∅ occur whp. Moreover, for a > 1 the events ν1 (Del(X) ∩Q1(o)) ≤
a and therefore also the events ν1(Gn(X) ∩ Q1(o)) ≤ a occur whp. In other words, for G = Del(X) and

G = Gn(X) the events A
(1)
a in condition (G1) occur whp.

Proof. As X ⊂ Gn(X) ⊂ Del(X) the first assertion follows from condition (D1). Due to the subgraph
relation Gn(X) ⊂ Del(X) it suffices to prove the second claim when G = Del(X). Observe that by Lemma 1
whp the length of any edge intersecting Q1(o) is at most a1/(2d+3). Furthermore, by condition (D1) we have
X(Q3a1/(2d+3)(o)) ≤ a(d+1)/(2d+3) whp, so that ν1(Del(X) ∩Q1(o)) ≤

√
da(2d+2)/(2d+3) ≤ a whp.

Lemma 3. Let G = Del(X). Then, there exists c > 1 such that the function b3/4,c : N → Z+,∞ introduced
in (6) satisfies (2) and such that for a > 1 the events {b3/4,c(X) ≤ a} occur whp.

Proof. We can use similar arguments as in the proof of Lemma 1. For n > 1 subdivide Qn(o) into
k = bn3/4cd congruent sub-cubes Qn,1, . . . , Qn,k of side length n/bn3/4c. Next, observe that there exists c > 1
such that for all n ≥ c, any ball of diameter at least

√
n intersecting Q1(o) contains at least one of these sub-

cubes. Furthermore, if ψ ⊂ Rd\Qb3/4,c(X)(o) and X1, X2 ∈ (X ∩Qn(o))∪ψ are such that [X1, X2]∩Q1(o) 6= ∅
and [X1, X2] forms an edge in exactly one of the two graphs Del(X ∩Qn(o)) and Del(X ∩Qn(o) ∪ ψ), then
there exists a ball B ⊂ Rd intersecting both Q1(o) and Rd \Qn(o) such that X ∩B = ∅. Finally, note that
for every a > 1 we have P

(
b3/4,c(X) > a

)
≤
∑k
i=1 P

(
X ∩Qbac,i = ∅

)
≤ ba3/4cdP

(
X ∩Qbac,1 = ∅

)
, so that

condition (D1) implies that for a > 1 the events {b3/4,c(X) ≤ a} occur whp.

Lemma 4. Let G = Gn(X) for some n ≥ 2. Then, there exists c > 4(n + 1)2 such that the measurable
function b(n) = b3/4,c satisfies (2) and for a > 1 the events

{
b(n)(X) ≤ a

}
occur whp.

Proof. Indeed, suppose we could find ψ ⊂ Rd \Qb(n)(X)(o) locally finite and X1, X2 ∈ X ∩Q√b(n)(X)
(o)

such that |X1 −X2| ≤
√
b(n)(X) and [X1, X2] ∩Q1(o) 6= ∅, where [X1, X2] forms an edge in exactly one of

the two graphs Gn(X ∩ Qb(n)(X)(o)) and Gn(X ∩ Qb(n)(X)(o) ∪ ψ). However, since |X1 −X2| ≤
√
b(n)(X),

the existence of an edge between X1 and X2 only depends on the X ∩Q
2(n+1)

√
b(n)(X)

(o) ⊂ X ∩Qb(n)(X)(o).

This contradiction implies that b(n) satisfies (2) so that an application of Lemma 2 completes the proof.

Let again G = Gn(X) for some n ≥ 2. Our next goal is to show that for a > 1 the events A
(3)
a occur whp.

To prove this claim, we need a result on generalised descending chains. This notion is introduced is introduced

7



in [15] and is closely related to the concept of descending chains discussed in [9]. Let b > 0 and ϕ ⊂ Rd be
locally finite. We say that a finite sequence x1, . . . , xk ∈ ϕ forms a finite b-bounded generalised descending
chain in ϕ if there exists an ordered set I = {i1, . . . , ik′} ⊂ {1, . . . , k} with the properties |ij+1 − ij | ≤ 2 for
all j ∈ {0, . . . , k′ − 1}, 0 < |xi − xi+1| ≤ b for all i ∈ {1, . . . , k − 1} and |xij+1 − xij | < |xij−1+1 − xij−1

| for
all j ∈ {2, . . . , k′}, where we use the convention i0 = 0.

Lemma 5. Let A : Rd × [0,∞)2 × N → {0, 1} denote the function with the property that for b, r > 0,
ϕ ⊂ Rd locally finite and x ∈ ϕ it holds that A(x, b, r, ϕ) = 1 if and only if there exists a b-bounded
generalised descending chain in ϕ starting at x and leaving the ball Br(x). Then, for b > 1 the events
{A(η, b, 4db2d+3, X) = 0} for all η ∈ X ∩Q1(o) occur whp.

Proof. Let p ∈ (0, 1) and consider Bernoulli site percolation on the lattice with set of sites Zd and edges
given by {{x, y} ⊂ Zd : |x− y|∞ ≤ 1}, where |z|∞ = maxi∈{1,...,d} |zi| for z = (z1, . . . , zd) ∈ Rd. By Peierl’s
argument (see e.g. [26, Lemma 9.3]) the probability that the open cluster at the origin contains at least k

sites can be bounded from above by (23d−1p)k. We choose p such that γ = 23d−1p < 1 and define suitable
site-percolation models. Let b > 0 be an arbitrary fixed number. For k ≥ 0, ε > 0 and w ∈ Zd we say that
w is (k, ε)-open if there exists v ∈ Q4b(4bw) ∩X with X(B(k+1)ε(v) \ Bkε(v)) > 0. For ε = b−2d and k ≥ 1

with kε ≤ b the probability that an arbitrary site w ∈ Zd is (k, ε)-open can be bounded from above in the
following way. Let νd be the Lebesgue measure in Rd. Then, the probability that w is (k, ε) − open is at
most

E
∑
η∈X

∑
η′∈X\{η′}

1Q4b(4bw)(η)1B(k+1)ε(η)\Bkε(η)(η
′) ≤ c

∫
Q4b(4bw)

νd
(
B(k+1)ε(u) \Bkε(u)

)
du,

and the latter expression is bounded from above by

c(4b)dκdε
d((k + 1)d − kd) ≤ 23dcκdεb

d(kε)d−1 ≤ 23dcκdb
−1,

where κd denotes the volume of the unit ball in Rd. A similar upper bound can be deduced for k = 0.
Thus, we see that by choosing b sufficiently large (independent of w and k), the probability of a site being
open can be made as small as desired. Furthermore, for sufficiently large b these site percolation models are
2-dependent. In particular, by [20, Theorem 0.0], if b is chosen sufficiently large, then the site-percolation
model of (k, ε)-open sites can be dominated from above by an independent Bernoulli site percolation model at
probability p chosen as above. Now assume the existence of η1 ∈ X∩Q1(o) such that A(η1, b, 4db

2d+3, X) = 1.
Then there exists a b-bounded generalised descending chain η1, η2, . . . , ηn with ηn 6∈ B4db2d+3(η1). Define
a map f : {1, . . . , n} → Zd × {0, . . . , db2d+1e}, i 7→ (z, j), where z is determined by ηi ∈ Q4b(4bz) and
j = bb2d |ηi − ηi+1|c if i ∈ I and j = bb2d |ηi+1 − ηi+2|c otherwise. Note that the composition of f and the
projection π2 to the second argument defines a monotonously decreasing function. Furthermore, the image of
the composition of f with the projection π1 to the first component is of size at least b2d+2 (otherwise we could
not reach Rd \B4db2d+3(η1) from Q1(o)). Thus, we conclude the existence of at least one j ∈ {0, . . . , db2d+1e}
satisfying #π1((π2 ◦ f)−1({j})) ≥ b, so that

P(A(η, b, 4db2d+3, X) = 1 for some η ∈ X ∩Q1(o))

≤
b2d+1∑
j=0

P
(
there exists a (j, b−2d)− open cluster inside Qdb2d+2(o) of size at least b

)
≤
b2d+1∑
j=0

∑
z∈Q

db2d+2 (o)∩Zd
P
(
the (j, b−2d)− open cluster at z has size at least b

)
.

Since the latter expression is at most (b2d+1 + 1)(db2d+2)dγb, this completes the proof.

Furthermore, we need the following auxiliary result, see also [1].
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Lemma 6. Let a > 1 and ϕ ⊂ Rd be locally finite. Furthermore, let η, η′ ∈ ϕ be such that 2n|η − η′| ≤ a,
where η, η′ are contained in different connected components of Gn(ϕ)∩Ba(η). Then, A(η, n|η−η′|, a/2, ϕ) =
1, i.e. there exists an n|η−η′|-bounded generalised descending chain starting at η and leaving the ball Ba/2(η).

Proof. We construct the desired chain x0, x
′
0, x1, x

′
1, . . . recursively, starting with x0 = η and x′0 = η′.

This construction will ensure that for all k ≥ 0 the sites xk, x
′
k belong to different connected components of

Gn(ϕ) ∩ Ba(η) and we stop the construction as soon as |y − η| ≥ a/2 for y = xk or y = xk′ . Suppose that
xk and x′k have been constructed. By assumption, we know that {xk, x′k} does not constitute an edge in
Gn(ϕ) ∩Ba(η). Thus, there exist z0 = xk, z1, . . . , zj = x′k ∈ ϕ with j ≤ n and |zi − zi+1| < |xk − x′k| for all
1 ≤ i ≤ j−1. As 2n|η−η′| ≤ a, we conclude that zi ∈ Ba(η)∩ϕ for all 0 ≤ i ≤ j. By assumption, there exists
at least one index i0 such that zi0 and zi0+1 belong to different connected components of Gn(ϕ) ∩ Ba(η).
Then we define xk+1 = zi0 and x′k+1 = zi0+1.

For r > 0 and ϕ ⊂ Rd locally finite, we denote by G(ϕ, r) the graph on the vertex set ϕ, where x1, x2 ∈ ϕ
are connected by an edge if and only if |x1 − x2| < r.

Lemma 7. Let α ∈ (0, 1). Then, for a > 1 the graphs G(X ∩Qa(o), aα) are connected whp.

Proof. Subdivide Qa(o) into k = d(d + 1)a1−αed sub-cubes Qa,1, . . . , Qa,k so that any points in two
neighbouring cubes (i.e., cubes sharing a (d− 1)-dimensional face) are at distance at most aα. Thus, if each
of these cubes contains at least one element from X, then G(X ∩Qa(o), aα) is connected and we obtain

P (G(X ∩Qa(o), aα) not connected) ≤ P(X(Qa,i) = 0 for some i ∈ {1, . . . , k}),

which is at most kP(X(Qa,1) = 0). An application of (D1) now completes the proof.

Lemma 8. Let G = Gn(X) for some n ≥ 2. Then, for a > 1 the events A
(3)
a occur whp.

Proof. If A
(3)
a does not occur, then we may assume by Lemmas 1 and 7 that there exist X1, X2 ∈ X ∩

Qa/2+
√
a(o) such that |X1 −X2| ≤ a1/(2d+4), where X1, X2 are contained in different connected components

of Gn(X)∩Ba/4 (X1) ⊂ Gn(X)∩Qa(o). In particular, Lemma 6 implies that A(X1, na
1/(2d+4), a/8, X) = 1.

An application of Lemma 5 therefore completes the proof.

Due to the relation Gn(X) ⊂ Del(X), the statement of Lemma 8 is also true for G = Del(X).

3.2. Voronoi tessellation

Let ϕ ⊂ Rd be locally finite and define Vor(ϕ) ⊂ Rd to be the geometric graph obtained by considering
the edge set of the Voronoi tessellation with centres in ϕ. To any x ∈ ϕ we can associate the cell {y ∈ Rd :
|x − y| ≤ infx′∈ϕ |x′ − y|}, and we define Vor(ϕ) as the union of the edges of all such cells. Let X be a
stationary, isotropic and m-dependent point process in Rd, and let G = Vor(X). Then, in contrast to the
random geometric graph considered in Section 3.1, the point process X does not describe the vertices of the
graph G = Vor(X), but the locations of its cell centres. In this subsection, we make the following additional
assumption on X. Suppose that

(V) for a > 1 the events {X ∩Qa(o) 6= ∅} ∩ {X(Q1(o)) ≤ a} occur whp.

To begin with, we verify one part of condition (G1).

Lemma 9. For a > 1 the events ν1 (Vor(X) ∩Q1(o)) ≤ a occur whp.

Proof. Subdivide Q(4d+1)a(o) into k = (4d+ 1)d congruent sub-cubes Qa,1, . . . , Qa,k of side length a and

write Aa =
⋂k
i=1{X(Qa,i) ≥ 1}. Choosing an odd number of subcubes is convenient as it guarantees that

the cube Qa(o) is a member of this decomposition. The dimension d needs to enter the number of elements
in this decomposition, since also the diameter of the unit cube increases in d. We conclude from condition
(V) that for a > 1 the events Aa occur whp. Furthermore, provided that Aa holds, the following is true:
(i) if a Voronoi cell has non-empty intersection with Q1(o) then its centre is contained in Q(4d+1)a(o), and
(ii) each edge intersecting Q1(o) is determined by a collection of d adjacent cells. Indeed, (ii) follows from
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basic linear algebra and to show (i), we proceed as follows. Let η ∈ X be such that there exists η′ ∈ Q1(o)
contained in the Voronoi cell associated with η. By assumption, X ∩ Qa(o) 6= ∅, so that |η − η′| ≤

√
da,

implying that η ∈ Q(4d+1)a(o). Therefore, (provided that Aa holds) the number of edges in Vor(X) ∩Q1(o)

is bounded from above by X(Q(4d+1)a(o))d, so that ν1(Vor(X) ∩Q1(o)) ≤
√
dX(Q(4d+1)a(o))d. Hence,

P
(
ν1(Vor(X) ∩Q1(o)) > ad

2+3d
)

≤ P(Aca) + P
({
ν1(Vor(X) ∩Q1(o)) ≤

√
dX(Q(4d+1)a(o))d

}
∩
{
ν1(Vor(X) ∩Q1(o)) > ad

2+3d
})

≤ P(Aca) + P
(
X(Q(4d+1)a(o)) > ad+2

)
,

so that an application of condition (V) completes the proof.

Next, we prove sub-exponential decay of P (Vor(X) ∩Qa(o) = ∅), P(b(X) > a), and 1−P
(
A

(3)
a

)
as a→∞.

For a > 1 subdivide Qa(o) into k = (8d + 1)d congruent sub-cubes Qa,1, . . . , Qa,k of side length a/(8d + 1)
and put b(ϕ) = inf {n ≥ 2 : ϕ ∩Qn,i 6= ∅ for all i ∈ {1, . . . , k}}, where ϕ ∈ N. First note that b satisfies (3).
Moreover, for the same reasons as those provided in Lemma 9, it is convenient to consider a subdivision into
an odd number of cubes, which is increasing in the dimension d.

Lemma 10. The function b : N → Z+,∞ introduced above satisfies (2). Moreover, for a > 1 the events

Vor(X) ∩Qa(o) 6= ∅, {b(X) ≤ a} and A
(3)
a occur whp.

Proof. We write Aa =
⋂k
i=1{X (Qa,i) ≥ 1} and conclude from condition (V) that the events Aa and

{b(X) ≤ a} occur whp. If Aa holds, then (i) the centre of any Voronoi cell intersecting Q1(o) is contained in
Qa/2(o), (ii) the centre of any Voronoi cell intersecting Qa/2(o) is contained in Q3a/4(o) and (iii) the Voronoi
cell associated with any Xn ∈ X ∩ Q3a/4(o) is contained in Qa(o). We provide a proof of (iii), noting that

(i) and (ii) can be proven by similar arguments. Indeed, let η ∈ Rd \ Qa(o) be arbitrary and denote by P
the intersection point of the line segment [Xn, η] and ∂Qa(o). Let i ∈ {1, . . . , k} be such that P ∈ Qa,i and
choose an arbitrary X0 ∈ X ∩Qa,i. Then

|η −X0| − |η −Xn| ≤ |η − P |+ |P −X0| − |η − P | − |P −Xn| ≤ a((
√
d+ 1)/(8d+ 1)− 1/8),

which is negative for d ≥ 2, so that η is not contained in the cell associated with Xn. On the one hand,

(i)-(iii) imply that b satisfies (2). On the other hand, as A
(3)
a and Vor(X) ∩ Qa(o) 6= ∅ are implied by the

joint occurrence of (ii) and (iii), we see that also the events A
(3)
a and Vor(X) ∩Qa(o) 6= ∅ occur whp.

3.3. Poisson line tessellation

In this subsection we show that the linear growth property (4) holds for the isotropic two-dimensional
Poisson line tessellation. Although conditions (G1) and (G3) could be verified using similar arguments as in
Lemma 11 below, we conjecture that condition (G2) (or some variant thereof) does not hold due to the long-
range dependence inherent to the Poisson line model. However, as we will see, it is quite simple to check (4)
directly. To be more precise, we consider the planar graph formed by the union of lines in an isotropic
Poisson line process, which is defined as follows. Let {(Rn, Un)}n≥1 ⊂ R × [0, π) denote an independently
marked Poisson point process in R with intensity λ > 0, where the marks are uniformly distributed on [0, π).
Then the system of random lines {`n}n≥1 defined by `n =

{
(x, y) ∈ R2 : x cosUn + y sinUn = Rn

}
, n ≥ 1 is

called an isotropic Poisson line process.

Lemma 11. Let G be the edge set of the tessellation induced by an isotropic Poisson line process. Then
property (4) holds.

Proof. For r, u > 1 denote by Er,u the event that there exist four random lines {`ni}1≤i≤4 of the Poisson
line process such that they form the extensions of the edges of a quadrilateral Ξ satisfying {q(o), q(re1)} ⊂
Ξ ⊂ Q12ur(o), where the notation q(·) was introduced in Section 2. Observe that if Er,u occurs, then
`(o, re1) ≤ 2

√
2 · 12ur+ 4 · 12ur, where the notation `(·, ·) was also introduced in Section 2. Thus, it suffices

to find sub-exponential bounds for P(Ecr,u). We denote by E
(1)
r,u the event that there exists a line `1 of
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the Poisson line process whose angle is contained in [π/2 − π/24, π/2 + π/24] and that intersects the ball

B√ur((r + ur)e1). Furthermore, we denote by E
(i)
r,u the event obtained from E

(1)
r,u by applying a rotation of

angle (i− 1)π/2 and centre o. See Figure 2 for an illustration of the event
⋂4
i=1E

(i)
r,u.

P1

P2

P3

P4

Q
α

o re1

`1

`2

`3

`4

r ur

Figure 2: Occurrence of the event
⋂4
i=1E

(i)
r,K

We claim that the existence of u0 > 1 such that for all u ≥ u0 and for all sufficiently large ur the event⋂4
i=1E

(i)
r,u implies Er,u. The inclusion {q(o), q(re1)} ⊂ Ξ is clear. To prove Ξ ⊂ Q12ur(o) choose an arbitrary

intersection point P1 ∈ `1 ∩ ∂B√ur((r + ur)e1). Similarly, choose P2 as an intersection point of `2 with the
circle ∂B√ur((r+ur)e2) and put {Q} = `1∩`2. Using elementary geometry we see that for all ur sufficiently
large the angle α = ∠P2QP1 forms the largest angle in the triangle 4P2P1Q and that |P1 − P2| ≤ 4ur, see
Figure 2. In particular, the point Q is contained in Q12ur(o). Since the same is true for `2 ∩ `3, `3 ∩ `4 and
`4 ∩ `1 we see that Er,u holds. Therefore, it remains to prove sub-exponential bounds for the complement of

E
(1)
r,u. However, by the definition of a Poisson line process the number of lines with the properties described

in E
(1)
r,u is Poisson-distributed with parameter λ

12

√
ur. In particular, P(E

(1)
r,u) = 1− exp

(
− λ

12

√
ur
)
.

4. Proof of Theorem 1

To prove Theorem 1, we proceed in three steps, where we use the general method of global and local
paths that has already been successfully applied in literature, see [1, 2, 4, 12, 34]. First, in Section 4.1, we
discretise Rd into boxes, allowing us to use results from percolation theory on lattices. Next, in Section 4.2
we explain how to construct a global path, i.e. a path that is used to move from a point on G close to o to
a point on G close to re1. Finally, in Section 4.3, we provide a construction for local paths that are used to
connect q(o) and q(re1) to the global path constructed in the previous step.

4.1. Discretisation of the Euclidean space into boxes

In order to prove that the probability P (`(o, re1) ≥ ur) decreases as stated in (4) if ur →∞, it suffices to
show that with high probability we can construct some path of length at most ur connecting q(o) and q(re1)
(because then `(o, re1) ≤ ur). Here, we recall that q(o) and q(re1) denote the closest points on the graph G
to the origin and to re1, respectively. To construct such a path, we decompose the Euclidean space Rd into
congruent d-dimensional sub-cubes with a certain side length L > 0. In particular, our goal is to move only
along cubes for which the total length of the random geometric graph is bounded from above and for which
it is possible to directly pass to neighbouring cubes along the random geometric graph. We call these cubes
L-good cubes/sites in the following, other cubes are called L-bad cubes/sites, see also Definition 1 below.
Loosely speaking, L-good cubes describe sub-regions of Rd, where the graph G has good properties, which
are closely related to the growth, stability and connectivity conditions (G1)-(G3) introduced in Section 2.1.
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Like in [4], we will show that this allows us to construct efficient paths inside connected components
of L-good cubes and also that non-percolation of L-bad cubes occurs for all sufficiently large L > 0. For
illustrations of the situation in two configurations, see Figure 3, where L-bad cubes are shaded. For simplicity,
only the left figure shows the underlying graph.

o re1

Figure 3: A path (thick) avoiding L-bad cubes (left) and L-bad connected component containing o and re1

(right)

More precisely, we introduce the following definition.

Definition 1. Let L > 0, z ∈ Zd and put cL = (5L)dL. Furthermore, let b : N → Z+,∞ be the function
considered in condition (G2) of Section 2.1. A site z ∈ Zd is said to be L-good if the following items are
satisfied:

(i) q(x) ∈ BL/4(x) for all x ∈ Qd ∩QL(Lz) and ν1(G ∩Q5L(Lz)) ≤ cL,

(ii) b((X − z′) ∩QL/2(o)) ≤ L/2 for all z′ ∈ Zd ∩Q5L+1(Lz),

(iii) G ∩Q3L(Lz) is contained in a connected component of G ∩Q5L(Lz).

For given L > 0, we consider the site percolation model {Yz}z∈Zd of L-good sites, where for z ∈ Zd the
{0, 1}-valued random variable Yz takes the value 1 if and only if z forms an L-good site. Observe that (due
to item (ii)) there exists m ≥ 1 such that for all sufficiently large L > 0 the percolation process defined
above is m-dependent. Furthermore, the following useful results hold, where we say that a subset of Zd is
∗-connected if it is a connected set in graph on Zd with edges given by {{x, y} ⊂ Zd : |x− y|∞ ≤ 1}.

Lemma 12. Let Λ ⊂ Zd be a finite and ∗-connected set of L-good sites. Then for all z, z′ ∈ Λ and all
η ∈ G ∩ Q3L(Lz), η′ ∈ G ∩ Q3L(Lz′) the points η, η′ can be connected by a path in G ∩ (LΛ⊕Q5L(o))
satisfying ` (η, η′) ≤ (#Λ + 1) cL.

Proof. Put z = z0, z′ = zk and let γ = 〈z0, z1, . . . , zk〉 ⊂ Λ be a self-avoiding path of ∗-connected
vertices connecting z and z′. Geometrically, the path γ corresponds to a sequence of vertex-adjacent cubes
QL(Lz0), QL(Lz1), . . . , QL(Lzk). By condition (i) of Definition 1, we have q(Lzi) ∈ G ∩ QL(Lzi) for all
i ∈ {0, . . . , k}. Furthermore, by condition (iii), we conclude that q(Lzi) and q(Lzi+1) can be connected by a
path in G ∩Q5L(Lzi). By the same reasoning, we can find corresponding paths from η to q(Lz0) and from
η′ to q(Lzk). Finally, using condition (i), the assertion follows.

Lemma 13. It holds that limL→∞ P (o is L-good) = 1.
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Proof. The growth and stability conditions (G1) and (G2) of Section 2.1 immediately imply conditions (i)
and (ii) in Definition 1 of L-goodness. To deal with condition (iii) subdivide Q3L(o) into k = 6d congruent
sub-cubes QL,1, . . . , QL,k of side length L/2. The connectivity condition (G3) introduced in Section 2.1
implies that if QL,i and QL,j are neighbouring sub-cubes, then G ∩QL,i and G ∩QL,j are contained in the
same connected component of G ∩Q5L(o) whp. Since the growth condition (G1) implies that G ∩QL,i 6= ∅
for all i ∈ {1, . . . , k} whp, this observation completes the proof.

Using m-dependence in conjunction with Lemma 13 and stationarity allows us to apply [20, Theorem
0.0]. This means that the family of L-bad sites can be dominated from above by a Bernoulli site percolation
model with arbitrarily small marginal probability provided that L is chosen sufficiently large. In particular,
we henceforth fix a value of L such that in the dominating Bernoulli site percolation model the size of the
∗-connected closed component at the origin (also called cluster size) admits a finite exponential moment.

4.2. Construction of global paths

In this section we elaborate on how to construct an efficient global path, i.e. a path that is used to move
from a point on G not too far from o to a point on G not too far from re1. This is done by searching
L-good cubes close to o and re1 that are contained in a set of L-good sites surrounding the L-bad connected
components intersecting some cube between o and re1.

For every finite set of sites Λ ⊂ Zd we can decompose its complement Λc into finitely many connected
components, i.e., Λc = Λc1 ∪ · · · ∪ Λck. Observe that precisely one of these components, say Λc1, is infinite.
Furthermore, we define the external boundary of Λ as

∂extΛ = {z ∈ Λc1 : |z − z′|1 = 1 for some z′ ∈ Λ},

see Figure 4. Recall from [28, Lemma 2.1] that the external boundary of any ∗-connected set is again
∗-connected.

Figure 4: Gray squares form external boundary of the set of (filled) black disks

If we consider the site percolation model introduced in Section 4.1, then for any z ∈ Zd we denote by Cz

the ∗-connected L-bad component at z. Furthermore, for n ≥ 0 we define Vn = ∂ext
Ä⋃n−1

i=0 (Cie1 ∪ {ie1})
ä

as well as z1,n = supk≤0{ke1 ∈ Vn} and z2,n = infk≥n{ke1 ∈ Vn}. Note that z1,n and z2,n are contained in
the same ∗-connected component of L-good sites, see Figure 5, left.

First, we provide an upper bound on the length of the shortest path connecting q(Lz1,n) and q(Lz2,n).

Lemma 14. There exists u1 ≥ 1 with

lim inf
un→∞

u≥u1,n≥1

− logP (`(Lz1,n, Lz2,n) ≥ un)

un
> 0.

Proof. First, Lemma 12 implies that `(Lz1,n, Lz2,n) ≤ cL(#Vn + 1) for all n ≥ 1. Furthermore, there
exists c > 0 with #Vn + 1 ≤ c(n+ #A), where A =

⋃n−1
i=0 Cie1 denotes the union of the ∗-connected L-bad

components at ie1 for i ∈ {0, . . . , n− 1}. In particular,

P (`(Lz1,n, Lz2,n) ≥ un) ≤ P (n+ #A ≥ un/(ccL)) .
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Recall that the percolation process of L-bad sites can be dominated from above by a sub-critical Bernoulli
site percolation process, whose cluster size admits a finite exponential moment, see the remark at the end of
Section 4.1. Furthermore, if we consider the union of the closed connected components at the sites ie1 for
i ∈ {0, . . . , n− 1}, then it has been shown in [11, Lemma 2.3] that the size of this union is dominated from
above by

∑n−1
i=0 Di, where {Di}0≤i≤n−1 is a family of i.i.d random variables whose marginal distributions

coincide with the distribution of the cluster size. By the choice of L, we have exp(a) = Eexp (h (D1 + 1)) <∞
for some h > 0. In particular, for all u ≥ 2accL/h the Markov inequality yields

P (n+ #A ≥ un/(ccL)) ≤ P
( n−1∑
i=0

(Di + 1) ≥ un/(ccL)
)
≤ exp (n(a− uh/(ccL))) .

Since the latter expression is at most exp (−nuh/(2ccL)), this completes the proof.

4.3. Construction of local paths

Similar to the approach considered in [1], to prove Theorem 1 we need the existence of suitable local paths
in addition to the global paths constructed in Section 4.2, see Figure 5, right.

o re1z1,n
z2,n

q(o) q(re1)

Figure 5: Global path and the set Vn (dotted pattern, left) and local path (solid) connecting q(o) resp.
q(re1) to the global path (dashed, right)

The goal of this subsection is to provide the following bounds on the lengths of such local paths.

Lemma 15. For r ∈ R let n(r) ∈ Z be the uniquely determined integer n satisfying −L/2 < L(n− 1)− r ≤
L/2. Then, there exist u2, u3 ≥ 1 such that

lim inf
ur→∞

u≥u2,r≥1

log
(
− logP(`(o, Lz1,n(r)) > ur)

)
log(ur)

> 0, (7)

and

lim inf
ur→∞

u≥u3,r≥1

log
(
− logP(`(Lz2,n(r), re1) > ur)

)
log(ur)

> 0. (8)

Before we begin with the proof of Lemma 15, we extend the definition of Vn introduced in Section 4.2 to
negative values of n in a natural way. For n ≤ −1 and Λ =

⋃0
i=n+1 Cie1 ∪ {ie1} write Vn = ∂extΛ and An =

Zd \ Λc1, where we recall that Λc1 denotes the uniquely determined infinite component of the complement of
Λ ⊂ Zd. The idea is to consider the external boundary Vz1,n(r)

of the union of L-bad components intersecting
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one of the sites o,−e1, . . . , (z1,n(r) + 1)e1, i.e., Vz1,n(r)
= ∂ext

(⋃0
i=z1,n(r)+1(Cie1 ∪ {ie1})

)
. We first show in

Lemma 16 that any two paths starting from the domain surrounded by this external boundary intersect
Vz1,n(r)

in a particularly nice way that allows us to efficiently join these two paths together along the external
boundary. In a second step, see Lemma 17 below, we derive for suitable values of r an upper bound on
#V−n(r), which holds whp.

Lemma 16. The points q(o) and q(Lz1,n(r)) are connected by a path in G∩((LAz1,n(r)
∪LVz1,n(r)

)⊕Q5L(o)).

Proof. As G is connected and stationary, there exists a path γ in G starting at q(o) and leaving (LAz1,n(r)
∪

LVz1,n(r)
) ⊕ Q3L(o). Choose z0 ∈ Vz1,n(r)

such that Lz0 ⊕ Q3L(o) is the first cube of the form {Lz ⊕
Q3L(o)}z∈Vz1,n(r)

that is intersected by γ. Furthermore, we write η ∈ G ∩ (Lz0 ⊕ Q3L(o)) for the first

intersection point of γ and Lz0 ⊕Q3L(o). Similarly, we can construct analogous objects γ′, z′0 and η′ which
are obtained when starting from q(Lz1,n(r)). Since Vz1,n(r)

is a ∗-connected set of L-good sites, we conclude
from Lemma 12 that η and η′ can be joined by a path inside LVz1,n(r)

⊕Q5L(o).

Lemma 17. For each β > 0 there exists u4 = u4(β) > 0 with

lim inf
ur→∞

u≥u4,r≥1

− logP
(
#V−n(uβr2β) > u2βr2β

)
u2βr2β

> 0.

Proof. We can proceed similarly as in the proof of Lemma 14. In particular, there exist u4, c1 ≥ 1 such
that for all u ≥ u4 and r ≥ 1 we have P

(
#V−n(uβr2β) > n(uβr2β)uβ

)
≤ exp

(
−c1n(uβr2β)uβ

)
. Furthermore,

there exist constants c2(L), c3(L) > 0 such that for all u ≥ u4 and r ≥ 1 we have c2(L)u2βr2β ≤ n(uβr2β)uβ ≤
c3(L)u2βr2β , which proves the claim.

Finally, we show that |z1,n(r)| is rather small whp.

Lemma 18. It holds that
lim sup
a→∞

sup
r≥1

1
a logP(z1,n(r) < −a) < 0.

Proof. Let a > 0 and note that if z1,n(r) < −a, then there exists k ≥ 0 such that Cke1 has diameter
larger than k + a. As discussed in Section 4.1, we choose L sufficiently large so that this diameter has an
exponentially bounded tail. In particular, there exists a constant c > 0 with

P(z1,n(r) < −a) ≤
∞∑
k=0

P(diam(Cke1) > k + a) ≤
∞∑
k=0

exp(−c(k + a)) ≤ (1− exp(−c))−1exp(−ca).

Proof of Lemma 15. Using the notation k = n(u1/(6d+12)r1/(3d+6)), by means of Lemma 16 we get that

P(`(o, Lz1,n(r)) > ur) ≤ P
Ä
ν1

Ä
G ∩
Ä
(LAz1,n(r)

∪ LVz1,n(r)
)⊕Q5L(o)

ää
> ur

ä
≤ P(z1,n(r) < −k) + P (ν1 (G ∩ ((LA−k ∪ LV−k)⊕Q5L(o))) > ur) .

Observe that by the discrete isoperimetric inequality (see e.g. [11]), #V−k is at least d−1 (#A−k)
(d−1)/d

. In
particular, if t > 0 is sufficiently large and #V−k ≤ t, then A−k ∪ V−k ⊂ Qt3(o). Hence,

P(`(o, Lz1,n(r)) > ur) ≤ P(z1,n(r) < −k) + P (#V−k > t) + P (ν1 (G ∩QLt3+5L(o)) > ur)

= P(z1,n(r) < −k) + P (#V−k > t) + P
(
ν1 (G ∩QLt3+5L(o)) > t3d+6

)
,

where t = (ur)1/(3d+6). Applying the sub-exponential bounds of Lemmas 17 and 18, condition (G1) therefore
yields (7). The second assertion of Lemma 15 can be deduced by very similar arguments.

15



4.4. Combining paths

Finally, we patch together the global and local paths constructed in Sections 4.2 and 4.3, respectively.
For all r ≥ 1 and u ≥ u0 = 3 max{u1, u2, u3} the probability P(`(o, re1) > ur) is at most

P(`(o, Lz1,n(r)e1) > ur/3) + P(`(Lz1,n(r)e1, Lz2,n(r)e1) > ur/3) + P(`(Lz2,n(r)e1, re1) > ur/3).

The first and third expressions on the right-hand side of this inequality exhibit sub-exponential decay by
Lemma 15 (local paths), whereas the second expression exhibits exponential decay by Lemma 14 (global
paths). In this way, we can deduce the desired sub-exponential bound stated in Theorem 1.

5. Proofs of Theorems 2 and 3

In this section, we provide proofs of Theorems 2 and 3, which can be seen as applications of Theorem 1.

5.1. Shape theorem

Recall that Theorem 2 can be considered as a shape theorem (in the sense of [18, Theorem 1.7]) for
Euclidean first-passage percolation on random geometric graphs. Let G be a stationary, ergodic and isotropic
random geometric graph in Rd for which (4) holds and which satisfies conditions (G1) and (G3). First we
derive the following preliminary results stated in Lemmas 19–21 below.

Lemma 19. Let ξ ≥ 1 be an arbitrary fixed number. Then

P
(
B(1−ε)r(o) ⊂ BGξr(o) ⊂ B(1+ε)r(o) for all sufficiently large r > 0

)
= 1 (9)

for all ε > 0 if and only if for all ε > 0 it holds that

P
(
(ξ − ε)|x| ≤ `(o, x) ≤ (ξ + ε)|x| for all x ∈ Rd with |x| sufficiently large

)
= 1. (10)

Proof. Let ε ∈ (0, 1) be arbitrary and choose a (random) threshold r0 > 0 such that the inclusions
in (9) hold for all r > r0 when using ε′ = ε/(2ξ) instead of ε. Then, for x ∈ Rd with (1 + ε/ξ)|x| > r0

we obtain that x ∈ B|x|(o) ⊂ B(1−ε′)(1+ε/ξ)|x|(o) ⊂ BGξ(1+ε/ξ)|x|(o), which means that `(o, x) ≤ (ξ + ε)|x|.
Similarly, choosing r0 > 0 as above, the inequality `(o, x) < (ξ − ε)|x| for |x| > r0 would imply that
x ∈ BGξ(1−ε/ξ)|x|(o) ⊂ B(1+ε/(2ξ))(1−ε/ξ)|x|(o) ⊂ B(1−ε/(2ξ))|x|(o), which is a contradiction to |y| < |x| for all

y ∈ B(1−ε/(2ξ))|x|(o). Thus, assuming that (9) holds for all ε > 0, we get that (10) holds for all ε > 0. The
reverse implication can be shown similarly.

Lemma 20. Let E(1) denote the event that |yn − q(yn)| / |yn| → 0 for all sequences (yn)n≥1 with yn ∈ Rd
and |yn| → ∞. Then, P(E(1)) = 1.

Proof. Let z ∈ Zd and ε ∈ (0, 1/d) be arbitrary. Subdivide the cube Qε|z|(z) into k = (4d+ 1)d congruent
sub-cubes Qz,1, . . . , Qz,k with side length ε|z|/(4d + 1). We say that z is ε-good if each of the k sub-cubes
has non-empty intersection with G. It is easy to check that if z is ε-good, then q(y) ∈ Q(2

√
d+1)ε|z|/(4d+1)(z)

for all y ∈ Qε|z|/(4d+1)(z). In particular,

|y − q(y)|
|y|

≤
√
d(2
√
d+ 1)ε |z|4d+1

|z| −
√
dε |z|4d+1

≤ 3dε

4d+ 1−
√
dε
.

Furthermore, using stationarity, for any r ≥ 1 we compute

P
( ⋃
z∈Zd:|z|≥r

{z is ε-bad}
)
≤

∑
z∈Zd:|z|≥r

P(z is ε-bad) ≤ (4d+ 1)d
∑

z∈Zd:|z|≥r

P(Qε|z|/(4d+1)(o) ∩G = ∅).

Now, using condition (G1) in conjunction with the Borel-Cantelli lemma shows that with probability 1 we
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only have a finite number of ε-bad lattice points and therefore

lim sup
n→∞

|yn − q(yn)|
|yn|

≤ 3dε

4d+ 1−
√
dε
.

Since ε > 0 was arbitrary this proves the claim.

Lemma 21. Let α > 0 be arbitrary. If X is a point process satisfying condition (G1), then for a > 1 the
events q(o) ∈ Qaα(o) occur whp.

Proof. Clearly, q(o) ∈ Qaα(o) if Qaα/
√
d(o) ∩ G 6= ∅. Hence, the proof is completed by recalling that

condition (G1) implies the existence of c1, c2 > 0 such that P(Qaα/
√
d(o) ∩G = ∅) ≤ c1exp(−(aα/

√
d)c2).

Next note the following two results.

Lemma 22. Let S̃ ⊂ ∂B1(o) be a fixed countable subset of the unit sphere in Rd. Then, there exists ξ ≥ 1
such that

P
(

lim
n→∞

`(o, ns)/n = ξ for all s ∈ S̃
)

= 1.

Proof. By isotropy and the countability assumption, it suffices to prove the assertion for fixed s = e1.
It is easy to check that the family of random variables {`k,n = `(ke1, ne1)}k,n≥0 is subadditive. Moreover,
it is stationary with respect to the mappings {`k,n}k,n≥0 7→ {`k+m,n+m}k,n≥0, m ≥ 1. Thus, to apply
Kingman’s subadditive ergodic theorem [19] it suffices to verify E`(o, e1) < ∞. To prove this claim write
E`(o, e1) =

∫∞
0

P(`(o, e1) > ρ)dρ. Relation (4) implies that the integrand decays sub-exponentially fast in ρ,
so that E`(o, e1) <∞. Finally, ergodicity of G implies that limn→∞ `(o, ne1)/n is a.s. constant.

Lemma 23. Let δ ∈ (0, 1) be arbitrary. For a > 1 and η ∈ G ∩ Qaδ(o) denote by E
(2)
η,a the event that

`(o, η) ≤ a2dδ. Then, there exists a family of events (E
(2)
a )a>1 such that the occurrence of E

(2)
a implies the

occurrence of E
(2)
η,a for all η ∈ G ∩Qaδ(o) and such that for a > 1 the events E

(2)
a occur whp.

Proof. By Lemma 21, we have q(o) ∈ Q3aδ(o) whp and by condition (G3) for any η ∈ Q3aδ(o) we know that
q(o) and η can be connected by a path in G∩Q5aδ(o) whp. In particular, it suffices to show that for a > 1 the
events ν1(Q5aδ(o)∩G) ≤ a2dδ occur whp. To show this, we may subdivide Q5aδ(o) into k = d5aδed congruent
sub-cubes of side length at most 1 and apply condition (G1) to obtain that ν1(Q5aδ(o) ∩ G) ≤ kaδ ≤ a2dδ

holds whp.

Finally, we need one further preliminary lemma. A similar result is also the key ingredient in Kesten’s
original proof, see [18, Lemma 3.6].

Lemma 24. For 0 < ε < 1/4 write E
(3)
ε for the following event. There exists a random K > 0 such that

`(η, η′) ≤ 4u0 |η − η′| for all η, η′ ∈ G with |η| ≥ K and ε |η| /2 ≤ |η − η′| ≤ 2ε |η|. Then P(E
(3)
ε ) = 1.

Proof. For every u > 1 and z ∈ Zd with |z| sufficiently large, we consider the probability

P(there exist η, η′ ∈ G with `(η, η′) ≥ u |η − η′| , η ∈ Q1(z) and ε |η| /2 ≤ |η − η′| ≤ 2ε |η|)
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and, putting D(z, ε) = {z′ ∈ Zd : ε |z| /4 ≤ |z − z′| ≤ 4ε |z|}, we note that it is at most∑
z′∈D(z,ε)

P(there exist η, η′ ∈ G with `(η, η′) ≥ u |z − z′| /2, η ∈ Q1(z) and η′ ∈ Q1(z′))

≤
∑

z′∈D(z,ε)

P(`(z, z′) ≥ u |z − z′| /4)

+
∑

z′∈D(z,ε)

P
(

there exists η ∈ G ∩Q|z|1/(4d)(z) with `(z, η) ≥
»
|z|
)

+
∑

z′∈D(z,ε)

P
(

there exists η′ ∈ G ∩Q|z|1/(4d)(z
′) with `(z′, η′) ≥

»
|z|
)
.

Choosing u = 4u0, and applying Lemma 23 and Theorem 1 in conjunction with the Borel-Cantelli lemma
then completes the proof.

Using these auxiliary results, we may now proceed similarly to [18, Theorem 1.7] to deduce Theorem 2.

Proof of Theorem 2. Let ε > 0 be arbitrary. Our goal is to show that

−ε+ ξ ≤ `(o, y)/|y| ≤ ξ + ε (11)

for all y ∈ Rd with |y| sufficiently large. We assume that we are given a realisation where the event E
(3)
m−1 in

Lemma 24 occurs for all m ≥ 1 and where additionally the event E(1) of Lemma 20 occurs. For the sake of
deriving contradiction, we assume that there exists a sequence yn with |yn| → ∞, yn |yn|−1 → z ∈ ∂B1(o)
so that (11) is violated for these yn ∈ Rd, when ε is replaced by 8u0ε. Since |q(yn)− yn|/|yn| → 0, we may

assume yn = q(yn). Now, choose an arbitrary countable dense subset S̃ ⊂ ∂B1(o) and an element s ∈ S̃
such that ε ≤ |s− z| ≤ 5ε/4. Then,∣∣∣∣`(o, yn)

|yn|
− ξ
∣∣∣∣ ≤ ∣∣∣∣`(o, yn)

|yn|
− `(o, b|yn|cs)

|yn|

∣∣∣∣+

∣∣∣∣`(o, b|yn|cs)|yn|
− ξ
∣∣∣∣ ≤ `(yn, b|yn|cs)

|yn|
+

∣∣∣∣`(o, b|yn|cs)|yn|
− ξ
∣∣∣∣ .

By Lemma 22, the second expression tends to 0 as n → ∞. Thus, it remains to consider the behaviour of
the first expression. For simplicity write kn = b|yn|c and xn = q(kns), so that `(yn, kns) = `(yn, xn). Now,

|yn − xn| ≤ |yn − knz|+ kn |z − s|+ |kns− xn| = kn (|yn/kn − z|+ |z − s|+ |s− xn/kn|) .

By Lemma 20, the third summand is less than ε/8 for all n sufficiently large. Furthermore, by the definition
of z, the same holds for the first summand. As the second summand is at most 5ε/4, we conclude that
|yn − xn| ≤ 3knε/2 ≤ 2 |yn| ε. Similarly, as |z − s| > ε, one shows that |yn − xn| ≥ |yn| ε/2. An application
of Lemma 24 thus yields `(yn, xn)/|yn| ≤ 4u0|yn − xn|/|yn| ≤ 8u0ε. Since ε > 0 was arbitrary, this completes
the proof of Theorem 2.

We conclude this section by showing that if (10) is satisfied for G, then so it is for the Palm version G∗ of
G with respect to ν1 (· ∩G).

Proposition 1. Let G be a stationary and isotropic random geometric graph in Rd. If (10) is satisfied for
G, then it is also satisfied for G∗.

Proof. For enhanced readability, we write `G for lengths of shortest paths on G and `G∗ for lengths of
shortest paths on G∗, respectively. We only prove the statement for the first inequality in (10), the second
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one being very similar. First, note that for all ε > 0 the definition of Palm versions yields

P
(
(ξ − ε) |x| ≤ `G∗(o, x) for all x ∈ Rd with |x| sufficiently large

)
=

1

γ
E
∫
G∩Q1(o)

1(ξ−ε)|x−y|≤`G(y,x) for all x∈Rd with |x− y| sufficiently largedy.

In particular, it suffices to prove that for all ε > 0 there exists a (random) threshold r0 > 0 such that
for all y ∈ Q1(o) ∩ G and all x ∈ Rd with |x− y| ≥ r0 we have (ξ − ε) |x− y| ≤ `G(y, x). Therefore, let
ε > 0 be arbitrary and choose a (random) threshold r′0 > 0 such that the inequalities in (10) hold for G
with ε/4 instead of ε and all x ∈ Rd with |x| ≥ r′0. Then, we choose r0 > 0 sufficiently large such that
r0 ≥ max

{
2
√
dξε−1, r′0 +

√
d
}

and `G(y, o) ≤ (r0 −
√
d)ε/4 hold for all y ∈ G ∩ Q1(o). In particular,

for all y ∈ Q1(o) ∩ G and all x ∈ Rd with |x− y| ≥ r0 we compute `G(y, x) ≥ `G(o, x) − `G(o, y) ≥
(ξ− ε/4) |x| − ε |x| /4 ≥ (ξ− ε) |x− y| . This completes the proof of (ξ− ε) |x− y| ≤ `G(y, x) and the second
inequality of (10) can be obtained by a similar reasoning.

5.2. Boundedness of cells

For the convenience of the reader, we recall the statement of Theorem 3. Let G be a stationary and
isotropic random geometric graph in R2 for which relation (4) holds and which satisfies conditions (G1) and
(G3). Then, with probability 1 all cells of G are bounded.

Proof of Theorem 3. For r > 0 we write Sr = {z ∈ Zd : |z|∞ = dre} for the discrete d∞-sphere in Zd of
radius dre centred at o. Moreover, for z ∈ Sr we denote by zccw ∈ Z2 the counter-clockwise successor of z in
Sr. We also denote by Cr the event that q(rz) ∈ Q√r(rz) for all z ∈ Sr and that `(rz, rzccw) ≤ 2u0r for all
z ∈ Sr. Then, by stationarity, it suffices to prove the a.s. boundedness of the zero-cell of G. Moreover, the
occurrence of Cr implies the boundedness of the zero-cell provided that r > 0 is sufficiently large. Hence, it
suffices to prove that the probability that Cr fails for infinitely many integer values of r is 0. Note that this
probability is at most

∑
z∈Sr

(
P(q(rz) 6∈ Q√r(rz)) + P(`(rz, rzccw) ≥ 2u0r)

)
. The sub-exponential decay of

this sum follows from Lemma 21 and Theorem 1, so that the proof is completed by an application of the
Borel-Cantelli lemma.

6. Proof of Theorem 4

The proof of Theorem 4 is subdivided into several steps. First, we recall from [22, Theorem 6.5] that

if Ξ,Ξ1,Ξ2, . . . are random closed sets in R2 with Ξn
D−→ Ξ, then P (Ξn ∩K = ∅) → P (Ξ ∩K = ∅) for

all compact K ⊂ R2 with P (Ξ ∩K = ∅) = P (Ξ ∩ intK = ∅). We begin by considering an elementary
convergence property.

Lemma 25. Let Ξ,Ξ1,Ξ2, . . . be random compact convex sets in R2 with Ξn
D−→ Ξ. Furthermore, suppose

that o ∈ int Ξ and P({Ξi = ∅} ∪ {o ∈ Ξi}) = 1 for all i ≥ 1. Then, P (Ξn ⊂ intB) → P (Ξ ⊂ B) for all
compact, convex B ⊂ R2 with o ∈ B and P (Ξ ⊂ B) = P (Ξ ⊂ intB).

Proof. Observe that Ξ ⊂ B if and only if Ξ ∩ (B ⊕ intB1(o)) \B = ∅ and similarly Ξ ⊂ intB if and only
if Ξ ∩ (B ⊕B1(o)) \ intB = ∅. In particular,

lim
n→∞

P (Ξn ⊂ intB) = lim
n→∞

P (Ξn ∩ (B ⊕B1(o)) \ intB = ∅) = P (Ξ ∩ (B ⊕B1(o)) \ intB = ∅) ,

which completes the proof, since the latter expression equals P (Ξ ⊂ B).

Next, we identify the distributional limit of the scaled Voronoi cells
√
λΞ0,λ. In the following, we denote by

Ξ0 the zero-cell of the Voronoi tessellation on Y ∪{o}, where Y is a homogeneous Poisson point process with
intensity γ = Eν1 (G ∩Q1(o)).

Lemma 26. As λ→ 0 the scaled Voronoi cells
√
λΞ0,λ converge in distribution to Ξ0.
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Proof. First we claim
√
λXλ

D−→ Y as λ→ 0. Indeed, observe that for any λ ∈ (0, 1) the point process Xλ

can be obtained from X1 by applying an independent thinning with survival probability λ. In particular, the
claim follows from [10, Exercise 11.3.4] or [21, Theorem 7.3.1]. By the continuous mapping theorem it suffices
to show that the map which assigns to a point process the zero-cell of its associated Voronoi tessellation has
discontinuities only in a null set with respect to the distribution of Y ∪{o}. So let ϕ ⊂ R2 be a locally finite
set such that the interior of each of the four quadrants contains at least one point. For such locally finite ϕ we
define Vor0(ϕ) to be the unique cell of the Voronoi tessellation induced by ϕ ∪ {o} that contains the origin.
Now let (ϕn)n≥1 be a sequence of locally finite sets with ϕn → ϕ. We make use of the characterisation
[10, Theorem A 2.6.II], where it is shown that this convergence is equivalent to ϕn(A) → ϕ(A) for all
A ∈ B0(R2) with the property ϕ(∂A) = 0. Our goal is to deduce Vor0(ϕn) → Vor0(ϕ). First, choose some
fixed r ≥ 4 such that Br/4(o) contains Vor0(ϕ) and such that ∂Br(o) ∩ ϕ = ∅. Then there exists k > 0 with
ϕn(Br(o)) = ϕ(Br(o)) = k for all sufficiently large n. Write ϕ ∩Br(o) = {P1, . . . , Pk}. Furthermore, choose
ε0 > 0 such that B2ε0(Pi) ⊂ Br(o) for all i ∈ {1, . . . , k} and such that Bε0(Pi) ∩Bε0(Pj) = ∅ for all distinct
i, j ∈ {1, . . . , k}. Then again for all sufficiently large n, we have ϕn(Bε0(Pi)) = 1 for all i ∈ {1, . . . , k} so that

for all such n there exist unique P
(n)
1 , . . . , P

(n)
k ∈ ϕn with |Pi − P (n)

i | ≤ ε0 for all i ∈ {1, . . . , k}. To prove
the convergence Vor0(ϕn) → Vor0(ϕ) we use criterion (c) of [30, Theorem 12.2.2]. So let x ∈ Vor0(ϕ) and
ε ∈ (0, ε0) be arbitrary. It is easy to see that there exist δ > 0 and y0 ∈ Bε(x) with |y0 − Pj | ≥ |y0|+ 2δ for
all j ∈ {1, . . . , k}. We prove Bε(x)∩Vor0(ϕn) 6= ∅ eventually by showing that for all sufficiently large values
of n ≥ 1 we have infP∈ϕn |y0 − P | ≥ |y0|. To prove this claim, we distinguish two cases. If P ∈ ϕn \ Br(o),
then |y0−P | ≥ r/2 ≥ |y0|. On the other hand, suppose we are given P = P

(n)
j for some j ∈ {1, . . . , k}. Note

that |Pj − P (n)
j | < δ for all j ∈ {1, . . . , k} provided n is sufficiently large. In particular,

|y0 − P (n)
j | ≥ |y0 − Pj | − |Pj − P (n)

j | ≥ |y0|+ δ.

This completes the proof of the first item of condition (c). Next, suppose we are given a sequence (ni)i≥1

and xni ∈ Vor0(ϕni) with xni → x ∈ R2. We want to prove x ∈ Vor0(ϕ). If this claim was false, we could

find δ > 0 and j ∈ {1, . . . , k} with |x| ≥ |x− Pj | + δ. But this implies |xni | ≥
∣∣xni − P (ni)

j

∣∣ + δ/2 for all
sufficiently large values of i, thereby contradicting the assumption xni ∈ Vor0(ϕni).

Next, we note that for small λ and large K the cell Ξ0,λ is likely to be contained in QK/
√
λ(o).

Lemma 27. It holds that limK→∞ limλ→0 P(Ξ0,λ ⊂ QK/√λ(o)) = 1.

Proof. First, observe that P
(
Ξ0,λ ⊂ QK/

√
λ(o)

)
= P

(√
λΞ0,λ ⊂ QK(o)

)
and that Lemma 26 implies

the convergence
√
λΞ0,λ

D−→ Ξ0 as λ → 0. Furthermore, it is easy to see that P(Ξ0 ⊂ QK(o)) = P(Ξ0 ⊂
intQK(o)), so that Lemma 25 yields limλ→0 P

(
Ξ0,λ ⊂ intQK/

√
λ(o)

)
= P

(
Ξ0 ⊂ QK(o)

)
. We conclude by

observing that limK→∞ P(Ξ0 ⊂ QK(o)) = 1.

Lemma 28. Let α ∈ (0, 1) and K > 0 be arbitrary. Then lims→∞ P(supx∈QKs(o) |x− q(x)| > sα) = 0.

Proof. SubdivideQKs(o) into k = d
√

2Ks1−αe2 congruent sub-squaresQs,1, . . . , Qs,k satisfying diam(Qs,i) ≤
sα for all i ∈ {1, . . . , k}. Then P(supx∈QKs(o) |x− q(x)| > sα) ≤

∑k
i=1 P(Qs,i ∩G∗ = ∅) which by condition

(G1) tends to 0 as s→∞.

We write K for the family of convex compact sets in R2.

Lemma 29. Let r > 0 and A be a convex polygon with no two parallel sides and such that no circle of radius
r touches three (or more) sides of A. Then the erosion operation h : K → K, A′ 7→ h (A′) = A′ 	 Br(o) is
continuous at A.

Proof. Suppose An → A as n→∞. To prove the convergence An 	Br(o)→ A	Br(o) we use criterion
(c) of [30, Theorem 12.2.2]. Hence, we first suppose x ∈ A	Br(o), i.e. Br(x) ⊂ A. By assumption Br(x) is
tangent to at most 2 sides of A and we suppose that it is tangent to exactly two sides (the other cases are
similar, but easier). Write u, v for the two unit vectors pointing from x in the direction of the two tangent
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points. Furthermore, define w = u+v (observe that w 6= 0 due to the non-parallelity assumption). It is easy
to check that for all sufficiently small δ > 0 the ball Br(x−δw) has positive distance, say at least ε = ε(δ) > 0,
from all sides of A. Denote by {P1, . . . , Pk} the vertices of the polygon A, see Figure 6a. Then by condition
(b1) of [30, Theorem 12.2.2] for all sufficiently large j ≥ 1 we have Aj ∩ intBε/2(Pi) 6= ∅ for all i ∈ {1, . . . , k}.
Since the convex hull of {y1, . . . , yk} contains Br(x−δw) for all choices of points yi ∈ intBε/2(Pi), we obtain
that Br(x− δw) ⊂ Aj . But this is simply a reformulation of x− δw ∈ Aj 	Br(o). Since δ > 0 was arbitrary
this proves condition (c1).

To check condition (c2) we start from a given a sequence (ni)i≥1 and points xni ∈ Ani 	 Br(o) with
xni → x for some x ∈ R2. Our goal is to deduce Br(x) ⊂ A. Suppose we could find y ∈ Br(x) \ A. Then
there exists ε > 0 with Bε(y)∩A = ∅, see Figure 6b. By criterion (b2) of [30, Theorem 12.2.2], we then also
have Bε(y) ∩ Ani = ∅ for all sufficiently large i ≥ 1. Now choose y′ ∈ Bε(y) with |y′ − x| ≤ r − ε. Then we
compute |y′ − xni | ≤ |y′ − x| + |x− xni | ≤ r − ε + |x− xni |. In particular, y′ ∈ Br(xni) for all sufficiently
large values of i thereby contradicting xni ∈ Ani 	Br(o).

P1

P2

P3

P4

x

(a) Polygon A and ball Br(x)

P1

P2

P3

P4
x

y

(b) Polygon A and balls Br(x), Bε(y)

Figure 6: Configurations in the proof of Lemma 29

Now we have collected all necessary preliminaries to prove Theorem 4.

Proof of Theorem 4. Let δ, ε ∈ (0, 1) be arbitrary. Using Lemmas 27 and 28, for all sufficiently small
λ > 0 we obtain

P
(√
λZ(λ) ≤ x

)
= P

(
max

P1∈Ξ0,λ∩G∗
`(o, P1) ≤ x/

√
λ
)
≤ P

(
max

P∈Ξ0,λ	Bδ/√λ(o)
`(o, q(P )) ≤ x/

√
λ
)

+ ε,

and the last probability is equal to P
(
Ξ0,λ 	Bδ/√λ(o) ⊂ BG∗

x/
√
λ
(o)
)

+ ε. Furthermore, Theorem 2 yields

P
(
Ξ0,λ 	Bδ/√λ(o) ⊂ BG

∗

x/
√
λ
(o)
)
≤ P
Ä
Ξ0,λ 	Bδ/√λ(o) ⊂ intB(x+δ)/(ξ

√
λ)(o)

ä
+ ε

= P
Ä√

λΞ0,λ 	Bδ(o) ⊂ intB(x+δ)/ξ(o)
ä

+ ε,

for all sufficiently small λ > 0. By Lemma 29, we obtain that the operation · 	 Bδ(o) is a.s. con-

tinuous at Ξ0. In particular, from
√
λΞ0,λ

D−→ Ξ0 we deduce
√
λΞ0,λ 	 Bδ(o)

D−→ Ξ0 	 Bδ(o). Using
P
(
Ξ0 	Bδ(o) ⊂ B(x+δ)/ξ(o)

)
= P

(
Ξ0 	Bδ(o) ⊂ intB(x+δ)/ξ(o)

)
and Lemma 25, we conclude

lim sup
λ→0

P(
√
λZ(λ) ≤ x) ≤ P(Ξ0 	Bδ(o) ⊂ B(x+δ)/ξ(o)) + 2ε,

so that letting δ → 0 yields

lim sup
λ→0

P(
√
λZ(λ) ≤ x) ≤ P(int Ξ0 ⊂ Bx/ξ(o)) + 2ε ≤ P(ξR ≤ x) + 2ε.

In the next step, we prove a similar inequality in the other direction. Let δ, ε > 0 be arbitrary. Then, for all
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sufficiently small λ > 0 we obtain

P(
√
λZ(λ) > x) = P

(
max

Q1∈Ξ0,λ∩G∗
`(o,Q1) > x/

√
λ
)
≤ P

(
max
Q∈Ξ0,λ

`(o, q(Q)) > x/
√
λ
)
,

which equals P
(
Ξ0,λ 6⊂ BG

∗

x/
√
λ
(o)
)
. Using Theorem 2 we obtain

P
Ä
Ξ0,λ 6⊂ BG

∗

x/
√
λ
(o)
ä
≤ P
Ä
Ξ0,λ 6⊂ intB(x−δ)/(ξ

√
λ)(o)

ä
+ ε = P

Ä√
λΞ0,λ 6⊂ intB(x−δ)/ξ(o)

ä
+ ε

for all sufficiently small λ > 0. Hence, by P(Ξ0 ⊂ B(x−δ)/ξ(o)) = P(Ξ0 ⊂ intB(x−δ)/ξ(o)) and Lemma 25,

lim sup
λ→∞

P(
√
λZ(λ) > x) ≤ P(Ξ0 6⊂ B(x−δ)/ξ(o)) + ε = P (ξR > x− δ) + ε,

so that letting δ → 0 yields lim supλ→0 P(
√
λZ(λ) > x) ≤ P(ξR ≥ x) + ε. As the distribution function of R

is continuous, this proves the claim.
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