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Abstract

In the present paper, we propose a novel single-fiber model which exploits a description of fibers

as a sequence of bond and torsion angles. Using the Frenet-Serret formulas, this representation

can be translated into 3D space and vice-versa. While the precise locations of points along

a fiber do not directly convey information about inner material properties of the fiber, the

distribution of bond and torsion angles may be related to various material characteristics

and, thus, our model may form a direct link between inner material properties and emerging

microstructure properties. More precisely, we model curved fibers in the three-dimensional

Euclidean space R3 as polygonal tracks that we represent by their local curvature and torsion

at each sampling point. The two-dimensional sequences of curvatures and torsions obtained in

this way are then considered as realizations of a Markov chain with finite memory which takes

its values in R2. The transition kernel of this Markov chain is given by a family of conditional

multivariate probability distributions. They are constructed using so-called R-vine copulas,

which are fitted and validated by means of experimental data.

Key Words: stochastic fiber model, Frenet-Serret formula, curvature, torsion, Markov chain,

R-vine copula, conditional sampling
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1 Introduction

Fiber-based materials play an important role in various application areas, like fuel cell tech-

nology (Schulz et al., 2007), filtration (Geerling et al., 2020), light weight materials (Ali et al.,

2020), or hygiene products (Kroutilova et al., 2020). For many of these applications, so-called

nonwovens are used. The improvement of nonwoven is an expensive and time-consuming

technological process. To reduce cost and time for this process, computer models can be ex-

ploited to perform the design of the materials digitally. Digital materials design makes use

of modern 3D imaging techniques like micro-CT which have enabled the detailed analysis of

the microstructure and morphology of fibrous materials. In particular, tomographic imaging

techniques are capable of visualizing the fibers constituting the nonwoven materials. For fur-

ther analysis of the imaged structures, labeling approaches exist to identify individual fibers in

the tomographic image data. Recently, convolutional neural networks have successfully been

applied to this task (Grießer et al., 2019; Grießer et al., 2022b).

While many properties of fibrous materials can be determined on scanned image data, math-

ematical modeling of the underlying structure is beneficial for getting a better understanding

of microstructure-property relationships (Huang et al., 2017; Schneider, 2017; Venkateshan

et al., 2016) and, in this way, for developing new materials with enhanced properties. For the

materials considered in the present paper, stochastic modeling has proven capable of grasping

the essential structural properties while still being computationally feasible. In particular, by

means of stochastic models, a wide spectrum of virtual but realistic fibers can be generated

which can be used for the determination of fibrous materials with optimized physical properties

and, thus, for the efficient improvement of nonwoven materials. Note that various stochastic

models exist for the 3D microstructure and morphology of nonwoven used, e.g., for general

purposes (Kallel & Joulain, 2022; Mao et al., 2007; Moghadam et al., 2019; Wiegmann, 2008),

in filter media (Abishek et al., 2017; Azimian et al., 2018; Soltani et al., 2017; Wiegmann et al.,

2007), as so-called gas diffusion layers in fuel cells (Gaiselmann et al., 2013; Schulz et al., 2007;
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Zamel et al., 2010), and for acoustic trim (Schladitz et al., 2006; Soltani et al., 2018). Most of

these models are built in two steps, i.e., they consist of a single-fiber model and a framework

for combining multiple fibers into the desired structure, where the single-fiber models usually

consider the fibers as sequences of points in 3D space and directly describe the relationships

between the locations of neighboring points (Altendorf & Jeulin, 2011; Gaiselmann et al., 2013;

Townsend et al., 2021).

In the present paper, we propose a novel single-fiber model which exploits a description of

fibers as a sequence of bond and torsion angles. Using the Frenet-Serret formulas (Kühnel,

2015), this representation can be translated into 3D space and vice-versa. While the precise

locations of points along a fiber do not directly convey information about inner material

properties of the fiber, the distribution of bond and torsion angles may be related to various

material characteristics and, thus, the model may form a direct link between inner material

properties and emerging microstructure properties. To capture correlations along the fibers

extracted from tomographic image data, the single-fiber model proposed in this paper consists

of a k-th order Markov chain (Raftery, 1985) describing the sequence of bond and torsion

angles, where an R-vine copula (Czado, 2019; Joe, 2014) is used to model the transition kernel

of the Markov chain. For this, we extract representations of fibers as sequences of bond and

torsion angles from measured image data of a nonwoven material, where individual fibers have

been identified using the method described in Grießer et al. (2022b). Then, we fit the Markov

model mentioned above to the data and validate it by simulating a set of fibers and comparing

their structural properties to those observed in experimental data.

The rest of this paper is organized as follows. In Section 2, the underlying measured image

data and their preprocessing is described, together with the Frenet representation of fibers

extracted from image data and the Markov model for their stochastic modeling. Then, in

Section 3, the results obtained in this way are presented. Finally, a discussion of the results

and an outlook to possible future research topics is provided in Section 4.
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Fig. 1. 3D (left) and 2D (right) views of the sample considered in the present paper – this sample

is provided online as scan and identified fibers under Grießer et al. (2022a).

2 Materials and Methods

2.1 Tomographic Image Data and Their Preprocessing

The material under consideration is a bulky nonwoven fabric. According to Kroutilova et al.

(2020), the material can be used, for example, in the hygiene industry as various parts of ab-

sorbent hygiene products (e.g. baby diapers, incontinence products, female hygiene products,

changing pads, etc.) or in healthcare, for instance, as a part of protective garments, surgical

cover sheets, underlays and other barrier material products. Further use cases are possible in

technical applications, e.g., as a part of protective garments, in filtration, insulation, packaging,

sound adsorption, shoe industry, automotive, furniture, etc.

The sample considered in the present paper is composed of synthetic round fibers, see

Fig. 1. The fiber diameter varies slightly within the sample around a mean value of 24 µm.

To study this material in detail, multiple scans were acquired by Bruker micro-CT on a

SkyScan 1272 with a resolution of 2.4 µm. These individual scans were stitched together

along the x-axis to create the full-sized scan. The complete sample has dimensions of

36.87 mmˆ 8.74 mmˆ 5.07 mm, or 15 363 px ˆ 3640 px ˆ 2112 px for a total of 118 105 827 840

voxels. The sample is available for general access, see Grießer et al. (2022a). The data set

contains the original micro-CT scan, the segmented binary raw image, the labeled raw image

where every fiber has its own label, and the analytic description of the center lines of the
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fibers. In Grießer et al. (2019), a neural network was trained on generated training data and

then used to label the center lines of each fiber in the segmented micro-CT scan in order to

obtain the individual fibers. In total, 2377 fibers with a maximum length of 12.65 cm and an

overall length of 17.09 m were extracted from the data. As short fibers may be susceptible

to effects from sample preparation and effects from measuring artefacts, we exclude all fibers

shorter than 3 mm from the analysis. This leaves us with 1117 fibers with an overall length of

16.01 m, thus preserving more than 93% of the totaled length.

The extracted fibers are represented by polygonal tracks where nodes are placed such that

the overall deviation from the original fiber in the micro-CT scan and the number of nodes is

balanced. For the modeling approach chosen in the present paper, equidistant sampling of the

fibers, i.e, a constant distance between each pair of neighboring nodes on the polygonal track,

is required. We ensure this by creating modified versions of each polygonal track. Given the

original polygonal track x : r0, 1s Ñ R3 with nodes ri “ xpsiq and straight segments in between

(i.e. xpsq “ 1
sk`1´sk

pps´ skqxpsk`1q ` psk`1 ´ sqxpskqq for sk ă s ă sk`1), the nodes r1i of the

modified track with some sampling length l ą 0 are given by

r11 “ r1

r1i`1 “ x pmints ą s1i : |xpsq ´ r1i| “ luq

where xps1iq “ r1i and |z| denotes the Euclidean norm of z P R3. Note that we resample each

fiber at a resolution of l “ 0.1 mm. In the following, to keep the notation possibly simple, the

nodes of the modified polygonal tracks will be denoted by ri (instead of r1i).

2.2 Frenet Representation

As mentioned above, for purposes of modeling and analysis, curved fibers are often represented

as polygonal tracks, i.e., sequences of points in the three-dimensional Euclidean space R3. This

generic representation proves useful for measuring and visualizing fibers by, e.g., tomographic
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imaging and voxel images, respectively. Extensions of pure polygonal tracks include splines

which are often used in computer graphics and modeling (Bartels et al., 1995). They provide

means to reduce the number of sampling points and for smooth interpolation of (discrete)

curves by introducing a piecewise polynomial representation. These representations, based on

a sequence of (sampling) points, provide a global view of fibers but cannot directly model local

properties. For providing a direct link between material properties and 3D morphology of the

modeled fibers, a representation of discrete curves by local geometrical properties is useful,

which is explained in the following.

2.2.1 Continuously Parameterized Curves

Assume that a curve is given by a differentiable function x : r0, 1s Ñ R3. Then, for any

s P r0, 1s, the Frenet-Serret formulas (Kühnel, 2015) can be used to compute the curvature

κpsq and torsion τpsq at each point xpsq P R3 along the curve x “ txpsq, s P r0, 1su. More

precisely, the curvature κpsq and torsion τpsq at each point xpsq along the curve are defined

via the unit tangent vector T psq, the normal unit vector Npsq, and the binormal unit vector

Bpsq “ T psq ˆNpsq at xpsq, where T psq ˆNpsq denotes the cross product of the unit vectors

T psq and Npsq, and

dT

ds
“ κN, (1)

dN

ds
“ ´κT ` τB, (2)

dB

ds
“ ´τN. (3)

The orthonormal vectors T,N,B occurring in this system of differential equations are called

the Frenet-Serret frame. Thus, intuitively speaking, the curvature κ describes the change in

direction and the torsion τ describes the local deviation of the curve from a planar curve,

i.e., the change in the osculating plane. Note that for the computation of κ and τ , explicit

expressions may be used, see Hu et al. (2011). The resulting functions κ : r0, 1s Ñ R and
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τ : r0, 1s Ñ R uniquely determine the curve x “ txpsq, s P r0, 1su which can be reconstructed

using the Frenet-Serret formulas given in Eqs. (1) – (3).

2.2.2 Discrete Sampling

Exploiting the formulas mentioned above to compute curvature and torsion along a given

discrete curve, e.g. representing a fiber, poses additional challenges. Naively computing κ

and τ at each sampling point and estimating the required derivatives by means of adjacent

sampling points leads to huge errors when reconstructing the original curve from the resulting

sequences of curvature and torsion. This can partly be overcome by first interpolating the

sampling points using, e.g., splines and then calculating κ and τ on a much finer grid along

the spline. However, an exact representation of the spline (or discrete curve) can never be

achieved and a good representation requires an infeasible high amount of points at which κ

and τ are computed. Of course, using spline representations, κ and τ could be computed

explicitly, but a piecewise functional representation of κ and τ would not be suitable for

modeling.

For a meaningful definition of κ and τ on discrete curves, adaptions of the Frenet-Serret

formulas given in Eqs. (1) – (3) exist (Hu et al., 2011). For a discrete curve given by a sequence

of points r1, . . . , rn P R3, the discrete Frenet frame at the vertex ri is given by

ti “
ri`1 ´ ri
|ri`1 ´ ri|

, (4)

bi “
ti´1 ˆ ti
|ti´1 ˆ ti|

, (5)

ni “ bi ˆ ti, (6)

where i “ 1, . . . , n´ 1. Note that bi and ni cannot be computed when the unit vectors ti and

ti´1 are parallel. In this case, we can simply set bi “ bi´1 and compute ni accordingly. For any

i P t1, . . . , n ´ 1u, the curvature ψi P r0, πs (also known as “bond angle” in the discrete case)
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and the torsion angle θi P r´π, πs between ri and ri`1 are then given by

cosψi “ ti`1 ¨ ti, and cos θi “ bi`1 ¨ bi. (7)

Furthermore, the unit vector bi is perpendicular to the “osculating” plane at ri, i.e., the plane

spanned by the vertices ri´1, ri, ri`1. Thus, the torsion angle θi is the angle between the

osculating planes at ri and ri`1.

A discrete version of the Frenet-Serret equations stated in (1) – (3), which is consistent

with the above definition of the Frenet frame in Eqs. (4) – (6), is given by

¨

˚

˚

˚

˚

˝

ni`1

bi`1

ti`1

˛

‹

‹

‹

‹

‚

“ Rpθi, ψiq

¨

˚

˚

˚

˚

˝

ni

bi

ti

˛

‹

‹

‹

‹

‚

(8)

for some transfer matrix Rpθi, ψiq P R3 ˆ R3. For further details, see Hu et al. (2011).

In contrast to naively discretized versions of the continuous Frenet-Serret formulas given

in Eqs. (1) – (3), the formulas stated in (4) – (6) and (8), respectively, provide tools for

defining curvature ψi (bond angle) and torsion θi at each (inner) point ri with i “ 1, . . . , n´ 1

of a discrete curve given by the sequence r0, . . . , rn P R3, which can be used for precisely

reconstructing the curve from the sequence of bond and torsion angles ψi and θi. Note,

however, that for uniquely defining a curve by bond and torsion angles, additionally the initial

points r0, r1, r2 and the arclengths |ri`1 ´ ri| between points ri and ri`1 are needed. For

simplicity, we choose a constant arclength, i.e., |ri`1 ´ ri| “ c, thereby significantly reducing

the number of values necessary to describe the curve.

Using the tools stated above, we can essentially (up to a Galilean transformation) describe a

curved fiber by a sequence pψ1, θ1q, . . . , pψn´1, θn´1q P r0, πsˆr´π, πs of bond and torsion angles.

Such sequences will form the basis for our stochastic fiber model, which will be explained in

the following section.
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Note that the description by a sequence of bond and torsion angles can also be used for

planar fibers which can be observed in various nonwovens composed of, e.g., spunbound (Chen

et al., 2020) and meltblown (Gahan & Zguris, 2000; Hiremath & Bhat, 2015) fibers. For fully

planar fibers, the torsion angle would be 0 at all points and the their geometry would be fully

given be the sequence of bond angles. However the data at hand comprises fibers for which

modeling the torsion angles is essential as they significantly deviate from any given plane.

2.3 Markov Chain Model

Using the representation of curved fibers described in the previous section, we model a fiber

as a realization of a sequence of two-dimensional random vectors pΨ1,Θ1q, pΨ2,Θ2q, . . . : Ω Ñ

r0, πs ˆ r´π, πs, which are given on some common probability space pΩ,F ,Pq.

Assuming no global constraints act on the fibers, we expect the behavior of the fiber at a

given point to be conditionally independent of that at points “far away”. More formally, we

assume that the random vector Xj “ pΨj,Θjq is conditionally independent of Xi “ pΨi,Θiq

if j ą i ` k for some order of dependence k ě 1, under the condition that the values of the

random vectors Xj´1 “ pΨj´1,Θj´1q, . . . , Xj´k “ pΨj´k,Θj´kq are given. Furthermore, we

assume that the fibers behave statistically in the same way at any sampling point r1, r2, . . .,

i.e., we assume that the random sequence tXi, i “ 1, 2, . . .u is stationary, which means that for

each m ě 0 the distribution of the 2pm ` 1q-dimensional random vector pXi, . . . , Xi`mq does

not depend on the choice of i P t1, 2, . . .u. Moreover, for the sake of simplicity, we assume

that the distribution of pX1, . . . , X1`mq is absolutely continuous with some probability density

fX1,...,X1`m : R2pm`1q Ñ r0,8q.

Under these assumptions, a (discrete-time) k-th order Markov chain, see e.g. Raftery (1985),

with the (continuous) two-dimensional state space r0, πs ˆ r´π, πs seems to be suitable for

modeling the random sequence tXi, i “ 1, 2, . . .u of bond and torsion angles. Note that higher-

order Markov chains extend the concept of an ordinary (first order) Markov chain to allow for

memories of any finite length k ě 1.
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In order to fit the k-th order Markov chain tXi, i “ 1, 2, . . .u to data and to draw sam-

ples from the fitted Markov chain model, i.e., to generate synthetic fibers, we determine

the multivariate probability density fX1,...,X1`k
using the copula approach explained in the

next section. Then, we can simulate the random vector pX1, . . . , X1`kq by drawing a sam-

ple px1, . . . , x1`kq from the (unconditional) density fX1,...,X1`k
. In the next step, we sim-

ulate the random vector Xk`2 by drawing a sample xk`2 from the (conditional) density

fXk`2|X2“x2,...,X1`k“x1`k
: R2 Ñ r0,8q, and so on.

2.4 R-Vine Copulas

For modeling fibers by a k-th order Markov chain tXi, i “ 1, 2, . . .u, the joint distribution of the

random vector pX1, . . . , X1`kq needs to be determined. Using the transformations introduced

in Section 2.2, we can generate a large family of sequences x1, . . . , xn´1 from measured data,

where xi “ pψi, θiq for i “ 1, . . . , n ´ 1 and n ´ 1 ą k ` 1, which we assume to adhere to the

(unknown) distribution of pX1, . . . , X1`kq. For a parameter-free model of this distribution, we

could apply a kernel density estimator (Scott, 2015). This would allow for easy conditional

sampling as required by the Markov model. However, later adjustments to the resulting model

would be infeasible using this approach. As a benefit of a stochastic fiber model consists in the

capability of simulating a wide spectrum of realistic, yet (statistically) different from observed,

fibers, a parametric model is desirable. Therefore, we choose to parametrically model the joint

probability density fX1,...,X1`k
: R2pk`1q Ñ r0,8q of pX1, . . . , X1`kq.

2.4.1 Sklar’s Representation Formula

Approaches for parametric modeling of multidimensional vector data include multivariate

Gaussian distributions or mixtures thereof (Reynolds, 2009) and so-called copula models. Cop-

ulas provide means to model the correlation structure of a multivariate distribution when

the marginal distributions are non-Gaussian. For any integer d ě 2, a d-variate copula

C : r0, 1sd Ñ r0, 1s is the cumulative distribution function of a d-dimensional random vector
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pU1, . . . , Udq with marginal distributions being equal to the (standard) uniform distribution

on r0, 1s. Note that a copula essentially describes the interdependence of the components

of the corresponding random vector pU1, . . . , Udq. Furthermore, copulas lend themselves to

modeling of multivariate distributions by Sklar’s representation formula (Nelsen, 2006), which

states that the cumulative distribution function FY : Rd Ñ r0, 1s of an arbitrary random

vector Y “ pY1, . . . , Ydq : Ω Ñ Rd, where FY py1, . . . , ydq “ PpY1 ď y1, . . . , Yd ď ydq for any

y1, . . . , yd P R, can be given by the univariate cumulative distribution functions FY1 , . . . , FYd

of the components Y1, . . . , Yd and a certain d-variate copula C. More precisely, it holds that

FY py1, . . . , ydq “ CpFY1py1q, . . . , FYd
pydqq (9)

for any y1, . . . , yd P R. Vice versa, for any d-variate copula C and univariate cumulative

distribution functions FY1 , . . . , FYd
, the expression given at the right-hand side of Eq. (9) is

the cumulative distribution function of a d-dimensional random vector. For differentiable

cumulative distributions functions and copulas, Eq. (9) implies that

fY py1, . . . , ydq “ cpFY1py1q, . . . , FYd
pydqq

d
ź

i“1
fYi
pyiq (10)

for any y1, . . . , yd P R, where fY and fYi
denote the probability density of the random vector

Y and its i-th component Yi, respectively. Furthermore, the function c : r0, 1sd Ñ r0,8q is the

probability density corresponding to the copula C.

2.4.2 The Pair-Copula Construction Method

Using Eq. (10), we can model the density of a d-dimensional random vector by modeling its

marginal densities in a first step, and a copula density describing the interdependence of its

component in a second step. While, in principle, this approach is valid independently of the

dimension d ě 2, direct parametric modeling of copulas becomes increasingly hard for high

dimensions. However, a way out of this dilemma consists in the utilization of so-called R-
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vine copulas (Czado, 2019; Joe, 2014), a flexible parametric model to construct multivariate

probability densities by decomposing them into several bivariate conditional (and univariate)

densities to fit probability densities to available data. For this, many parametric families of

bivariate copulas can be used. In the present paper, we consider the following bivariate copula

types when fitting R-vine copulas to data: Gaussian, Student t, Clayton, Gumbel, Frank, Joe,

BB1, BB6, BB7, BB8 and their rotations. For more details, see Joe (2014); Nelsen (2006).

The basic idea of this decomposition, illustrated for a three-dimensional random vector

Y “ pY1, Y2, Y3q, is motivated by the observation that the density fY : R3 Ñ r0,8q of Y can be

decomposed into a product of the conditional density fY1,Y2|Y3“y3 : R2 Ñ r0,8q of pY1, Y2q given

that Y3 “ y3 and the univariate density fY3 : RÑ r0,8q of Y3, i.e., for each y “ py1, y2, y3q P R3

with fY pyq ą 0 it holds that

fY pyq “ fY1,Y2|Y3“y3py1, y2qfY3py3q. (11)

Inserting Eq. (10) for d “ 2 into the first factor on the right-hand side of Eq. (11), we get that

fY pyq “ c1,2|Y3“y3pFY1|Y3“y3py1q, FY2|Y3“y3py2qqfY1|Y3“y3py1qfY2|Y3“y3py2qfY3py3q ,

where c1,2|Y3“y3 is the density of the copula corresponding to the conditional bivariate den-

sity fY1,Y2|Y3“y3 and FYi|Y3“y3 is the conditional cumulative distribution function of Yi given

that Y3 “ y3 with density fYi|Y3“y3 , i “ 1, 2. Furthermore, using the identity fYi|y3“y3pyiq “

fYi,y3pyi, y3q{fY3py3q and inserting Eq. (10) for d “ 2 into the first factor on the right-hand side

of this identity, we finally get a pair-copula representation of the three-variate density fY , i.e.,

for each y “ py1, y2, y3q P R3 with fY pyq ą 0 it holds that

fY pyq “c1,2|Y3“y3pFY1|y3“y3py1q, FY2|Y3“y3py2qqc1,3pFY1py1q, FY3py3qqc2,3pFY2py2q, FY3py3qq

ˆ fY1py1qfY2py2qfY3py3q ,
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where ci,3 is the copula density corresponding to fYi,Y3 , i “ 1, 2. Note that in general the

bivariate copula density c1,2|Y3“y3 depends on the numerical value of y3. However, for compu-

tational feasibility, the following simplifying assumption is made, which states that c1,2|Y3“y3

does not depend of the given value y3 of Y3, but just on the subscript of the component Y3

appearing in the condition, i.e. c1,2|Y3“y3 “ c1,2|3, see Haff et al. (2010).

The pair-copula construction approach described above can be generalized to higher-

dimensional random vectors such that similar representation formulas for the density fY of

a d-dimensional random vector as product of marginal densities and bivariate copula densities

can be derived for d ą 3 as well, see e.g. Czado (2019). In this way, using so-called regular vines

(shortly: R-vines), a representation can be constructed where the resulting model of fY can be

fitted to empirical data. For more details, we refer e.g. to two recent case studies (Aigner et al.,

2022; Furat et al., 2022), where R-vine copulas have been used to model image data on two

completely different (geographical and microscopic) length scales. More precisely, in Aigner

et al. (2022) R-vine copulas have been exploited for model-based prediction of uncertain power

supply in an electrical distribution network, in order to optimize the discrete curtailment of

solar feed-in into the network and to guarantee network stability under fluctuating feed-in,

whereas in Furat et al. (2022) R-vine copulas have been used to determine the multivariate

probability distribution of descriptor vectors for the size, shape, texture and composition of

micron-sized mineral particles.

In the present paper, we use R-vine copulas to parametrically model the multivariate

probability density fX1,...,X1`k
of the random vector pX1, . . . , X1`kq appearing in the k-th order

Markov chain tXi, i “ 1, 2, . . .u introduced in Section 2.3.

2.5 Validation Measures

Model validation is performed by drawing a large number of simulated fibers from the fitted

Markov model. Visual comparison of simulated and measured fibers may only indicate a rough

resemblance. Thus, in addition to visual inspection, we compute various characteristics for
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comparing simulated to measured fibers and thereby quantitatively validating the stochastic

fiber model. In particular, we compute and compare the autocorrelation functions of bond

and torsion angles, the curl-index of fibers in the three-dimensional Euclidean space R3, and

the volume and surface of their convex hulls.

2.5.1 Autocorrelation Function

The autocorrelation function ρ : t1, 2, . . .u ˆ t1, 2, . . .u Ñ r´1, 1s of a (real-valued) stochastic

process tYi, i “ 1, 2, . . .u describes the correlation between the states Yi1 and Yi2 of the process

at different instants i1, i2 ě 1. While in the literature there are various slightly different

definitions of this notion (Park, 2018), we choose the definition based on the Pearson correlation

coefficient, i.e., for any integers i1, i2 ě 1 it holds that

ρpi1, i2q “
E
`

pYi1 ´ EpYi1qqpYi2 ´ EpYi2qq
˘

a

VarpYi1qVarpYi2q
.

Note that for a stationary process tYi, i “ 1, 2, . . .u, the value of ρpi1, i2q depends only on the

length of τ “ |i1 ´ i2| of the interval pi1, i2q and can be written as

ρpτq “
E
`

pYi`τ ´ µqpYi ´ µq
˘

σ2 ,

where µ “ EpY1q and σ2 “ VarpY1q. Note that ρp0q “ 1 always holds by definition.

For a given τ ě 1, we can estimate ρpτq from a collection of n arbitrarily truncated

independent realizations py1,1, . . . , y1,m1q, . . . , pyn,1, . . . , yn,mnq of the stochastic process tYi, i “

1, 2, . . .u by compiling a set S of all pairs of values pyi,j, yi,j`τ q and computing the Pearson

correlation coefficient on this set.
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2.5.2 Curl-Index of Fibers

The curl-index c P r1,8s as introduced by Kallmes & Corté (1960) for fibers in R3, represented

by a sequence of points r0, . . . , rn P R3, is given by

c “

řn´1
i“0 |ri`1 ´ ri|

|rn ´ r0|
.

Note that this descriptor is related to the so-called geodesic tortuosity (Neumann et al., 2019)

which is often applied to characterize the “windedness” of transportation paths in porous

media. Obviously, the curl-index may be affected by the overall length of the fiber. Thus,

when comparing two sets of fibers, we need to make sure that the distribution of fiber length

is similar for both sets. However, since we assume stationarity of the underlying stochastic

fiber model, see Section 2.3, we can randomly cut segments of a given length from all fibers to

achieve comparability.

2.5.3 Descriptors of Convex Hull

The convex hull of a fiber, represented by a sequence of points r0, . . . , rn P R3, is the convex set

minimizing its volume while containing the entire fiber, i.e., containing all points r0, . . . , rn P

R3. For a discretized fiber, this is always a convex polytope and algorithms for efficient

computation of the convex hull, e.g., the QuickHull algorithm (Barber et al., 1996), exist. We

can determine various descriptors of the convex hull, including its volume and surface area,

which we will use for comparing two sets of fibers. Again, these measures are affected by

the overall length of fibers and we need to adjust in a similar way as mentioned above in

Section 2.5.2.

3 Results & Discussion

From the tomographic image data described in Section 2.1, we use 1117 fibers for model

fitting and validation. The lengths of these fibers varied significantly with a minimum length
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Fig. 2. Histogram of fiber lengths.

of 3.03 mm, a maximum length of 126.5 mm and a mean length of 14.4 mm. Fig. 2 shows a

histogram of fiber lengths.

Based on this data, we calibrate the parameters of the stochastic fiber model which is built

by means of the three modeling components (Frenet representation, Markov chain, vine copula)

described in Sections 2.2 – 2.4. In particular, by drawing samples from a k-th order Markov

chain, we generate polygonal fiber tracks via their Frenet representation, i.e., the sequence of

bond and torsion angles along the fibers. A crucial step of the model fitting procedure is the

selection of an appropriate transition kernel of the Markov chain, where an R-vine copula is

used to capture the correlation structure of the underlying data. From the simulated sequences

of bond and torsion angles, we then compute the coordinates of the vertices of polygonal tracks

representing the fibers. Finally, we evaluate the suitability of the Frenet representation and

the performance of the stochastic fiber model.

3.1 Frenet Representation

Transforming the data described in Section 2.1 by means of the methods from Section 2.2

yields two sequences ψ1, . . . , ψn´1 and θ1, . . . , θn´1 for each fiber, representing the bond angle

ψi P r0, πs and the torsion angle θi P r´π, πs at each (discrete) sampling point ri along the

fiber. Vice versa, vertices of the fiber can be computed from the initial Frenet frame and the

sequence of bond and torsion angles. Recall that the results of these computations depend

on the distances di “ |ri`1 ´ ri| between adjacent sampling points which we assume to be
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(a)

(b)

(c)

Fig. 3. (a) Example of a fiber given by a polygonal chain which has been extracted from experi-

mental data (black). (b) Bond angle ψi along the chain. (c) Torsion angle θi along the chain. The

polygonal chain reconstructed from curvature and torsion nicely coincides with the original polygonal

chain as shown in red in (a).

constant. Numerical errors may lead to deviations from this assumption and may further

negatively affect the computation of Frenet frames as well as bond and torsion angles. We

assess these errors by computing the sequence pψ1, θ1q, . . . , pψn´1, θn´1q of bond and torsion

angles pψi, θiq and the initial Frenet frame pt0, n0, b0q of a fiber represented by the sampling

points r0, . . . , rn and re-transform this representation into Euclidean coordinates denoted by

pr0, . . . , prn. Fig. 3 shows an example of a fiber extracted from tomographic image data (black)

along with the computed bond and torsion angles and the re-transformed fiber (red).

The visual impression of good correspondence between original and reconstructed fibers is

confirmed when computing the re-transformations for all fibers extracted from tomographic

image data. In Fig. 4, the distances |pri ´ ri| are visualized for each pair of sampling points

ri, pri along the fibers. The solid line represents the mean error averaged over all fibers, and
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Fig. 4. Deviation between pairs of sampling points for original and reconstructed fibers.

the errors for 99% of all fibers fall within the light gray band. For a fiber with length equal to

the mean length of 14.4 mm, the error would never exceed 1.3% of its length.

3.2 Model Fitting

The starting point when constructing the stochastic fiber model described in Sections 2.3

and 2.4 consists of suitably selecting parametric models for the univariate probability densities

of bond and torsion angles. For this, we first consider two samples containing all bond angles

and all torsion angles, respectively. It turns out that the family of inverse Gaussian distribu-

tions leads to a good fit for the bond angles, whereas the family of normal inverse Gaussian

distributions is chosen for the torsion angles. Note that we select these two types of parametric

distributions from an extensive range of over 100 families of distributions given by the python

package SciPy (Virtanen et al., 2020), by assessing the goodness of fit.

Recall that the probability density function fµ : r0,8q Ñ r0,8q of the inverse Gaussian

distribution with parameter µ ą 0 is given by

fµpxq “
1

?
2πx3

exp
ˆ

´
px´ µq2

2xµ2

˙

for each x ě 0. To allow for more flexibility, we additionally introduce a location parameter

l P R as well as a scale parameter s ą 0 and define the probability density function fµ,s,l :
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Fig. 5. Histograms of measured data (black) and fitted parametric densities (red) for bond angles

(left) and torsion angles (right).

rs,8q Ñ r0,8q of the (generalized) inverse Gaussian distribution by

fµ,s,lpxq “
1
s
fµ

ˆ

x´ l

s

˙

for each x ě l. Furthermore, the probability density function fa,b : R Ñ r0,8q of the normal

inverse Gaussian distribution with parameters a ą 0 and |b| ď a is given by

fa,bpxq “
aK1pa

?
1` x2q

π
?

1` x2 exp
´?

a2 ´ b2 ` bx
¯

for each x P R. Here, K1 : r0,8q Ñ r0,8q is the modified Bessel function of second

kind (Abramowitz et al., 1988). Again, we generalize the density function fa,b by introduc-

ing location and scale parameters s and l, modifying the function fa,b in the same way as

described above in the case of the inverse Gaussian distribution. Fitting these probability den-

sity functions to measured data described in Section 2.1 by maximum likelihood estimation, the

following values have been obtained for the 7 model parameters: µ “ 0.6446, l “ ´0.0175 and

s “ 0.1932 for the inverse Gaussian distribution describing the bond angles, and a “ 0.0557,

b “ 0.0002, l “ 0.0007 and s “ 0.2286 for the normal inverse Gaussian distribution describ-

ing the torsion angles. Fig. 5 shows histograms of measured data as well as the parametric

probability densities fitted to this data.
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In a second step, the Markov chain model described in Section 2.3 has been fitted, which

requires to choose the integer-valued parameter k specifying the length of memory. This param-

eter then affects the subsequently fitted copula, in particular the dimension of the multivariate

distribution which is needed for modeling the transition kernel of the k-th order Markov chain.

Initially, we chose k “ 1, . . . , 5 as candidates. Thus, for each k P t1, . . . , 5u, an R-vine copula

has been fitted to capture the correlation structure present in measured data, applying the

pair-copula construction method briefly explained in Section 2.4.2 and using the univariate

parametric (marginal) densities described above. Then, by means of the fitted k-th order

Markov chain, 250 fibers are simulated for each value of k “ 1, . . . , 5. It turns out that already

k “ 2 yields satisfactory results while keeping the computational complexity and the amount

of required data low. For visual assessment, Fig. 6 shows examples of fibers extracted from

tomographic image data alongside with simulated fibers and their respective functions of bond

and torsion angles for k “ 2. Visually, there are no obvious flaws in the simulated fibers. On

the contrary, the overall shape seems to match the measured data well.

3.3 Model Validation

The validation measures described in Section 2.5 are computed for each value of k P t1, . . . , 5u.

Moreover, 250 simplified “reference fibers” are simulated, where torsion and bond angles are

drawn independently from the fitted univariate densities, see Fig. 5, i.e., no correlations along

the fibers are taken into account. We use these simplified fibers for comparison, to show the

suitability of the vine copula approach described in Section 2.4 for the stochastic modeling of

measured fibers.

Fig. 7 shows autocorrelation functions computed for measured and simulated sequences of

bond and torsion angles. Even though, in the following, we only discuss the k-th order Markov

chain model for k “ 1, . . . , 5 , we found that also for k ą 5 the autocorrelation functions

of simulated fibers match those of measured fibers quite well. Note, however, that for the

simplified reference fibers, the values ρpτq of both autocorrelation functions ρ : t0, 1, . . .u Ñ
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Fig. 6. Top: Five fibers selected at random from measured data and truncated at 100 steps.

Bottom: Five simulated fibers. Below each fiber, the corresponding bond angles (left) and torsion

angles (right) along the fiber are shown.

r´1, 1s for bond and torsion angles would be equal to 1 for τ “ 0 by definition, but 0 for any

τ ą 0 which is in clear contrast to the autocorrelation functions obtained from measured data,

at least for the sequence of bond angles, see the left-hand side of Fig. 7.

To evaluate the goodness of model fit by means of the curl-index and the convex-hull

descriptors stated in Section 2.5, we cut random segments with lengths of 0.3, 0.6, 1 and

1.5 mm from all fibers and compute kernel density estimates for the probability densities of

the resulting samples of validation measures, see Figs. 8, 9 and 10. For comparison, the

estimated densities obtained for the simplified reference fibers (without taking account of the

correlations along the fibers) are shown in gray. It is clearly visible that the incorporation of

correlation effects into the stochastic fiber model, via the vine copula approach described in

Section 2.4, has a huge beneficial impact on the goodness of fit. In particular, for segments

with lengths greater than 0.3 mm, we see large deviations of the descriptors considered in

Figs. 8, 9 and 10 for the simplified reference fibers from those of measured fibers, while the
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Fig. 7. Estimated autocorrelation functions for bond (left) and torsion angels (right). Black curves

show the autocorrelation functions obtained from measured data, whereas colored curves show those

obtained for the k-th order Markov model with k “ 1, . . . , 5.
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Fig. 8. Density functions of the curl-index of randomly selected fiber segments for four different

lengths. Black curves show the density functions obtained from measured data, colored curves those

obtained from the k-th order Markov models with k “ 1, . . . , 5. The gray curves show the density

function obtained from the reference fibers.

fibers generated by means of the copula approach show a good fit to measured data.

Visual inspection of Figs. 8, 9 and 10 gives the impression that the probability densities

shown in these figures are largely independent of the specific choice of the model parameter

k P t1, . . . , 5u. To evaluate this in more detail, we consider the Kolmogorov-Smirnov statistic

D : R2n Ñ r0, 1s, which is given by Dpz, z1q “ supyPR |F pyq ´ F 1pyq| for arbitrary samples

z “ pz1, . . . , znq P Rn and z1 “ pz11, . . . , z
1
nq P Rn, where F and F 1 denote the empirical

cumulative distribution functions corresponding to z and z1, respectively. As an example,

Tab. 1 shows the numerical results which have been obtained for Dpz, z1q if z and z1 are

samples of convex-hull surface areas of measured and simulated fiber fragments.
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Fig. 9. Density functions of the convex-hull surface area of randomly selected fiber segments for

four different lengths. Black curves show the density functions obtained from measured data, colored

curves those obtained from the k-th order Markov models with k “ 1, . . . , 5. The gray curves show

the density function obtained from the reference fibers.
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Fig. 10. Density functions of the convex-hull volume of randomly selected fiber segments for four

different lengths. Black curves show the density functions obtained from measured data, colored

curves those obtained from the k-th order Markov models with k “ 1, . . . , 5. The gray curves show

the density function obtained from the reference fibers.
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segment length 0.3 mm 0.6 mm 1.0 mm 1.5 mm

k

1 0.0248 0.0490 0.0608 0.0600

2 0.0156 0.0470 0.0494 0.0508

3 0.0326 0.0434 0.0504 0.0570

4 0.0194 0.0474 0.0456 0.0554

5 0.0138 0.0448 0.0494 0.0472

reference fibers 0.1212 0.2368 0.2480 0.2522

Table 1. Kolmogorov-Smirnov statistic for samples of the convex-hull surface area of measured and

simulated fiber segments, for four different segment lengths and k “ 1, . . . , 5. For comparison, values

of the Kolmogorov-Smirnov statistic are given, which have been obtained for the simplified reference

fibers.

While the values of the Kolmogorov-Smirnov statistic given in Tab. 1 do not differ much

from each other for different values of k P t2, . . . , 5u, they seem to be higher for k “ 1, especially

when considering longer fiber segments. Similar observations have been made with respect to

the values of the Kolmogorov-Smirnov statistic regarding the curl-index and the convex-hull

volume. These findings are in line with the visual impression of the autocorrelation functions

for sequences of bond angles which do not significantly differ from each other for k P t2, . . . , 5u,

but do change when passing from k “ 1 to k ě 2, see the left-hand side of Fig. 7.

We thus conclude that the k-th order Markov chain model proposed in this paper performs

similarly well for each k between 2 and 5, where the overall behavior of measured fibers is

nicely captured already for k “ 2. This is true for the Frenet representation as well as in the

Euclidean domain.
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4 Conclusions

Modeling single fibers of, e.g., nonwoven materials constitutes a crucial step in the development

of stochastic 3D models for fiber systems. These models, when used for digital materials design,

require flexibility such that they cover a wide spectrum of virtual, but realistic scenarios. The

method proposed in the present paper for describing single fibers as higher-order Markov

chains of bond and torsion angles by using discrete Frenet-Serret formulas, shows the desired

flexibility via the appropriate choice of the suitable parametric families of univariate densities of

bond and torsion angles as well as the adjustment of the transition kernel of the corresponding

Markov chain. Since also the transition kernel is parametrically modelled using so-called vine

copulas, model fitting to tomographic image data and model variation for subsequent virtual

materials testing can be easily achieved. As pointed out in this paper, a 6-variate R-vine

copula is capable of capturing the essential structural properties of real fibers sufficiently

well. In particular, we fitted our model to experimentally measured data of fibers from a real

nonwoven material and performed model validation by comparing descriptors of simulated

fibers to those of measured fibers, where we showed that the distributions of bond and torsion

angles and their correlations along the fibers nicely match for simulated and measured data.

Furthermore, geometrical properties emerging from the representation of fibers in 3D space

show a good correspondence between simulated and measured fibers. We conclude that the

stochastic single-fiber model proposed in this paper is indeed capable of capturing essential

properties of curved fibers of nonwovens.

It turned out that our model performs sufficiently well for a second order Markov chain.

Hence, the resulting low number of parameters facilitates its usage in further work. This

may include the development of a stochastic 3D model for the entire fiber system of various

kinds of nonwovens, accounting for mutual interaction between fibers. Since in our single-fiber

model, the fibers are drawn step-by-step from conditional probability distributions, introducing

further restraints and requirements should be a relatively easy task. Furthermore, since the
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univariate distributions of bond and torsion angles as well as the R-vine copulas accounting

for correlations along the fibers can be selected from an extensive range of parametric models,

adaptions to various types of fibers can be performed.

While we showed the model using a specific dataset, its inherent flexibility lends itself to

explore various other types of fibers. In particular, planar or helical fibers form a special case

of the presented approach where the torsion angles are given by a constant value.
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