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We develop a stochastic network model for charge transport simulations in amorphous organic
semiconductors, which generalizes the correlated Gaussian disorder model to realistic morpholo-
gies, charge transfer rates, and site energies. The network model includes an iterative dominance-
competition model for positioning vertices (hopping sites) in space, distance-dependent distributions
for the vertex connectivity and electronic coupling elements, and a moving-average procedure for as-
signing spatially correlated site energies. The field dependence of the hole mobility of the amorphous
organic semiconductor, tris-(8-hydroxyquinoline)aluminum, which was calculated using the stochas-
tic network model, showed good quantitative agreement with the prediction based on a microscopic
approach.

I. INTRODUCTION

The design of materials for organic electronic devices
is driven by optimization of charge and energy transfer
processes within them.1,2 These processes are strongly
influenced by an interplay of effects on various length-
and time-scales, ranging from macroscopic morphologi-
cal order to quantum phenomena at an atomic resolu-
tion. Theory and simulations have substantially con-
tributed to our understanding of these processes in amor-
phous organic semiconductors, in particular (extended,
correlated) Gaussian disorder models (GDM) have been
successful in rationalizing the influence of finite carrier
concentration, Coulomb interactions, the shape of the
density of states, spatial correlations of site energy, and
positional disorder on transport dynamics.3–12

Microscopic approaches, which combine quantum
chemistry, charge transfer theories, as well as molecular
and statistical mechanics,13–18 are conceptually similar
to GDM, except now charge hopping sites are extracted
from a large-scale morphology obtained using molecular
dynamics and charge transfer rates are determined using
first principles calculations. Such a multiscale method-
ology allows to directly link macroscopic observables to
the chemical structure and the morphology and has been
used, e.g., to elucidate the influence of stacking motifs
in columnar mesophases of liquid crystals2,19–21 and to
study percolating networks and polarization effects in or-
ganic crystals.19,22

There exist, however, experimentally viable situations,
where neither of these two approaches is suitable. The
complexity of the microscopic approach limits its practi-
cal application to comparatively small system sizes, lim-
iting simulations of transport in realistic device geome-
tries, i.e. without periodic boundary conditions. It also
does not allow to study a relaxation of a “hot” carrier
in a density of states with large energetic disorder, due
to insufficient number of available states.23 GDM, apart
from relying on experimental input, cannot properly han-
dle interfaces and host/guest systems, due to the use of
regular lattices. To tackle such problems, it would be

desirable to marry the two approaches, that is to gener-
alize the GDM to realistic (off-lattice) morphologies and
then fit the ingredients of this, generalized, model to the
(calculated) properties of representative microscopic sys-
tems. In this paper we demonstrate how this can be
achieved by using stochastic models.24,25

As a prototypical system, we use tris-(8-
hydroxyquinoline)aluminum (Alq3), a green light
emitter employed in early realizations of organic light
emitting diodes.26–34 Its roughly spherically shaped
molecule has a large molecular dipole moment (leading
to a broad distribution of the density of states and
long-range correlations of site energies) and can form
an amorphous phase that conducts both holes and
electrons. To incorporate these molecular properties
into the stochastic model we first perform microscopic
simulations of hole transport in a small amorphous
system of Alq3. These simulations provide the reference
weighted graph, where the vertex structure and weighted
edges are determined from the realistic morphology and
the microscopic hopping rates, respectively. We then
develop a stochastic network model, which includes
generation of the dense spatial vertex structure using an
iterative dominance-competition point-process model,35
a Bernoulli model to obtain the vertex connectivity,
a moving-average procedure to assign correlated site-
energies to vertices, and distance-dependent normal
distributions to obtain electronic coupling elements. We
finally validate the model by comparing field depen-
dences of charge carrier mobility as predicted by the
stochastic and microscopic approaches.

II. MICROSCOPIC SIMULATIONS

Here, we briefly summarize the determination of the
reference weighted graph obtained by microscopic simu-
lations. For a full account of the procedure, see ref. 17.

The first step is the generation of an amorphous mor-
phology by atomistic molecular dynamics (MD) simula-
tions. The force field details can be found in the support-
ing information of ref. 17. A cubic box with N = 4096
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Alq3 molecules arranged on a cubic lattice is equilibrated
above the glass transition temperature, at 700 K, in an
NPT ensemble with a velocity rescaling thermostat and
the Berendsen barostat. The system is then quenched to
room temperature. All simulations are performed using
the GROMACS package.36

The centers of masses of the molecules for a given snap-
shot define the hopping sites for the charge carrier or,
in other words, the vertices of the directed graph. A
pair of molecules is added to the list of neighbors if the
distance between centers of mass of any of the three 8-
hydroxyquinoline ligands is below a cutoff of 0.8 nm. For
the pairs in this neighbor list, charge hopping rates are
evaluated using the high temperature limit of classical
charge transfer theory37

ωij =
2π

~
J2

ij√
4πλijkBT

exp

[
− (∆Eij − λij)

2

4λijkBT

]
, (1)

where T is the temperature, ~ the reduced Planck con-
stant, and kB Boltzmann’s constant. The pair-specific
quantities are the reorganization energy, λij , the elec-
tronic coupling element, or transfer integral, Jij , and the
driving force, ∆Eij = ∆Eel

ij + ∆Eext
ij , consisting of the

difference in electrostatic site energies, ∆Eel
ij = Ei − Ej ,

and the influence of an externally applied electric field F⃗ ,
∆Eext

ij = qF⃗ (x⃗i− x⃗j). Here q and x⃗i are the charge of the
carrier and the position of site i. These ingredients can
be determined using electronic structure techniques, clas-
sical simulation methods, or their combination.14,17,38

The reorganization energy was computed using
density-functional theory (DFT, B3LYP functional and
a 6-311G(d,p) basis set) resulting in a value of 0.23 eV
which was used for all pairs of molecules. Electronic
coupling elements, Jij , were calculated for each molec-
ular pair using DFT (PBE functional and a triple-ζ ba-
sis set) within the dimer-projection method.39,40 Electro-
static contributions to the site energies Ei are evaluated
self-consistently based on the Thole model41 with atomic
partial charges and polarizabilities as in ref. 17.

With all the ingredients at hand, rates ωij between
pairs of molecules in the neighbor list are computed using
eq. 1 for T = 290K. These rates define the edge weights
of the reference directed graph.

III. STOCHASTIC NETWORK MODEL

We interpret the rates and the directed graph of the
microscopic model as a realization of a stochastic network
model with spatially distributed vertices and weighted
edges.

A weighted graph G can be described by the triple
G = (V, E, Ω), where V is the set of vertices, E the
set of edges and Ω the set of edge weights. The set
of vertices V = {S1, S2, . . .}, where Si is the loca-
tion of the ith vertex in R3, describes the locations
(coordinates) of the hopping sites. The set of edges

E = {(Si1 , Sj1) , (Si2 , Sj2) , . . .} describes the line seg-
ments between two connected vertices, i.e. it indicates
which hopping sites are connected. Finally, the set of
weights Ω = {(ωij , ωji) , (Si, Sj) ∈ E}, where ωij is the
edge weight from Si to Sj , describes the hopping rates
between hopping sites.

Note that the stochastic network model is realized
in a cubic box W = [0, w1] × [0, w2] × [0, w3] ⊂
R3, w1, w2, w3 > 0, with periodic boundary conditions,
whereby edges can be connected over matching faces of
the box W , to match the setup of the microscopic simu-
lation.

In the following, we develop and parametrize a stochas-
tic model for the weighted graph G consisting of separate
modeling components for its vertex set V , the edge set
E, as well as the set of edge weights Ω.

A. Vertex set

When identifying an appropriate procedure to gener-
ate a set of points V in space with specific properties
(density, correlations etc.), i.e. a suitable point-process
model, some general physical features have to be con-
sidered. First, due to the fact that the points represent
the centers of mass of molecules which have finite extent,
they need to have a minimum separation between them.
Second, neighbor separations fluctuate, e.g. due to inter-
calations. Finally, systems in glassy states have a high
number density ρ = Nmol/w, where Nmol is the number
of molecules in volume w = |W | = w1w2w3. Therefore,
the goal is to develop a point-process model which pro-
vides both large minimum separations and high number
densities.

To achieve this, we extend the existing dominance-
competition point-process model,35 that relies on the
thinning of a Poisson process, depicted in fig. 1(a). In
a first step, points are generated according to a homoge-
neous Poisson process, that is, a number of points N ∼
Poi(ρw) are independently and uniformly distributed in
the box W .42 Such a process is completely random in
space since points do not interact and can therefore have
very short distances. To account for the finite spatial ex-
tent of the molecules, interactions are introduced by inde-
pendently assigning a random radius Rn defining a spher-
ical volume B(Sn, Rn) to each point Sn, following a dis-
tribution that takes the desired nearest-neighbor distri-
bution into account (panel (2) of fig. 1). Then, the point
Sn is removed if it is contained in the volume of another
point Si and the volume of that point B(Si, Ri) is larger
than B(Sn, Rn). Such points are marked red in fig. 1(3).
The set of remaining points (see panel (4) of fig. 1) is
called a dominance-competition process. In a dominance-
competition process, every point Sn with radius Rn has a
distance to its nearest neighboring point greater or equal
than Rn. Thus, in a dominance-competition process, the
distances between points can be nicely controlled. How-
ever, the maximum point intensity (i.e. average number
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repeat until desired density is reached
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FIG. 1: Schematic representation of the iterative dominance-competition model: (a) Thinning of homogeneous Poisson process
according to the dominance-competition model. (b) Iterative addition of points in the complementary phase to achieve desired
point density.
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FIG. 2: Characteristic distribution functions of the microscopic and stochastic point-process model: (a) nearest neighbor
distance distribution function; (b) pair correlation function; (c) spherical contact distribution function.

of points per volume unit) of this dominance-competition
model is limited43 and eventually lower than in the mi-
croscopic model, where ρ = 1.65 nm−3. The main issue
is that the dominance-competition model is based on a
thinning of a Poisson process, which has no interaction of
points. Thus, the dominance-competition model cannot
reproduce the short-range order observed for the vertices
generated by the microscopic model.

To remedy this situation, we propose an iterative point-
process model. Starting from the dominance-competition
point pattern, fig. 1(4), a second independent realization

of a dominance-competition process is generated in the
empty space, as indicated by the blue circles in panel (5)
of fig. 1. Points whose volumes contain points of previous
realizations (see red circles in fig. 1(6)), are deleted (panel
(7) of fig. 1). By this, it is guaranteed that for each
accepted point Sn, the distance to the nearest neighbor is
always larger than Rn. These steps are repeated k times
until a point pattern with the desired intensity is reached.
In practice, the densities of the first k − 1 iterations are
chosen as large as possible and the density of the k-th
iteration is chosen such that the microscopic reference
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FIG. 3: Correlation function for the site energies estimated
from microscopic model and the fitted stochastic model.

density ρ is reached.
The nearest-neighbor-distance distribution function,

D(r), defined as the probability of a randomly chosen
point to have its nearest neighboring point within a dis-
tance of r > 0,35 is shown in fig. 2(a). In the microscopic
model, the hopping sites have a minimum separation of
rh = 0.545 nm, hence D(r) = 0 for r ≤ rh. The point-
pattern of hopping sites is also rather regular since the
nearest neighbor distances vary only in a small range
of 0.545≤r ≤ 0.88 nm. Therefore, the random radii Rn,
which control the distances between points, are simulated
according to Rn = rh + Xn, where X1, X2, . . . are inde-
pendent and identically Γ-distributed random variables
with mean 0.08 nm and variance 0.002 nm2. After k = 7
iterations the density ρ = 1.65 nm−3 of the microscopic
data is reached.

For validation of the model, structural characteristics
of the point pattern are compared to those of the mi-
croscopic model. Among these are the nearest-neighbor-
distance distribution function (fig. 2(a)), the pair corre-
lation function g(r) (fig. 2(b)), and the distribution func-
tion of spherical contact distances H(r), that is the prob-
ability that the distance from a randomly chosen point in
space to the nearest point of the point pattern is smaller
than r (fig. 2(c)). For all distributions there is a reason-
able agreement between the microscopic and stochastic
models.

B. Site energies

We now develop a model for the site energies En. Sta-
tistically, they follow a normal distribution with mean m
and variance σ2, i.e. En ∼ N (m,σ2). Since En are due to
long-range electrostatic interactions of a localized charge
with the local electric field of the surrounding neutral
molecules, they are correlated in space.

To introduce spatial correlations, we propose a moving-

average procedure.44 This procedure relies on invari-
ance properties of the normal distribution with respect
to convolution, i.e.,

∑ℓ
i=1 Xi ∼ N (

∑ℓ
i=1 mi,

∑ℓ
i=1 σ2

i ),
where Xi ∼ N (mi, σ

2
i ) are independent random vari-

ables. Let M
(a)
n ,M

(b)
n ,M

(c)
n ∼ N (0, σ2) be three se-

quences of independent and identically distributed ran-
dom variables. Every vertex Sn is assigned the 4−tuple
(Sn,M

(a)
n ,M

(b)
n ,M

(c)
n ), to which we want to allocate a

random site energy En. If S
(1)
n , S

(2)
n , . . . , S

(ℓ)
n are its ℓ

nearest neighbors (including the point Sn itself), with
corresponding random variables M

(b),(i)
n ,M

(c),(i)
n , i =

1, . . . , ℓ, the site energy is evaluated as

En =
√

ωaM (a)
n +

√
ωb

ℓb

ℓb∑
i=1

M (b),(i)
n

+
√

1 − ωa − ωb

ℓc

ℓc∑
i=1

M (c),(i)
n + m,

where ωa, ωb ≥ 0 (ωa+ωb ≤ 1) are weights for the individ-
ual components and ℓb, ℓc > 0 some integers. The idea is
to develop the energy-landscape as superposition of three
independent energy-landscapes with different properties.
The first component, M

(a)
n , is independent, i.e., it rep-

resents a rough energy-landscape. Its weight ωa controls
the magnitude of the maximum spatial correlation.

The next two components,
∑ℓb

i=1 M
(b),(i)
n and∑ℓc

i=1 M
(c),(i)
n , are strongly correlated to that of the

neighboring vertices, whereas the number of nearest
neighbors ℓb and ℓc controls their range of spatial dis-
tribution. The correlation function of site energies, see
Figure 3, exhibits a strong decrease for small distances
as well as small correlations for long distances. To
include both characteristics, we chose ℓb < ℓc, such
that

∑ℓb

i=1 M
(b),(i)
n describes the strong decrease for

small distances and
∑ℓc

i=1 M
(c),(i)
n the long-distance

correlations. The parameters ωa, ωb, ℓb, ℓc are estimated
by minimizing the discrepancy between microscopic and
stochastic-model correlation functions, κ(r).

For Alq3, the site-energy distribution of the micro-
scopic model is characterized by a mean of m = −0.76 eV
and variance of σ2 = 0.036 eV2. Due to the high molecu-
lar dipole moment of a single molecule of ∼4Debye, the
energy correlation function for the microscopic model,
shown in fig. 3, has a long-range tail. The correla-
tion function of the stochastic network model for ωa =
0.2, ωb = 0.4, ℓb = 9 and ℓc = 280 reproduces these cor-
relations.

C. Graph edges

The random edge set E = {(Si1 , Sj1) , (Si2 , Sj2) , . . .}
describes those pairs of vertices which are connected.
Since charge transfer can only occur between the neigh-
boring molecules, an edge set (neighbor list) of the micro-
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FIG. 4: (a) Distance-dependent probability of two hopping sites being connected. Histograms of (b) coordination number and
(c) edge lengths. The mean (variance) of the coordination number is 11.43 (2.03) in the microscopic model compared to 11.37
(3.18) in the stochastic model. For the edge lengths, we obtain 0.99 nm (0.03 nm2) and 0.97 nm (0.03 nm2), respectively.

scopic model is based on a cutoff distance between sub-
units of individual molecules (ligands of Alq3). Contrary,
the stochastic model operates on the molecular centers of
mass (set of vertices). Thus, the procedure for the edge
set generation can only rely on the information about
this set.

In the microscopic model, the probability of two hop-
ping sites being connected, f(r), is unity for distances up
to 1 nm and then decreases practically linearly until it is
zero (see fig. 4(a)). In the range 0.99 nm < r < 1.39 nm,
a fit of the linear function yields f(r) = −2.553r + 3.509
(where r is in nm) and two vertices of the stochastic
model with separation r are added to the set of edges
with a probability f(r).

This connectivity model is validated by analyzing the
distribution of coordination numbers (the number of
edges emanating from a vertex) and edge lengths. These
distributions, shown in fig. 4(b) and (c), are in a good
agreement between the graphs generated by the micro-
scopic and stochastic models.

D. Transfer integrals

The final component of the stochastic network model
is the squared transfer integral J2

ij . Microscopically,
Jij is determined from the electron densities of the in-
volved molecules and their interactions on a quantum-
mechanical level. As such, transfer integrals depend sen-
sitively on the molecular electronic structure and on mu-
tual positions and orientations of the molecules.

For Alq3, analysis of the microscopic J2
ij shows that, for

a fixed distance r between hoping sites, log10

(
J2

ij/eV2
)

is normally distributed according to N (m(r), σ2(r)). We
therefore compute the distance-dependent mean value
and the variance of log10

(
J2

ij/eV2
)
, which is shown in

fig. 5(a) and (b). The mean decreases linearly with dis-
tance, which is expected from the exponentially decay-

ing overlap of the involved electron densities. We fit
two linear curves m(r) = −4.272r − 1.594 and σ2(r) =
7.819r − 2.027 to the data (r in nm, m in eV and σ2 in
eV2), which are also shown in fig. 5. In the stochastic
model, an edge (Si, Sj) is assigned a squared transfer in-
tegral J2

ij = exp (Xij) eV2, where Xij ∼ N
(
m(r), σ2(r)

)
.

IV. MODEL VALIDATION

To begin with, we compare the rate distributions pre-
dicted by the stochastic model and the reference micro-
scopic model. In both cases the external field is set to
zero, i.e. F = 0, where F = |F⃗ |. Figure 5(c) shows that
both distributions are in excellent agreement with each
other.

To further validate the model, we evaluate charge mo-
bility, µ, defined as the ratio of charge velocity v over F ,
i.e., µ = v/F . The charge velocity is determined using
the kinetic Monte Carlo (KMC) algorithm by dividing
the charge displacement vector along the field direction
(accounting for periodic boundary conditions) by the to-
tal simulation time. To improve the statistics, the value
of mobility is averaged over six different directions of the
external field and several KMC trajectories starting from
different injection points.

We first ignore the site-energy disorder, i.e., we put
∆Eij = 0 in the expression for the rates in eq. 1. The
mobilities vs field (KMC simulation time 10−5 s, aver-
aged over six field directions and five injection points)
are shown in fig. 6a for both microscopic and stochas-
tic model. One can see that the absolute values and a
slight decrease with the increasing field strength (inverted
regime) are similar for both models.

Taking the energetic disorder into account reduces the
value of mobility (fig. 6b, KMC simulation time 0.1 s,
same averages as before) by five orders of magnitude and
is due to large disorder in site energies. Here the agree-
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dent realizations. Since respective errors cannot be calculated
for the microscopic model due to the computational cost of
generating and evaluating independent snapshots, relative er-
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ment between absolute values is not perfect (there is ca
a factor of five difference). The disagreement is in fact
not a shortcoming of the stochastic model, but is due
to finite size effects. Since the analyzed systems have
relatively small number N of sites (4096 in this work)
and the corresponding site energies are strongly corre-
lated, the distributions of site energies predicted by both
the stochastic and microscopic models have significant
fluctuations from one realization to another, especially
in systems with large energetic disorder. The simplest
way of illustrating this is by calculating the energy of the
transport level, that is the energy of a charge in equilib-

rium, Ē . Assuming that the system is ergodic and the
detailed balance holds, Ē reads

Ē =
N∑

n=1

En exp(−En/kBT ) . (2)

For the realizations of the stochastic model used for aver-
aging, Ē/kBT = (−25.09, −23.65, −28.21), while for the
microscopic model Ē/kBT = −26.01. Higher energies of
the transport level lead to significantly higher mobilities
and, as discussed in Ref. 23, pronounced finite size effects
(higher mobilities) when mobilities are averaged over sev-
eral realizations of site energy distributions. To remedy
the situation, one could either increase the size of the
microscopic reference or pre-filter the stochastic relaiza-
tions to those with the same transport level (assuming
ergodicity). It should also be mentioned that, according
to the rate expression, eq. 1, the parametrization errors
propagate into the expression for mobility exponentially.
Hence, the achieved agreement is reasonable.

Both models predict the mobility increase with the
strength of the field F , µ ∼ exp

(
α
√

F
)
, which is due to

correlated site energy disorder. The slope of this depen-
dence, α, also known as a Poole-Frenkel slope, is similar
for both methods, indicating that the spatial site energy
correlations are properly accounted for by the stochastic
model.

V. SUMMARY

To summarize, we have developed a stochastic net-
work model of the directed weighted graph used for
microscopic charge transport simulations. The model,
parametrized for a prototypical amorphous organic semi-
conductor, tris-(8-hydroxyquinoline)aluminum, showed a
good agreement with the predictions of the microscopic
approach: both the mobility-field dependence and distri-
butions of the charge transfer rates were adequately re-
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produced. The generalization of the model to more com-
plex situations, e.g. anisotropic in shape molecules and
molecular mixtures, is possible and is work in progress.
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K. Müllen, Nat. Mat. 8, 421 (2009).

3 P. M. Borsenberger, L. Pautmeier, and H. Bässler, J.
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