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Abstract

A parametric stochastic 3D model for the description of complex three-phase
microstructures is developed. Such materials occur for example in anodes of
solid oxide fuel cells (SOFC) which consist of pores, nickel (Ni) and yttria-
stabilized zirconia (YSZ). The model is constructed using tools from stochas-
tic geometry. More precisely, we model the backbones of the three phases
by a certain class of random geometric graphs called beta-skeletons. This
allows us to reproduce complete connectivity of all three phases as observed
in experimental image data of a pristine Ni-YSZ anode as well as the predic-
tion of volume fractions by model parameters. Finally a slightly generalized
version of this model enables a good fit to experimental image data with
respect to transport relevant microstructure characteristics and the length
of triple phase boundary. Model validation is performed by comparing ef-
fective transport properties from finite element (FE) simulations based on
3D-data from the stochastic model and from tomography of real Ni-YSZ an-
odes. Moreover, the virtual, but realistic Ni-YSZ microstructures can be used
for investigating the quantitative influence of microstructure characteristics
on various physical properties and consequently on the performance of the
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anode material.
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1. Introduction

Compared to conventional electricity generation the use of solid oxide
fuel cells (SOFC) leads to an improvement with respect to efficiency, reliabil-
ity and environmental impact. The electrodes of SOFC consist of materials
which allow electric, ionic, and gas transport. For this purpose porous com-5

posites of nickel (Ni) and yttria-stabilized zirconia (YSZ) are widely used.
In Ni-YSZ anodes oxygen ions and hydrogen are transported through the
YSZ phase and the pores, respectively, to the triple phase boundary (TPB),
where the chemical reaction resulting in free electrons takes place. The free
electrons are then transported through the Ni phase to the metallic inter-10

connector. It has been shown that properties of mass transport and charge
transfer in the anode and thus the performance of the SOFC are significantly
influenced by the Ni-YSZ microstructure, see e.g. [27]. Since the Ni-YSZ
microstructure is rather complex one is interested in relating its influence on
transport processes to a few microstructure characteristics. A possible ap-15

proach for investigating the relationship between microstructure characteris-
tics and properties of mass transport as well as charge transfer is based on
3D imaging of Ni-YSZ microstructures because 3D imaging allows the com-
putation of well-defined microstructure characteristics, e.g. volume fractions,
geometric tortuosities, length of TPB. The corresponding transport proper-20

ties like effective conductivity in Ni and YSZ can be obtained by numerical
simulations, e.g. by the finite element (FE) or the lattice Boltzmann method.
This approach enables a direct investigation of microstructure characteristics
and effective transport properties [14, 28, 32]. However, it has the disadvan-
tage that due to the high costs of 3D imaging the amount of experimental25

image data is limited, which is a barrier for a systematical investigation of
quantitative relationships between microstructure characteristics and the
corresponding effective materials properties.

An alternative approach is based on stochastic 3D modeling for the gener-
ation of virtual microstructures. These virtual microstructures are used as an30

input for numerical simulations and finally the microstructure characteristics
of the virtual structures can be related to the corresponding transport prop-
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erties. In case that the stochastic model generates virtual microstructures in
short time and the microstructure characteristics can be systematically var-
ied, the combination of stochastic microstructure simulations and numerical
transport simulations provides a large database for an investigation of the
microstructure influence on physical processes.5

During the last years, various models for the generation of virtual Ni-YSZ
anodes have been developed, where both the Ni- and YSZ phases are repre-
sented as a union of monodispersed [3, 12] or polydispersed balls[5, 16, 20]. In
these models the microstructures are iteratively generated by the aid of differ-
ent sphere-packing algorithms. A generalization to ellipsoidal and cylindrical10

particles was recently done in [2] and [26]. However, the existing microstruc-
ture models are not able to reproduce more complex shapes [27], and the con-
nectivity properties observed in experimental image data [15]. While these
approaches allowed qualitative conclusions about the relationships between
microstructure characteristics and physical properties, the quantification of15

these relationships and their applicability to real materials are still unclear.
Thus, in the present paper, we develop a parametric stochastic 3D mi-

crostructure model for generating three-phase microstructures with com-
pletely connected phases, which can be applied e.g. to simulate the 3D
microstructure of certain pristine porous Ni-YSZ anodes in short time. This20

model is different from the existing ones because the microstructure is di-
rectly constructed without any iterative procedure. The presented model is
based on methods from stochastic geometry, which have been successfully ap-
plied for various kinds of microstructure modeling, see [4] and the references
therein. Note that the model is not particle-based and it is possible to gen-25

erate a wide spectrum of virtual microstructures, where all three phases are
completely connected with probability 1. In particular, the model parameters
are fitted to experimental image data in which the three phases are completely
connected. The fit is done with respect to volume fraction, geodesic tortu-
osity, constrictivity measuring bottleneck effects within the phases, and the30

length of TPB. Furthermore, the model is validated by comparing effective
conductivities of experimental image data with those of the fitted virtual
microstructures for Ni- and YSZ phases, where effective conductivities are
simulated using the FE-method. In a forthcoming paper the parameters of
the stochastic microstructure model will be systematically varied in order35

to obtain a large database for investigating the quantitative relationships
between microstructure characteristics and effective physical properties of
Ni-YSZ anodes, as it was done for two-phase microstructures in [10] and
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[29]. With the effective transport properties and the length of TPB it is
possible to simulate the area specific resistance (ASR) of the anode by the
model proposed in [8], which allows to study the microstructure influence on
the ASR. Using this approach we intend to utilize virtual materials design in
finding an optimal constellation of parameters of the stochastic microstruc-5

ture model with respect to performance and lifetime of the electrode in order
to better understand the geometry of such an optimal structure.

The paper is organized as follows. In Section 2 the microstructure char-
acteristics considered in the present paper are described. The stochastic
microstructure model is introduced in Section 3, where some general prop-10

erties of the beta-skeleton are also discussed. After fitting the parameters
of the stochastic model to experimental image data and a validation of the
model in Section 4, Section 5 concludes the paper.

2. Microstructure characteristics

The 3D microstructure of porous Ni-YSZ anodes is considered in order to15

better understand the influence of the microstructure on the overall perfor-
mance of the cell. The challenge of parametric modeling of these three-phase
microstructures is to achieve a good fit with respect to the properties of real
materials (having the same phase composition). The properties that have
to be fitted are the transport relevant microstructure characteristics and the20

specific length of TPB. As the most relevant transport characteristics, fol-
lowing the argumentation in [10] and [14], we consider the volume fractions
of the three phases, the lengths of transport paths through the material and
the constrictivities, which measure the width of bottlenecks in a microstruc-
ture. Additionally we consider two further microstructure characteristics:25

The distribution of so-called chordlengths for measuring anisotropy effects in
Section 4.1, and the specific surface area between two of the three phases for
discussing limitations of the model in Section 4.4.

For each parameter constellation of the stochastic microstructure model
the model-based characteristics are expected values, i.e., microstructure char-30

acteristics of an observed sample are considered as random variables and they
are estimators for the model-based microstructure characteristics as shown
in Figure 1. It is reasonable to consider microstructure characteristics as
random variables since experimental image data represents only a cut-out
of the complete anode microstructure. Thus microstructure characteristics35

are random in the sense that they depend on the position at which the im-
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Figure 1: Interplay between model-based and estimated microstructure characteristics.

age is taken. For the same reason we consider the three phases (pores, YSZ
and Ni ) as stationary random sets denoted by Ξ1,Ξ2,Ξ3, see [4]. Note that
the boundary between two phases is considered to belong to both neighbor-
ing phases. The cutouts of the random sets Ξ1,Ξ2,Ξ3 within a rectangular
cuboid W = [0, w1]× [0, w2]× [0, w3], where w1, w2, w3 ∈ N are some natural5

numbers, form the Ni-YSZ microstructure in W . In this section we describe
the microstructure characteristics of a stationary random set Ξ.

When we fit the stochastic microstructure model to experimental image
data in Section 4 we intend to minimize the difference between microstructure
characteristics estimated from image data and the ones estimated on the basis10

of realizations of the model.

2.1. Volume fraction

The volume fraction of a stationary random set Ξ is defined by

p = Eν3(Ξ ∩W )/ν3(W ), (2.1)

where ν3 denotes the three-dimensional Lebesgue-measure, i.e. the volume
in 3D. Note that p does not depend on the specific choice of the observation15

window W. The experimental 3D image data provides information on a 3D
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grid. Thus we use the point count-method, see [4], for the estimation of p,
i.e., we count the number of all grid points belonging to Ξ and divide it by
the number of all grid points. This leads to an unbiased estimator of p.

2.2. Mean geodesic tortuosity

Mean geodesic tortuosity τW in the observation window W is defined as5

the expected length of a path going through Ξ ∩W in transport direction
from one side of the anode to the other side divided by the material thickness.
Note that in analyzing microstructures there exist many different concepts of
tortuosity. For an overview we refer to [6]. The concept of geodesic tortuosity,
which we use here, is also used in [29] for the prediction of effective transport10

properties by microstructure characteristics. To estimate τW from image
data, we approximate the path lengths in transport direction on the voxel
grid, see Figure 2. For this purpose we use Dijkstra’s algorithm, see e.g. [30].

Figure 2: Approximation of a shortest path on a grid. The transport path is represented
in orange. Note that 2D structures are shown for a better visualization, while all compu-
tations are done in 3D.

2.3. Constrictivity

As it was already mentioned in Section 1, constrictivity in the obser-15

vation window W denoted by βW is a measure for bottleneck effects in a
microstructure, which is based on the concept of the so-called continuous
phase size distribution and the geometrical simulation of mercury intrusion
porosimetry [22]. The strong influence of this microstructure characteris-
tic on effective transport properties in porous microstructures was recently20

shown in [10] and [29].
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Figure 3: The union of the blue and orange subsets is the part of the considered phase
that can be covered by disks of radius r such that these disks are completely contained in
the set. The orange subset is the part that can be filled by disks with radius r in transport
direction.

Constrictivity βW of a stationary random set Ξ in W is formally defined
as the squared ratio βW = (rmin,W/rmax,W )2. Here rmax,W is the maximum
radius r such that in expectation at least 50% of Ξ ∩ W can be covered
by balls of radius r, where these balls are completely contained in Ξ ∩W.
Furthermore, rmin,W is the maximum radius r such that in expectation at5

least 50% of Ξ ∩W can be filled by an intrusion of balls with radius r in
transport direction, see Figure 3. Since the intrusion in transport direction
determining rmin,W is strongly influenced by bottlenecks in Ξ∩W while rmax

is not, it holds that:

(a) rmin,W ≤ rmax,W and thus 0 ≤ βW ≤ 1,10

(b) if βW is close to 0, then there are many narrow constrictions in Ξ ∩W
and

(c) if βW = 1, then there are no constrictions at all.

To estimate βW from image data we use the algorithm described in [22].

2.4. Specific length of triple phase boundary15

The specific length δ of TPB is the length of TPB per unit volume,
mathematically defined as

δ =
1

ν3(W )
EH1(Ξ1 ∩ Ξ2 ∩ Ξ3 ∩W ), (2.2)
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where H1 denotes the one-dimensional Hausdorff-measure in R3, i.e. the
length of a one-dimensional (rectifiable) object in 3D. Note that δ does not
depend on the choice of the specific observation window W . The specific
length δ of TPB is an important characteristic for porous Ni-YSZ anodes
since the chemical reaction resulting in free electrons takes place at the TPB.5

Thus an increase of the length of TPB in the anode leads to a higher perfor-
mance of the cell. For more information about the role of TPB in Ni-YSZ
microstructures the reader is referred to [27].

For estimating δ from image data we use two different methods. The first
estimator denoted by δ̂1 just counts configurations of 8 neighboring voxels in10

the image which contain voxels from each of the three phases. The estimator
δ̂1 can be easily computed, but it is biased since we do not take into account
the spatial arrangement of TPB voxels. As a second estimation of δ we use
a more elaborate algorithm. The corresponding estimator is denoted by δ̂2.
For computing δ̂2 we skeletonize the TPB. Then δ̂2 is defined as the specific15

length of this skeleton.
In Section 4.2 we fit the parameters of our stochastic microstructure model

to experimental image data by an iterative optimization method, where the
cost function depends on relative deviations between microstructure charac-
teristics of experimental and simulated data. Here δ has to be estimated in20

each iteration step. Thus we compute the cost function with respect to the
estimator δ̂1. In Section 4.3 we validate the model by comparing the esti-
mators δ̂2 computed on the basis of experimental image data and simulated
data with fitted parameters. It should be noticed that a connected compo-
nent of TPB is only active for electrochemical reactions in the case where25

all three phases of the considered TPB component are connected with their
’base’. For example, the Ni phase at the TPB must be connected with the
current collector in order to enable harvesting of electrons produced by the
TPB-reaction. Similarly the YSZ phase must be connected with the elec-
trolyte to provide oxygen ions for the TPB-reaction. In real microstructures,30

degradation often leads to loss of connectivity and hence active and inac-
tive TPB have to be distinguished. In the present work, however, we intend
to simulate microstructures of pristine anodes, where all three phases are
completely percolating. Therfore, a distinction of active and inactive TPBs
becomes obsolete.35
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2.5. Distribution function of chord lengths

The chord length of a random set Ξ in direction v is a random variable,
defined as the length of a typical line segment in Ξ∩`, where ` is the line with
direction v containing the origin [24]. Comparing the distribution function
of chord lengths in different directions allows a quantification of anisotropy5

effects in stationary random sets, see Section 4.1. Note that in case of an
isotropic stationary random set, the distribution function of chord lengths
does not depend on the choice of v.

2.6. Specific area of interfaces

The specific area of an interface is the surface area per unit volume be-10

tween two phases, e.g. between pores and Ni. The specific area between
phases Ξi and Ξj, where i, j ∈ {1, 2, 3} and i 6= j is defined by

Ii,j =
1

ν3(W )
EH2(Ξi ∩ Ξj ∩W ), (2.3)

where H2 denotes the two-dimensional Hausdorff-measure in R3, i.e. the
area of a two-dimensional object in 3D. Note that Ii,j does not depend on
the specific choice of the observation window W . To estimate Ii,j we first15

determine all voxels at the boundary between Ξi and Ξj. The area of the
phase boundary is then estimated by a weighted sum of the boundary voxels
as it is described in [24].

3. Stochastic model

In this section we present the parametric stochastic microstructure model20

for the description and simulation of Ni-YSZ anodes. We start with a simple
model which is able to describe three-phase materials where all three phases
are completely connected with probability 1 for a certain constellation of
model parameters and the volume fractions can be easily expressed by the
model parameters. The corresponding formula is derived by a simulation25

study. However, this model is not yet flexible enough to describe the given
experimental image data with respect to constrictivity. At the end of this
section a generalization of the model is proposed, which solves this prob-
lem. The generalized model is finally fitted to experimental image data in
Section 4.30

The model is based on the following idea, which is visualized in Figure 4.
To begin with we consider three random point patterns in R3, where each
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Figure 4: Modeling idea for generating three-phase microstructures: Starting with three
random point patterns (left), three random graphs are constructed (right). Finally each
point in the observation window is attached to the phase the graph of which is closest to
the point, e.g., the point marked by a cross is attached to the phase corresponding to the
green graph.

of them is the vertex set of a random geometric graph, which is modeled
in a second step. The three random point patterns are modeled by three
independent homogeneous Poisson point processes in R3, see [17]. This means
that the points of each vertex set are located completely at random in the
three-dimensional space with a given intensity. Note that the intensity of a5

homogeneous Poisson point process is the expected number of points in the
unit cube [0, 1]3.

For modeling the edges of the random geometric graphs we use so-called
beta-skeletons, since for certain parameter constellations these graphs are
completely connected with probability 1. Then, we have three model graphs,10

i.e. one for each phase. In the last step each point x ∈ R3 is assigned to the
phase the corresponding graph of which is closest to x. In the image on the
right-hand side of Figure 4, the point x ∈ R3, labeled by a green cross, is
attached to the phase corresponding to the green graph.

3.1. Beta-skeletons15

For a given set of vertices in the Euclidean space, the beta-skeleton intro-
duced in [18] defines a rule for putting edges depending on a parameter b ≥ 1.
This parameter controls the number of edges in the graph. In the present pa-
per, we use beta-skeletons for modeling the random geometric graphs, which
build the backbone of the three phases. Furthermore, we derive a formula20
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for the expected total edge length of the beta-skeleton on a Poisson point
process, which is strongly correlated with the volume fractions of phases in
the stochastic model, see Section 3.2.2. Note that this result holds for an
arbitrary dimension d ∈ N.

Let d ∈ N, b ≥ 1 and ϕ be an arbitrary (locally finite) set of vertices in Rd.5

Then, the edge set Eb of the beta-skeleton on ϕ with parameter b, denoted
by Gb(ϕ) = (ϕ,Eb), is defined as follows. Let x, y ∈ ϕ. Denote

m(1)
x,y =

b

2
x+

(
1− b

2

)
y, m(2)

x,y =
b

2
y +

(
1− b

2

)
x (3.1)

and
Ab(x, y) = B(m(1)

x,y, |m(1)
x,y − y|) ∩B(m(2)

x,y, |m(2)
x,y − x|), (3.2)

where B(x, r) denotes the open sphere centered at x with radius r > 0. Then,
10

Eb = {(x, y) : x, y ∈ ϕ, (ϕ \ {x, y}) ∩ Ab(x, y) = ∅}. (3.3)

Figure 5: Critical region Ab(x, y) for b ∈ {1, 3/2, 2}.

This means that for every pair of distinct vertices x, y ∈ ϕ two spheres are
defined where the midpoints m

(1)
x,y, m

(2)
x,y and the radii |m(1)

x,y − y|, |m(2)
x,y − x|

of the spheres depend on the choice of the parameter b. The intersection
of these two spheres defines the critical region Ab(x, y). Then, x and y are
connected by an edge in Gb(ϕ) if there is no third point z ∈ ϕ \ {x, y} with15

z ∈ Ab(x, y). For d = 2 the critical region Ab(x, y) is visualized for different
parameters b in Figure 5.

It is clear that for increasing b the critical region Ab(x, y) is increasing.
Thus for a given set of vertices ϕ the number of edges per unit volume is
monotonously decreasing with increasing b. Consequently the beta-skeleton20

on ϕ is completely connected for all 1 ≤ b ≤ 2 if it is completely connected
for b = 2. In case of b = 2 the beta-skeleton coincides with the so-called
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relative neighborhood graph [18]. Since the relative neighborhood graph is
completely connected with probability 1, see [13], if the vertex set is given by
a homogeneous Poisson point process, the beta-skeleton on a Poisson point
process is completely connected with probability 1 for 1 ≤ b ≤ 2.

Besides these qualitative properties of the beta-skeleton it is also possible5

to derive a formula for the expected total edge length of the beta-skeleton on a
homogeneous Poisson point process in the unit cube [0, 1]d. In [1] a formula
for the expected total edge length for a wider class of random geometric
graphs, where the vertices are generated by a Poisson point process, was
given for d = 2. In the microstructure model presented here, the result for10

d = 3 is used to predict the volume fractions of pores, YSZ and Ni by the
aid of model parameters, see Section 3.2. To formulate the following result
we denote the line segment between points x, y ∈ ϕ by [x, y] and we write∑ 6=

x,y∈ϕ for the sum over all pairs of distinct points x, y ∈ ϕ.

Proposition 1. Let d ∈ N, 1 ≤ b ≤ 2 and X be a homogeneous Poisson point15

process in Rd with intensity λ > 0. Let Gb(X) = (X,Eb) be the beta-skeleton
on X with parameter b. Then, the expected total edge length

eλ,b =
1

2
E
∑6=

x,y∈X

H1([x, y] ∩ [0, 1]d) (3.4)

of Gb(X) in [0, 1]d is given by

eλ,b =
2d−1+ 1

dλ1− 1
dπ

1
2d

bd+1d
(∫ arccos(1− 1

b
)

0
sind(t) dt

)1+ 1
d

(
Γ
(
d+1

2

))1+ 1
d Γ
(

1
d

)
Γ
(
d
2

+ 1
) , (3.5)

where Γ : [0,∞) −→ [0,∞) denotes the gamma function. For d = 3 this
term simplifies to20

eλ,b = 8Γ

(
4

3

)
3

√
12λ2

π(3b− 1)4
. (3.6)

A proof of Proposition 1 is given in the Appendix.

3.2. Three-phase microstructure model

3.2.1. Model description

The three-phase microstructure model is defined by means of three beta-
skeletons. Let X1, X2, X3 be independent homogeneous Poisson point pro-25

cesses with intensities λ1, λ2, λ3 > 0. Let b1, b2, b3 ≥ 1 and defineGi = Gbi(Xi)
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for each i ∈ {1, 2, 3}, i.e., Gi is the beta-skeleton with parameter bi and vertex
set Xi.

Then, the three phases are defined by random sets Ξi, i = 1, 2, 3, such
that

x ∈ Ξi iff d(x,Gi) ≤ min
j∈{1,2,3}

d(x,Gj) (3.7)

where d(x,G) = mine∈E miny∈e |x − y| is the minimum Euclidean distance5

from x to the graph G = (X,E). Note that the union of all edges in Gi is
contained in Ξi by definition. Since Gi is completely connected if 1 ≤ bi ≤ 2,
it holds that, in this case Ξi is completely connected for each i ∈ {1, 2, 3}.

Figure 6: Realizations of the three-phase microstructure model with W = [0, 300]3 and
the following parameter constellations: Left: λ1 = λ2 = λ3 = 2 · 10−5, b1 = b2 = b3 = 1.5.
Right: λ1 = 3 · 10−5, λ2 = λ3 = 2 · 10−5, b1 = 2, b2 = b3 = 1. The phases Ξ1,Ξ2,Ξ3 are
represented in black, dark gray and light gray, respectively.

In order to estimate the microstructure characteristics described in Sec-
tion 2 the three-phase microstructure model is simulated on a voxel grid in10

a rectangular cuboid W . Then, the microstructure characteristics are esti-
mated on the basis of these simulations. To simulate Ξ1,Ξ2,Ξ3 we proceed in
four steps. At first the three independent Poisson point processes are simu-
lated [21]. In a second step the beta-skeletons are computed by checking for
each pair of points if they are connected by an edge of the corresponding beta-15

skeleton. Then the three beta-skeletons are discretized on the voxel grid. In
the last step the algorithm given in [9] is used to compute the distance from
each voxel x to each of the three discretized beta-skeletons. Thus we can
determine the phase which x belongs to. Two realizations of the microstruc-
ture model obtained in this way in W = [0, 300]3 are visualized in Figure 6.20
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In order to avoid edge effects we apply a so-called plus-sampling, i.e., we
simulate the virtual microstructures on a larger domain W ′ with W ⊂ W ′

and estimate the microstructure characteristics on W .
Based on simulations of the three-phase microstructure model, we discuss

the influence of model parameters on volume fractions, specific areas of inter-5

faces and constrictivities of the three phases. While it is possible to obtain
arbitrary constellations of volume fractions and predicting them on the basis
of model parameters, the model is not flexible enough to reproduce a wide
range of constrictivities for given volume fractions.

3.2.2. Volume fraction10

Since each phase of the three-phase microstructure model is given by all
those points which are closer to the graph of the considered phase than to the
other two graphs, a correlation between the total edge lengths of the three
graphs and the (empirical) volume fraction of the corresponding phases is
intuitively expected. We analyze this correlation on the basis of simulations
in W = [0, 500]3 with a plus-sampling on W ′ = [−50, 550]3. Here we simulate
one realization for each parameter constellation of the set

{(λ1,λ2, λ3, b1, b2, b3) ∈ {9.26 · 10−7, 1.85 · 10−6, 2.78 · 10−6}3

× {1, 3/2, 2}3 : λ1 ≥ λ2 ≥ λ3}. (3.8)

Figure 7: The volume fractions of phases can be predicted by a function of the parameters
λ1, λ2, λ3, b1, b2, b3 using a linear regression model.

14



We describe the relationship between (empirical) volume fractions and
the values

Vi =
eλi,bi

eλ1,b1 + eλ2,b2 + eλ3,b3
(3.9)

by the following linear regression model

p̂i = 0.9132Vi + 0.0292 + ε1,i (3.10)

for each i ∈ {1, 2, 3}, where ε1,i is normally distributed with mean 0 and
standard deviation 0.013, i.e. ε1,i ∼ N(0, 0.0132). Besides the good visual fit,5

as shown in Figure 7, the coefficient of determination R2 = 0.99 indicates
a high predictability of the volume fractions by the total edge lengths and
therefore, in view of Equation (3.6), by the model parameters. In order to
validate the obtained regression model, 100 further realizations have been
simulated where the parameters were randomly chosen. This means that all10

parameters are independently and uniformly distributed in certain intervals,
to be more precise λi ∼ U(9.26 · 10−7, 2.78 · 10−6) and bi ∼ U([1, 2]) for
each i ∈ {1, 2, 3}. The errors p̂i − 0.9132Vi − 0.0292 obtained by simulation
have (empirical) mean and (empirical) standard deviation of 0.01 and 0.017,
respectively, which shows that the linear regression model fits the relationship15

between volume fractions and expected total edge lengths very well.
The derived relationship between expected total edge lengths and vol-

ume fractions allows us to reduce the vector of (free) model parameters
(λ1, λ2, λ3, b1, b2, b3) under the condition that the volume fractions p1, p2 and
p3 are fixed. Namely using Equations (3.6) and (3.10), for given volume20

fractions and given model parameters λ1, b1, b2, b3, we get the approximation

λi ≈ λ1

(
pi
p1

)3/2(
3bi − 1

3b1 − 1

)2

(3.11)

for each i ∈ {2, 3}. This approximation can be improved by solving Equa-
tion (3.10) for λ2 and λ3.

3.2.3. Specific area of interfaces25

Besides the relationship derived in Section 3.2.2 between model param-
eters and volume fractions of the three phases there is a strong correlation
between volume fractions and specific areas of interfaces. Here an analogy to
very simple three-phase models, so-called independent tiling models can be
drawn.30
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Figure 8: Relationship between the expressions (Ii,j + Ii,k)/(Ii,j + Ij,k) and (pi(pj +
pk))/(pj(pi+pk)) estimated from simulated three-phase microstructures. The line through
the origin with slope 1 is drawn in red.

Consider the following regular tilings of space: A square grid in 2D, a
hexagonal grid in 2D, and a cubic grid in 3D. Then, the corresponding inde-
pendent tiling model of such grids is defined in the following way: The origin
is located at random in one of the cells of the considered grid and each cell is
independently assigned to Ξi with probability pi for each i ∈ {1, 2, 3}, where5

p1, p2, p3 ≥ 0 and p1 + p2 + p3 = 1. For these three independent tiling models
it is not difficult to show that the following relationship

Ii,j + Ii,k
Ii,j + Ij,k

=
pi(pj + pk)

pj(pi + pk)
(3.12)

holds. We denote the left-hand side by Si,j,k = (Ii,j + Ii,k)/(Ii,j + Ij,k) and
the right-hand side by Ri,j,k = (pi(pj + pk))/(pj(pi + pk)) for abbreviation.

Simulating 3D realizations with our microstructure model for the same10

parameter set as in Section 3.2.2, we can estimate Si,j,k and Ri,j,k. The cor-

responding estimators are denoted by Ŝi,j,k = (Îi,j + Îi,k)/(Îi,j + Îj,k) and

R̂i,j,k = (p̂i(p̂j + p̂k))/(p̂j(p̂i + p̂k)). Figure 8 shows that the developed mi-
crostructure model behaves rather similar as the independent tiling model
with respect to the specific areas of interfaces. The reason for this analogy15

might be the strong independence property between the three graphs. We
come back to this analogy in Section 4.4.
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3.2.4. Constrictivity

Figure 9: Relationship between constrictivity βi,W and pi estimated from simulated three-
phase microstructures. The model introduced in Section 3.2.1 is not able to generate
constrictivities in a sufficiently wide range for a given volume fraction. The red line shows
the fit by linear regression between log p̂i and β̂i,W .

For the same realizations of our microstructure model that were used in
Section 3.2.2 for the investigation of the relationship between model param-
eters and volume fractions, the constrictivities β1,W , β2,W , β3,W with W =
[0, 500]3 have been estimated. The results are visualized in Figure 9. One5

can observe that the model introduced in Section 3.2.1 is not flexible enough
with respect to constrictivity since there is a strong correlation between vol-
ume fraction and constrictivity of the same phase. This correlation can be
modeled by

β̂i,W = 0.35 log p̂i + 0.8 + ε2,i (3.13)

with ε2,i ∼ N(0, 0.0282). The coefficient of determination is 0.95.10

This absence of flexibility regarding constrictivity can be explained by
the fact that each phase is in some sense homogeneously located around the
corresponding graph. Homogeneity means here that there are no regions of
the graph which tend to attract the corresponding phase more than oth-
ers. Thus there are less bottlenecks in the phases than this is required for15

a systematic variation of volume fractions and constrictivities in virtual mi-
crostructures. This problem will be solved by a generalization of the model
in Section 3.3. Furthermore, in the context of the generalized model, we will
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describe the estimation of all model parameters in order to achieve a good
fit to experimental image data of three-phase microstructures in Section 4.

Nevertheless, we have created a simple parametric stochastic microstruc-
ture model for three phase materials where it is possible to choose the param-
eters in such a way that all phases are completely connected with probability5

1 and the volume fractions of phases can be predicted by the aid of model
parameters. Note that the model can be easily simulated without any kind
of iterative procedure.

3.3. Generalization of the model

The generalized three-phase microstructure model is defined in the same10

way as the model presented in Section 3.2, but when we decide to which phase
an arbitrary point x ∈ W belongs, we do not use the Euclidean distance
anymore. Instead, we use a parametric distance such that by variation of the
parameter the corresponding phase is more or less accumulated around the
vertices of the graph. The generalized model is formally defined as follows.15

Let γ1, γ2, γ3 ≥ 1 and let G1, G2, G3 be the beta-skeletons introduced in
Section 3.2. The three phases are now defined by random sets Ξi, i = 1, 2, 3,
such that

x ∈ Ξi iff d′γi(x,Gi) ≤ min
j∈{1,2,3}

d′γj(x,Gj), (3.14)

where
d′γi(x,Gi) = min{γid(x,Gi), d(x,Xi)}. (3.15)

Here d(x,Xi) = miny∈Xi
|x − y| is the minimum Euclidean distance from x20

to the set of vertices Xi.
The new distance measure d′γ fulfills d′γ(x,G) = 0 for each x located on the

edge set of the graph G and for each admissible γ. Thus in the generalized
model it is still valid that all three phases are completely connected with
probability 1 in case that 1 ≤ bi ≤ 2 for each i ∈ {1, 2, 3}. If γ = 1 it holds25

that d′γ(x,G) = d(x,G), i.e. d′γ(x,G) coincides with the Euclidean distance
from x to G. With increasing γ the distance from x to the graph increases.
However, this increase becomes smaller the closer x is to the nearest vertex
of the graph G as shown in Figure 10.

Figure 11 shows the development of constrictivity in case that the param-30

eters λ1, λ2, λ3, b1, b2, b3 are fixed, where λ1 = λ2 = λ3 = 1.25 ·10−5, b1 = b2 =
b3 = 1.5 and γ1 = γ2 = γ3 = γ where γ is varied between 1 and 10. Note
that in this case it holds that p1 = p2 = p3 = 1/3. One can observe that with
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Figure 10: Contour lines of the distance to a given graph represented in blue with respect
to d′γ for γ = 2 (left) and γ = 4 (right).

increasing γ, constrictivity decreases for γ ≥ 2. This is not surprising due
to the definition of d′γ wherein each phase is more accumulated around the
vertices with increasing γ while the volume fraction does not change. This
leads to the occurrence of bottlenecks and thus to decreasing constrictivities.
The small increase of constrictivity for γ < 2 is due to a faster decrease of5

rmax than rmin for small γ.
Finally, in a last step, the model is further generalized. The boundary

of the three phases is smoothed in order to have the possibility to decrease
the length of TPB. For this purpose we define a kind of Gaussian smoothing
for three-phase microstructures. At first we smooth the boundary between10

pores and the union of Ni and YSZ phases by a Gaussian smoothing. In a
second step the boundary between Ni and YSZ phases is also smoothed by
a Gaussian smoothing.

We consider a function F on R3, which allocates a real number to each
voxel according to the phase x belongs to. Furthermore, let θ > 0 and15

consider the function

ϕF (x) =

∫
R3 F (y) · exp(− |x−y|

2

2θ2
) dy∫

R3 exp(− |x−y|2
2θ2

) dy
(3.16)

for each x ∈ R3 ∩ W . In particular, we choose the function F1 on R3 as
F1(x) = 1 if x ∈ Ξ1 and F1(x) = 2 otherwise. Moreover, we define the
function F2 on R3 by F2(x) = 3/2 if x ∈ Ξ1, F2(x) = 2 if x ∈ Ξ2 and F2(x) = 1
otherwise. Then, the phases of the smoothed microstructure, denoted by20
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Figure 11: Constrictivity β̂i over γ estimated for the three-phase microstructure model
with parameters λ1 = λ2 = λ3 = 1.25 · 10−5, b1 = b2 = b3 = 1.5, γ1 = γ2 = γ3 = γ. For
each parameter set, 9 realizations on W = [0, 500]3 are simulated.

Ξ′1,Ξ
′
2,Ξ

′
3, are given by Ξ′1 = {x ∈ R3 : ϕF1(x) ≤ 1}, Ξ′2 = {x ∈ R3 :

ϕF1(x) ≥ 1, ϕF2(x) ≤ 3/2} and Ξ′3 = {x ∈ R3 : ϕF1(x) ≥ 1, ϕF2(x) ≥ 3/2}.
For simulation purposes, the smoothing is applied on the discretized mi-

crostructure.Thus to compute ϕF1 and ϕF2 , we approximate the integrals in
the definition of ϕF by sums, i.e., ϕF is approximated by ϕ̂F defined by5

ϕ̂F (x) =

∑
y∈V F (y) · exp(− |x−y|

2

2θ2
)∑

y∈V exp(− |x−y|2
2θ2

)
, (3.17)

for each x ∈ V , where V denotes the set of all voxels in W .
After the application of smoothing the complete connectivity of the three

phases can not be guaranteed in general. However, simulations show that for
small values of the smoothing parameter θ the connectivity of the phases is
still very good, see Table 2 in Section 4.1.10

Note that the three-phase microstructure model originally introduced in
Section 3.2.1 has been generalized such that the number of parameters is
increased from 6 to 10. By this generalization a better control over constric-
tivity of the phases and over the length of TPB is achieved.
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4. Model fitting and validation

4.1. Image data of Ni-YSZ anodes

Having defined the generalized three-phase microstructure model we show
that this model is able to describe complex 3D experimental image data repre-
senting real Ni-YSZ anodes. We fit our model to the fine Ni-YSZ microstruc-5

ture in SOFC anodes before degradation which was recently described and
analyzed in [25]. The data obtained by FIB-tomography is visualized in
Figure 12. The data represents a Ni-YSZ anode on a rectangular cuboid
W = [0, 20µm]× [0, 25µm]× [0, 15µm] with a resolution of 30nm.

Figure 12: Left: 3D experimental image data of Ni-YSZ anodes. Pores are represented in
black, the YSZ phase in dark gray and the Ni phase in light gray. Center: Scaled image
data. Right: Simulated microstructure with fitted parameters.

In experimental image data anisotropy effects with respect to chord-length10

distributions can be observed in Figure 13. For all three phases and for all
lengths greater than 1 µm, the estimated distribution functions of chord
lengths in z− direction is smaller than the distribution functions in x− and
y− direction. This indicates that all three phases are elongated in z− direc-
tion.15

Since the considered material is not expected to have such anisotropy,
these effects in experimental image data are ascribed to FIB-imaging. Thus
we scale the image data in order to obtain an isotropic structure. Note that a
scaling of the image data influences TPB since the scaling changes the voxel
size. However, different kinds of scaling have a different influence on TPB.20

In case that scaling is combined with a smoothing of the image the TPB
decreases.
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Figure 13: Distribution functions of chord lengths with respect to the three main directions
estimated from experimental image data. The black (red, blue) curve represents the
distribution functions of chord lengths in x− (y−, z−) direction. From left to right:
Distribution functions of chord lengths for pores, YSZ and Ni.

Figure 14: Nearest-neighbor interpolation in 2D. The original voxel grid is represented in
blue, the transformed voxel grid in orange. The centers of voxels are represented by small
disks in the corresponding colour.

For the purpose of scaling we use the so-called nearest-neighbor interpo-
lation visualized in Figure 14. It turns out that a scale of the z−direction
by 0.88 leads to the best result with respect to the accordance of distribu-
tion functions of chord lengths in the three main directions. After scaling
we obtain a new voxel grid and we have to determine the phase of each of5

these new voxels. For this purpose, for each center c of a new voxel v we
consider the voxel w in the original grid the center of which is closest to c.
Then, the voxel v belongs to the same phase as w. Figure 15 shows that
the scaled image can be considered as isotropic with respect to chordlength
distributions. The result of scaling is visualized in the center of Figure 12.10

Table 1 shows the microstructure characteristics described in Section 2 for
experimental image data before and after the scaling. The transport relevant
characteristics are computed with respect to the transport directions in the
Ni-YSZ anode. It can be observed that the characteristics are hardly changed
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Figure 15: Distribution functions of chord lengths in the three main directions estimated
from transformed image data. The black (red, blue) curve represents the distribution
functions of chord lengths in x− (y−, z−) direction. From left to right: Distribution
functions of chord lengths for pores, YSZ phase and Ni phase.

p̂1 p̂2 p̂3 τ̂1 τ̂2 τ̂3 β̂1 β̂2 β̂3 δ̂1
Tomo. 0.26 0.42 0.32 1.28 1.11 1.18 0.30 0.41 0.29 0.0033

Tomo. scaled 0.25 0.42 0.33 1.26 1.10 1.17 0.31 0.42 0.33 0.0036
Simulation 0.28 0.40 0.32 1.17 1.10 1.13 0.24 0.44 0.33 0.0035

Table 1: Comparison of microstructure characteristics for scaled tomography data, tomog-
raphy data and simulated data. The different phases are numbered in the following way:
1 - Pores, 2 - YSZ, 3 - Ni.

by the scaling.
In experimental image data it can be seen that the three phases are almost

completely connected. As a measure for connectivity we compute the fraction
ci,x(ci,y, ci,z) of each phase i ∈ {1, 2, 3} that is connected in x − (y−, z−)
direction. The results are given in Table 2. All values are close to one,5

which indicates a high connectivity. Thus it is appropriate to model the
given experimental image data by a stochastic model that reproduces these
connectivity properties.

c1,x c1,y c1,z c2,x c2,y c2,z c3,x c3,y c3,z
Tomo. 0.987 0.985 0.987 1.000 1.000 1.000 0.986 0.987 0.986

Tomo. scaled 0.988 0.985 0.987 0.999 0.999 0.999 0.986 0.987 0.986
Simulation 1.000 1.000 1.000 0.997 0.997 0.997 1.000 1.000 1.000

Table 2: Comparison of connectivity for tomography data, scaled tomography data and
simulated data. For each i ∈ {1, 2, 3} the value ci,x denotes the fraction of the i-th phase
that is connected in x−direction. The definition of ci,y and ci,z is analogous. The different
phases are numbered in the following way: 1 - Pores, 2 - YSZ, 3 - Ni.
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4.2. Fit of model parameters to experimental image data

Moreover, in Table 1 microstructure characteristics of experimental image
data and the stochastic model are compared. Note that the parameters of
the stochastic model are fitted to the volume fractions, length of TPB and
to geodesic tortuosities as well as constrictivities of Ni and YSZ, i.e., we5

minimize the following cost function of relative errors between microstructure
characteristics of simulated and scaled image data:

3
3∑
i=2

|p̂i,sim − pi|
pi

+ 2
3∑
i=2

|β̂i,sim − βi|
βi

+
3∑
i=2

|τ̂i,sim − τi|
τi

+
|δ̂1,sim − δ1|

δ1

. (4.1)

For this purpose we use the Nelder-Mead method introduced in [23]. This
method, also called downhill-simplex method is a direct search method, i.e.,
it is used for non-linear optimization without using derivatives of the func-10

tion that has to be minimized. Although there are not many results about
convergence of this method it is successfully used in many applications. This
is adequate here since we do not need to find the best, but a sufficiently good
parameter constellation, which shows that the model is able to generate real-
istic microstructures. For more information about the Nelder-Mead method15

the reader is referred to [7].

Parameters Fitted values
λ1 0.87µm−3

λ2 1.18µm−3

λ3 0.95µm−3

b1 2.11
b2 1.97
b3 1.94
γ1 4.47
γ2 4.31
γ3 4.12
θ 0.69

Table 3: Parameters fitted by the Nelder-Mead method.

The microstructure characteristics for a certain parameter set are esti-
mated on the basis of simulations on W = [0, 15µm]3 with voxel size 30nm.
By the Nelder-Mead method the optimal parameter set given in Table 3 is
obtained. It leads to a very good fit with respect to the microstructure char-20

acteristics that are considered in the cost function, i.e. p2, p3, β2, β3, τ2, τ3, δ1.
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Note that the remaining characteristics mean geodesic tortuosity τ1 and con-
strictivity β1 of pores are not taken into account in the cost function. How-
ever, the microstructure characteristics of the simulated microstructures are
quite similar to the ones of experimental data. Moreover, note that the fitting
procedure leads to b1 = 2.11 > 2. Thus the complete connectivity of Ξ1 is not5

theoretically guaranteed. However, computation of connectivity properties,
see Table 2 in Section 4.1, shows that this parameter constellation does also
lead to almost complete connectivity of Ξ1. In the considered realizations the
phase Ξ1 is even completely connected. Note that the values in Table 2 con-
cerning Ni and YSZ phases that are smaller than 1 are caused by edge effects.10

4.3. Model validation

To validate the model introduced in Section 3.3 the ratio between ef-
fective and intrinsic conductivities denoted by σeff and σ0, respectively, of
Ni and YSZ phases are computed using the FE-method and the length of15

TPB is computed by the estimator δ̂2 described in Section 2.4. Note that
FE-simulations have been performed by the software GeoDict [11].

σeff/σ0 for YSZ phase σeff/σ0 for Ni phase δ̂2
Tomo. 0.154 0.074 2.34µm−2

Tomo. scaled 0.162 0.078 2.53µm−2

Simulation 0.152 0.087 2.77µm−2

Table 4: Comparison of effective conductivities for Ni and YSZ phases and of the estimated
TPB for tomography data, scaled tomography data and simulated data.

The results are given in Table 4. Note that the three characteristics con-
sidered in this table are not used for model fitting. Nevertheless, we have
a good accordance between simulated effective conductivities and lengths of20

TPB. Especially the effective conductivities of the YSZ phase for experimen-
tal and simulated image data are quite close to each other. The model is
thus able to capture these characteristics of Ni-YSZ anodes which are most
important for the performance of the cell.

4.4. Specific area at phase boundaries - limitations of the model25

Table 5 shows limitations of the stochastic microstructure model intro-
duced in Section 3.3 since the model is not flexible enough with respect to
the specific area at the phase boundaries.

25



Î1,2 Î1,3 Î2,3
Tomo. 1.01µm−1 0.30µm−1 1.22µm−1

Tomo. scaled 1.05µm−1 0.31µm−1 1.27µm−1

Simulation 0.94µm−1 0.75µm−1 0.99µm−1

Table 5: Comparison of specific areas of interfaces between pores and YSZ phase, pores
and Ni phase, YSZ and Ni phases for tomography data, scaled tomography data and
simulated data.

In experimental image data the estimated specific area of the interface
between pores and Ni phase (I1,3) is much smaller than in simulated data.
Nonetheless, the estimated specific surface areas of pores and YSZ phase (I1,2)
and between YSZ phase and Ni phase (I2,3) coincide well for experimental
and simulated image data.5

Recall that the fit of the shape parameters γ1, γ2, γ3 leads to very similar
values, i.e. (γ1, γ2, γ3) = (4.47, 4.31, 4.12). If γ1 = γ2 = γ3, we would expect
that the relationship

Si,j,k =
Ii,j + Ii,k
Ii,j + Ij,k

≈ pi(pj + pk)

pj(pi + pk)
= Ri,j,k, (4.2)

discussed in Section 3.2.3 is still valid. Table 6 shows the estimated values
of the left- and right-hand side for the simulated structure. Although the10

equality γ1 = γ2 = γ3 does not hold in our case, the values of the estimators
Ŝi,j,k and R̂i,j,k are very close to each other.

i j Ŝi,j,k R̂i,j,k
1 2 0.88 0.84
2 3 1.11 1.10
3 1 1.03 1.08

Table 6: Comparison of Si,j,k and Ri,j,k estimated from simulated data.

Summarizing it turns out that the model is limited in the way that the
specific areas of interfaces between the phases are not represented well.
Nevertheless, the developed three-phase microstructure model matches sev-15

eral microstructure characteristics, in particular those which are the most
important ones with respect to electric and ionic conductivity as well as the
length of TPB.

26



5. Conclusion and outlook

In the present paper a parametric stochastic microstructure model for de-
scription and simulation of three-phase Ni-YSZ anodes was developed using
methods from stochastic geometry. The model is constructed such that for
various parameter sets all three phases are completely connected with prob-5

ability 1. Furthermore, we were able to fit the parameters of our model to
experimental 3D image data.

We started with a model consisting of 6 parameters, where three beta-
skeletons on homogeneous Poisson point processes were modeled. Each graph
builds the backbone of one of the three phases. Each phase is then given by10

these points which are closer (with respect to the Euclidean distance) to the
corresponding graph than to the other two graphs. For this model a rela-
tionship between the expected total edge length of the three beta-skeletons
and the volume fraction of the phases was established by a simulation study.
Thus it is possible to describe three-phase microstructures with completely15

connected phases and to adjust the volume fraction by the model parame-
ters. For fitting the model to experimental image data a generalization of
the model was necessary. In order to determine to which phase a certain
point belongs, we consider a (modified) parametric distance to the three
graphs and the boundary of the three phases is smoothed according to an20

additional parameter. Finally we arrive at a 10-parametric model, which is
fitted successfully to experimental image data with respect to the following
transport relevant microstructure characteristics: Volume fractions, mean
geodesic tortuosities, constrictivities of the three phases and the length of
TPB. Note that the developed model can be easily simulated in short time,25

which is also caused by the fact that the simulation does not involve any
iterative procedure.

Using the FE-method the effective conductivities in the Ni and YSZ
phases of simulated and experimental data have been computed. It turned
out that experimental and simulated data are in good accordance to each30

other. This shows that the realizations of the model can be considered as real-
istic Ni-YSZ microstructures. Moreover, we were able to reduce the complex
information of the 3D images to 10 real-valued parameters, which contain
the decisive information about conductivity in the Ni and YSZ phases.

In further work we will vary the parameters of the stochastic model in35

order to obtain virtual, but realistic Ni-YSZ microstructures with different
transport relevant microstructure characteristics. Using the FE-method and
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simulating the anode reaction mechanism on these virtual structures we can
generate a large database in order to efficiently investigate the quantitative
relationship between microstructure characteristics and the anode perfor-
mance. The results of such an investigation can be validated by a few ex-
perimental measurements of real anodes. Therefore, this approach, based on5

virtual materials design performed by stochastic modeling, can be used for
reliable microstructure optimization with a reduced experimental effort.

Note that the presented approach can be modified in different ways for
modeling three-phase microstructures. In particular one could think of a
modification towards Ni-YSZ microstructures with a bimodal pore size dis-10

tribution, which was observed for the data presented in [31]. For this purpose,
it might be possible to use other point process models for the vertices of the
graph and to incorporate dependencies between the three point processes, in-
stead of the model generalization considered in Sectio 3.3. Moreover, another
class of connected geometric graphs can be chosen instead of the beta-skeleton15

for modeling the edges. So the presented approach opens new possiblities in
the modeling of three-phase microstructures, which can be used in future for
optimization of electrode microstructures by virtual materials design.
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Appendix A.

Proof of Proposition 1. At first, note that Ab(x, y) is the union of two equally
sized hyperspherical caps. The height of these hyperspherical caps is given
by h = |x− y|/2 and the radius of the corresponding sphere is

r = |(b/2)x+ (1− b/2)y − y| = b/2 · |x− y|. (A.1)

Due to results from [19] it is not difficult to see that30

νd(Ab(x, y)) =
2

Γ
(
d+1

2

)π d−1
2

(
b

2
|x− y|

)d ∫ arccos(1− 1
b
)

0

sind(t) dt. (A.2)
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Now we continue with the calculation of eλ,b where we use the notation

α = λνd(Ab(x, y))/|x− y|d. (A.3)

By the Slivnyak-Mecke theorem, see Theorem 3.3 in [21], we obtain

eλ,b =
λ2

2

∫
Rd

∫
Rd

P (X ∩ Ab(x, y) = ∅)H1([x, y] ∩ [0, 1]d) dxdy,

=
λ2

2

∫
Rd

∫
Rd

∫ 1

0

1(µx+ (1− µ)y ∈ [0, 1]d)|x− y|

exp(−α|x− y|d) dµdxdy. (A.4)

By the substitution x = z + y we get

eλ,b =
λ2

2

∫
Rd

∫
Rd

∫ 1

0

1(µz + y ∈ [0, 1]d)|z| exp(−α|z|d) dµdzdy

Fubini
=

λ2

2

∫
Rd

∫ 1

0

∫
Rd

1(y ∈ [0, 1]d − µz)|z| exp(−α|z|d) dydµdz

=
λ2

2

∫
Rd

|z| exp(−α|z|d) dz = dκdλ
2

∫ ∞
0

td exp(−αtd) dt, (A.5)

where last line of (A.5) is obtained by substitution of Euclidean coordinates
by spherical coordinates. Here κd = πd/2/Γ(d/2 + 1) denotes the volume of
the d-dimensional ball. Integration by parts leads to the claim

eλ,b =
dκdλ

2

2

((
−t
dα

exp(−αtd)
)∣∣∣∣∞

0

+

∫ ∞
0

1

dα
exp(−αtd) dt

)
=
κdλ

2

2α

∫ ∞
0

exp(−αtd) dt =
κdλ

2

2dα1+ 1
d

Γ

(
1

d

)
=

2d−1+ 1
dλ1− 1

dπ
1
2d

bd+1d
(∫ arccos(1− 1

b
)

0
sind(t) dt

)1+ 1
d

(
Γ
(
d+1

2

))1+ 1
d Γ
(

1
d

)
Γ
(
d
2

+ 1
) . (A.6)
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