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Abstract

A correlative 3D characterization workflow by micro and nano X-ray computed tomography (Micro-CT, Nano-CT) and
analytical scanning electron microscopy (SEM) is presented over different length scales for particle composite materials
that apply to any powder at the size scale between 0.3 µm to 15 µm. In this case study, an artificial compound of calcite,
talcum, dolomite, and magnesite providing constituent particles with similar morphology, size distribution, and chemical
composition for multidimensional separation processes is analyzed. First, Micro-CT characterizes the particle morphology
and distribution of a larger amalgamated volume. Then, a smaller, site-specifically prepared pillar is imaged by Nano-CT
allowing for correlative investigations at higher-resolution. Afterwards, the Nano-CT reconstruction is informed slice-
wise by analytical SEM distinguishing particles with different chemical composition. The statistical interpretation of our
results is improved by advanced post-processing and multidimensional analysis, allowing for quantitative characterization
of the particles’ size, phase distribution, and mineral degree of liberation.

Keywords: Multidimensional particle characterization, multiscale X-ray tomography, correlative 3D analysis,
statistical image analysis, parametric copula

1. Introduction1

High-grade ore deposits become increasingly rare and2

the existing ones are more and more depleted. This ten-3

dency is not new [1] but is clearly intensifying with the4

increasing need for natural resources [2]. The pressure5

to mine ores that are significantly more complex in their6

structure than easily accessible material of the same qual-7

ity is rising. This means that a greater variety of grain8

size and mineralogical neighboring phases occur in one9

single particle. At the same time, the requirements for10

the final product remain the same or even increase. In11

this regard, standard separation methods reach their lim-12

its or even fail if the particle properties are very similar13

to each other and separation is hardly or no longer possi-14

ble. Moreover, complexity increases due to a multitude of15

new and more accurate measurement methods such as ad-16

vanced microbeam techniques, which are ideally brought17

into correlation with each other [3]. In this context, three-18

dimensional (3D) measurement routines become more and19
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more important, since they enable the precise analysis of20

complex particle morphologies and 3D spatial distribution21

at the same time.22

Besides morphological and chemical composition, the23

steadily decreasing particle size brings up further chal-24

lenges. In addition to traditional particle size characteri-25

zation methods like sieving or laser diffraction measure-26

ments, which are always dependent on given class size27

or specific model assumptions to compute distributions28

from raw data, direct imaging methods are widely used29

to reveal multiple particle characteristics at once. Static30

two-dimensional (2D) imaging methods, such as light mi-31

croscopy, were supplemented by dynamic methods such as32

dynamic light scattering [4] representing a significant de-33

velopment, especially with regard to the statistical repre-34

sentativeness of the samples [5]. Additional image tracking35

algorithms were used to compensate for the stereological36

bias [6] from the 2D image description, but only down37

to particle sizes of around 100 µm [7]. With these meth-38

ods, a comprehensive 3D description of particle collectives39

smaller than 10 µm, as we focus on in this case study, is not40

possible. Thus, the extension to direct 3D measurement41

methods is needed to acquire morphological characteristics42
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as well.43

During the last three decades, X-ray computed tomog-44

raphy (CT) has become a standard tool in many research45

areas, like materials science [8] and geoscience [9, 10]. In46

particle technology, in 1992 first analyses were conducted47

in mineral processing on a limited number of particles with48

sizes down to 100 µm or in the non-particle-discrete anal-49

ysis of particulate suspensions in separators, e.g., with a50

hydrocyclone [11, 12]. These measurements are typically51

based on absorption contrast where the local X-ray at-52

tenuation in projection is detected depending on the local53

sample thickness and material composition (X-ray atten-54

uation coefficients), so that existing phases with sufficient55

difference in atomic number can be discriminated [13, 14].56

To be able to reconstruct the sample in 3D, many projec-57

tions under different viewing angles need to be acquired.58

Therefore, the sample in the stable beam path is typi-59

cally rotated by the sample stage of the CT instrument60

within a tilt-angle range of at least 180° using a prede-61

fined tilt increment. There are several beam geometries62

available, two of which are used in the present study: a63

(quasi) monochromatic parallel X-ray beam in Nano-CT64

and a cone-shaped polychromatic X-ray beam in the case65

of Micro-CT. [15]. In both cases, the photon intensities on66

the detector are translated into gray-scale value images.67

The series of projection images is then used to reconstruct68

the 3D volumetric image by applying a mathematical re-69

construction algorithm [15]. In absorption contrast, the70

gray values in the reconstructed volumes resemble the lo-71

cal attenuation coefficients, which can be utilized using 3D72

image processing routines to identify and segment differ-73

ent phases and extract valuable morphological and chemi-74

cal information [15]. This kind of intuitive data analysis is75

not possible in the case of a polychromatic X-ray beam or76

insufficient contrast due to similar attenuation coefficient77

of the constituent phases of the sample, so that additional78

information for a robust segmentation is required.79

In the case of powders with particles consisting of dif-80

ferent phases, another key parameter besides the particle-81

discrete information is the phase-discrete information. The82

combination of both can offer a detailed characterization83

of the particle and batch composition. It is noteworthy84

to say that a particle may consist of several grains, which85

in this context refers to a volume containing a single min-86

eral phase. In the field of mineral processing, one distin-87

guishes, for example, between valuable grains (or phases)88

and non-valuable grains within particles to ascertain how89

well the valuable materials can be enriched. The volume90

ratio of all particles, which consist of only the valuable91

phase, to the total of all particles, which contain this spe-92

cific phase is called liberation degree (LD). The LD is93

an important but aggregated parameter for the process-94

ing (e.g., milling or separation processes) of primary and95

secondary mineral raw materials. In the present study, the96

3D particle-discrete determination of the LD will be shown97

as a concrete application example for the use of the corre-98

lated particle-discrete and grain-discrete data. In contrast99

to existing studies [16], this is demonstrated here using an100

example of X-ray attenuating mineral phases with com-101

parable X-ray attenuation contained in particles smaller102

than 10 µm.103

A standard measurement set-up for a 2D determina-104

tion of the mineralogical composition on polished epoxy-105

embedded sections, i.e. the mineral liberation analysis106

(MLA) [17], consists of scanning electron microscopy (SEM)107

using the back-scattered electron (BSE) signal in combina-108

tion with an energy dispersive X-ray spectroscopy (EDXS)109

detector for elemental analysis. A computer software in110

combination with databases on known materials can now111

be used to identify the containing minerals and provide112

a color image, where each color corresponds to a certain113

mineral. It is typically difficult to correct for the discrep-114

ancy in analysis results of 2D sectional images compared115

to results obtained by the analysis of real 3D structures,116

called stereological bias [6]. Even with an optimized sam-117

ple preparation strategy to suppress segregation effects due118

to sedimentation [18, 19], the influence of the particle’s in-119

ternal structure is significant [20]. With the presented 3D120

methodology, it will be possible to discretely perform this121

liberation analysis of multiphase particle systems. Previ-122

ous studies have done this, e.g., for binary systems [21], or123

for other particle size scales of around 100 µm [16].124

The shape of particles is often correlated with the min-125

eralogical composition of particles [22]. In some cases, this126

allows for a mineralogical characterization by means of127

particle shape characteristics, which can easily be deter-128

mined from CT data. However, if distributions of 3D mor-129

phological particle descriptors overlap, there is a need for130

additional phase-specific information to guarantee a valid131

identification, especially in terms of mineralogical phases.132

Already established workflows can be used (i) to distin-133

guish between phases with strongly differing attenuating134

properties, e.g., gold phase in other mineralogical compo-135

nents. Here, the qualitative difference is clearly visible in136

the gray value histogram and can be used for direct phase137

identification [23]. Another workflow is (ii) to use char-138

acteristic, element-specific absorption properties, where a139

sample is scanned with two different energies slightly above140

and below a phase specific discontinuity in the absorption141

behavior, e.g., a X-ray absorption K-edge of the elements142

in one known phase of interest [24]. A relatively new work-143

flow is (iii) to use an additional energy-dispersive detector,144

called spectral CT, which is able to distinguish between145

multiple phases at once [25].146

The alternative, new workflow proposed in the present147

study possesses the following advantages in comparison to148

the existing workflows (i)-(iii) mentioned above. It enables149

to distinguish between mineral components of a micron-150

sized particle system having comparable X-ray attenuating151

properties and consisting of more than one phase. Fur-152

thermore, our workflow can be implemented with exist-153

ing lab-based CT devices without the need for an exten-154

sion by an additional detector. Note that our workflow155

uses additional prior information regarding local chemi-156
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Talcum Saxolite

Figure 1: Particle systems considered in this study, (left) talcum
with three different sub-phases of dolomite, magnesite, and talcum;
(right) saxolite.

cal composition from EDXS, which was performed in a157

similar way in Furat et al. [26] covering particle sizes of158

315 µm to 500 µm. In the present study, their method159

is extended to particle sizes below 10 µm by correlating160

Micro-CT measurements of medium-resolution (∼700 nm)161

with high-resolution (∼150 nm) measurements, which are162

conducted using a combination of Nano-CT, SEM imag-163

ing and SEM-EDXS, where specific slices in the Nano-164

CT volume are accessed using focused ion beam (FIB)165

milling. This correlative measurement routine enables ex-166

aminations over multiple length scales with a consistent167

and adaptable analysis and preparation workflow.168

The paper is structured as follows. In Sec. 2, we shortly169

introduce the considered particle system, describe the mea-170

surement workflow for volume correlation followed by the171

applied image processing strategies and data analysis meth-172

ods. In Sec. 3, we present the results of the correlation be-173

tween the Nano-CT volumes and the cut sections from the174

FIB-SEM-EDXS analysis, and the phase determination for175

materials characterization. In Sec. 4, we discuss the results176

with respect to the precision of the derived quantitative177

data as well as its reliability concerning a larger scale. We178

then close the loop to practical applications by discussing179

the benefits of our correlative workflow to tackle the chal-180

lenges of separation processes. In Sec. 5, we summarize the181

advantages of the presented workflow in terms of statistical182

significance and the 3D particle-discrete and grain-discrete183

provision of the analysis results compared to conventional184

2D methods.185

2. Materials and Methods186

2.1. Particle System187

The materials considered in this study are natural prod-188

ucts and therefore differ in their purity and homogene-189

ity. Saxolite, type Saxolith®2 extra, was received from190

the Erzgebirgische Kalkwerke GmbH GEOMIN, Germany.191

Talcum was received from Giessereitechnik Wystrach GmbH192

& Co. KG, Germany. Exemplary SEM images of these193

materials are shown in Fig. 1.194

The corresponding particle size distributions of saxo-195

lite determined by laser diffraction and of talcum parti-196

cles determined by sedimentation analysis can be found in197

Table 1: Chemistry and density of the two particle systems saxolite
and talcum, the latter consists of three different sub-phases, which
are dolomite, magnesite and talcum. Attenuation at 5.4 keV repre-
sents the attenuation length within a given material of the quasi-
monochromatic Nano-CT beam.

Chemistry Density Attenuation
in g · cm−3 at 5.4 keV

Saxolite CaCO3 2.75 15.3 µm
Talcum

Dolomite MgCa(CO3)2 2.86 23.5 µm
Magnesite MgCO3 3.00 55.4 µm
Talcum Mg3Si4O10(OH)2 2.76 34.7 µm

the Supplementary material. The distributions overlap in198

large parts between 1 µm to 10 µm in diameter, showing199

that particle size alone is not fully suitable as a separat-200

ing characteristic. As it can be seen in Tab. 1, also the201

densities do not differ significantly. Considering talcum202

as a mixture with a mean density from the tabulated val-203

ues for dolomite, magnesite and talcum, this becomes even204

clearer. Additionally, some saxolite particles are compos-205

ites which contain traces of talcum (up to 4 %), making it206

even harder to identify these materials. Assuming compa-207

rable particle sizes, a distinction between the two phases208

on the basis of the gray-scale histograms from both Micro-209

CT and Nano-CT measurements is not possible.210

For the creation of a suitable and valid analysis work-211

flow, a mixture of both particle systems (talcum and saxo-212

lite) was manufactured. A mixing ratio of 30 to 70 (volume213

fraction) was chosen as an expected scenario for a future214

application of the analysis workflow, in our case, the char-215

acterization of a multidimensional separation with respect216

to two (including the sub-phases, four) particle charac-217

teristics. The separation itself is realized by a combina-218

tion of a deflector wheel classifier (separation by size) and219

a triboelectric charging process due to particle wall col-220

lisions (separation by charge) [27]. The various mineral221

components carry different charges due to their triboelec-222

tric characteristics, e.g., their electrochemical potential, so223

that they can be separated by their electrical mobility.224

2.2. Measurement Workflow for Volume Correlation225

The following workflow is a correlative study across dif-226

ferent X-ray and electron microscopes. Every microscope227

adds information by utilizing its advantages of the capable228

sample size, achievable resolution and information content229

(morphological, chemical). The scale bridging nature is230

necessary to determine the coordinates for further process-231

ing with the help of laser ablation and to ensure the repre-232

sentativeness of the individual volumes of high-resolution233

scans using Nano-CT. The low-resolution measurements234

performed with Micro-CT are used to determine the ho-235

mogeneity of the particle dispersion of the initial sample236

and to check its suitability (absence of cracks and air bub-237

bles) for the subsequent sample preparation workflow by238

laser ablation and FIB-SEM.239
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2.2.1. Sample Preparation240

To guarantee a well-dispersed homogeneous sample,241

the particles are mixed with low X-ray attenuating carbon242

black nanoparticles acting as spacers. Touching particles243

are a potential source for errors in the image processing244

workflow when separating to create particle-discrete data245

sets, which are essential for further quantitative analy-246

ses. For a detailed description of the sample prepara-247

tion method, see Ditscherlein et al.[19]. The epoxy-carbon248

black matrix is well machinable, using mechanical prepa-249

ration techniques as well as using high-energy radiation250

techniques, e.g., laser ablation to create sample volumes251

for Nano-CT experiments and FIB to cut sections for cor-252

relative SEM measurements.253

2.2.2. Micro-CT Measurements254

Micro-CT scans were performed using a Zeiss Xradia255

510 Versa, with a polychromatic X-ray source, a rotat-256

ing tungsten target, a maximum acceleration voltage of257

160 keV, and a maximum power of 10 W. Compared to258

conventional Micro-CT systems, where the magnification259

is determined by the geometrical arrangement of source,260

sample and detector, an additional magnifying optic (fac-261

tors 0.4x, 4x, 20x, 40x) allows a minimum voxel size of262

0.3 µm. The Micro-CT scans were performed on a man-263

ually cut bar (see Sec. 2.2.1) using two different magni-264

fications (see Tab. S2) – one lower resolution overview265

scan to check the Micro-CT sample for possible prepara-266

tion artifacts, and one medium resolution scan to confirm267

the representativeness and homogeneity of the particle dis-268

persion and to obtain the coordinates for the subsequent269

high-resolution Nano-CT scans, see Fig. 2. Since the ap-270

plied preparation method cannot completely prevent the271

incorporation of air bubbles into the matrix, bubble-free272

regions can also be identified here that are suitable for fur-273

ther preparation with the laser ablation system to create274

cylinders for the high-resolution Nano-CT scans.275

2.2.3. Laser Ablation276

After the Micro-CT experiments, the sample size was277

further reduced for Nano-CT investigations using a 3D-278

Micromac microPREP™ PRO laser ablation system. The279

sample top region was ablated down from a manually cut280

bar of 400 µm to a pillar with 60 µm in diameter, see Fig. S3,281

which fits into the field of view (FOV) of the Nano-CT in-282

strument. For both Micro-CT and Nano-CT machines,283

which were used in this work, the detectors have a cer-284

tain number of pixels and therefore a static FOV for each285

pre-defined magnification setting. This leads to a fixed286

captured volume, where the sample size should match the287

FOV at best to avoid reconstruction artifacts due to inte-288

rior tomography restrictions [28]. Along the length of the289

pillar, the FOV can easily extended by acquiring multiple290

tomographic tilt series along the vertical axis.291

2.2.4. Nano-CT Measurements292

High-resolution 3D scans were performed using a Zeiss293

Xradia 810 Ultra Nano-CT instrument, which operates294

with quasi-monochromatic X-rays at constant photon en-295

ergy with parallel beam geometry. The quasi-monochromatic296

beam is a result of the filtering properties by the micro-297

scope’s X-ray optics containing a condenser and a Fresnel298

zone plate lens that attenuate certain wavelengths due to299

their dispersion efficiency. The lenses are optimized to300

transmit an even narrower bandwidth of the characteris-301

tic X-rays. In this case, X-rays with an energy of 5.4 keV302

are used corresponding to the characteristic X-ray energy303

of the Kα-line of a rotating chromium anode. We uti-304

lize absorption contrast mode which exhibits mainly mass-305

thickness contrast imaging with a minimum voxel size of306

64 nm. The quasi-monochromatic X-rays allow a direct307

correlation of the reconstructed image intensities to local308

attenuation coefficients, which manifests itself in the differ-309

ent brightness of the particles in slices of the reconstructed310

tomograms. Volume reconstruction based on simultaneous311

iterative reconstruction technique (SIRT) was performed312

with an in-house Python script based on the algorithms313

provided by the ASTRA toolbox [29, 30, 31]. The high-314

resolution scans are needed to acquire the 3D particle-315

discrete information of the whole volume, which is a com-316

bination of three vertically stacked individual volumes (see317

Fig. S4(b) for the positions of the single Nano-CT recon-318

structions indicated in the complete, stitched Nano-CT319

volume). Detailed measurement parameters of the tomo-320

graphic measurements can be found in the supplementary321

material table S2.322

2.2.5. FIB Preparation, SEM Imaging and SEM-EDXS323

FIB milling, SEM imaging and energy dispersive X-324

ray spectroscopy (EDXS) were conducted in a FEI He-325

lios NanoLab 660 SEM/FIB dual-beam system. For the326

FIB milling process, which is used for the preparation327

of thinner and finer Nano-CT sample pillars, Ga+ ions328

with high kinetic energy are directed onto the sample sur-329

face to achieve local material ablation. The 60 µm pil-330

lar was cut vertically along the rotation axis in order to331

remove the melting zone of the laser ablation. As de-332

scribed in Section 2.2.4, the sample has been imaged in333

3D at three positions by acquiring Nano-CT tilt series (see334

Fig. S4(b) for the slice positions indicated in the complete,335

stitched Nano-CT volume). Thus, the sample was sliced336

in the regions of each of these three corresponding Nano-337

CT data sets with 28° horizontal inclination (limited by338

the SEM/FIB stage) and imaged after each cut. Charg-339

ing effects during the milling process are common with340

these minerals. Thus, each cut is processed in a single341

run. A connected secondary electron (SE) detector pro-342

vides the image data of the current sectional plane sur-343

face. Backscattered electron (BSE) imaging and EDXS344

of the same cut surfaces make it possible to distinguish345

between the talcum sub-phases and saxolite, by providing346

additional information about the local chemical composi-347
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Figure 2: Mechanically dispersed particle system embedded in an epoxy-carbon black matrix, see [19] for a detailed description of the
preparation, (a) glued on a needle pin, scanned with low resolution by Micro-CT, represented here by (b) a side view and (c) an exemplary
horizontal slice through the reconstructed volume (d) to validate the homogeneity of the sample without air bubbles and to get the coordinates
as a starting point for a follow-up laser ablation process to create a cylinder for high-resolution measurement by Nano-CT and FIB-SEM.(e)
3D rendering of reconstructed medium resolution Micro-CT. Note that the indicated scale bars are referring to the same measure of 100 µm.

tion enabling a subsequent detailed phase analysis, which348

was not possible with gray-value based analysis methods349

only.350

2.3. Image Processing Strategies351

As already mentioned in Sec. 2.2, the described sample352

preparation workflow is strongly supported by a detailed353

image processing strategy to allow for a robust identifica-354

tion and segmentation of particles consisting of different355

constituent materials. In contrast to the workflow pre-356

sented in Ditscherlein et al.[32], where single phase in-357

formation is used to create particle-discrete data sets, in358

the current study, the particles consist of different min-359

eral phases, i.e., grains of different chemical composition.360

Thus, the novelty of the present approach is the combina-361

tion of a phase-discrete and an enhanced particle-discrete362

workflow. The results from the phase-discrete and the363

particle-discrete analysis are based on different image pro-364

cessing workflows and, therefore, can be clearly separated365

from each other as described in the next two sections. The366

results of both approaches are merged in Sec. 3, to describe367

the data sets in a meaningful way with regard to their dis-368

tributed descriptors.369

2.3.1. Nano-CT Phase Segmentation370

The BSE and EDXS analysis from the FIB slices was371

utilized to add information to the Nano-CT data set seg-372

mentation, according to the routine described by Lenz et373

al. [33]. This was conducted in the commercial software374

Arivis Vision4D with a machine learning algorithm based375

on ilastik [34]. The EDXS analysis was used as ground376

truth. Large phases, which could accurately be allocated377

in the EDXS maps, were identified in the corresponding378

Nano-CT slices and then manually segmented to train the379

machine learning algorithm, as illustrated in Fig. 7(c).380

To avoid an overlapping of regions of darker contrast in381

the Nano-CT reconstruction, whose contrast is affected by382

edge gradients of brighter particles due to the optical reso-383

lution limit of about 150 nm, the separation threshold was384

set in such a way that it is able to separate the parti-385

cles from each other. Manual color segmentation and, in386

particular, the threshold were adjusted until the resulting387

segmentation matched the corresponding EDXS analysis388

(cf. Figs. 7(d-e)). The difference between EDXS and seg-389

mented data was judged by visual inspection. Addition-390

ally, the Intersection over Union (IoU) [35] was determined391

on single-phase particles of adjacent slices as test data to392

the original training data to obtain a quantitative measure393

for the precision of the phase segmentation. The phases394

were color segmented manually in the slices of the test data395

and compared with the segmented data from the training.396

The IoU was calculated using the ratio of the overlap to397

the union of both data using IoU =
areaoverlap

areaunion
. In the398

manuscript, the segmented phases contained in each parti-399

cle are referred to as grains of the particle and are counted400

individually for the later analysis, see Fig. 10. So, a sin-401

gle particle can contain multiple grains of the same phase.402

The individual particles are characterized by the image403

processing procedure described in the following section.404

2.3.2. Nano-CT Particle Segmentation405

In order to subsequently analyze the characteristics of406

particles, an image segmentation procedure was deployed407

which partitions the Nano-CT image data into regions408

corresponding to individual particles. The segmentation409

workflow is illustrated in Fig. 3. For that purpose, a410

fully convolutional neural network architecture was cho-411

sen, specifically an approach based on a 3D U-net (see the412

illustration in Fig. S5) is used, cf. [36, 37]. For the training413

of this network, three separate Nano-CT slices were anno-414

tated manually (each with around 100 individual particles)415

and used as ground truth. After training, the network416

is applied to the Nano-CT volume, and after binarizing417

the output of the trained network, individual particles are418

separated and can be identified by finding the connected419

components, see Fig. S6. As can be seen in Fig. 3, the man-420

ual annotation of the training data introduces inaccuracies421

that impact the network output, especially with respect to422

5



particle size and shape in areas where particles interface.423

Therefore, to capture the particle size and shape more ac-424

curately, a marker-based watershed algorithm is applied425

to the binarized CT image data, using the connected com-426

ponents of the initial segmentation as markers, see [38].427

Further details on the network architecture and training428

procedure can be found in [37].429

2.3.3. Micro-CT Particle Segmentation430

The phase and particle characterization emits in this431

study mainly from the Nano-CT reconstructions. To esti-432

mate the local representativeness of the measured Nano-433

CT volumes with respect to homogeneity, the Micro-CT434

reconstruction was utilized to bridge the scale of the parti-435

cle characterization towards larger dimensions. Here, the436

Micro-CT volume was segmented by the machine learn-437

ing algorithm based on ilastik [34] similar to the Nano-CT438

phase segmentation routine, but targeting only the parti-439

cle size without phase information.440

2.3.4. Mineral Liberation441

As mentioned in the previous sections, a particle can442

consist of several connected components of a given phase,443

referred to as a grains. Multiple grains of a particle phase444

are individually evaluated provided that they are sepa-445

rated from each other by another phase. The volume frac-446

tion (being equal to mass fraction due to similar densities)447

of a valuable mineral, denoted by i, that is present in a448

collective of grains in an ungrown form, i.e., in the form of449

free grains, is called the liberation degree and denoted by450

LDi. It is given by451

LDi =
Vi,free

Vi,free + Vi,intergrown
, (1)

where Vi,free denotes the total volume of the fully liberated452

particles (with volume fraction larger than 0.99) of phase453

i, i.e., particles consisting of only one grain of the phase454

i, and Vi,intergrown denotes the volume of the remainder455

of phase i. However, smaller particles are generally more456

likely to occur fully liberated. Thus, investigating size457

dependent liberation information is of interest. Therefore,458

for an interval I ⊂ [0,∞), i.e., a defined particle size range,459

the liberation degree of particles with volume in I is given460

by461

LDI
i =

V I
i,free

V I
i,free + V I

i,intergrown

, (2)

where V I
i,free denotes the volume of the fully liberated par-462

ticles with volume in I of phase i and V I
i,intergrown denotes463

the volume of the remainder of phase i in particles with464

volume in I. Thus, partitioning the size range into dis-465

joint intervals, the liberation degree can be analyzed in466

more detail, see Fig. 10.467

Usually, the shares are determined by creating property468

classes, e.g. via swim-sink sorting or via 2D image analysis.469

However, in the letter case only area fractions are being470

considered instead of volume fractions.471

3. Results472

3.1. Correlative Microscopy Workflow473

The first challenge is the identification and correlation474

of the minerals (particles and grains) across the differ-475

ent congruent reconstructed volumes or acquired slices us-476

ing different tomography and imaging techniques. As can477

be seen in Fig. 4, the applied workflow starts with the478

medium-resolution Micro-CT scan of a sample with larger479

size of around 400 µm. In a next step, the Micro-CT pillar480

is site-specifically cut down using laser ablation to fit the481

Nano-CT’s field of view of (65 µm)2 enabling a correlation482

with the Nano-CT reconstruction. Then, three vertically483

stitched high-resolution Nano-CT tilt series covering the484

complete Nano-CT pillar are acquired. Their subsequent485

3D reconstruction is further identified and correlated with486

the corresponding region in the Micro-CT tomogram. In487

this way, a certain volume within the reconstruction ob-488

tained by Micro-CT can be displayed at higher resolution489

and with improved contrast. In the last preparation step,490

the Nano-CT pillar is FIB milled from the vertical side491

creating a cut parallel to the pillar axis. This enables492

SEM-EDXS analyes of a specific region of interest (ROI)493

within the pillar, so that for this ROI, measurement data494

from all three microscopy techniques is available and can495

directly be correlated, as illustrated in Fig. 4.496

3.2. Precise Mineral Allocation497

The distinction between minerals in the Nano-CT re-498

constructions can be estimated to certain extent already499

by the local gray values of voxels (cf. Figure 4(a-b)), since500

each component exhibits a specific attenuation coefficient501

for the 5.4 keV X-ray beam, in contrast to the Micro-CT502

instrument, see Tab. 1. Although the X-ray beam is quasi-503

monochromatic, the corresponding gray values in the 3D504

reconstruction for the different phases are further affected505

by a remaining X-ray energy dispersion, material density506

variations or limited resolution. Thus, local attenuation507

coefficients are not perfectly recovered in the 3D recon-508

structions, which impedes a unambiguous assignment of a509

certain mineralogical phase to every voxel only from gray510

levels. To compensate this uncertainty, we utilize local511

compositional information from SEM-EDXS analyses to512

inform the Nano-CT volumes and extrapolate the phase513

information from a 2D slice to a 3D reconstructed volume.514

This method allows for a thorough assignment and seg-515

mentation of the local mineralogical phase information to516

every voxel of a 3D reconstruction and therewith enables517

a precise identification of distinct particles and grains.518

The analysis workflow with the achievable sample size519

and resolution of each step and technique is illustrated520

in Fig. 5. The sample is site-specifically sliced using the521

FIB with nearly horizontal cuts (slices perpendicular to522
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Figure 3: Exemplary particle segmentation workflow using U-nets. A grayscale image is used as input. Output, ground truth and weight
map lead to a loss function. Afterwards the parameters are updated and the cycle repeats with a new image as input.

Figure 4: Correlative microscopy workflow of one identical region across multiple length scales. Virtual slices through (a) medium-resolution
Micro-CT and (b) high-resolution Nano-CT reconstruction revealing the same particles as detected in (c) the BSE image after the smaller
Nano-CT pillar (diameter of 60 µm) was vertically cut out of the larger Micro-CT sample. The insets illustrate the increased detail depth of
the BSE images compared to the Micro-CT and Nano-CT slices. The EDXS maps (net intensities) provide additional information about the
chemical composition (saxolite in red, dolomite in yellow, magnesite in green, talcum in cyan; see also Fig. 6).
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Figure 5: Correlative workflow from Micro-CT measurements of a larger volume to a sample with reduced size generated by applying laser
ablation preparation suitable for Nano-CT measurements, both realistically reconstructing the 3D morphology of the particulate sample. The
application of an additional milling process with FIB enables the acquisition of slices through the volumes used for Nano-CT for chemical
characterization via SEM-EDXS.

the long axis of the pillar sample) and analyzed with SEM-523

EDXS (cf. Fig. 5 center) after the correlation of the Nano-524

CT volumes with the SEM image of a vertical slice through525

the Nano-CT pillar (cf. Fig. 4(b)). Fig. 6 depicts the526

SEM-EDXS analysis of an exemplary, nearly horizontal527

slice. The cutting heights are chosen according to inter-528

esting slices identified in the Nano-CT tomograms, where529

every possible constituent mineral appears to a sufficient530

amount enabling a reliable segmentation of all phases. In531

Fig. 4 (vertical slice in (b) and (c)) and Fig. 7 (horizontal532

slices in (d) and (f)), the same particle shape in both im-533

ages proves the correctly applied correlation. The phase-534

discrete segmentation is processed on the horizontal slices,535

shown in Fig. 7 where every cut was taken from one of536

the three individual Nano-CT volumes. Each mineral re-537

sults in a different gray-scale value (cf. Fig. 7, (c) and (f))538

and can be directly matched with a combination of the539

EDXS signals leading to the color code used in Figs. 6 and540

7, where red represents saxolite (calcite), yellow dolomite,541

green magnesite and cyan talcum. Fig. 6 shows (a) a BSE542

contrast image and element-specific EDXS maps of (c) cal-543

cium, (d) magnesium and (e) silicon with respect to the544

constituent minerals of one exemplary cut. This leads to545

the combined EDXS image in Fig. 6(b) with the same color546

code enabling a clear/convenient distinction between the547

different constituent minerals.548

3.3. Volume Correlation549

The element-specific EDXS signals of calcium, mag-550

nesium and silicon are analyzed with respect to the con-551

stituent minerals, as illustrated in Fig. 7(a). First, the552

machine learning (ML) segmentation algorithm (see Sec.553

2.3.1) is trained in a selected Nano-CT slice (Fig. 7(a)) to554

assign every voxel of the segmented particle regions to one555

of the four minerals. Here, the particles in the EDXS anal-556

ysis (as indicated with a blue rectangle), which are large557

enough to be visually allocated to the phases, are utilized558

for the training. The larger phases from the EDXS maps559

can clearly be identified and labeled in the correspond-560

ing Nano-CT slices (cf. Fig. 7(b)). Here, typically 1-3561

large particles of each phase can be colored. However,562

the exact shape slightly differs due to surface cutting arti-563

facts of the Ga-ion beam (beam divergence). Phases, like564

the yellow dolomite at the bottom of Fig. 7(c), typically565

also extend into z-direction (long axis of pillar) and there-566

with can be identified also in other nearby z-slices, around567

2-5, of the Nano-CT tomogram. Likewise expands the568

EDXS analysis over adjacent z-slices of the Nano-CT to-569

mogram. Thus, the manual labeling is repeated for multi-570

ple Nano-CT slices which contain the particle with known571

phase information from EDXS. The trained algorithm is572

then applied to the entire Nano-CT volume. The final re-573

sults show the phase segmentation of each of the particles574

with respect to saxolite, dolomite, magnesite and talcum575

in Fig. 7(c and e). A closer look at the identified phases in576

the blue boxes of Figs. 7(a-c), shows that the actual com-577

position of particles can be more complex than originally578

suspected. The larger red particle, for instance, had been579

originally identified in the manually segmented Nano-CT580

data set for machine learning training as one pure saxolite581

grain (cf. Fig. 7(b)). However, after the training with the582

additional SEM-EDXS data, the actual composition re-583

sults in a mixture of red and yellow (saxolite and dolomite)584

grains, as shown in Fig. 7(c). In this way, it is possible to585

refine the ML algorithm until the qualitative difference586

by visual inspection between the ML segmentation results587
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Figure 6: Mineral determination according to the chemical components. (a) BSE overview image already enables to distuinguish individual
particles with different chemical composition. (c) Ca- (d) Mg- and (e) Si-EDXS analysis (net intensities) reveals the individual components
in the combined image (b) with high precision. See Fig. S4(b) for the slice position indicated in the Nano-CT volume.

Figure 7: Phase-related segmentation workflow. (a) SEM-EDXS analysis (net intensities) reveals the distinct mineral phases through their
different chemical composition (saxolite in red, dolomite in yellow, magnesite in green, talcum in cyan). (b) Virtual slice through the Nano-CT
reconstruction at the same location as the corresponding EDXS map: gray scale range of each phase in Nano-CT is manually segmented to
train the ML algorithm in individual slices using the EDXS signal. (c) The ML algorithm allocates the different phases first to one single
slice and from this to the complete corresponding Nano-CT reconstruction. This is repeated at three other positions (one slice in each single
Nano-CT reconstruction) shown in (d) and (f), leading to a phase-sensitive segmentation in (e) which is extrapolated to the full Nano-CT
reconstruction, as illustrated in Fig. 8. The difference between the exact particle morphology of (d) and (f) is a result of the divergence of the
focused ion beam. All scale bars represent 10 µm. See Fig. S4(b) for the slice positions and the positions of the single Nano-CT reconstructions
indicated in the complete Nano-CT volume.

9



Figure 8: Three stitched Nano-CT reconstructions as gray-scale im-
age in (a) and after phase-discrete segmentation in (b).

and the EDXS maps is minimized. To judge the refined588

training quantitatively, we color segmented single-phase589

particles of each mineral manually in an untrained z-slice590

and calculated the IoU of the manual and ML segmenta-591

tion results. The IoU ranges between 0.95 and 0.84, with592

a mean value of 0.91 for the utilized particles. The final593

segmentation of each of the three Nano-CT volumes is il-594

lustrated in Fig. 7(d-f). The EDXS maps in Fig. 7(d) and595

the virtual slices in Fig. 7(f) show a good match and the596

resulting segmentations in the three slices in Fig. 7(e) are597

in a good agreement with Fig. 7(d). Lastly, as illustrated598

in Fig. 8(b) and in Fig. S4, the three individual segmented599

sub-volumes are merged to obtain the final phase-discrete600

segmentation of the whole Nano-CT reconstruction.601

3.4. Particle-discrete Analysis602

After having finished the phase-discrete segmentation,603

we investigate the volumes with respect to particle-discrete604

information. To do so, the identified regions in the Nano-605

CT volumes of saxolite, dolomite, talcum and magnesite606

are registered in the particle-wise segmentation and the607
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Figure 9: Mass-weighted, normalized histograms of the equivalent
spherical diameter of particles which predominantly consist of one
mineral (volume fraction larger than 0.5) and of all identified parti-
cles. The lower end is cut off by the resolution.

resulting mineralogical composition of individual particles608

is correlated to particle descriptors, such as the equiva-609

lent spherical diameter (see also the comparison of phase-610

discrete and particle-discrete segmentation illustrated in611

Fig. S6). The mineralogical composition of each particle612

is quantified by four scalar values, corresponding to the613

volume fractions of saxolite, dolomite, talcum and magne-614

site of the given particle. Fig. 9 depicts the mass-weighted,615

normalized histograms of the equivalent spherical diame-616

ter of particles which predominantly consist of one min-617

eral (volume fraction larger than 0.5). The combination618

of the segmentation workflows considered in Sections 2.3.1619

and 2.3.2 provides a volume ratio of 27 to 73 (saxolite to620

talcum + dolomite + magnesite) which is comparable to621

the original mixture of minerals (see Sec. 2.1) and will be622

further discussed below.623

While almost all particles consist predominantly of one624

mineral, this does not mean that they occur fully liberated.625

The latter can be quantified by the liberation degree of a626

mineral, which is the ratio of the volume of this mineral627

that is liberated to the total volume of this mineral, as in-628

troduced in Eqs. (1) and (2). The liberation degree varies629

depending on particle size, as shown in Fig. 10, where630

smaller particles generally have a higher probability of oc-631

curring fully liberated. However, the degree of liberation632

only provides a simplified view on the collected data, which633

is also attainable by the application of standard methods,634

e.g., multi-stage density separation by heavy liquids or thin635

sectioning in the case of a mineral liberation analyser. But,636

since our method provides comprehensive particle-discrete637

data for all 22468 identified particles in the Nano-CT re-638

constructions, we can also plot particle and grain volume639

against each other, see Fig. 11, where each saxolite grain is640

considered individually in order to predict a possible sepa-641
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Figure 10: Volume specific liberation degree. The values at the dots
are computed by means of Eq. (2) for the surrounding particle size
interval.

ration process. Here, the corresponding volumes illustrate642

a more apprehensible relation than the sphere equivalent643

diameter and give hint directly to the total amount of par-644

ticles that are not fully liberated. The results obtained for645

the other three minerals are illustrated in Fig. S7. The red646

curve in Fig. 11 provides an estimation of the liberation647

degree by its distance to the diagonal line – the farer away648

from the diagonal line, the lower the liberation degree.649

The corresponding statistical error (gray shadowing) gives650

hint to the reliability for each fixed particle size: the error651

is small in the range from 2 µm3 to 200 µm3 and increases652

for smaller and larger particles because of the resolution653

and FOV limits, respectively.654

3.5. Scale-bridging Tomography655

The analysis of the Nano-CT data results in detailed656

information with respect to size and mineralogical compo-657

sition of the segmented particles, as depicted in Figs. 9 and658

11. However, in case of a material with inhomogenously659

distributed particles, results derived from the analysis of660

Nano-CT-sized volumes might not be representative. To661

investigate the homogeneity of the material, the Micro-CT662

volume is analyzed, which delivers an approximately 60-663

times larger acquired sample volume compared to the three664

combined Nano-CT measurements. For that purpose, the665

particle-discrete segmentation of the Micro-CT volume, as666

described in Sec. 2.3.3, is decomposed into 60 pieces of667

the same size as a Nano-CT reconstruction. Then, distri-668

butional properties of particle sizes within each of these669

pieces are investigated for given size intervals, see Figure670

12. In particular, for each Nano-CT-sized volume piece,671

the frequency of particles whose equivalent spherical di-672

ameter belongs to a certain size interval is computed. The673

mean values over all volume pieces and the corresponding674

95 % confidence intervals are depicted in Fig. 12.675
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Figure 11: Grain over particle volume map targeting saxolite, which
corroborates the segmentation workflow being able to analyze indi-
vidual particles. The red curve illustrates the mean grain volume for
a given particle volume, whereas the gray shadowing indicates the
corresponding error bar.
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Figure 12: Distributional properties of the equivalent spherical di-
ameter of particles in Nano-CT-sized pieces of the Micro-CT tomo-
gram. In particular, the mean values of frequencies over all pieces
are depicted as blue horizontal lines for each size interval under con-
sideration. The corresponding standard errors are depicted by pur-
ple vertical lines and the 95 % confidence intervals are visualized in
gray. The yellow vertical line represents the cut-off particle size re-
sulting from the medium resolution of the Micro-CT scan of about
3.2 µm (each size interval comprises the diameter range surround-
ing each sampling point in the graph from the half-distance towards
the preceding sampling point to the half-distance towards succeeding
sampling point, respectively).
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This visualization displays the variability of the esti-676

mated particle size distribution when considering Nano-677

CT-sized volumes—allowing for the assessment of the re-678

liability of Nano-CT-based characterizations. Since the679

95 % confidence intervals are small for all considered size680

intervals, we can conclude that all Nano-CT-sized volume681

pieces are similar with respect to the constituent particle682

sizes and number of particles without comparing the min-683

eral composition, so that one single investigated Nano-CT684

volume can be considered as representative for the origi-685

nal Micro-CT sized sample. For further extrapolation to686

a bulk sample, we refer to a representative study from the687

Micro-CT perspective on the applied preparation workflow688

[19], showing the homogeneity for equally prepared sam-689

ples. The lower resolution of the Micro-CT reconstruction,690

in contrast to the Nano-CT measurements, partly leads691

to wrongly-interpreted, connected particles and disregards692

smaller particles (below 3.2 µm). Thus, the determined to-693

tal number of particles in the Nano-CT-sized volume pieces694

of the Micro-CT reconstruction is smaller than in corre-695

sponding Nano-CT measurements of the same volume size.696

Similarly, the analysis of Micro-CT reconstructions leads697

to a right-shifted particle size distribution.698

4. Discussion699

The presented workflow enables a quantitative charac-700

terization of the considered particle system with respect to701

particle size and composition. Note that for the compo-702

sitional characterization of particles, FIB slices and SEM-703

EDXS analyses are required to obtain a phase segmenta-704

tion of the considered volumes, see Sec. 2.3.1. Due to the705

divergence of the FIB beam and the subsequent curvature706

of the cutting plane, it is difficult to precisely associate pix-707

els in the EDXS data with corresponding voxels in Nano-708

CT reconstructions. Therefore, we did not directly utilize709

the EDXS data itself for training the considered ML algo-710

rithm. Instead, large particles within the EDXS data have711

been manually identified and labeled within the Nano-CT712

reconstructions—which provided us with training data for713

the segmentation procedure.714

In principle, it would be possible to slice and view715

(including SEM-EDXS) the whole sample volume by FIB716

milling (so-called slice & view FIB-SEM tomography). How-717

ever, the acquisition of FIB-SEM tomography data for718

such large sample volumes with a high spatial resolution719

is a tedious and time-consuming procedure which addi-720

tionally often suffers under charging effects. Our workflow721

demonstrates a more time-effective, alternative investiga-722

tion routine using EDXS maps from only a few selected723

slices to inform the complete Nano-CT volume segmenta-724

tion.725

The limitations of the presented routine with respect726

to the Nano-CT experiments are the spatial resolution and727

the gray value range in the reconstructed volumes caused728

by the quasi-monochromatic beam (including noise). The729

lower limit of the particle size depends on the optical res-730

olution of the Nano-CT reconstructions (about 150 nm in731

the used imaging mode). Due to this reason, particles with732

an equivalent spherical diameter smaller than two times733

the resolution, so <0.3 µm, were omitted in the performed734

analyses. The exact monochromatic filtering of the Nano-735

CT microscope is complex. Therefore, we provide an ex-736

perimental approximation for the limitation distinguishing737

different mineral components according to their attenua-738

tion length difference. In this case study, the difference739

in the attenuation coefficients of the four minerals is large740

enough to be able to separate the phases well (cf. Tab. 1).741

For instance, the difference in the reconstructed gray val-742

ues between saxolite and dolomite is 4000 corresponding to743

8 µm attenuation length (see Tab. 1), which is around ten744

times larger than the gray value range of 400 within the745

saxolite phase. Similar to the particle size limit, we would746

suggest a minimum difference in the attenuation length747

resulting in a gray value difference of two times the gray748

value range of the individual phases, which is 800 in the749

case of saxolite. This value range approximately equals an750

attenuation length difference of ±1.6 µm, meaning that all751

phases with a higher difference in gray value or attenua-752

tion length should be distinguishable in the case of this753

Nano-CT instrument and the applied imaging conditions.754

Note that the applied Nano-CT instrument is not able755

to image the whole 400 µm sample due to its limited field756

of view and the absorption length of the employed X-ray757

energy. Therefore, if the sample was inhomogeneous, the758

analysis of Nano-CT data could lead to unrepresentative759

results. In order to verify homogeneity of the sample,760

the available Micro-CT image data was analyzed regard-761

ing the representability of Nano-CT sized volumes. More762

precisely, Nano-CT-sized volumes taken from the Micro-763

CT volume indicate similar particle size distributions, see764

Fig. 12. Therefore, we assume that the position of the765

Nano-CT measurements in the considered sample has a766

marginal impact on the results. This is further corrob-767

orated by observing a similar trend of the particle size768

distributions above 3 µm equivalent spherical diameter for769

the investigated Micro-CT and Nano-CT reconstructions770

(cf. Figs. 9 and 12). However, we expect an overall shift771

towards larger particle sizes due to the reduced resolution772

in the Micro-CT volume.773

As described in Sec. 2.1, the mixture was intentionally774

prepared with the volume ratio of 30 to 70 (talcum to sax-775

olite). Our workflow enables us to determine the volume776

ratio from reconstructed 3D image data. More precisely,777

since we can assign for each voxel in the Nano-CT data778

the corresponding mineralogical phase, we can compute779

the phase volume fractions, which leads to a volume ratio780

of 73 to 27 (talcum to saxolite). This is in good agree-781

ment with an inadvertently prepared ratio of 70 to 30,782

and not as expected 30 to 70. Although a precise quantifi-783

cation of the acquired EDXS maps from single slices (cf.784

Figs. 6(b) and 7(a and d)) w.r.t. the volumetric presence785

of the distinct minerals is difficult to pursue, e.g., due to786
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the inclined sample geometry and the detector position787

(absorption correction), the EDXS maps rather indicate a788

ratio of 70:30. This is further supported by the determined789

area ratio of the segmented saxolite regions in the EDXS790

maps w.r.t. the talcum phases (average area ratio of 65:35791

for three EDXS maps in Fig. 7(d)). Assuming a sample792

was prepared as 70 to 30 and considering that, according793

to the manufacturer, the original saxolite powder also con-794

tains talcum (4 %), the actual volume ratio of the mixture795

should be 71.2 and 28.8 which matches the estimated re-796

sult obtained from image data even better, demonstrating797

the precision of the presented workflow.798

The particle-wise segmentation of the Nano-CT recon-799

structions is based on a convolutional neural network, and800

thus, the network’s output is unpredictable for images801

that exhibit novel features not seen before in the training802

data. For the current data set, it was possible to encom-803

pass relevant features by labeling just three slices, but this804

might not be possible for image data with more diverse805

images and features. In addition, while errors caused by806

over-segmentation are negligible within our particle-wise807

segmentation (observed through visual inspection), under-808

segmentation can occur especially when small particles are809

involved. Since we consider volume-weighted descriptors,810

this type of under-segmentation should not significantly811

influence the results. However, the occurrence of compos-812

ite particles is overestimated as under-segmentation might813

occur for neighboring particles composed of different min-814

erals. To account for this, particles which have a volume815

fraction greater than 0.99 for any mineral were considered816

to be fully liberated.817

In comparison to common chemical analyses, the ad-818

ditional particle-discrete information extracted from our819

correlative workflow offers enhanced knowledge on the in-820

vestigated materials. For example, note that in mineral821

processing similar particle systems occur as a result of par-822

ticle milling processes which are subsequent to the mineral823

excavation to increase the LD of the material. Thus, on824

the basis of the derived particle-size related data, it is pos-825

sible to adjust the applied particle milling process if the826

required LD of the minerals is reached at a certain par-827

ticle size. For that purpose, the degree of liberation was828

analyzed for different minerals and particle sizes. In par-829

ticular, for saxolite the degree of liberation decreases for830

particles larger than 0.5 µm, as shown in Fig. 10. Such831

a trend is expected due to the higher stability of single832

grained particles and it can guide towards an optimized833

choice of the milling size. More specifically, if a high de-834

gree of liberation is desired for saxolite, further milling835

might be necessary to increase the LD.836

5. Conclusions837

In summary, the presented correlative characterization838

workflow over multiple length scales is utilized to unam-839

biguously allocate and identify different constituent min-840

eral types contained as grains in similarly sized particles.841

This can be a challenging task for common mineralogi-842

cal characterization methods which rely on only particle843

sizes. In particular, a large volume was reconstructed and844

analyzed in 3D with various imaging techniques, in or-845

der to ascertain a comprehensive characterization of the846

particles’ size and composition. Our presented correla-847

tive 3D characterization approach is suitable to be applied848

to particulate samples with primary particle sizes in the849

range of 0.3 µm to 15 µm by considering resolution and850

FOV limits of the Nano-CT instrument. In our study, the851

morphology and composition are available for each indi-852

vidual particle and can be evaluated to directly compute853

the particle-wise mineral liberation, which usually cannot854

be determined using standard methods for particle char-855

acterization. The combination of multiple imaging tech-856

niques significantly improves the statistical relevance (high857

number of particles) and segmentation precision (high res-858

olution) compared to the application of a single technique.859

The proposed method provides multidimensional particle860

properties enabling a more detailed understanding of mul-861

tidimensional separation processes, see [39]. In a forth-862

coming study, the presented characterization workflow is863

supposed to be deployed to evaluate the separation effi-864

ciency achieved by a combination of deflector wheel clas-865

sifier and triboelectric charge sorting. Furthermore, the866

determined mineral liberation degree properties will allow867

tuning processes to obtain optimized milling degrees of868

the original mineral batches. Moreover, the data obtained869

with the presented approach can be used as input for nu-870

merical simulations to obtain a detailed understanding of871

these complex separation processes.872

Data Availability873

The reconstructed image data, in this case, TIFF stacks,874

the related acquisition and reconstruction parameters are875

stored within the scientific data repository of Technische876

Universität Dresden and TU Bergakademie Freiberg with877

all relevant meta-data [40].878
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36. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ron-1055

neberger, O.. 3D U-net: Learning dense volumetric segmen-1056

tation from sparse annotation. In: Ourselin, S., Joskowicz,1057

L., Sabuncu, M.R., Unal, G., Wells, W., eds. Medical Im-1058

age Computing and Computer-Assisted Intervention – MICCAI1059

2016. Springer International Publishing. ISBN 978-3-319-46723-1060

8; 2016:424–432.1061

37. Furat, O., Kirstein, T., Leißner, T., Bachmann, K., Gutzmer,1062

J., Peuker, U.A., Schmidt, V.. Multidimensional character-1063

ization of particle morphology and mineralogical composition1064

using ct data and r-vine copulas. 2023. URL: https://arxiv.1065

org/abs/2301.07587. doi:10.48550/ARXIV.2301.07587.1066

38. Soille, P.. Morphological Image Analysis: Principles and Ap-1067

plications. Springer; 2003. ISBN 978-3-540-42988-3.1068

39. Schach, E., Buchmann, M., Tolosana-Delgado, R.,1069

Leißner, T., Kern, M., van den Boogaart, G., Rudolph,1070

M., Peuker, U.A.. Multidimensional characterization of1071

separation processes. Part 1: Introducing kernel meth-1072

ods and entropy in the context of mineral processing1073

using SEM-based image analysis. Minerals Engineer-1074

ing 2019;137:78–86. URL: https://www.sciencedirect.1075

com/science/article/pii/S0892687519301499. doi:https:1076

//doi.org/10.1016/j.mineng.2019.03.026.1077

40. Ditscherlein, R.. 3 tomographic data sets of nano-CT measure-1078

ments of a 30:70 vol-% mixture of talcum and saxolite. 2022.1079

doi:http://dx.doi.org/10.25532/OPARA-186.1080

15

https://www.sciencedirect.com/science/article/pii/S1047847711002267
http://dx.doi.org/https://doi.org/10.1016/j.jsb.2011.07.017
http://dx.doi.org/https://doi.org/10.1016/j.jsb.2011.07.017
http://dx.doi.org/https://doi.org/10.1016/j.jsb.2011.07.017
http://dx.doi.org/10.1017/s1431927620001737
https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.201900823
https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.201900823
https://onlinelibrary.wiley.com/doi/abs/10.1002/adem.201900823
http://dx.doi.org/https://doi.org/10.1002/adem.201900823
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/adem.201900823
https://arxiv.org/abs/2301.07587
https://arxiv.org/abs/2301.07587
https://arxiv.org/abs/2301.07587
http://dx.doi.org/10.48550/ARXIV.2301.07587
https://www.sciencedirect.com/science/article/pii/S0892687519301499
https://www.sciencedirect.com/science/article/pii/S0892687519301499
https://www.sciencedirect.com/science/article/pii/S0892687519301499
http://dx.doi.org/https://doi.org/10.1016/j.mineng.2019.03.026
http://dx.doi.org/https://doi.org/10.1016/j.mineng.2019.03.026
http://dx.doi.org/https://doi.org/10.1016/j.mineng.2019.03.026
http://dx.doi.org/http://dx.doi.org/10.25532/OPARA-186

	Introduction
	Materials and Methods
	Particle System
	Measurement Workflow for Volume Correlation
	Sample Preparation
	Micro-CT Measurements
	Laser Ablation
	Nano-CT Measurements
	FIB Preparation, SEM Imaging and SEM-EDXS

	Image Processing Strategies
	Nano-CT Phase Segmentation
	Nano-CT Particle Segmentation
	Micro-CT Particle Segmentation
	Mineral Liberation


	Results
	Correlative Microscopy Workflow
	Precise Mineral Allocation
	Volume Correlation
	Particle-discrete Analysis
	Scale-bridging Tomography

	Discussion
	Conclusions

