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AbstratWe onsider modulated Poisson-Voronoi tessellations, intended as models for teleommu-niation networks on a nationwide sale. By introduing an algorithm for the simulationof the typial ell of the latter tessellation, we lay the mathematial foundation for suha global analysis. A modulated Poisson-Voronoi tessellation has an intensity whih isspatially variable and, hene, is able to provide a broad spetrum of model senarios.Nevertheless, the onsidered tessellation model is stationary and we onsider the asewhere the modulation is generated by a Boolean germ-grain model with irular grains.These irular grains may either have a deterministi or random but bounded radius.Furthermore, based on the introdued simulation algorithm for the typial ell and onNeveu's exhange formula for Palm probability measures, we show how to estimate themean distane from a randomly hosen loation to its nearest Voronoi ell nuleus. Thelatter distane is interpreted as an important basi ost harateristi in teleommuni-ation networks, espeially for the omputation of more sophistiated funtionals lateron. Said loation is hosen at random among the points of another modulated Poissonproess where the modulation is generated by the same Boolean model as for the nu-lei. The ase of a ompletely random plaement for the onsidered loation is therebyinluded as a speial ase. The estimation of the ost funtional is performed in a waysuh that a simulation of the loation plaement is not neessary. Test methods for theorretness of the algorithm based on tests for random software are brie�y disussed.Numerial examples are provided for harateristis of the typial ell as well as for theost funtional. We onlude with some remarks about extensions and modi�ations ofthe model regarded in this paper, like modulated Poisson-Delaunay tessellations.Keywords : Stohasti geometry, teleommuniation network modelling,Neveu's exhange formula, Voronoi tessellation, Boolean model
1 IntrodutionDuring the last years spatial stohasti modelling of teleommuniation networks has beomean established alternative to more traditional eonomi approahes for ost measurementand strategi planning of teleommuniation networks. While the geometri struture ofsuh a model allows a more realisti view to loation dependent network harateristis thanonventional models, the random setting an re�et the network variability in time and spae.2



(a) Di�erent metropolitan regions (b) Overlapping metropolitan regionsFigure 1: Urban and rural loations of real network devies in a region of FraneAmong the examples where stohasti-geometri models have been onsidered reently aremobile teleommuniation systems, multi-ast networks and swithing networks all based ontools from stohasti geometry like modulated Poisson�Voronoi tessellations (see Bªaszzyszynand Shott[7], [8]), Poisson�Voronoi aggregated tessellations (see Baelli, Klein, Lebourgesand Zuyev[3] and Thoumathenko and Zuyev[19]), superpositions of Poisson-Voronoi tessella-tions (see Baelli, Gloaguen and Zuyev[2]), spanning trees (see Baelli, Kofman and Rougier[5]and Baelli and Zuyev[6]), and overage proesses (see Baelli and Bªaszzyszyn[1]). TheStohasti Subsriber Line Model (SSLM), f. [10℄ for example, is a partiular example of arandom-geometri approah to model networks with an expliit desription of the underlyingroad system.However, a key issue in modelling ommuniation networks, espeially from a global per-spetive, is the onsideration of instationarities, in partiular with respet to the underlyinggeometry of the network. If we regard Figure 1 for example, we observe that the displayednetwork devies of two regions in Frane are sattered spatially with a varying intensity. Morepreisely the devies are sattered denser in urban areas than in the rural landsape, due tothe fat that subsribers are loated muh denser in metropolitan regions; f. Figure 1 (a).In ontrast, Figure 1 (b) shows a seond senario where network devies of an agglomerationof di�erent metropolitan regions overlap and thus are sattered with varying density.While the infrastruture along whih some network devies are plaed an be modelled bynationwide versions of the SSLM, there remains the ruial part to have at hand a �exible3



model for the geometry layer, i.e. a model that is able to appropriately display the spatialstruture of the network geometry. Aurate estimations of the harateristis of the serviezones assoiated to the network devies ould then be easily obtained and used as omponentsof ost or tra� models. Adopting lassial stationary approahes is often too naive sinespatial �utuations are ompletely ignored. Truly instationary approahes like nonstationaryPoissonian models with parametri intensity shapes an be used to obtain interesting resultsin the shape of integral formulations. But suh approahes are limited and will quikly beomeompliated when loseness or overlapping of dense areas are to be taken into aount. Apossible way out of this dilemma is o�ered by a general framework inluding stationaryases that provide good approximations for instationary ones. Suh a framework is, forexample, given by modulated Poisson-Voronoi tessellations (see Figure 2) that, althoughbeing stationary models, are able to re�et instationary senarios quite well. Hene, ourproposed model an address real situations of nationwide networks as in Figure 1 (a) or asesof overlapping dense areas like in Figure 1 (b).In this paper we analyze a speial ase of modulated Poisson-Voronoi tessellations where themodulation is generated by a Boolean germ-grain model with irular grains. Suh a modelan, for example, be used to model population densities or densities of network devies onnationwide sales. It is able to over a wide variety of di�erent senarios due to the fatthat the underlying point proess is very �exible. The possible randomness of the radiusof the grains allows to mimi the observed features of the towns lying in a given area andthus to ahieve a proper analysis of a given region. Espeially we are interested in theharateristis of so-alled typial ells of these tessellations. In the stationary ase, thetypial ell an be regarded as a ell that is hosen at random out of the pool of all ellsavailable. For ergodi tessellation models this means that we an study harateristis ofthe typial ell instead of averaging over very large sampling windows sine the analysis oflarge sampling windows has some grave pratial disadvantages like memory and runtimeproblems as well as problems ourring from edge-e�ets. Charateristis we are exploringin this ontext are area, perimeter and number of verties of the typial ell, where oneshould notie that all these harateristis are random variables in this setting. Apart fromthat, natural harateristis of interest are basi ost funtionals like the mean distanefrom a randomly hosen loation within the ell to its orresponding ell nuleus (entre).4



Suh an easy-to-handle ost funtional often serves as a surrogate for more sophistiatedost funtionals used in pratie like the subsriber line length. All these harateristis areuseful tools in the ost analysis of teleommuniation networks. In partiular they serve asomponents for more sophistiated funtionals whih an be obtained by ombing these basifuntionals. Notie that often not only �rst moments (means) are of interest but also seondor even higher moments in order to allow for an e�ient risk analysis, for example. It isalso important to notie that by looking at the funtionals of the typial ell automatiallyfuntionals for the model on a global view are obtained due to ergodiity. This means thate.g. by estimating the mean area of the typial ell, the mean area for the ells in a (verylarge) region is estimated.After an introdution of the model of stationary modulated Poisson-Voronoi tessellationsand the notion of its typial ell (Setion 2), in Setion 3 a simulation algorithm for thetypial ell of modulated Poisson-Voronoi tessellations is given that is based on Palm alulus.Modi�ations for random radii of the irular grains of the underlying Boolean model are alsodisussed. In Setion 4 the funtional representing the mean distane from a random loationto the orresponding ell nuleus is introdued and it is shown via usage of Neveu's exhangeformula for Palm probability measures how to estimate the ost funtional by simulating thetypial ell of the modulated Poisson-Voronoi tessellation. Afterwards in Setion 5 numerialexamples are provided, dealing with some speial ases like the Swiss-heese model introduedin Setion 2.2.Additionally, possibilities for statistial software testing of an implementation of the intro-dued algorithm are disussed here. Finally in Setion 6 an outlook to possible extensionsand to other modulated Poisson-type models is provided.All implementations that have been done for the omputation and the simulation of thetypial ell of modulated Poisson-Voronoi tessellations and the orresponding ost funtionalsare integrated in the GeoStoh library. This JAVA�based library was developed by theDepartments of Stohastis and Applied Information Proessing of the University of Ulmin order to o�er software tools designed for the analysis of spatial data with methods fromstohasti geometry; see Mayer, Shmidt and Shweiggert[15] and http://www.geostoh.de.5



Figure 2: Realization of a modulated Poisson-Voronoi tessellations2 Stationary modulated Poisson-Voronoi tessellations and theirtypial ellsThis setion introdues the mathematial model of a stationary modulated Poisson-Voronoitessellation that is generated by a Boolean germ-grain model. For further details see appen-dies A.1-A.5. After the disussion of some speial ases for suh modulated Poisson-Voronoitesssellations, a Palm representation for the orresponding typial ell is provided that is usedin Setion 3 to derive a simulation algorithm.2.1 Stationary modulated Poisson-Voronoi tessellationsIn the following let Ψ =
⋃

n≥1 (Yn +Mn) be a Boolean germ-grain model (see (A.12)) where
{Yn} is a stationary Poisson point proess with intensity β > 0 and where theMn are irulargrains with a �xed radius r. In Figure 3 realizations of {Yn} and Ψ are displayed. Furthermorelet X = {Xn}n≥1 be a planar doubly-stohasti Poisson point proess (also alled Cox pointproess; see (A.4)) that has a random driving measure Λ generated by Ψ whih is de�ned as

Λ(dx) =





λ1dx if x ∈ Ψ,

λ2dx if x /∈ Ψ,
(2.1)
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(a) Realization of a Poisson proess (b) Realization of a Boolean modelFigure 3: Boolean germ-grain modelwhere 0 ≤ λ1, λ2 < ∞ and max {λ1, λ2} > 0. Then the Voronoi tessellation τX induedby the Cox point proess X is alled a modulated Poisson-Voronoi tessellation (see (A.14)).Analoguously, X is referred to as a modulated Poisson proess. We often all Ψ the Booleanmodel orresponding to X and τX . In Figure 2 a realization of a modulated Poisson-Voronoitessellation is displayed.Due to the stationarity of Ψ and the de�nition of Λ given in (2.1), it is obvious that both
X and τX are stationary. Also, sine the Boolean model Ψ is an ergodi random losed set,both proesses X and τX are ergodi.The intensity λ of the modulated Poisson proess X an be omputed as

λ =
IEX(B)

|B| = pλ1 + (1 − p)λ2, (2.2)where p = IP(o ∈ Ψ) denotes the overage probability of the (stationary) Boolean model Ψ,
X(B) = #{n : Xn ∈ B}, and B ∈ B(IR2) is an arbitrary Borel set with positive and �niteLebesgue measure |B|.
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(a) Ordinary PVT (b) Swiss-heese model () Inner-ity modelFigure 4: Speial ases of modulated Poisson-Voronoi tessellations2.2 Speial ases of modulated Poisson-Voronoi tessellationsThe modulated Poisson-Voronoi tessellation introdued in Setion 2.1 overs a wide varietyof di�erent models due to the fat that the underlying point proess is very variable. Thebasi ase is the ordinary stationary Poisson-Voronoi tessellation (PVT), where λ1 = λ2(Figure 4a). Notie that for this ase the Poisson point proess X beomes independentfrom the Boolean model Ψ. Another interesting speial ase is the swiss-heese model, where
λ1 = 0 (Figure 4b). This model might be of interest �rst of all as a limiting ase. Seondlythere exist ases when there are 'forbidden zones' e.g. for antennas in densely populatedregions. We will regard a numerial example for the swiss-heese model type in Setion 5.2sine interesting e�ets an be observed there. A further speial ase that is interesting forappliations is the inner-ity model, where λ2 = 0 (Figure 4). The underlying point proess
X in suh a ase should not be onfused with so-alled Matern-luster proesses sine theintensity at a loation overed by Ψ is given as the onstant value λ1 no matter how manyirles of Ψ are overing a spei� loation.2.3 Representation of the typial ellUsing Palm alulus (see Setions A.3 and A.5), the typial ell of the modulated Poisson-Voronoi tessellation τX an be desribed as follows. Let the modulated Poisson proess X ofnulei have random driving measure Λ given in (2.1) and let Ψ be the orresponding Booleanmodel. Let Q∗ denote the Palm distribution of the stationary random measure Λ (see for8



example Stoyan, Kendall and Meke[18], p. 229) and let X∗ be a Cox point proess withrandom driving measure Λ∗ having the distribution Q∗, where
Q∗(·) =

λ1

λ
IP(Λ ∈ ·, o ∈ Ψ) +

λ2

λ
IP(Λ ∈ ·, o /∈ Ψ). (2.3)Then, under its Palm probability measure IP∗

X (see (A.10)), the Cox point proess X has thesame distribution as δo +X∗ has under the original probability measure IP, i.e.,
IP∗

X(X ∈ ·) = IP(δo +X∗ ∈ ·), (2.4)where δo is the (deterministi) point proess that onsists solely of one single point at theorigin o. Thus, the typial ell of τX has the same distribution as the Voronoi ell with nuleusat o whih is indued by the point proess δo + X∗. Notie that the Palm distribution Q∗given in (2.3) an be written as
Q∗(·) = pcIP(Λ ∈ · | o ∈ Ψ) + (1 − pc)IP(Λ ∈ · | o /∈ Ψ), (2.5)where

pc =
pλ1

λ
(2.6)is the onditional overage probability pc = IP∗

X(o ∈ Ψ) of the origin o by the Boolean model
Ψ under the Palm probability measure IP∗

X , i.e., onditional to the event that o belongs to thepoint proess X, whereas p = IP(o ∈ Ψ) represents the (unonditional) overage probabilityof o by Ψ and λ is the intensity of X. By (2.5) it beomes lear that the Cox point proess
X∗ is a mixture of two Cox point proesses with random driving measure whose onditionaldistributions are given by IP(Λ ∈ · | o ∈ Ψ) and IP(Λ ∈ · | o /∈ Ψ), respetively.3 Simulation algorithmIn this setion we introdue a simulation algorithm for the typial ell of modulated Poisson-Voronoi tessellations that are generated by the Boolean model with irular grains having�xed radius r > 0. This algorithm is based on the Palm representation of the typial ell9



derived in Setion 2.3. Finally, in Setion 3.5, the ase of random radii is also onsidered.3.1 Radial simulation of Poisson point proessesThe simulation algorithm used later on utilizes radial simulation of Poisson proesses in IR2,where radial in this ontext means that the simulated points have an inreasing distaneto the origin. For a more general desription of radial generation of Poisson proesses seeQuine and Watson[16]. Reall that a point x = (x1, x2) ∈ IR2 an be represented in polaroordinates as x = (r, z), where x1 = r cos z and x2 = r sin z. Consider a sequene ofrandom variables {Ri}i≥1 with R0 < R1 < ... suh that {Ri} is a (linear) stationary Poissonpoint proess in (0,∞) with parameter γ. Furthermore, onsider another sequene {Zi} ofindependent and U(0, 2π]-distributed random variables, whih is independent of {Ri}. Thenthe sequene {((Ri/π)1/2, Zi)} is a (two-dimensional) stationary Poisson point proess in IR2with (planar) intensity γ.In pratie this means that a stationary Poisson point proess in IR2 an be generated radiallyby simulating independent random variables Tj ∼ Exp(γ), and Vi ∼ U(0, 2π) and by putting
Ri =

i∑

j=0

log Tj , i ≥ 1 (3.7)and
Zi = Vi, i ≥ 1. (3.8)3.2 Conditional simulation of modulated Poisson proessesEquations (2.3)-(2.6) provide a theoretial basis for the simulation of the typial ell ofthe modulated Poisson-Voronoi tessellation τX that orresponds to the modulated Poissonproess X. Reall that the typial ell of τX has the same distribution as the Voronoi ellwith nuleus at o whih is indued by the point proess δo + X∗ given in (2.4). Henethe modulated Poisson proess X∗ = {X∗

n}n≥1 has to be simulated, whose random drivingmeasure has distribution Q∗ given in (2.5). Note that due to (2.5) a simulation of X∗ requiresa simulation of the Boolean model Ψ∗, onditional to the events that the origin is overed by
Ψ or not. In other words Ψ∗ has to be simulated onditional to the event that o ∈ X. The10



simulation of X∗ and Ψ∗ is performed radially, i.e., with inreasing distane to the origin,and in an alternating fashion between the points of X∗ and the germs of Ψ∗. As an initialstep a point X∗
0 is plaed in the origin (Figure 5a), thereby representing the (degenerate)point proess δo in (2.4). Then, it is determined by a Bernoulli experiment with suessprobability pc given in (2.6) if X∗

0 = o is overed by Ψ or not. If o ∈ Ψ then the distane of
Y ∗

1 , the germ of Ψ∗ whih is nearest to X∗
0 , to the origin has to be less than or equal to r,otherwise, i.e., if o /∈ Ψ it has to be bigger than r. Therefore the distane of the �rst germ

Y ∗
1 to the origin has to be simulated onditional to o ∈ Ψ or o /∈ Ψ, respetively (Figure 5b).In pratie this means that a proposal distane R1 of the �rst germ Y ∗

1 to the origin isgenerated aording to (3.7) with γ = β, where β represents the intensity of the germs asde�ned in Setion 2.1. This proposal distane is aepted or rejeted based on R1 ≤ r or
R1 > r, respetively. In ase of a rejetion another proposal distane R1 of Y ∗

1 to the origin isgenerated. Afterwards further points Xi = (Ri, Zi) are simulated radially aording to (3.7)and (3.8) with intensity γ = max{λ1, λ2}. For eah suh point it is heked whether it isovered by Ψ∗ or not (Figure 5). This hek is performed by simulating further germs Y ∗
jof Ψ∗ until either the distane of a germ to Xi beomes smaller than or equal to r or if thedistane of Y ∗

j to the origin beomes greater than |Xi| + r, where |Xi| denotes the distaneof Xi to the origin. In the �rst ase Xi is overed by Ψ∗, in the seond, it is lear that itis not overed. Notie that it is important to retain all germs simulated for further heks,e.g., of the point Xi+1. After we have heked whether Xi is overed by the onditionalBoolean model Ψ∗ or not, in one of the two ases a thinning proedure has to be performed.So, if without loss of generality λ1 < λ2 and Xi ∈ Ψ∗ then the probability of disarding
Xi is given by 1 − λ1/λ2. One more it is important to retain the distane of Xi to theorigin as a starting value for the simulation of Xi+1, even if Xi is disarded in the thinningproedure in order to obtain orret results. Altogether, this method leads to a simulationof X∗ = {X∗

n}n≥1 by an alternating simulation of a stationary Poisson point proess Xmaxwith intensity γ = max{λ1, λ2} and a onditional Boolean model Ψ∗ and by applying thethinning proedure desribed above (Figure 5d). Notie that unonditional simulation of a(stationary) modulated Poisson proess in the plane an be performed in a similar way byan alternating radial simulation of Xmax and the (unonditional) Boolean model Ψ.11
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(a) Stopping riterion for initial ell (b) Constrution of initial ell using bisetorsFigure 6: Stopping riterion for initial ell and its onstrution3.3 Constrution of initial ellBased on the radial simulation of the modulated Poisson proess X∗ as it was explained inSetion 3.2 an initial ell for the typial ell is onstruted next. This means that if for eahpoint X∗
n of X∗ = {X∗

n}n≥1 the perpendiular bisetor (X∗
0 ,X

∗
n) is regarded we are interestedin a minimal integer n ≥ 3 suh that X∗

0 is for the �rst time surrounded by a onvex polygonformed by these bisetors. In Figure 6 a proedure for the onstrution of suh an initial ellis visualized (see also Quine and Watson[16] and Wendel[20]). The lines X∗
1X

∗
0 and X∗

2X
∗
0form a one S2 with respet to the opposite side of X∗

0 . If the (next nearest) point X∗
3lies inside of this one the algorithm stops and an initial ell an be onstruted using thebisetors (X∗

0 ,X
∗
1 ), (X∗

0 ,X
∗
2 ) and (X∗

0 ,X
∗
3 ). Otherwise the one S3 is taken as the maximalone formed by two of the three lines X∗

1X
∗
0 , X∗

2X
∗
0 and X∗

3X
∗
0 on the opposite side of X∗

0 .Afterwards the point X∗
4 is taken into aount with respet to S3 (Figure 6a). This proedureis repeated until X∗

i+1 ∈ Si. With probability 1 this algorithm stops after a �nite number ofsteps (see Wendel[20] for the ase of stationary Poisson proesses) and an initial ell an beonstruted by using the orresponding bisetors (Figure 6b).
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6 (d) Realization of the typial ellFigure 7: Alterations of initial ell and �nal realization of the typial ell3.4 Simulation of the typial ellAfter the reation of an initial ell a stopping riterion for the simulation of the typialell an be provided (see Quine and Watson[16]). If dmax denotes the maximal distane ofthe verties of the initial ell to the the origin o(= X∗
0 ) then the simulation of the points

Xi∗ ∈ X∗ has to be ontinued until the distane of X∗
i to o is bigger than 2dmax (Figure 7).Notie that dmax might be redued during alterations of the ell (Figure 7b and Figure 7)and therefore the stopping riterion has to be adapted aordingly in order to ensure fasterruntimes. The �nal result after ful�lling the stopping riterion is a realization of the typialell. (Figure 7d).
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3.5 Modi�ations for random radiiIn order to simulate the typial ell for modulated Poisson-Voronoi tessellations in the asewhere the radius R of the irles of the orresponding Boolean model Ψ is random butbounded (e.g., R ∼ U [r − δ, r + δ] with 0 < δ < r) two modi�ations to the algorithmintrodued above for deterministi radius r have to be applied. It is important to notiethat, with respet to the simulation of the modulated Poisson proess X∗, in the ase thatthe origin is overed by the onditional Boolean model Ψ∗, the grain generated by the �rstgerm Y ∗
1 of Ψ∗ with random radius R∗

1 does not neessarily over the origin o. However it ispossible that another grain overs o. Therefore, after determining whether X∗
0 = o is overed,the onditional radial simulation of the distanes of the germs of Ψ∗ to the origin togetherwith the radii of the orresponding grains has to be performed in a way suh that in the ase

o ∈ Ψ∗ at least one grain Y ∗
i + M∗

i overs X∗
0 . On the other hand, if o /∈ Ψ∗ one has tosimulate grains Y ∗

i +M∗
i that do not over X∗

0 until the distane of their orresponding germsto X∗
0 is bigger than the maximal possible radius rmax (in the example of uniform distributionabove rmax = r+ δ). In pratie this means that given o ∈ Ψ∗ or o /∈ Ψ∗ a proposal sequeneof germs {Yi +Mi} is radially generated for i = 0, .., Imax, where |YImax

| > rmax. Afterwardsit is heked whether this sequene ful�lls the given ondition or not. In the �rst ase thesequene is aepted and the simulation of the grains is ontinued radially with the grain
YImax+1 + MImax+1, otherwise a new proposal sequene is radially generated by starting atthe origin again. This proedure is repeated until a sequene is found that an be aepted.An analogous modi�ation has to be performed with respet to the neessary amount ofgrains that have to be simulated in order to know if a point Xi is overed by Ψ∗ or not. Inthe ase of a deterministi radius r of the grains it is su�ient to simulate until the distaneof the germs of Ψ∗ to the origin is bigger than |Xi|+ r. Now for random radii, the neessarydistane to the origin has to be bigger than |Xi| + rmax, where again rmax is the maximalpossible radius (r + δ in the example).
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4 Funtionals built on the typial ellAs a basi example of funtionals that an be built on the typial ell, we onsider here theaverage distane from a randomly hosen loation to the nearest nuleus of the modulatedPoisson-Voronoi tessellation. The hoie of this loation might take plae purely random, inother words following the distribution of a stationary Poisson point proess, or again mightbe taken from a modulated Poisson proess onneted to the same Boolean model that themodulated Poisson proess of nulei uses.4.1 De�nition via Palm probability measureSuppose that λ1, λ2, λ̃1, λ̃2 ≥ 0 are non-negative numbers suh that max{λ1, λ2} > 0 and
max{λ̃1, λ̃2} > 0. Let X = {Xn}n≥1 be a modulated Poisson proess onneted to a Booleanmodel Ψ via the random driving measure

Λ(dx) =





λ1dx if x ∈ Ψ,

λ2dx if x /∈ Ψ,
(4.1)and let {X̃n}n≥1 be another modulated Poisson proess onneted to the same Boolean model

Ψ via the random driving measure
Λ̃(dx) =





λ̃1dx if x ∈ Ψ,

λ̃2dx if x /∈ Ψ.
(4.2)Assume that the modulated Poisson proesses {Xn} and {X̃n} are onditionally independent,given Ψ. Furthermore, if N(X̃n) denotes the loation of the nearest (in the Eulidean sense)point ofX with respet to X̃n onsider the marked point proess X̃ = {X̃n, |X̃n−N(X̃n)|}n≥1,where | · | denotes the Eulidean norm. The intensities of X and X̃ are given by λ =

pλ1 + (1 − p)λ2 and λ̃ = pλ̃1 + (1 − p)λ̃2, respetively, where p = IP(o ∈ Ψ). The funtionalwe are espeially interested in is the average distane c from the typial point of X̃ to itsnearest point of X. Using the Palm probability measure IP∗
eX
for X̃ (see (A.10)) we anexpress c as

c = IE eX
|N(o)|, (4.3)16



where IE eX
denotes expetation with respet to IP∗

eX
. Notie that due to the ergodiity of X̃it is possible to express the expetation c as the limit of spatial averages with respet to anaveraging sequene {Wi}i≥1 of unboundedly inreasing sampling windows Wi. This meansthat with probability 1 (see for example Daley and Vere�Jones[9])

c = lim
i→∞

1

#{n : Xn ∈Wi}
∑

n≥1

1IWi
(X̃n)|X̃n −N(X̃n)|. (4.4)4.2 Appliation of Neveu's formulaThe following theorem allows for a pratially more feasible representation of the funtional

c = IE eX |N(o)| given in (4.3). Thereby a more e�ient way of omputing an approximationfor c is derived.Theorem 4.1 Consider the modulated Poisson proess X = {Xn}n≥1 and the (marked)modulated Poisson proess X̃ = {X̃n, |X̃n −N(X̃n)|}n≥1 whose (random) driving measures Λand Λ̃ are generated by the same Boolean model Ψ aording to (4.1) and (4.2), respetively.Then,
IE eX

|N(o)| =
λ

λ̃
IEX

(
λ̃1

∫

ΞX∩Ψ
|u|du + λ̃2

∫

ΞX∩Ψc

|u|du
)
, (4.5)where ΞX denotes the Voronoi ell indued by X, whih ontains the origin, and IEX is theexpetation taken with respet to IP∗

X .Proof The proof of Theorem 4.5 is bsaed on Neveu's exhange formula (see (A.11)) forjointly stationary point proesses, whih are de�ned on a ommon probability spae (Ω,A, IP)equipped with some �ow {θx, x ∈ IR2}. We use (A.11) with XD and X̃ eD being equal to Xand X̃, respetively. Thus, the mark spae D will be omitted and D̃ = [0,∞). Consider thefuntion f : IR2 × [0,∞) × Ω → [0,∞) given by
f(x, g̃, ω) =





g̃ if X(θ−xω,B
6=
|x|(x)) = 0 ,

0 otherwise (4.6)for any x ∈ IR2, g̃ ≥ 0, and ω ∈ Ω, where B 6=
|x|(x) = {y ∈ IR2 : |y − x| < |x|}. Notie that if

x ∈ IR2 is an atom of the ounting measure X(ω, .), then f(−x, g̃, ω) = g̃ only if there are no17



other atoms of X(ω, .) whih have a distane of less than |x| to the origin. Thus, applyingNeveu's exhange formula (Theorem A.1), we obtain that
IE eX |N(o)| =

∫

Ω× eD

∫

IR2

f(−x, g̃, ω)X(ω, dx)IP eX(d(ω, g̃))

=
λ

λ̃

∫

Ω

∫

IR2× eD

f(x, g̃, θxω)X̃(ω, d(x, g̃))IPX(dω) .

(4.7)
Given the Boolean model Ψ the inner integral on the right hand side of (4.7) an be expressedas

∫

IR2× eD

f(x, g̃, θxω)X̃(ω, d(x, g̃)) =

∫

(IR2∩Ψ)× eD

f(x, g̃, θxω)X̃(ω, d(x, g̃))

+

∫

(IR2∩Ψc)× eD

f(x, g̃, θxω)X̃(ω, d(x, g̃))

(4.8)
Furthermore, given Ψ and the Voronoi ell ΞX of X that ontains the origin, the randomnumber of points of X̃ in ΞX ∩ Ψ is Poisson distributed with expetation η1 = λ̃1|ΞX ∩ Ψ|,while the random number of points of X̃ in ΞX ∩Ψc is Poisson distributed with expetation
η2 = λ̃2|ΞX ∩ Ψc|. Thus, by the de�nition of the funtion f given in (4.6), the �rst integralon the right side of (4.8) an be written in the form

∫

(IR2∩Ψ)× eD

f(x, g̃, θxω)X̃(ω, d(x, g̃)) =

∫

(ΞX∩Ψ)× eD

f(x, g̃, θxω)X̃(ω, d(x, g̃))

=

∞∑

k=1

e−η1
ηk
1

k!

∫

ΞX∩Ψ

. . .

∫

ΞX∩Ψ

k∑

i=1

|ui|
|ΞX ∩ Ψ|k du1 . . . duk ,due to the onditional independene and uniform distribution of the points of X̃ in ΞX ∩Ψ.Hene,

∫

(IR2∩Ψ)× eD

f(x, g̃, θxω)X̃(ω, d(x, g̃)) =

∞∑

k=1

e−η1
ηk
1

k!

k

|ΞX ∩ Ψ|

∫

ΞX∩Ψ

|u| du

= λ̃1

∫

ΞX∩Ψ

|u| du .

18



Analogously, it an be shown that
∫

(IR2∩Ψc)× eD

f(x, g̃, θxω)X̃(ω, d(x, g̃)) =
∞∑

k=1

e−η2
ηk
2

k!

k

|ΞX ∩ Ψc|

∫

ΞX∩Ψc

|u| du

= λ̃2

∫

ΞX∩Ψc

|u| du .Altogether we get that
IE eX

|N(o)| =
λ

λ̃
IEX

(
λ̃1

∫

ΞX∩Ψ
|u|du + λ̃2

∫

ΞX∩Ψc

|u|du
)
,whih ompletes the proof of the theorem. 2In the speial ase that λ̃1 = λ̃2, i.e., {X̃n} is an ordinary Poisson proess (in the sense of(A.3)) Theorem 4.1 an be restated as follows.Corollary 4.2 Suppose that λ̃1 = λ̃2, i.e., {X̃n} is a stationary Poisson point proess withintensity λ̃. Then

IE eX |N(o)| = λIEX

∫

ΞX

|u|du, (4.9)Note that (4.9) shows in partiular that IE eX |N(o)| does not depend on λ̃. In the Poisson ase,i.e., if λ1 = λ2 and λ̃1 = λ̃2, the ost funtional c = IE eX |N(o)| an be analytially omputedas (see also Baelli, Klein, Lebourges and Zuyev[4] and Bªaszzyszyn and Shott[7])
IE eX |N(o)| = λIEX

∫

ΞX

|u|du = λ

∫

IR2

|u| exp (−λπ|u|2)du =
1

2
√
λ

(4.10)4.3 Estimation by Monte-Carlo simulationTheorem 4.1 provides a useful approah for the onstrution of an estimator for the ostfuntional c = IE eX |N(o)| whih is based on Monte-Carlo simulation. Let (Ξ∗
1,Ψ

∗
1)..., (Ξ

∗
n,Ψ

∗
n)be a sequene of independent opies of (ΞX ,Ψ) under the Palm probability measure P ∗
X .Then an unbiased and onsistent estimator for c is given by

ĉ =
λ

λ̃

1

n

n∑

i=1

∫

Ξ∗

i

|u|Λ̃i(du), (4.11)19



where
Λ̃i(du) =





λ̃1du if x ∈ Ψ∗
i ,

λ̃2du if x /∈ Ψ∗
i ,

(4.12)The estimator ĉ will be used in Setion 5.2 in order to obtain numerial results for someexample senarios. Notie that if λ̃1 = λ̃2 then the integral ∫
Ξ∗

i

|u|Λ̃i(du) appearing in (4.11)is omputed analytially, otherwise it is omputed via numerial approximation. This is dueto the fat that in the �rst ase, by applying (4.9), we are able to rewrite the integral as anintegral with respet to the Lebesgue measure. If λ̃1 6= λ̃2 integration must be performedwith respet to the measure Λ̃i and therefore the shape of Ψ∗
i has to be taken into aount.This makes an analytial solution of the integral di�ult to ahieve.Another important fat onerning a numerial evaluation is that it is not neessary tosimulate any points of X̃ in order to apply the estimator given in (4.11).5 Implementation and numerial examplesIn this setion we look at possible testing approahes for implementations of the algorithmintrodued in Setion 3. In a seond part numerial results for di�erent senarios are regarded.5.1 Tests of implemented algorithmIn our ontext, apart from traditional testing methods for software tests, in partiular meth-ods for testing of software with random output are of interest. In the following we want tomention some examples for suh tests, where a more detailed disussion of random softwaretesting an, for example, be found in Gloaguen, Fleisher, Shmidt and Shmidt[11] andMayer and Guderlei[14]. Basially two di�erent testing methods have been applied to theimplemented algorithm.A �rst testing method was onstruted by using known theoretial formulae like the equalitybetween the intensity λτ of the tessellation model τX and the reiproal of the mean area

IE(|Ξ∗|) of the orresponding typial ell; see (A.13). In partiular we tested if the algorithmprovides orret estimates for the mean area 1/λτ of Ξ∗. This was ahieved by onstruting anasymptotially Gaussian distributed test statisti. Another example for a known theoretial20



formula that we used to onstrut tests for our software was the ost funtional in the aseof ordinary stationary Poisson proesses; see (4.10).A di�erent testing tehnique is to obtain tests by utilizing ertain saling properties of theunderlying tessellation model, meaning that for di�erent model parameter sets there is thesame underlying random struture, only on a di�erent length sale. In our spei� model weget that for the three parameters c1 = p, c2 = λ1/β and c3 = λ2/β suh a saling invarianean be realized. Hene if for two models with parameter vetors (p(1), β(1), λ
(1)
1 , λ

(1)
2 ) and

(p(2), β(2), λ
(2)
1 , λ

(2)
2 ) the relationship (c

(1)
1 , c

(1)
2 , c

(1)
3 ) = (c

(2)
1 , c

(2)
2 , c

(2)
3 ) holds then they repre-sent the same random struture but on a di�erent sale. This fat an be used to onstruttests similar to the tests for known theoretial formulae. For example, in suh a ase wehave that β(1)IE|Ξ∗(1)| = β(2)IE|Ξ∗(2)| whih an be used as a theoretial formula in order todevelop an asymptoti Gaussian test.With onsideration to the test results we obtained for our implementations it su�es here tosay that they showed the expeted behavior. Hene we may assume that the implementedalgorithms for the simulation of the typial ell and the omputation of the ost funtionalwork orretly.5.2 Some numerial resultsWith regard to numerial evaluations of the modulated Poisson-Voronoi tessellations onsid-ered in this paper it an be stated that due to the relatively large number of parametersinvolved, a omplete analysis is almost impossible to ahieve. Therefore we only onentrateon a spei� senario to show some of the interesting e�ets that appear. The senario wewant to onsider onsists of few large grains, where p = 0.6 and β = 0.2 that leads to a �xedradius r = 1.20761. We assume a �xed total intensity λ = 12 suh that the mean area of thetypial Voronoi ell remains onstant as IE|Ξ∗| = λ−1 = 0.8333. Suh a senario is realizedin Figure 4b for λ1 = 0.As a �rst example we let the parameter λ1 tend to 0 and regard the behavior of the distributionfor the perimeter of the typial ell (Figure 8). In other words we observe the behavior withregard to a transition to the swiss-heese model. Notie that for eah pair (λ1, λ2) the samplesize is given as n = 2, 000, 000, while eah bar of the histogram has a width of 0.05. For the21



ase of an ordinary stationary Poisson-Voronoi tessellation (Figure 8a) a symmetrial lookof the histogram for the perimeter of the typial ell an be observed. This hanges as λ1tends to 0, resulting in a shape that is skewed to the left. Another interesting e�et thatan be observed is the existene of a seond loal maximum for the histogram, espeiallyfor very small values of λ1. This is mainly aused by the ells that over the grains of theorresponding Boolean model sine inside of the Boolean model there are now almost no morepoints loated. In partiular this result means that for suh a senario basially two typesof ells an be di�ered, 'normal ones' like for the ordinary modulated Voronoi tessellationand slim ones that are overing the zones where no points are allowed. With regard to theestimated values for the ost funtional de�ned in Setion 4 the observation is that theyinrease as λ1 tends to 0 (Figure 9a) for a �xed intensity λ (here λ = 12). Notie that forthis example the intensities of the proess X̃ are assumed to be equal, i.e., λ̃1 = λ̃2. Thesample size is again n = 2, 000, 000 for eah pair of parameters (λ1, λ2). The e�et of risingvalues for the ost funtional if λ1 tends to 0 an possibly be explained by the appearaneof ells that have a relatively large ratio of perimeter to area. This auses a relatively largemean distane to the ell nulei for points loated in suh ells. Notie that in the ase of anordinary Poisson-Voronoi tessellation (λ1 = λ2) the estimated value for the mean distaneto the ell nulei of 0.14437 oinides well with the theoretial value of (2
√
λ)−1 = 0.14434.As a �nal numerial example we have a look at a senario where λ̃1 6= λ̃2. For this senariowe take the same values for β, p and r as before and additionally keep λ1 = 4 and λ2 = 24�xed. The values for λ̃1 and λ̃2 vary under the ondition that λ̃ = 1. The results shownin Figure 9b display the linear relationship between the value of λ̃1 and the estimated ostfuntional ĉ whih is a onsequene of (4.5). Due to this linear relationship it su�es toestimate the two expetations IEX(

∫
ΞX∩Ψ |u|du) and IEX(

∫
ΞX∩Ψc |u|du) only for one spei�pair of parameters λ̃1 and λ̃2 in order to obtain estimates of c for all pairs of parameters λ̃1and λ̃2 based on (4.5).Notie that numerial evaluations of examples where λ̃1 6= λ̃2 are more time onsumingdue to the numerial omputation of the estimator ĉ introdued in (4.11) as opposed to thease where λ̃1 = λ̃2 sine here ĉ is omputed analytially, given realizations of the typialell (Setion 4.2). Therefore, for ases where ĉ had to be omputed numerially we took

n = 100000. 22



25000

50000

75000

100000

125000

1 2 3 4 5 0

25000

50000

75000

100000

1 2 3 4 5(a) λ1 = 12, λ2 = 12 (b) λ1 = 6, λ2 = 21

25000

50000

75000

100000

125000

150000

175000

1 2 3 4 5 0

25000

50000

75000

100000

125000

150000

175000

1 2 3 4 5() λ1 = 0.05, λ2 = 29.95 (d) λ1 = 0, λ2 = 30Figure 8: Perimeter of the typial ell
23



0.15

0.2

0.25

0.3

0.35

0.4

0.45

ĉ
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∼(a) λ1 variable and eλ1 = eλ2 (b) λ1 = 4, eλ = 1 and eλ1 variableFigure 9: Estimated ost funtionals for λ = 12 �xed6 Disussion and outlookBig teleommuniation operators need ost models and tools for strategi planning and priingpurposes. In order to be useful, these models must be able to reprodue the observed regionalvariability and to address relevant features from a teleommuniation point of view. Adetailed analysis of real data is often hard to ahieve sine it relies on huge databases andis sometimes onfronted with the lak of data. Moreover suh an analysis is in most asesonly able to deliver observations but no explanations. Stohasti modeling is an alternativeapproah that diretly provides a global view of the network together with lear assumptionson equipment loations and onnetions. In this ontext, the typial ell is a partiularlyimportant objet sine by its de�nition any result omputed over repeated simulations of thisell an be ompared to what is the result of measuring the whole tessellation that oversthe area under study. The typial ell is thus representative for the global network behavior.For example, the area of the serving zone, i.e. the area of the typial ell of the tessellation,an be onneted to the inoming demand for tra� via the number of ustomers. Various24



ost funtionals and hene various omponents for priing studies an be assoiated to thetypial ell. It is then important to derive rapid and reliable algorithms for the simulationof the typial ell, allowing further integration of any funtional depending on the geometriharateristis of the involved random proesses and the typial ell. This paper foused ona basi example for suh a funtional whih is the mean distane from a randomly hosenloation within the ell to its orresponding ell nuleus (entre). All these harateristis andfuntionals an subsequently be ombined and serve as omponents for more sophistiatedost models.In this paper we presented an algorithm for the simulation of the typial ell for spei�modulated Poisson-Voronoi tessellations, where the grains are generated by a Boolean modelwith irular grains of a �xed or random but bounded radius. Based on this algorithm wehave shown how to e�iently estimate a basi funtional, namely the mean distane from arandom loation to its Voronoi ell nuleus.Extensions of the model an also be regarded. A natural way to ahieve suh an extendedmodel would be, for example, to generate the modulation not by a single Boolean model
Ψ but by a sequene of Boolean models Ψ1, ..,Ψn with possibly di�erent parameters withrespet to the orresponding intensities and grain distribution. Another interesting extensionwould be to �nd a onnetion between the modulated Poisson-Voronoi tessellations that anbe mainly used for modelling on a nationwide sale and models for urban aess networks likethe models provided by the Stohasti Subsriber Line Model (see Gloaguen, Coupé, Maierand Shmidt[10] and Gloaguen, Fleisher, Shmidt and Shmidt[11], [12]). This might enablean e�ient analysis of other ost funtionals like shortest path lengths along street systemsor similar harateristis.Apart from estimating the mean distane it is of a fundamental interest to estimate thedistribution of the distane from a random loation to its nearest Voronoi ell nuleus. Inpartiular, suh estimated distributions lead to the performane of risk analysis by lookingat ourring tail probabilities.Additionally other modulated Poisson-type tessellations like the modulated Poisson-Delaunaytessellation (Figure 10) might be of interest. The modulated Poisson-Delaunay tessellationequipped with a realisti set of orresponding parameters might, for example, serve as a model25



Figure 10: A realization of a modulated Poisson-Delaunay tessellationfor the onnetion between di�erent towns. In general, not only for the ase of modelling bymodulated Poisson type tessellations, the question of determining realisti parameter valuesis a very ompliated but also very rewardful one. Suh a problem an of ourse only besolved by analyzing real data.Aknowledgements. This researh was supported by Frane Teleom Researh and Developmentthrough researh grant No. 46 132 895. The authors are grateful to K. Posh and A. Upowsky fortheir assistane in the simulations that led to the numerial results. The authors thank the refereesfor their valuable omments that led to an improvement of the manusript.A Mathematial bakgroundIn this appendix random (marked) point proesses, Boolean models and random tessellations arede�ned and brie�y explained. For a more detailed desription and disussion of the topis mentionedthe reader is referred to Shneider and Weil[17], and Stoyan, Kendall and Meke[18], for example.A.1 Basi notationsLet IR and IN be the set of real numbers and the set of positive integers, respetively; IN0 = IN ∪

{0}. The abbreviations int B, ∂B, and Bc are used to denote the interior, the boundary, and theomplement of a set B ⊂ IR2, respetively, where IR2 denotes the 2-dimensional Eulidean spae. For
x ∈ IR2 let |x| denote the Eulidean norm of x. Furthermore, Br(x) and B 6=

r (x) denote, respetively,the 2�dimensional losed and open ball entered at x ∈ IR2 with radius r > 0, i.e., Br(x) = {y ∈ IR2 :26



|x − y| ≤ r} and B 6=
r (x) = {y ∈ IR2 : |x− y| < r}. By B(IR2) the Borel�σ�algebra on IR2 is denoted.

B0(IR
2) is the family of bounded Borel sets in IR2.On IR2 we now de�ne two topologial groups, namely the group of all translations tx : y 7→ y + x for

x ∈ IR2 and the group of all rotations ϑR : y 7→ Ry around the origin, where R denotes a 2×2�matrix,orthogonal and with detR = 1. This allows us to introdue the following operations on sets B ⊂ IR2,the translation txB = {y+ x : y ∈ B} for x ∈ IR2 and the rotation ϑRB = {ϑRx : x ∈ B} around theorigin o, respetively.Furthermore, introdue F , K, and C as the families of all losed sets, ompat sets, and onvexbodies (ompat and onvex sets) in IR2, respetively. Reall that a random losed set Ξ in IR2is a measurable mapping Ξ : Ω → F from some probability spae (Ω,A, IP) into the measurablespae (F ,B(F)), where B(F) denotes the smallest σ�algebra of subsets of F that ontains all sets
{F ∈ F , F ∩K 6= ∅} for anyK ∈ K. Partiularly, the random losed set Ξ is alled a random ompatset or a random onvex body if IP(Ξ ∈ K) = 1 or IP(Ξ ∈ C) = 1, respetively.Let M be the set of simple and loally �nite ounting measures and let M be the smallest σ-algebraof subsets ofM that ontains all sets of the form {ϕ ∈M : ϕ(B) = j}, where j ∈ IN0 and B ∈ B(IR2).We introdue the shift operator tx : M → M de�ned by txϕ(B) = ϕ(t−1

x B) = ϕ(t−xB) for x ∈ IR2as well as the rotation operator ϑR : M → M by ϑRϕ(B) = ϕ(ϑ−1
R B) = ϕ(ϑR−1B) for any rotation

R around the origin.A.2 Planar point proessesA random point proess X in IR2 is a measurable mapping X : Ω → M from some probability spae
(Ω,A, IP) into the measurable spae (M,M). Therefore, a (simple) point proess X an be regardedas a ounting measure ∑

x∈supp(X) δx and X(B) =
∑

x∈supp(X) δx(B) as the (random) number ofpoints of X in B ∈ B(IR2). A point proess X an on the other hand be identi�ed as a (planar)random losed set. In this ase it is onvenient to write X = {Xn}n≥1, whih expresses X as asequene X1, X2, . . . of random vetors Xn : Ω → IR2 for n ≥ 1 suh that #{n : |Xn| < r} < ∞ forany r > 0.The distribution of X is given as PX(A) = IP(X ∈ A) for A ∈ M. The point proess X is alledstationary if PX = PtxX for any x ∈ IR2. It is alled isotropi if PX = PϑRX for any rotation ϑRaround the origin.The intensity measure Λ : B(IR2) → [0,∞] of a point proess X is de�ned by
Λ(B) = IEX(B) , B ∈ B(IR2) . (A.1)27



If X is stationary and Λ is not equal to the zero measure we get that
Λ(B) = λ|B|, (A.2)where |B| denotes the Lebesgue measure of B, and where the onstant λ > 0 is alled the intensityof X . A stationary point proess X with distribution PX is said to be ergodi if there are no otherstationary point proesses X ′ and X ′′ with distributions PX′ and PX′′ , respetively, suh that

PX = αPX′ + (1 − α)PX′′for an α ∈ (0, 1). A geometri interpretation of ergodiity is that if we regard the set of distributionsfor stationary point proesses as a simplex then the set of distributions for ergodi stationary pointproesses onsists of the verties of this simplex. Notie that analogous de�nitions of ergodiity existfor stationary random losed sets and stationary random tessellations.Let now Λ : B(IR2) → [0,∞] be any di�use and loally �nite measure on B(IR2). A (simple) pointproess X in R2 that ful�lls
IP(X(B) = k) = e−Λ(B) Λ(B)k

k!
, B ∈ B0(IR

2) , k ∈ IN0 , (A.3)is alled a Poisson point proess with intensity measure Λ (see Figure 3a for a realization of a stationaryPoisson point proess). A possible generalization of a Poisson proess is to take the measure Λ itselfrandom. This leads to Cox proesses. If PΛ denotes the distribution of a Poisson proess withintensity measure Λ, and Q is the distribution of a random measure, then the point proess X withdistribution PX : M → [0, 1] given by
PX(A) =

∫
PΛ(A)Q(dΛ), A ∈ M (A.4)is alled a Cox proess. Hene we an think of a Cox proess as a two-step random mehanism. In a�rst step a measure Λ is determined aording to a distribution Q. Afterwards, in a seond step, aPoisson proess is generated aording to the intensity measure Λ.A.3 Planar marked point proessesAn extension of planar point proesses an be ahieved by additionally equipping the points with amark taken from a mark spae D. Mathematially, one assumes that D represents a Polish spae anddenotes by B(D) the σ-algebra of its Borel sets. Regard MD = M(IR2 ×D), the set of all measures28



ψ : B(IR2)×B(D) → IN0∪{∞} that are simple and loally �nite with respet to the �rst omponent.Furthermore, let MD = M(IR2 ×D) be the smallest σ-algebra of subsets of MD ontaining all setsof the form {ψ ∈ MD : ψ(B × G) = j} for B ∈ B0(IR
2), G ∈ B(D) and j ∈ IN0. Then a randommarked point proess XD is a mapping from (Ω,A, IP) into (MD,MD) with mark spae (D,B(D)).The distribution PXD

of XD is given by PXD
(A) = IP(XD ∈ A), A ∈ MD. As for unmarked pointproesses an alternative representation of XD = {[Xn, Dn]}n≥1 as a olletion of random markedpoints is often onvenient. Then XD is said to be independently marked if {Xn}n≥1 and {Dn}n≥1are independent and if {Dn}n≥1 onsists of independent and identially distributed random variables.Stationarity and isotropy for marked point proesses are de�ned with respet to the �rst omponent,in other words the loations, of the marked point proess.The intensity measure ΛD : B(IR2) ⊗ B(D) → [0,∞] of a marked point proess XD is de�ned by

ΛD(B ×G) = IEXD(B ×G) , B ∈ B(IR2) , G ∈ B(D) . (A.5)Hene, ΛD(B×G) is the expeted number of points of XD in B with a mark in G. If XD is stationary,the intensity measure ΛD an be deomposed as
ΛD(B ×G) = λ

∫

IR2

∫

D

1IB(x) 1IG(m)P (dm)dx , B ∈ B(IR2) , G ∈ B(D) , (A.6)where λ > 0 is alled intensity and P : B(D) → [0, 1] is the Palm mark distribution of XD, given by
P (G) =

1

λ|B| IE
∑

[x,m]∈supp(XD)

1IB(x) 1IG(m) , G ∈ B(D) , (A.7)for any B ∈ B(IR2) with 0 < |B| <∞.A.4 Neveu's exhange formulaIn the following Neveu's exhange formula for Palm distributions of (marked) point proess in IR2 ispresented. This formula is useful in order to express the relationship of expetations of funtionalsof two stationary point proesses with respet to their Palm distributions.We onsider a �ow {θx : x ∈ IR2} on the spae Ω, i.e., a family of bijetive shift operators θx : Ω → Ωsuh that θx ◦ θy = θx+y, where ◦ denotes the onatenation operator. Let us furthermore assumethat the mapping f : IR2 × Ω → Ω with f(x, ω) = θxω is measurable. For x ∈ IR2 we assume that θx
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is ompatible with our shift operator tx as de�ned in Setion A.1, whih means that
XD(θxω,B ×G) = txXD(ω,B ×G) = XD(ω, t−xB ×G) , (A.8)for any marked point proess XD : Ω →MD and all B ∈ B(IR2), G ∈ B(D). Notie that then we anget the stationarity of XD by assuming that

IP(θxA) = IP(θ−1
x A) = IP(A) , A ∈ A and x ∈ IR2 (A.9)where θxA = {θxω : ω ∈ A} .Suppose that (A.9) holds. Then, we are able to introdue the Palm probability measure IP∗

XD
for astationary marked point proess XD as the probability measure IP∗

XD
on A⊗ B(D) by

IP∗
XD

(A×G) =
1

λ|B|

∫

Ω

∫

IR2×G

1IB(x) 1IA(θxω)X(ω, d(x, g))IP(dω) (A.10)for any B ∈ B(IR2) with 0 < |B| <∞.Theorem A.1 (Neveu's exhange formula) Let XD and X̃ eD
be arbitrary stationary marked pointproesses on (Ω,A, IP) with mark spaes D and D̃ and intensities λ and λ̃, respetively. Then, forany measurable funtion f : IR2 ×D × D̃ × Ω → [0,∞),

λ

∫

Ω×D

∫

IR2× eD

f(x, g, g̃, θxω)X̃ eD
(ω, d(x, g̃))IP∗

XD
(d(ω, g))

= λ̃

∫

Ω× eD

∫

IR2×D

f(−x, g, g̃, ω)XD(ω, d(x, g))IP∗
eXfD

(d(ω, g̃)) .

(A.11)
A.5 Boolean germ-grain modelConsider a stationary Poisson point proess Y = {Yn} with intensity β > 0. Let M1,M2, ... be asequene of independent and identially distributed random losed sets in IR2 with IE|M0|2 < ∞,where M0 is a generi representant of the sequene {Mn}n≥1. Furthermore, let {Yn} and {Mn} beindependent. Then we all the random losed set

Ψ =
⋃

n≥1

(Yn +Mn) (A.12)a Boolean germ-grain model. In Figure 3b a realization of a Boolean model is displayed. The pointproess {Yn} is alled the germ proess of Ψ with germs Yn, whereas the proess {Mn} is alled30



the grain proess of Ψ with grains Mn. Throughout this paper only Boolean models with irulargrains entered at the origin are regarded, where the radius of the irle an be either deterministior random but bounded.A.6 Random tessellationsA tessellation in IR2 is a ountable family τ = {Cn}n≥1 of onvex bodies Cn ∈ C suh that int Cn 6= ∅for all n, int Cn ∩ int Cm = ∅ for all n 6= m, ⋃
n≥1 Cn = IR2, and #{n : Cn ∩ K 6= ∅} < ∞ forany K ∈ K. Notie that the sets Cn, alled the ells of τ , are polygons in IR2. The family of alltessellations in IR2 is denoted by T . A random tessellation τ = {Ξn}n≥1 in IR2 is a sequene ofrandom onvex bodies Ξn suh that IP(τ ∈ T ) = 1. Notie that a random tessellation τ = {Ξn}n≥1an also be onsidered as a marked point proess ∑

n≥1 δ[α(Ξn),Ξo
n], where α : C′ → IR2, C′ = C \ {∅},is a measurable mapping suh that α(C) ∈ C and α(C + x) = α(C) + x for any C ∈ C′ and x ∈ IRd,and where Ξo

n = Ξn − α(Ξn) is the entered ell orresponding to Ξn whih ontains the origin.The point α(C) ∈ IR2 is alled an assoiated point of C and an be hosen, for example, to be thelexiographially smallest point of C.A.7 Typial ell of stationary tessellationsSuppose that the marked point proess Xτ =
∑

n≥1 δ[α(Ξn),Ξ0
n] is stationary with positive and �niteintensity λτ = IE#{n : α(Ξn) ∈ [0, 1)2}. By Po we denote the family of all onvex polytopeswith their assoiated point at the origin. Then, the Palm mark distribution P of Xτ is given by

P (B) = λ−1
τ IE#{n : α(Ξn) ∈ [0, 1)2, Ξo

n ∈ B} for any B ∈ B(F)∩Po. Notie that a random polytope
Ξ∗ : Ω → Po, whose distribution oinides with P , is alled the typial ell of Xτ . Furthermore, itholds that

λ−1
τ =

∫

P0

|C|P (dC) , (A.13)i.e., the expeted area IE|Ξ∗| = ∫
Po |C|P (dC) of the typial ell Ξ∗ is equal to λ−1

τ .A.8 Tessellations indued by point proessesLet S = {x1, x2, ...} be a loally �nite set of points in IR2. For xn, xm ∈ S de�ne the halfplane
H(xn, xm) by

H(xn, xm) = {x ∈ IR2 : |x− xn| ≤ |x− xm|}.

31



Then we all the polygon Pn given by
P (xn) =

⋂

m 6=n

H(pn, pm) = {x ∈ IR2 : |x− xn| ≤ |x− xn|, ∀ m 6= n}. (A.14)the Voronoi ell of the point xn. If we suppose that for eah x ∈ S we have that P (x) is bounded,the sequene τ = {P (xn) : xn ∈ B} is alled the Voronoi tessellation with respet to S. The point
xn is often denoted as the nuleus of P (xn). The Poisson-Voronoi tessellation an now be de�nedas the Voronoi tessellation τX that is indued by a Poisson point proess X = {X1, X2, ...}.Let S = {x1, x2, ...} be a loally �nite set of points IR2 that is not ollinear, i.e., if xi, xj , xk are threepairwise di�erent points in S it holds that there does not exist a line with the property that xi, xj , xkare all loated on that line. Furthermore, let τ ′ = {P (xn)} be the Voronoi tessellation with respetto S. Let Q = {q1, q2, ...} be the set of verties of τ ′ and xi1 , ..., xiki

be the points in S whose Voronoiells share the vertex qi. Let
Ti =



x ∈ IR2 : x =

ki∑

j=1

λjxij
,

ki∑

j=1

λj = 1, λj ≥ 0



and let τ = {T1, ..., Tm}. Then, the set τ is alled the Delaunay tessellation of S. LetX = {X1, X2, ...}be a Poisson point proess. The Delaunay tessellation indued by X is alled a Poisson-Delaunaytessellation.
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2 | > |X1|+r. For X2 more informationabout Ψ∗ is neededd) Further alternating simulation of X∗ and Ψ∗Algorithm, initial steps and alternating simulationFigure 6: a) Stopping riterion for initial ellb) Constrution of initial ell using bisetorsStopping riterion for initial ell and its onstrutionFigure 7: a) Initial ellb) First alteration of initial ell by X∗

4) Further alteration of initial ell by X∗
6d) Realization of the typial ellAlterations of initial ell and �nal realization of the typial ellFigure 8: a) λ1 = 12, λ2 = 12b) λ1 = 6, λ2 = 21 35



) λ1 = 0.05, λ2 = 29.95d) λ1 = 0, λ2 = 30Perimeter of the typial ellFigure 9: a) λ1 variable and λ̃1 = λ̃2b) λ1 = 4, λ̃ = 1 and λ̃1 variableEstimated ost funtionals for λ = 12 �xedFigure 10: A realization of a modulated Poisson-Delaunay tessellation

36


