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1 Introduction

During the last decade, the Stochastic Subscriber Line Model (SSLM) has been
developed as a powerful and reliable stochastic modelling approach to investigate
fixed-access telecommunication networks, see e.g. [4,5,13,16]. In the SSLM, high-
level components (HLC) are located along the edges of a road graph and each
of them is dedicated to providing service to all low-level components (LLC) in
some bounded region of the plane. This area is referred to as its serving zone.
Physical links from LLC to the relevant HLC are deployed along the shortest
Euclidean path in the road graph which is modelled by a stationary random planar
tessellation. Thus, the SSLM models a two-levels network architecture deployed
on the road infrastructure in cities but also rural regions. However, large-scale
fixed-access networks typically consist of more than one level of hierarchy. From a
practical point of view, the introduction of an additional level of hierarchy offers the
potential of substantially reducing total fibre lengths. Indeed, instead of requiring
a fibre to a distant HLC, LLC now have the possibility to connect to a much closer
network component in an intermediate level.

More generally speaking, by suitable superpositions and juxtapositions of such
elementary two-levels building blocks or ’bricks’, one can provide realistic models
at country scale, taking into account its geographic and demographic features.
The parametric description of the SSLM offers the possibility to deal with the
fact that the population distribution is spatially inhomogeneous. Subnetworks for
cities and rural areas are designed by simple adjustments of the parameters. The
overall probabilistic results for geometry-dependent functionals (e.g. the probabil-
ity density for the total connection length from the customer to the upper level
node) are averages with a weighting dependent on the number of customers. The
subnetworks may involve purely hierarchical n-levels networks which are the su-
perposition of n − 1 two-levels bricks. Then, in the process described above, the
probability density functions for connection lengths are computed as convolutions
of the corresponding parametric densities from each of the involved bricks, assum-
ing pairwise statistical independence between them. This has not formally been
proven yet, but the methodology has been successfully applied to the existing
French copper network. The accuracy of the results is compatible with the real
dataset. The combination of several building blocks with each other may be more
risky if one deals with more complex functionals such as capacity trees. In that
case, one is interested in the joint behaviour of several connections in a given
serving zone (so-called multipoint to point view). At each location of an LLC, a
given capacity (i.e. number of copper fibres or optical fibres, depending on the
technology) joins the network and follows the shortest path to the respective HLC
along the road system. Each street segment in the serving zone then supports a
capacity depending on the geometry of the road system, on the number and lo-
cations of the LLC and on their incoming capacity. In a three-levels architecture,
an HLC of the lower brick can be considered as an LLC in the higher brick and
its capacity is itself a random quantity. A possible replacement by a deterministic,
averaged value and its impact on the characteristics of the capacity tree is an open
question. This motivates the stochastic analysis of three-levels networks presented
in this paper. Moreover, the SSLM has considered so far the classical tessellation
models (namely, Poisson-Delaunay tessellations, Poisson-Voronoi tessellations and
Poisson line tessellations). Recently, the family of so-called STIT tessellations has
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been thoroughly introduced and investigated, see [9,11,14,15,17]. STIT means “it-
eration stable tessellation” and seems to be a suitable stochastic model for road
systems in cities since on the one hand, it reflects natural processes in city mor-
phogenesis [2] and on the other hand, it provides an excellent fit to real street
systems. For a general methodology to assess the quality of fit of models for street
systems to real data, see [6].
The rest of this paper is organised as follows. In Section 2, we provide a pre-
cise definition of the multi-hierarchical extension of the SSLM where intermediate
components are installed as an additional level of hierarchy. For this purpose, the
necessary tools from stochastic geometry and their properties are presented. In
particular, STIT tessellations and Cox processes with intensity measures concen-
trated on the edge system of such random tessellations are considered. Moreover,
to rigorously introduce the notion of typical HLC or LLC, we recall some basic
results from Palm theory for stationary point processes. Similarly, for a station-
ary tessellation, its Palm version can be regarded as a conditional variant of the
tessellation obtained by putting the origin o ∈ R2 at random on its edge set. This
corresponds to seeing the original tessellation from the point of view of an access
point in the telecommunication network located at the origin. Section 3 deals with
representation formulas for the distribution of various typical distances between
LLC and HLC measured along the underlying edge system, i.e. so-called typical
shortest-path lengths. These formulas are useful to derive the corresponding den-
sity functions of such random variables, for instance. Besides, we derive formulas
for the expectation of typical total fibre lengths in the network, i.e., the total
length of all fibres needed in order to connect each LLC in the typical serving to
the corresponding HLC. Then, in Section 4 we provide a description for the Palm
version of an isotropic STIT tessellation. It can be used for the implementation of
an appropriate simulation algorithm for such random geometric graphs contain-
ing the origin on their edge set with probability one. Based on this algorithm, in
Section 5 we provide numerical results illustrating the distributional behaviour of
various typical shortest-path lengths and total fibre lengths. Furthermore, in Sec-
tion 6, we derive the limit distributions of such typical shortest-path lengths if the
linear intensity of the HLC tends to infinity. Moreover, we give a formal proof for
the observation that connecting LLC to HLC via intermediate level components
causes on the one hand a longer path connection length but – for a sufficiently high
linear intensity of the LLC – a decrease in the total fibre length of the telecom-
munication network, as well. Finally, Section 7 concludes the paper and gives an
outlook to possible future research.

2 Stochastic Modelling Approach

The goal of this section is to provide a precise definition of the multi-hierarchical
extension of the SSLM. In order to adapt the SSLM accordingly, we propose two
additional modelling features. First, the network components of different levels of
hierarchy are placed on disjoint edge sets of the underlying tessellation representing
the infrastructure. For instance, considering STIT tessellations, HLC are placed
on long edges while LLC are located on rather short edges. Then, as a third level
of hierarchy, we introduce the notion of intermediate level components. Recall
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that the SSLM consists of three modelling layers, namely the geometry model, the
network model and the topology model. They read as follows, see also [12].

2.1 The Geometry Model

The underlying road system along which the cables of a telecommunication net-
work are assumed to be installed has been modelled by classical tessellation models
so far, i.e. Poisson-Delaunay tessellations, Poisson-Voronoi tessellations and Pois-
son line tessellations, see for instance [12,16]. In the present paper, we extend this
class of random geometric graphs by stationary tessellations which are stable with
respect to iteration, so-called STIT tessellations, see e.g. [11,14,15,17]. This type
of random tessellations is particularly well-suited for modelling multi-hierarchical
networks since it exhibits large variations of edge lengths. For instance, rather
long line segments can be thought to represent the main roads of the road system,
see the green lines on the right in Figure 1. Note that in the context of STIT
tessellations, the edges are also called I-segments.

Fig. 1 STIT tessellation (left) and colouring of its edges (right) according to their arrival
times where the green edges arrive in the first arrival period, the blue edges in the second
period and the red edges in the third period

2.1.1 STIT Tessellations in R2

For a better understanding of the technical details in the present paper, we briefly
recall the definition of a stationary STIT tessellation T in R2. For any station-
ary random tessellation T0 = {Ξi}i≥1 and an iid sequence T = (T1, T2, . . .) of
stationary random tessellations independent of T0, the nesting operation yields
a new tessellation τ(T0|T ) = τ(T0|T1, T2, . . .) =

⋃∞
i=1(Ξi ∩ Ti), where Ξi is the

i-th cell of T0. Thus, for each cell Ξi an elementwise intersection with the ele-
ments of Ti is performed. In order to define a STIT tessellation formally, we need
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a sequence {τn(T0)}n≥2 of rescaled iterations given by τ2(T0) = τ(2T0|2T1) and
τn(T0) = τ( n

n−1τn−1(T0)|nTn−1) for n ∈ {3, 4, . . .}. Here, T1, T2, . . . denotes a
sequence of tessellation sequences such that all involved tessellations are iid (in-
cluding the stationary tessellation T0). Then, a stationary random tessellation T
is called a STIT tessellation if

T
d
= τn(T ) for all n ∈ {2, 3 . . .}.

According to [10], it is equivalent to define the STIT property by T
d
= τ2(T ). Note

that the rescaling factor n is needed in order to preserve the same length intensity
for each tessellation τn(T ). The existence of STIT tessellations is shown in [11].

2.1.2 Construction of STIT Tessellations in Compact and Convex Sets

In this section, we recall a method in order to construct the restriction of a STIT
tessellation T with edge length intensity γ > 0 in a compact and convex set
W ⊂ R2 with non-empty interior, since it is used in Section 4 of the present
paper. Note in particular that γ = E ν1(T (1) ∩ [0, 1]2), where T (1) denotes the
corresponding edge set of T .
Let Q1 be a probability measure on the space Ao of all lines in R2 through the
origin o ∈ R2 such that for any line ` ∈ Ao, Q1({`}) < 1. Besides we denote
by Q2 the induced translation invariant measure on the space A = R2 × Ao of
all lines in R2 which is given by dQ2(s, t) = dsQ1(dt). Let {`i, θi}i≥1 be an iid
sequence of pairs of independent random variables, where `i ∈ A and θi ∈ (0,∞)
are distributed as follows. The random lines {`i}i≥1 are distributed according to

the normalised measure Q2(·∩{`∈A: `∩W 6=∅})
Q2({`∈A: `∩W 6=∅}) and the random variables {θi}i≥1 are

exponentially distributed with parameter Q2({` ∈ A : ` ∩W 6= ∅}). Throughout
this paper, we assume Q1 to be the uniform distribution on Ao and thus, Q2({` ∈
A : ` ∩W 6= ∅}) = pW /π, where pW denotes the perimeter of W . The restriction
T ∩W of the STIT tessellation T to the compact and convex sampling window W
is obtained in the following way, see e.g. [7].

(i) If θ1 > γ, the construction is stopped and the resulting tessellation is just W
(i.e., no edges of the tessellation to be constructed are present within W ).

(ii) Otherwise, if θ1 ≤ γ, the line `1 splits W into two sub-windows W+ and W−.
These are then treated in the following way, separately and independently.
(a) If θ1 + θ2 > γ, then W+ remains as it is and will be a part of the final

tessellation.
(b) If θ1 + θ2 ≤ γ and `2 hits W+, then W+ is divided by the line `2 into two

new sets, say W++ and W+−. In this case, the procedure continues with
W++ and W+−. Otherwise, the next possible division of W+ is at time
θ1 + θ2 + θ3 if θ1 + θ2 + θ3 ≤ γ.

(c) Accordingly, steps (a) and (b) are carried out for W− with corresponding
(`i, θi) which are independently sampled from those used for W+.

According to this construction principle of the restriction T ∩W of the STIT
tessellation T to the sampling windowW , each line `i which subdivides a convex set
into two new convex sets is marked with its so-called arrival time θi. Furthermore,
from the construction principle stated above, it follows that in the isotropic case
the distribution of the STIT tessellation T is completely characterised by the single
parameter γ > 0.
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2.2 The Network Model

In the standard SSLM [16], the network components are represented by two con-
ditionally independent Cox processes given the underlying tessellation T , say
XH = {XH,n}n≥1 (for the HLC) and XL = {XL,n}n≥1 (for the LLC). Their

random intensity measures are concentrated on the edge set T (1) of T . Thus,
given T and the total number of points on T (1) ∩W , both types of components
are uniformly distributed on the entire edge set of T (1) ∩ W for each bounded
Borel set W ∈ B(R2) with non-empty interior. In the present paper, we modify
this scenario as follows.

Consider three levels of hierarchy by introducing a third Cox process XI =
{XI,n}n≥1 of intermediate level components (ILC) whose random intensity mea-
sure is again concentrated on the edge set of T . However, now we make a more
detailed use of the structure of the STIT tessellation. We subdivide T (1) into
three types of stationary edge sets, say T

(1)
H (green segments), T

(1)
I (blue seg-

ments) and T
(1)
L (red segments), cf. Figure 1, with corresponding length intensities

γH , γI , γL > 0 such that γH + γI + γL = γ. To be more precise, a line segment

with arrival time θ belongs to T
(1)
H if θ ∈ [0, γH ], to T

(1)
I if θ ∈ (γH , γH + γI ] and

to T
(1)
L if θ ∈ (γH +γI , γ]. Thus, with probability one, we have for i, j ∈ {H, I, L},

i 6= j that T
(1)
i ∩ T (1)

j is the empty set or consists of at most countably many

points. Besides, T
(1)
H ∪T (1)

I ∪T (1)
L = T (1). Note that the length intensities of these

three edge sets are given by γH = E ν1(T
(1)
H ∩ [0, 1]2), γI = E ν1(T

(1)
I ∩ [0, 1]2)

and γL = E ν1(T
(1)
L ∩ [0, 1]2). According to [10], these intensities can be computed

explicitly. Then, in contrast to the standard SSLM where HLC for any bounded
Borel set W ∈ B(R2) are conditionally uniformly distributed on the entire edge
set T (1) ∩W , we assume the points of the Cox process XH inside W to be lo-

cated conditionally uniformly on T
(1)
H ∩ W . Analogously, we assume the points

of XI to be located on T
(1)
I and those of XL on T

(1)
L . In particular, it holds

that EXi(B) = λi` Eν1(B ∩ T (1)
i ) for some linear intensity λi` > 0, any Borel set

B ∈ B(R2) and i ∈ {H, I, L} where ν1 denotes the one-dimensional Hausdorff
measure in R2. Note for instance that by this construction, the points of the high-

est level of hierarchy, i.e. HLC, will be put on T
(1)
H , which consists of those lines in

the STIT tessellation which have arrived before time γH . Furthermore, we assume

that the point processes XH , XI and XL are conditionally independent given T
(1)
H ,

T
(1)
I and T

(1)
L .

2.3 The Topology Model

Equipped with a suitable model for the underlying road system and the network
components, we can now proceed in terms of connection rules within the SSLM,
i.e. defining in which way network components are associated with one another.
In order to define such links, serving zones have played a crucial role so far when
investigating networks with just two levels of hierarchy, see e.g. [13]. This method-
ology can be adapted to the framework considered in the present paper as follows.
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Consider the graph-based Voronoi tessellation {Sn}n≥1 with nuclei {XH,n}n≥1

given by

Sn = {x ∈ T (1) : c(x,XH,n) ≤ c(x,XH,m) for all m ≥ 1},

where c(x,XH,n) denotes the length of the shortest path from x ∈ T (1) to XH,n
along the edge system of the underlying tessellation. As such, {Sn}n≥1 associates
to each point XH,n a serving zone Sn (which corresponds to the grey subset of

T (1) in Figure 2).
Concerning the connection rules for an LLC XL,k of XL lying within Sn,

we distinguish two scenarios. In scenario 1, no ILC are allowed and the LLC
are always directly connected to HLC. The difference to the standard SSLM is
simply the placement of network components along the underlying infrastructure.
In scenario 2 however, ILC are explicitly desirable and we proceed in the following
way, cf. Figure 2. If an ILC XI,m ∈ Sn is in the graph sense closer to XL,k than
the nucleus XH,n of Sn, then we connect XL,k to XH,n indirectly via XI,m (left-
hand side of Figure 2). Otherwise, we connect XL,k directly to XH,n (centre of

Figure 2) along T (1). Besides, we link an ILC XI,m of XI which is located inside

Sn to XH,n via the shortest possible path measured along T (1), see right-hand
side of Figure 2. Note that in purely hierarchical networks of scenario 2, LLC will
always be indirectly connected to their respective HLC via the corresponding ILC.
Nevertheless, we choose our connection rules as defined for the sake of rigorous
mathematical proofs provided in the paper.

Fig. 2 Paths of connection rules for scenario 2 (orange): between LLC in red and HLC in
green indirect via ILC in blue (left), direct (centre), and connection between ILC and HLC
(right)

2.4 Some Palm Calculus and the Typical Cell

When investigating large telecommunication networks, one faces the problem that
not only a few but quite many serving zones occur in the relevant area. This in turn
makes the investigation of functionals relevant in telecommunication networks a
very time-consuming matter. One successful and reliable way out of this problem
has been the usage of Palm calculus and typical cells, see [4,5,13], which can be
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successfully adapted to the scenario of the present paper. Due to the nature of the
functionals which we want to investigate, we need to consider typical points with
respect to two different Palm measures. On the one hand, for typical shortest-path
lengths, we are interested in the length of a (possibly indirect) path from a typical
LLC to its associated HLC. On the other hand, the typical total fibre length in
the serving zones of the network is computed from the point of view of a typical
HLC. This requires some technical efforts. Sections 2.4.1 and 2.4.2 provide an
appropriate framework by using Palm calculus. Additional information on Palm
distributions can be found e.g. in [1] and [3].

2.4.1 Palm Calculus with Respect to LLC

First, we define the Palm version X̃L of XL with respect to LLC. Its distribution
can be seen as the conditional distribution of XL given that there is an LLC located
at the origin o = (0, 0) ∈ R2. More precisely, the following representation formula

allows for a description of the distribution of X̃L. For an arbitrary measurable
function f : L→ [0,∞), we have

Ef(X̃L) =
1

λL
E

∑
i:XL,i∈[0,1]2

f({XL,n} −XL,i) ,

where λL = λL` γ
L. Here, L denotes the family of all locally finite sets of R2

equipped with the σ-algebra L such that the function which maps ϕ ∈ L to #ϕ∩B
(the cardinality of the set ϕ∩B) is measurable for each B ∈ B(R2). Similarly, the

Palm version X̃H of XH with respect to LLC is given by

Ef(X̃H) =
1

λL
E

∑
i:XL,i∈[0,1]2

f({XH,n} −XL,i) .

The Palm version X̃I of XI with respect to LLC can be defined analogously.

In order to investigate distributional properties of typical shortest-path lengths
via simulations, it is often useful to consider the Palm version T̃ of the underlying

tessellation T with respect to ν1(· ∩ T (1)
L ). Again, the distribution of T̃ can be

interpreted as the distribution of T under the condition that the origin o belongs

to the edge set T
(1)
L . More precisely, for an arbitrary measurable function h : T→

[0,∞), we have

Eh(T̃ ) =
1

γL
E
∫
T

(1)
L ∩[0,1]2

h(T − x) ν1(dx) ,

where T denotes the family of all tessellations in R2. Since tessellations can be
identified with their respective edge sets, the corresponding σ-algebra is given by
the trace of the hitting σ-algebra on T, see [1]. Note that X̃H can be considered

as a Cox process whose random intensity measure is concentrated on T̃ , see [13].
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2.4.2 Palm Calculus with Respect to HLC

Next, we consider Palm distributions with respect to HLC. In principle, one can
proceed in the same way as in Section 2.4.1. For instance, the Palm version X∗H
of XH with respect to HLC is characterised by the representation formula

Ef(X∗H) =
1

λH
E

∑
i:XH,i∈[0,1]2

f({XH,n} −XH,i) ,

where f : L→ [0,∞) is an arbitrary measurable function. The point processes X∗I ,
X∗L and the tessellation T ∗ are defined correspondingly. This terminology leads us
to the definition of the typical serving zone S∗ which is the typical (Cox-)Voronoi
cell of XH defined as the zero-cell of the graph-based Voronoi tessellation induced
by X∗H , i.e.,

S∗ = {x ∈ T ∗ : c(x, o) ≤ c(x,X∗H,m) for all m ≥ 1} .

By Z∗ = {Z∗i }1≤i≤M , we denote the set of M points consisting of the HLC
located in o and all ILC located on S∗. According to the connection rules in the
topology model described in Section 2.3, the set of network nodes Z∗ decomposes
S∗ into several sub-serving zones. They are defined as the graph-based Voronoi
cells {R∗i }1≤i≤M given by

R∗i = {x ∈ S∗ : c(x, Z∗i ) ≤ c(x, Z∗j ) for all 1 ≤ j ≤M}.

For an illustration of the situation, see Figure 3. Moreover, we write S∗L =

S∗ ∩ T
∗(1)
L and R∗L,i = R∗i ∩ T

∗(1)
L for the subsets of the edge sets S∗ and R∗i

where only LLC are located on. Here, T
∗(1)
L denotes the subset of all edges in T ∗

whose arrival time is contained in (γH + γI , γ].

Fig. 3 Typical serving zone S∗ (grey) and network nodes {Z∗i }1≤i≤M (left), as well as cor-
responding subdivision into Voronoi cells {R∗i }1≤i≤M (right)
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3 Typical Shortest-path Lengths and Total Fibre Lengths

In the present paper, we consider two types of functionals which are relevant in
telecommunication networks. The first one deals with various typical distances
measured along the underlying infrastructure. The second one treats typical total
fibre lengths in the network. In the following, we give precise descriptions of these
quantities.

3.1 Typical Shortest-path Lengths

In order to optimise costs in fixed-access telecommunication networks, one impor-
tant aspect is to minimise the fibre length required for the connections between
network components. In the following, we therefore investigate the distributional
behaviour of shortest-path lengths in two scenarios. On the one hand, we are
interested in the distribution of the random variable C̃LH = c(o, X̃H,o), where

X̃H,o denotes the closest point in the graph sense of X̃H to the LLC located at o.

This means that C̃LH is the length of the shortest path from o to the respective
node of X̃H along T̃ (1). On the other hand, we investigate the random variable
C̃LIH = c(o, Φ) + c(Φ, X̃H,o), where Φ denotes the closest point in graph sense to

o among X̃H,o and all ILC inside the serving zone corresponding to X̃H,o. That is,

C̃LIH is the shortest-path length of the (possibly indirect via an ILC) connection

from o to X̃H,o running along T̃ (1). In the following theorem, we state represen-

tation formulas for the distribution of the typical shortest-path lengths C̃LH and
C̃LIH . These formulas express quantities defined using the Palm distribution of
the LLC in terms of quantities defined using the Palm distribution of the HLC. In
particular, then, an HLC is located at the origin.

Theorem 1 Let h : [0,∞)→ [0,∞) be any measurable function. Then,

Eh(C̃LH) =
1

E ν1(S∗L)
E
∫
S∗
L

h(c(o, y)) ν1(dy). (1)

Furthermore, it holds that

Eh(C̃LIH) =
1

E ν1(S∗L)
E
∫
S∗
L

h(c(o, g(y)) + c(g(y), y)) ν1(dy), (2)

where g(y) denotes the closest point in graph sense to y among the HLC in o and
all ILC inside S∗.

Proof Formula (1) can be obtained in a similar way as formula (5) in [16] where a
representation formula for the distribution of typical point-to-point distances has
been derived for a related scenario. This was achieved by using Neveu’s exchange
formula for jointly stationary marked point processes, see e.g. [8]. Therefore, we
focus on the case considered in (2). Let Fo denote the family of finite segment sys-
tems containing the origin o and define the function f : R2× [0,∞)×Fo → [0,∞)

by f(x, c, ξ) = h(c)1ξ+x(o). Besides, let S̃on denote the serving zone associated

with X̃H,n shifted to o. Furthermore, we write C∗HIL,n for the (possibly indirect
via an ILC) connection length from X∗L,n to its associated HLC. Then,
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Eh(C̃LIH) = E
∑
n≥1

f(X̃H,n, C̃LIH , S̃
o
n)

=
λH

λL
E
∑
n≥1

f(−X∗L,n, C∗HIL,n, S∗)

=
λH

λL
E
∑
n≥1

h(C∗HIL,n)1S∗(X∗L,n),

where the second equality is obtained by applying Neveu’s exchange formula. Re-
calling the definition of conditional expectation leads to

λH

λL
E
∑
n≥1

h(C∗HIL,n)1S∗(X∗L,n)

=
λH

λL
E
(
E
( ∑
X∗
L,n∈S∗

L

h
(
c
(
o, g(X∗L,n)

)
+ c

(
g(X∗L,n), X∗L,n

)) ∣∣S∗L, X∗I )).
An application of Campbell’s theorem (see e.g. [1]) yields

λH

λL
E
(
E
( ∑
X∗
L,n∈S∗

L

h
(
c
(
o, g(X∗L,n)

)
+ c

(
g(X∗L,n), X∗L,n

)) ∣∣S∗L, X∗I ))

=
λH

λL
EλL`

∫
S∗
L

h(c(o, g(y)) + c(g(y), y)) ν1(dy)

=
λH` γ

H

λL` γ
L

EλL`
∫
S∗
L

h(c(o, g(y)) + c(g(y), y)) ν1(dy).

Finally, putting h(·) = 1 yields γL = λH` γ
H E ν1(S∗L), which completes the proof.

Remark 1 At first glance, it may be counterintuitive that formulas for typical
characteristics with respect to LLC are given in terms of the Palm distribution
with respect to HLC. However, this is just the benefit of Neveu’s exchange formula.

Naturally, splitting Ψ ∈ {S∗, R∗i , i ∈ {1, . . . ,M}} at its respective crossings,
endings and distance-peaks into segments (cf. [16] for more information) yields a
subdivision of ΨL ∈ {S∗L, R∗L,i, i ∈ {1, . . . ,M}}. The edges of ΨL with starting
points Aj(ΨL) and end points Bj(ΨL) will be denoted by Ej(ΨL) in the following.
They are designed in a way such that they satisfy the following conditions. First,

ΨL =
⋃N(ΨL)
j=1 Ej(ΨL). Second, ν1(Ej(ΨL) ∩ Ek(ΨL)) = 0 for j 6= k and finally,

c(o,Aj(ΨL)) < c(o,Aj(ΨL)) + ν1(Ej(ΨL)) = c(o,Bj(ΨL)).. In order to derive the

density functions of C̃LH and C̃LIH , we use the following terminology. Let f ′ΨL :
[0,∞)× [0,∞)→ N0 be defined as

f ′ΨL(x, z) =

N(ΨL)∑
i=1

1[c(z,Ai(ΨL)),c(z,Bi(ΨL)))+c(o,z)(x).

Then, the following result can be shown using the same arguments as in the two-
level scenario, [16, Theorem 1]. Nevertheless, for the convenience of the reader, we
present a detailed proof.
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Corollary 1 The density functions fC̃LH : [0,∞) → [0,∞) of C̃LH and fC̃LIH :

[0,∞)→ [0,∞) of C̃LIH are given by

fC̃LH (x) =
1

E ν1(S∗L)
Ef ′S∗

L
(x, o) (3)

and

fC̃LIH (x) =
1

E ν1(S∗L)
E
M∑
i=1

f ′R∗
L,i

(x, Z∗i ). (4)

Proof Identities (3) and (4) are an immediate consequence of Theorem 1 by setting
h(x) = 1B(x), B ∈ B(R). In particular, for (3) we have

PC̃LH (B) =
1

E ν1(S∗L)
E
N(S∗

L)∑
j=1

∫ c(o,Bj(S
∗
L))

c(o,Aj(S
∗
L))

1B(x) dx

=
1

E ν1(S∗L)
E
N(S∗

L)∑
j=1

∫
B

1[c(o,Aj(S
∗
L)),c(o,Bj(S

∗
L)))

(x) dx

=

∫
B

1

E ν1(S∗L)
E
N(S∗

L)∑
j=1

1[c(o,Aj(S
∗
L)),c(o,Bj(S

∗
L)))

(x) dx

=

∫
B

1

E ν1(S∗L)
Ef ′S∗

L
(x, o) dx.

For showing (4), one can proceed analogously.

Remark 2 Note that S∗L can be empty with positive probability, i.e., it holds that

P(S∗L = ∅) > 0. In fact, we have o ∈ T ∗(1)H , where T
∗(1)
H denotes those edges in T ∗

whose arrival time is contained in [0, γH ]. For some λH` sufficiently large, it can

happen that S∗ ⊂ T ∗(1)H and thus S∗L = S∗ ∩ T ∗(1)L ⊂ T ∗(1)H ∩ T ∗(1)L = ∅.

Observe that the densities described in (3) and (4) are qualitatively different
from these obtained in [16]. Indeed, in that paper it is shown that for a two
levels scenario with HLC and LLC both located on the whole underlying random
geometric graph and where the serving zones are defined as the Euclidean Voronoi
cells induced by the the HLC, it holds that fC̃(0) = 2λ`. In that context, C̃
denotes the typical shortest path length and λ` the linear intensity of the HLC.
Contrarily, in the situation of the present paper, we obtain from Corollary 1 that
fC̃LH (0) = fC̃LIH (0) = 0.

3.2 Typical Total Fibre Lengths

Besides typical shortest-path lengths, total fibre lengths are another important
functional in order to optimise fixed-access telecommunication networks in view
of costs. In the present section, we are therefore interested in the distribution of
the random variables D∗HL as well as D∗HIL,α. Here, we denote by D∗HL the sum
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of the lengths of shortest paths along the edge set of T ∗ from the HLC in o to all
nodes X∗L,n contained in the typical serving zone S∗. More precisely, we define

D∗HL =
∑

X∗
L,n∈S∗

L

c(o,X∗L,n).

In other words, we assume that each LLC uses a separate fibre to connect to its
associated HLC. When adding the third network layer, we still assume that each
LLC needs a separate fibre to connect to its closest ILC. However, for the final
part of the connection that goes from the ILC to the HLC, we assume that fibres
can be gathered in bundles. In practice, fibres are gathered in cables and cabling
policy is extremely complex to implement since real cables have predetermined
sizes (i.e., the number of fibres included in a cable). In this paper, we consider a
mathematically simplified model, where the total fibre length that is needed for
the final part grows as a concave function in the number of the LLC that use this
ILC. That is, for α ∈ [0, 1] we put

D∗HIL,α =
M∑
i=1

(
c(o, Z∗i ) ·

(
#(R∗L,i ∩ {X∗L,m})

)α
+

∑
X∗
L,m∈R∗

L,i

c(Z∗i , X
∗
L,m)

)
.

Thus, varying α ∈ [0, 1] could mimic the complex cabling policies. On the one
hand, for α = 1, D∗HIL,α represents the total length of the fibres from all LLC to
HLC inside the typical serving zone, including the detour via corresponding ILC
according to the connection rules of Section 2.3. This means that the length of a
path from an ILC to HLC is added as often as the number of the respective LLC.
On the other hand, the case where α = 0 corresponds to adding the lengths of all
LLC to ILC to the lengths of all ILC to HLC (each now counted once).
The total fibre lengths are conceptually more involved than the typical distances, as
they take into account the shortest-path lengths corresponding to multiple lower-
level nodes. Therefore, it seems difficult to derive an analogue of the distributional
representation formula from Section 3.1 for total cable lengths. Still, one can obtain
the following representation formulas for the respective first moments using the
notation ρα(β) = EXα for X ∼ Poi(β).

Theorem 2 It holds that

ED∗HL = EλL`
∫
S∗
L

c(o, y) ν1(dy), (5)

and furthermore

ED∗HIL,α = E
M∑
i=1

(
c(o, Z∗i )ρα(λL` ν1(R∗L,i)) + λL`

∫
R∗
L,i

c(y, g(y)) ν1(dy)
)
. (6)

Proof We start with the proof of (5). It holds that

ED∗HL = E
∑

X∗
L,m∈S∗

L

c(o,X∗L,m)

= E
(
E
( ∑
X∗
L,m∈S∗

L

c(o,X∗L,m)
∣∣S∗L))

= EλL`
∫
S∗
L

c(o, y) ν1(dy),
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where the latter equality is obtained by an application of Campbell’s theorem. We
proceed now with proving (6). It holds that

ED∗HIL,α = E
M∑
i=1

(
c(o, Z∗i ) ·

(
#(R∗L,i ∩ {X∗L,m})

)α
+

∑
X∗
L,m∈R∗

L,i

c(Z∗i , X
∗
L,m)

)

= E
( M∑
i=1

E
(
c(o, Z∗i ) ·

(
#(R∗L,i ∩ {X∗L,m})

)α
+

∑
X∗
L,m∈R∗

L,i

c(Z∗i , X
∗
L,m)

∣∣R∗L,i, Z∗i ))

= E
( M∑
i=1

c(o, Z∗i ) · ρα(λL` ν1(R∗L,i)) + λL`

∫
R∗
L,i

c(g(y), y) ν1(dy)
)

which completes the proof.

4 The Palm Version of an Isotropic Planar STIT tessellation

According to the representation formulas provided in Section 3, it is convenient
to have a good understanding of the distribution of various Palm versions of the
underlying STIT tessellation T in order to investigate distributional properties of
typical shortest-path and total fibre lengths. In this section, we present a simula-
tion algorithm for the Palm version T× of T with respect to the (entire) random
measure ν1(· ∩ T (1)) and prove that this simulation algorithm yields a random
tessellation with the correct distribution. We also discuss how this algorithm can
be modified to generate samples of T ∗ and T̃ , see Remark 3 below.

4.1 Simulation Algorithm for T×

In [9], the construction of STIT tessellations within compact and convex sets (see
Section 2.1.2) was extended to a global construction in the whole Euclidean plane
R2. In order to give an explicit simulation algorithm for the Palm version T×

of a STIT tessellation T , large parts of this construction rule can be reused. In
the following, we give a description of such an algorithm and present in greater
detail those steps, which are substantially different from [9]. A formal proof for the
distributional correctness of our algorithm is given in Section 4.2 below. Note that
a STIT tessellation of an arbitrary length intensity γ > 0 can be constructed from
a STIT tessellation with length intensity 1 by applying a scaling with parameter
1/γ. Hence, in the following we restrict to the case where the length intensity γ is
equal to 1.

Recall that by A, we denote the space of all lines in R2. This is a metric space
and we write K for the family of all locally finite subsets of A×[0, 1]. To construct a
STIT tessellation in R2, one applies a deterministic construction to random input.
The input data are given by a) an independently marked and motion-invariant
Poisson line process {(`n, Un)}n≥1 with intensity 1 and Un ∼ Uniform([0, 1]), and
b) a family of iid STIT tessellations {Tn}n≥1 with length intensity 1 which are
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independent of {`n, Un}n≥1. Then, in [9], a measurable function stit : K×TN → T
is defined such that a planar motion-invariant STIT tessellation can be represented
as

stit({(`n, Un)}n≥1, T1, T2, . . .). (7)

In order to retain redundant information on the one hand but not to forsake the
unfamiliar reader with the notation of (7) on the other hand, we briefly describe
the intuition behind this formula and go into details when giving the algorithm
for the Palm version T× of T . Roughly speaking, a STIT tessellation in R2 can
be constructed in a several steps procedure. The first step is the division of the
Euclidean plane into compact and convex polygons by the Poisson line process
{(`n, Un)}n≥1. Then, we consider the zero-cell of this mosaic and delete the line `n
with the largest mark Un among all lines yielding the zero-cell. This in turn arouses
a zero-cell which is bigger in size. Continuing this procedure, we obtain a sequence
of zero-cells with increasing area. The final step of the construction is to insert
STIT tessellations T1, T2, . . . into the set differences (which are in fact compact and
convex cells) of the zero-cells and their predecessors in the corresponding sequence
of zero-cells according to Section 2.1.2 with suitable intensities.

Let us consider a further line `0 through the origin with an angle to the x-axis
chosen uniformly from the interval [0, π] and a mark U0 ∼ Uniform([0, 1]), and
assume that they are independent and (`0, U0) is independent of {(`n, Un)}n≥1.
We show in Theorem 3 below that the Palm version T× of T can be represented
as

stit({(`n, Un)}n≥1 ∪ {(`0, U0)}, T1, T2, . . .). (8)

The tessellation yielded by (8) given its random input is obtained by the following
simulation algorithm.

(I) Simulate an independently and uniformly [0, 1]-marked motion-invariant Pois-
son line process {(`n, Un)}n≥1 with length intensity 1. With probability 1 there
exists exactly one convex polygon containing the origin.

(II) Draw a random line `0 through the origin whose angle with the x-axis is chosen
uniformly from the interval [0, π] and let U0 be a Uniform([0, 1])-distributed
random variable, where we assume that `0 and U0 are independent and (`0, U0)
is independent of {(`n, Un)}n≥1. The line `0 splits ξ into two smaller convex
polygons, say ξ1 and ξ \ ξ1, see Figure 4 on the left.

(III) Determine the line `i with the largest mark Ui among all lines defining the
boundary of ξ1. This mark will be denoted by σ1 in the following. Then, remove
`i from {`n}n≥1∪{`0}. The lines {`n}n≥1∪{`0}\{`i} yield a new tessellation
with
– either one cell ξ2 containing o in its interior if `i = `0 (Figure 4 centred)
– or two cells containing o on their boundaries if `i 6= `0 (Figure 4 on the

right). In this case, choose ξ2 such that ξ1 ⊂ ξ2.
(IV) Proceed with ξ2 in an analogous way as it was done for ξ1 in step (III). This

yields the cell ξ3 and the maximal mark σ2. Continuing this way, we obtain
a sequence of ‘quasi’ zero-cells {ξn}n≥1 (‘quasi’ since o can be located on the
boundary of ξn) and marks {σn}n≥1.

(V) By means of {ξn}n≥1, we can construct {ψn}n≥1 where ψ1 = ξ1 and ψn =
ξn \ ξn−1 for n ≥ 2.
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Fig. 4 Realisation of ξ1 (left) resulting from black lines and ξ2 where `i = `0 (centre) and
`i 6= `0 (right)

(VI) Finally, each cell ψn with n > 1 is subdivided further according to the STIT
tessellation T ′n+xn where xn denotes the centre of gravity of ψn and T ′n is the
thinning of Tn consisting of all edges with mark at most 1− σn.

Note that the origin is contained on the boundary of ψ1 and therefore lies on the
edge set of the constructed tessellation.

4.2 Representation of Palm Distribution

The following theorem provides a description for the Palm distribution with respect
to the one-dimensional Hausdorff measure on the edge set of a motion-invariant
STIT tessellation T in R2.

Theorem 3 The distribution of the tessellation

T`0,U0
= stit({(`n, Un)}n≥1 ∪ {(`0, U0)}, Ξ1, Ξ2, . . .) (9)

coincides with the Palm distribution with respect to the one-dimensional Hausdorff
measure on the edge set of a motion-invariant planar STIT tessellation T with
γ = 1.

Remark 3 Note that if one wants to consider the Palm versions T̃ and T ∗ of T
with respect to the one-dimensional Hausdorff measure on T

(1)
L and T

(1)
H , one has

to choose U0 ∼ Uniform([γH + γI , γ]) and U0 ∼ Uniform([0, γH)), respectively.

Before presenting a detailed proof of Theorem 3, we provide a rough explanation
for the intuition underlying the representation given in (8). Note that for every
ε > 0, we have

Ef(T×) =
1

πε2
E
∫
T (1)∩Bε(o)

f(T − x) ν1(dx). (10)

Here, Bε(o) denotes the disc centred at o with radius ε and f : T → [0,∞) is
any measurable function. On the one hand, if ε > 0 is sufficiently small, then
with a high probability at most one edge of the STIT tessellation intersects the
disc Bε(o) and, additionally, this edge belongs to the zero-cell of the STIT tes-
sellation. On the other hand, note that the zero-cell of the STIT tessellation
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stit({(`n, Un)}n≥1, Ξ1, Ξ2, . . .) coincides with the zero-cell of the Poisson line tes-
sellation formed by the family of lines {`n}n≥1. Hence, it is intuitive to expect
that the Palm version of the STIT tessellation can be obtained from the Palm
version of the Poisson line tessellation yielded by {`n}n≥1. The Palm version of
the latter tessellation in turn is obtained by simply adding a further isotropic line
through the origin. This is a direct consequence of Slivnyak’s theorem [1,3] for
Poisson point processes. In order to make this intuition rigorous, the first step
consists in showing that we can restrict to the case where at most one edge of
the STIT tessellation intersects the disc B4ε(o), provided that ε > 0 is sufficiently
small. Choosing the radius to be 4ε instead of ε guarantees that also for any shifted
tessellation T − x with x ∈ Bε(o), there exists at most one edge intersecting the

disc Bε(o). To be more precise, define Aε = A
(1)
ε ∩ A(2)

ε as the intersection of the

events A
(1)
ε and A

(2)
ε , where

A(1)
ε = {T (1) ∩B4ε(o) =

⋃
n≥1

`n ∩B4ε(o)}

is the event that inside the sampling window B4ε(o) the edge sets of the STIT
tessellation and the Poisson line tessellation based on {`n}n≥1 coincide, and where

A(2)
ε = {#{n ≥ 1 : `n ∩B4ε(o) 6= ∅} ≤ 1}

is the event that the ball B4ε(o) is intersected by at most one line from the Poisson
line process {`n}n≥1. In the following result, it will be convenient to compute the
integral in (10) only in case that the event Aε occurs. More precisely, we define

ηε =
1

πε2
E
∫
T (1)∩Bε(o)

f(T − x)1Aε(T − x) ν1(dx)

and show in Lemma 1 that we make an asymptotically negligible error when
replacing Ef(T×) by ηε if ε→ 0.

Lemma 1 Let f : T→ [0,∞) be any bounded measurable function. Then,

lim
ε→0

ηε = Ef(T×).

Proof Without loss of generality, we may assume that f is bounded from above by
1. Let Nε denote the number of line segments in T (1) that intersect B8ε(o). First,
note that if x ∈ Bε(o) is such that

(T (1) − x) ∩B4ε(o) 6=
⋃
n≥1

(`n − x) ∩B4ε(o),

then there exist at least two line segments in T (1) that intersect B8ε(o), i.e.,
Nε ≥ 2. Similarly, if x ∈ Bε(o) is such that

(T (1) − x) ∩B4ε(o) =
⋃
n≥1

(`n − x) ∩B4ε(o),

but

#{n ≥ 1 : (`n − x) ∩B4ε(o) 6= ∅} ≥ 2,
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then Nε ≥ 2. Hence, we conclude from ν1(T (1) ∩Bε(o)) ≤ 2εNε that

|Ef(T×)− ηε| ≤
1

πε2
E ν1(T (1) ∩Bε(o))1Nε≥2(T ) ≤ 2

πε
ENε1Nε≥2(T ),

We assert that ε−1 ENε1Nε≥2 tends to 0 as ε→ 0. The event {Nε ≥ 2} describes
a STIT tessellation such that the disc B8ε(o) is first subdivided into two cells and
then at least one of these cells is again subdivided by at least one segment of the
STIT tessellation. Using the construction of the STIT tessellation provided in [11],
the probability that there exists one edge of the STIT tessellation intersecting the
ball B8ε(o) is given by 1 − exp(−16ε) ≤ 16ε. Furthermore, conditioned on the
existence of this edge, the ball B8ε(o) is subdivided into two cells W+ and W−,
and again the probability that W+ is intersected by a further edge of the STIT
tessellation is at most 16ε. Since the same is true for W−, we obtain that P(Nε ≥
2) ≤ 512ε2. Finally, conditioned on {Nε ≥ 2}, the expected number of I-segments
of the STIT tessellation that intersect B8ε(o) is at most 2 + 3ENε ≤ 2 + 3EN1.
Indeed, the first two segments partition B8ε(o) into three parts each of which
is subdivided according to a suitable STIT tessellation. Hence, ε−1 ENε1Nε≥2 ≤
512ε(2 + 3EN1), which completes the proof of the lemma.

Note that

E
∫
T (1)∩Bε(o)

f(T − x)1Aε(T − x) ν1(dx)

= E1A+
ε

(T )

∫
T (1)∩Bε(o)

f(T − x)1Aε(T − x) ν1(dx)

+E1A−
ε

(T )

∫
T (1)∩Bε(o)

f(T − x)1Aε(T − x) ν1(dx),

where A+
ε (A−ε ) is the event that all lines intersecting Bε(o) have their perpendic-

ular foot in the upper (lower) half-plane of R2. Any such line can be represented
as rρ(Re1 + se2) for some ρ ∈ [−π/2, π/2] (ρ ∈ [π/2, 3π/2]) and s ∈ [0, ε], where
rρ : R2 → R2 denotes rotation by the angle ρ and where we put e1 = (1, 0),
e2 = (0, 1). Note that if x ∈ T (1)∩Bε(o) is such that T −x ∈ Aε, then there exists
precisely one line intersecting Bε(o). Using the Slivnyak-Mecke formula [1,3], we
obtain that

ηε =
1

πε2
E1A+

ε
(T )

∑
n≥1

∫
`n∩Bε(o)

f(T − x)1Aε(T − x) ν1(dx)

+
1

πε2
E1A−

ε
(T )

∑
n≥1

∫
`n∩Bε(o)

f(T − x)1Aε(T − x) ν1(dx)

=
1

π2ε2

∫ π/2

−π/2

∫ ε

0

∫ 1

0

∫
rρ(Re1+se2)∩Bε(o)

gε(x, rρ(Re1 + se2), u) ν1(dx) du ds dρ,

+
1

π2ε2

∫ 3π/2

π/2

∫ ε

0

∫ 1

0

∫
rρ(Re1+se2)∩Bε(o)

gε(x, rρ(Re1 + se2), u) ν1(dx) du ds dρ,

where for (`, u) ∈ A× [0, 1] and x ∈ `, we put

gε(x, `, u) = Ef(T`,u − x)1
T

(1)
`,u∩B4ε(x)=`∩B4ε(x)

.
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For the second equality, we used that the intensity measure of the Poisson line
process is given as the product measure of the uniform distribution on [0, 2π) and
the Lebesgue measure on R. Note that by stationarity, gε(x, `, u) = gε(o, `

′, u),
where `′ = ` − x denotes the line through the origin o with the same slope as `.
Therefore,

ηε =
2

π2ε2

∫ π/2

−π/2

∫ ε

0

∫ 1

0

2
√
ε2 − s2 gε(o, rρ(Re1), u) du ds dρ

=
1

π

∫ π/2

−π/2

∫ 1

0

gε(o, rρ(Re1), u) du dρ.

Hence, it remains to show that, as ε→ 0, the latter expression tends to

1

π

∫ π/2

−π/2

∫ 1

0

Ef(Trρ(Re1),u) du dρ.

This convergence is shown in the following lemma.

Lemma 2 It holds that

lim
ε→0

ηε =
1

π

∫ π/2

−π/2

∫ 1

0

Ef(Trρ(Re1),u) du dρ.

Proof Indeed, we have∣∣ηε − 1

π

∫ π/2

−π/2

∫ 1

0

Ef(Trρ(Re1),u) du dρ
∣∣

=
1

π

∫ π/2

−π/2

∫ 1

0

Ef(Trρ(Re1),u)1
T

(1)

rρ(Re1),u
∩B4ε(o) 6=rρ(Re1)∩B4ε(o)

du dρ,

so that by dominated convergence it suffices to show that almost surely,

lim
ε→0

1
T

(1)

rρ(Re1),u
∩B4ε(o)=rρ(Re1)∩B4ε(o)

= 1.

This identity is a consequence of the local finiteness of T
(1)
rρ(Re1),u.

Combining Lemmas 1 and 2, we can now complete the proof of Theorem 3, since

Ef(T×) = lim
ε→0

ηε =
1

π

∫ π/2

−π/2

∫ 1

0

Ef(Trρ(Re1),u) du dρ.

5 Numerical Results

In the present section, the outcomes of some numerical investigations for the cost
functionals introduced in Section 3 are provided. The simulations are based on the
Palm version of the STIT tessellation which was derived in Section 4. To be more
precise, the new description of the Palm version is used as follows. In Corollary 1,
we have seen that the density of shortest-path lengths can be estimated by per-
forming suitable Monte Carlo simulations with respect to the Palm distribution
of HLC. Moreover, as explained in Section 2.4.1, this Palm distribution can also
be recovered by first considering the Palm distribution of the underlying tessel-
lation and then adding a suitable Cox point process on its edge set. Although
Section 2.4.1 deals with LLC, these remarks are of general nature and remain true
for HLC.
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5.1 Typical Shortest-path Lengths

We study numerically the behaviour of various typical distances in fixed-access
networks based on several choices of the parameters which determine the network.
Assume that we have an iid sample {S∗,1L , . . . , S∗,nL } of S∗L. Then, we can use
Corollary 1 and replace the expectations in (3) and (4) by the corresponding
arithmetic means of functionals based on S∗L, R∗L,i and Z∗i . Thus, Monte Carlo

estimators for the densities of C̃LH and C̃LIH are given by

f̂C̃LH (x) =
1∑n

k=1 ν1
(
S∗,kL

) n∑
k=1

f ′
S∗,k
L

(x, o) (11)

as well as

f̂C̃LIH (x) =
1∑n

k=1 ν1
(
S∗,kL

) n∑
k=1

M∑
i=1

f ′
R∗,k
L,i

(x, Z∗,ki ). (12)

Note that for an unfavourable choice of the network parameters, the estima-
tion procedure for the densities becomes very time-consuming. Thus, from the
application point of view, there is a great interest in fitting commonly used para-
metric density functions to (11) and (12) whose parameters depend on the network
parameters. One suitable tool is the well-known maximum-likelihood method. It
turns out that approximately we have

C̃LH ∼ Gamma(k, λ) and C̃LIH ∼ Gamma(k′, λ′) (13)

for some shape parameters k, k′ ∈ [0,∞) and scale parameters λ, λ′ ∈ [0,∞).
Here, the density function fX(x) of a gamma-distributed random variable X with
parameters `, ϕ > 0 is given by

fX(x) =
x`−1exp(−x/ϕ)

ϕ`Γ (`)
1(0,∞)(x),

where Γ (·) denotes the gamma function. In Figure 5, the empirical density func-

tions f̂C̃LH (black) and f̂C̃LIH (gray) are plotted together with their fitted para-
metric density functions of the corresponding gamma distributions (dashed in red
and blue, respectively) for different choices of network parameters (n = 5000,
γH = γI = γL = 0.0005, λH` = λI` = λL` = 0.00075 on the left and γH =
γI = γL = 1/300, λH` = λI` = λL` = 0.0005 on the right). Note that C̃LH is

stochastically smaller than C̃LIH since we do not have to make a detour via an
intercomposed node between LLC and HLC which may be indeed the case for
C̃LIH . This stochastic ordering is also reflected in Figure 5, where the density
functions of C̃LH and C̃LIH intersect only once.
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Fig. 5 Empirical density functions f̂
C̃LH

(black) and f̂
C̃LIH

(grey) together with correspond-

ing fitted parametric densities (red and blue, respectively) for two different choices of network
parameters

5.2 Typical Total Fibre Lengths

Analogously to Section 5.1, we investigate numerically the expectation of various
typical total fibre lengths. Again, we consider several choices of the network pa-
rameters. The Monte Carlo estimators for the expected typical total fibre lengths
ED∗HL and ED∗HIL,α in (5) and (6) are given by

µ1 =
λL`
n

n∑
k=1

∫
S∗,k
L

c(o, y) ν1(dy)

and

µ2,α =
1

n

n∑
k=1

M∑
i=1

(
c(o, Z∗,ki )ρα

(
λL` ν1(R∗,kL,i)

)
+ λL`

∫
R∗,k
L,i

c
(
y, g(y)

)
ν1(dy)

)
,

respectively. In Table 1, some values of µ1 and µ2,0.7 for different choices of the
linear intensity λL` are listed exemplarily. Here, we choose γH = γI = γL =
25/30000, λH` = λI` = 0.00075 and n = 5000.

The mindful reader can draw the following conclusions which are of intuitive
nature. On the one hand, for increasing values of λL` , both quantities µ1 and µ2,0.7

increase as well. On the other hand, for small values of λL` , µ1 can be smaller
than µ2,0.7 and vice versa, whereas for sufficiently large values of λL` , we have
µ2,0.7 ≤ µ1, see Section 6.2.
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λL` µ1 µ2,0.7

0.00075 1325.72 1401.59
0.0075 13638.14 11947.39
0.01 17098.46 15646.82
0.03 51916.14 44413.69

Table 1 Values of µ1 and µ2,0.7 for several choices of λL` where n = 5000

6 Limit Theorems

We now provide limit theorems for the functionals defined in Section 3 if the
corresponding linear intensities tend to infinity.

6.1 Typical Shortest-path Lengths

Limit theorems are an important tool to understand the behaviour of network
characteristics in asymptotic scenarios. Since we have altogether six model param-
eters (γH , γI , γL, λH` , λ

I
` , λ

L
` ), a large number of limiting scenarios are thinkable.

Within this section, we determine the limit behaviour of the random variable C̃LH
in case that λH` →∞. This is a regime, where the number of HLC is large. We also
comment on a possible extension of this result to C̃LIH . Of course, these are only
two possible scenarios and it would be worthwhile to investigate further limiting
regimes.

Let T̃
(1)
H denote the subset of all edges in T̃ whose mark is contained in [0, γH ].

We define the random variable V = min
x∈T̃ (1)

H

c(o, x) as the minimal distance from

the origin to a point from T̃
(1)
H measured along T̃ .

Theorem 4 If λH` →∞, then C̃LH converges in distribution to V .

Proof Note that there is a coupling between the point processes of HLC X̃H =
X̃H(λH` ) for all linear intensities λH` such that X̃H(λH` ) ⊂ X̃H(λ′H` ), whenever

λH` ≤ λ′H` . Recall that X̃H,o denotes the closest point in the graph sense of X̃H
to the LLC in o. We show that in this coupling the random variables C̃LH =
c(o, X̃H,o(λ

H
` )) converge to V almost surely as λH` → ∞. First, we note that

c(o, X̃H,o(λ
H
` )) is decreasing in λH` , and the definition of V yields immediately

that limλH` →∞
c(o, X̃H,o(λ

H
` )) ≥ V almost surely. On the other hand, let P ∈ T̃ (1)

H

be such that c(o, P ) = V , i.e., P denotes (one of) the closest point(s) in the graph
sense of the tessellation formed by the green segments to the LLC located in o,
see Figure 6. Let ε > 0 be arbitrary. Then, provided that λH` is sufficiently large,
X̃H(λH` ) contains a point Q such that [P,Q] ⊂ T̃ and ν1([P,Q]) ≤ ε. In particular,
almost surely,

lim
λH` →∞

c(o, X̃H,o(λ
H
` )) ≤ c(o, P ) + c(P,Q) ≤ V + ε.

As ε > 0 was arbitrary, this completes the proof.
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Fig. 6 Illustration of the situation with HLC (green) and LLC (red)

Remark 4 Similar arguments could be used to identify the limiting distribution of
the distances C̃LIH . However, since additional efforts are needed to define properly

the subset of T̃
(1)
H corresponding to the asymptotic serving zone of P , we do not

provide details.

6.2 Total Fibre Lengths

Note that C̃LH = c(o, X̃H,o) and C̃LIH = c(o, Φ) + c(Φ, X̃H,o) are both defined

on the same probability space. In particular, it holds that C̃LH is stochastically
smaller than C̃LIH , i.e. P(C̃LH ≤ x) ≥ P(C̃LIH ≤ x) for all x > 0. In other words,
introducing an intermediate layer has on the one hand the undesirable effect of
increasing typical shortest-path lengths from an LLC to its associated HLC. On
the other hand, we have already seen in Section 5.2 that on the positive side, the
additional layer has the potential to decrease total fibre lengths substantially. In
general, this will not be true for networks, where LLC are distributed sparsely.
However, in the present subsection we observe that in the dense regime where
λL` → ∞, total fibre lengths become stochastically smaller when an intermediate
level is added.

Theorem 5 If λL` → ∞ and α < 1, then D∗HL/λ
L
` and D∗HIL,α/λ

L
` converge

almost surely to
∫
S∗
L
c(o, y)ν1(dy) and

∑M
i=1

∫
R∗
L,i
c(y, Z∗i )ν1(dy), respectively. In

particular, the asymptotic scaled total fibre length limλL`→∞
D∗HL/λ

L
` is stochasti-

cally larger than limλL`→∞
D∗HIL,α/λ

L
` .

Proof The first limit result is an immediate consequence of the strong law of large
numbers. Since α < 1 and limλL`→∞

#(R∗L,i ∩ {X∗L,m})/λL` = ν1(R∗L,i), we con-

clude that
∑M
i=1 c(o, Zi)(#(R∗L,i∩{X∗L,m}))α/λL` tends to 0 almost surely. Hence,

a second application of the law of large numbers yields the asserted asymptotic
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behaviour of D∗HIL,α/λ
L
` as λL` →∞. Finally, for the last claim we note that

∫
S∗
L

c(o, y)ν1(dy)−
M∑
i=1

∫
R∗
L,i

c(y, Z∗i )ν1(dy) =
M∑
i=1

∫
R∗
L,i

c(y, o)− c(y, Z∗i )ν1(dy),

and the right hand side is non-negative since the definition of R∗i implies that
c(y, o) ≥ c(y, Z∗i ) for all y ∈ R∗i .

7 Conclusions and Outlook

The present paper provides a substantial extension of the standard SSLM which
consists of just two levels of hierarchy and was thoroughly discussed for instance
in [4,13,16]. More precisely, we gave a detailed description of a multi-hierarchical
modelling approach for fixed-access networks. We investigated the effects on two
important cost functionals caused by the introduction of an additional (interme-
diate) level of hierarchy. Both numerical and theoretical evidence were provided
for the intuitive conjecture that in the new scenario, the typical shortest-path
length increases whereas the typical total fibre length should decrease. The mod-
elling approach is based on STIT tessellations for which the Palm version with an
appropriate simulation algorithm was deduced.

Possible future work could be extending the presented scenario interposing
even further network components between HLC and LLC beyond an ILC. This
means that we have at least four or even more components with different kind
of hierarchy in the access network. This should be a straightforward procedure.
To further increase the flexibility of the model, one can additionally think of ran-
domly choosing certain cells of the underlying STIT tessellation which are not
iterated further, e.g. some kind of a Bernoulli type thinning of cells. Of course, the
investigation of distributional properties of further cost functionals in fixed-access
telecommunication networks can be handled as well.
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