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Probabilistic precipitation forecasts of numerical models are often calibrated using
synoptic observations. The resulting probabilities of precipitation refer to the
observation system and thus provide the likelihood that precipitation occurs exactly
at the spot of the ombrometer. When probabilistic forecasts for larger areas, such as
rural districts or catchment areas of rivers, are required, it is not possible to interpolate
the point probabilities. Instead area probabilities e.g. increase with the size of the
area. In this paper we describe a general method to derive area probabilities from
point forecasts based on models and methods of stochastic geometry. The method
can be applied on arbitrary areas and can be used for operational applications, since
it runs fully automatically without human interaction. The basic idea is to model
precipitation patterns by circular precipitation cells using a germ–grain model driven
by a spatial Poisson point process in a way that the point forecasts are fitted. Area
probabilities can then be estimated statistically as relative frequencies based on repeated
Monte Carlo simulations. As the area probabilities significantly depend on the sizes of
the modeled precipitation cells, suitable cell radii are estimated based on the spatial
correlation structure of given point probabilities. Verification with independent radar
precipitation and comparison with area probabilities derived from the raw ensemble
system COSMO-DE-EPS of DWD is provided and reveals essential advantages of the
stochastic model in terms of bias and Brier skill score.
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1. Introduction

1.1. Automated warning guidances

One of the main statutory tasks of the Deutscher Wetterdienst
(DWD) and of various other national weather centres worldwide
is the issuance of official warnings of weather occurrences that
could become a danger for public safety and order. Some of the
key customers range from civil protection, federal and regional
authorities, provincial administrations of road construction, winter
services, municipalities, business companies and media, up to
private customers and the general public. This wide range of
customers requires a variety of warning products tailored to
individual customer’s needs.

In recent years, DWD has operationally introduced the Warning
Decision Support System AutoWARN, see Reichert (2010, 2017)
and Reichert et al. (2015) . One aim is to help forecasters
deal with increasing amounts of numerical weather prediction
(NWP) and ensemble forecasts, as well as observational and
nowcasting data by providing integrated automated warning
proposals. These warning proposals can be accepted or manually
modified by forecasters who bear final responsibility for official

warnings of DWD. The result is a final warning status used
to automatically produce the full range of individual textual
and graphical warning products for customers. These automatic
products include Internet and mobile app visualisations for about
11,000 German municipalities with a high update frequency as
well as more coarse warning products in space and time for
individual client needs.

Currently, these warning products are mainly issued in a
deterministic way, e.g. a heavy rain warning may or may not exist
for a specific municipality. However, customers more and more
demand probability–based warning products, answering questions
on the likelihood of occurrence e.g. for a heavy rain warning event.
Using individual cost–loss ratios customers may use calibrated
probability information in order to take appropriate actions on
specific probability threshold levels and e.g. minimise costs for
their specific case.

A prerequisite for exploiting the full potential of probability–
based warning information is to provide calibrated probability
information on desired areas of interest, e.g. on dedicated warning
regions for customers. Area probabilities thereby take into account
that the exact location of a warning event is usually unknown.

c© 0000 Royal Meteorological Society Prepared using qjrms4.cls [Version: 2013/10/14 v1.1]



2 R. Hess, B. Kriesche, P. Schaumann, B. K. Reichert, V. Schmidt

Therefore, upscaling in space according to forecast predictability
is required.

Approaches exist that derive area probabilities from ensembles
of precipitation fields. Assuming fractal characteristics of
precipitation deterministic NWP models can be used to downscale
precipitation and to produce ensembles of precipitation fields
on a continuum of scales, like STEPS, see Bowler et al.
(2006). Ensembles of precipitation fields can also be obtained
from ensemble prediction systems like COSMO-DE-EPS, where
estimations of precipitation probabilities can be derived for
aggregations of grid points as relative frequencies of occurrences,
see Sec. 2.1 . In order to derive calibrated area probabilities
calibrated sets of ensemble members are required. Approaches
as copula coupling or Shaake shuffle, see e.g. Schefzik et al.
(2013) or Hamill et al. (2017), optimize mean and spread of a raw
NWP ensemble and construct an optimized ensemble having these
optimized statistical properties. In order to allow the forecaster
to define the precipitation areas they are interested in ad hoc,
the full set of ensemble members needs to be held available for
computation upon request.

Against this background, the present paper describes a new way
to derive warn–relevant precipitation probabilities for arbitrary
areas based on point forecasts. The approach is applied to the
output of an Ensemble Model Output Statistics (EnsembleMOS)–
based system, see Hess et al. (2015), operationally used within the
AutoWARN warning process chain at DWD as described above.
The ensemble information is extracted as early as possible in
order to reduce computational and memory costs and to provide
a fast and flexible system. As the forecaster in principle may
have the possibility to manually modify the point probabilities
of the EnsembleMOS output, the method proposed in this
paper opens up a new way of providing customer specific,
area–based automatic precipitation probability products derived
from statistically postprocessed and manually controlled NWP
ensemble forecasts.

1.2. Point and area probabilities

We define an area probability, strictly speaking, as the probability
that a certain event occurs at least once anywhere in the area
of interest. This notion of an area probability is qualitatively
different from a point probability that expresses the chance that
the occurrence takes place exactly at a fixed point. An area
probability is always larger than any point probability within
that area and grows with the size of the area. Here, the spatial
scale of the meteorological events plays an essential role. Large–
scale events with a high degree of spatial correlation can result
in area probabilities, which are only a little higher than point
probabilities. However the smaller the scale of the event, the
less the point probabilities are correlated and the faster the area
probability grows with the size of the area.

Probabilistic forecasts of numerical models can be calibrated
using relative frequencies of observed occurrences of meteoro-
logical events such as wind gusts or precipitation. The meteoro-
logical observations from rain gauges and anemometers provide
in–situ measurements, which are representative for small areas
(e.g. several centimeters in diameter for rain gauges) that can be
mathematically considered as points. Synoptic observation sites
usually are located at places, which are most representative for
their surroundings. Nevertheless, there always exist differences
between the point measurement and values at other locations
kilometers apart, or between the point measurement and area
averages as they are provided by numerical models with typical
resolutions of several kilometers, e.g. 2.8 km for the regional

model COSMO-DE∗ of DWD, see Baldauf et al. (2011) . In
meteorology these differences are known and addressed as errors
of representativity.

When it comes to probabilistic forecasting, event probabilities
are still related to points as far as they are calibrated using in–
situ measurements as described in Sec. 2.2 . Clearly, the point
probabilities provide information about their surroundings due
to statistical spatial correlations of precipitation events. Known
analytical formulas to directly derive area probabilities from
point probabilities are not operationally applicable, however.
Approaches of Epstein (1966) and Krzysztofowicz (1998) assume
circular precipitation cells, uniformly distributed cell centres and
circular forecast areas to find theoretical scaling equations. The
diameters of precipitation cells are found to be crucial for their
results, but they need to be quantified by the forecaster for the
current meteorological situation or estimated from climatic data.

As an alternative to the application of direct computation
formulas we suggest to determine area probabilities using spatial
stochastic models for precipitation, see e.g. Onof et al. (2000),
Wheater et al. (2000) or Wheater et al. (2005) . An algorithmic
method to derive area probabilities from point probabilities based
on a generally applicable stochastic model for precipitation cells
is presented in Kriesche et al. (2015) . This method estimates
the radii of the precipitation cells depending on the spatial
correlations of the provided point probabilities for the current
meteorological situation. Moreover, the prescribed methods
of stochastic geometry provide mathematical background for
relating area and point probabilities in general and applying it
in other contexts, such as verification of model data with in–situ
observations or changing the grid resolution of probabilities from
numerical ensemble systems, without the need for a complete
set of ensemble members. Kriesche et al. (2015) focuses on
the mathematical and technical details of the method, whereas
in the present paper we address aspects of its applicability and
concentrate on forecast results and verification.

1.3. Outline

The outline of the paper is as follows: after motivation and general
description of the research given in Sec. 1 the COSMO-DE-EPS
(Ensemble Prediction System of COSMO-DE) and its statistical
postprocessing EnsembleMOS are introduced in Sec. 2 in order to
prescribe the estimation of calibrated point probabilities. Section 3
provides an overview of the stochastic model for precipitation
that allows for the estimation of area probabilities based on point
probabilities. This model is validated in Sec. 4 by means of
independent radar data (Sec. 4.1) and by sensitivity studies for the
precipitation cell radii (Sec. 4.2). Moreover, Sec. 4.3 presents a
comparison of estimated area probabilities with uncalibrated and
upscaled relative frequencies of the ensemble system COSMO-
DE-EPS. Finally, Sec. 5 provides conclusions and an outlook.

2. The EnsembleMOS for COSMO-DE-EPS

For ensemble prediction systems, ensembles of forecasts are
computed that differ in initial and boundary conditions as well
as in physical parameterisation within the scale of uncertainty.
The resulting distribution of forecasts and, in particular, the
forecast variances provide essential information on forecast
reliability and accuracy. Ideally, the standard deviation between
ensemble members (ensemble spread) should statistically fit the
error of the ensemble mean against synoptic observations (skill).

∗ The COSMO–model is the forecast model of the COnsortium for Small–scale
MOdeling at which DWD is member. COSMO-DE is the specific version for
Germany of DWD.
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However, especially near the surface ensemble forecasts are often
underdispersed, see e.g. Gebhardt et al. (2011) .

In order to derive probabilistic forecasts that correspond
statistically to experienced event frequencies, postprocessing for
statistical calibration is often applied. At DWD the COSMO-DE-
EPS is calibrated by EnsembleMOS, which is a model output
statistics (MOS) system specialised for the statistical optimisation
of ensembles and for the calibration of probabilistic forecasts.
A brief overview of the COSMO-DE-EPS and EnsembleMOS
is given in the following. Further information is available in the
provided references.

2.1. The ensemble system COSMO-DE-EPS and upscaled
precipitation probabilities

The ensemble system COSMO-DE-EPS of DWD is based on
the numerical model COSMO-DE. It currently consists of 20
ensemble members and provides weather forecasts for Germany
with a resolution of 2.8 km. The forecasts are computed and
issued every three hours with a forecast range up to 27 hours
ahead. Detailed descriptions of COSMO-DE and its ensemble
system COSMO-DE-EPS are provided in Baldauf et al. (2011)
and Gebhardt et al. (2011), respectively. For each of the
ensemble members initial and boundary conditions as well as
physical parameterisations of COSMO-DE are varied according to
assumed uncertainty. The obtained forecasts provide information
on the distribution of possible weather regimes to be expected. For
example, the standard deviation of the ensemble is an estimate of
the accuracy of the ensemble mean compared to observations, see
e.g. Wilks (2011) .

Probabilistic forecasts can be estimated as the relative
frequency of event occurrence in the ensemble members. This
frequency can be evaluated grid point by grid point resulting in
probabilities corresponding to the original resolution of COSMO-
DE with areas of 2.82 km2. For precipitation also upscaled
probabilities are derived in this way, which refer to larger areas
of 10 × 10 grid points (282 km2). The meteorological event
that precipitation rate exceeds a certain threshold in an area is
considered to occur for a member if the threshold is exceeded at
any one of the 100 points of such an area. The relative number
of ensemble members that show the event provides an estimate of
the area probability. Hereby it is not required that the events take
place at the same grid points in the area. The resulting upscaled
probabilities correspond to our definition of area probabilities that
implies that an event occurs at least once anywhere (spatially
continuous) in that area.

These raw ensemble–derived probabilities are not calibrated
using synoptic observations. Verifications with independent radar
data and comparisons to area probabilities based on calibrated
point probabilities as modeled in Sec. 3.3 are provided in Sec. 4.3 .

2.2. EnsembleMOS and calibrated point probabilities

The EnsembleMOS of DWD is a MOS system fitted for
statistical optimisation and calibration of ensemble forecasts such
as COSMO-DE-EPS or IFS-EPS. The latter is the ensemble
prediction system of the Integrated Forecasting System (IFS) of
the European Centre for Medium–Range Weather Forecasting
(ECMWF). Compared to MOS systems for deterministic
forecasts, the EnsembleMOS is set up to use ensemble products
such as ensemble mean, spread and quantiles as predictors instead
of deterministic forecasts. The EnsembleMOS is based on a MOS
system originally set up for postprocessing deterministic forecasts
of the former numerical model GME of DWD and the IFS of
ECMWF, see Knüpffer (1996) . For an introduction to MOS in
general we refer to Wilks (2011) .

For statistical optimisation, interpretation and calibration of
the COSMO-DE-EPS, historical time series of more than 300
synoptic stations within Germany and its surrounding are used.
The time series currently range from 2011 up to 2015 and are
extended regularly. In order to provide reasonably large data sets
for extreme and rare weather events, the synoptical stations are
grouped together in nine climatic zones (e.g. coastal strip, north
German plain, various height zones in southern Germany, high
mountains areas, etc.). Stepwise regression is performed for all
stations in these zones together.

More than 150 forecasting elements are computed with lead
times up to 21 hours ahead in hourly intervals, see also
Sec. 2.3 . These forecasting elements comprise of series of event
probabilities for various thresholds and reference periods, such as
e.g. the probability that the rain amount exceeds 15 mm in one
hour or that wind gusts exceed 14 m/s during an interval of three
hours.

For each predictand (i.e. forecast element) the most relevant
predictors out of a set of about 300 model elements and
observations are selected as long as they are statistically
significant using stepwise regression. For continuous variables,
such as precipitation amount or wind speed, linear regression is
applied. Logistic regression is used for probabilistic predictands
such as threshold exceedances. Most predictors are derived
from the underlying numerical model, but the latest available
observations are also provided as predictors and are frequently
selected for short range forecasts according to meteorological
persistence. EnsembleMOS uses probabilistic products of the
ensemble as model predictors, such as ensemble mean and
standard deviation. Systems that optimise each ensemble member
individually are prone to underdispersed forecasts and too small
error estimates as they tend towards climatology for longer
forecast ranges. This problem is avoided by using ensemble
products as predictors within EnsembleMOS.

The stepwise regression results in a selection of predictors and
coefficients for each predictand and climatic zone that form an
equation for the specific predictand. For operational forecasting
this equation of predictors and coefficients can be evaluated with
current values of observations and the numerical model in order to
provide optimised forecasts. The equation may be applied at the
original observation sites or at any other place within the climatic
zone. If necessary, the observations need to be interpolated to
the specified location. The numerical model however is always
evaluated for the exact location, i.e. the next grid point of the
numerical model.

2.3. Input point probabilities for the stochastic model

For the present study point probabilities for precipitation
exceeding 0.1 mm within one hour have been generated on a
regular grid of 20 km resolution covering Germany. The point
forecasts are computed by postprocessing the COSMO-DE-EPS
according to the climatic zones the grid points belong to, as
described in Sec. 2.2 .

The period from 1 May until 31 July 2016 has been selected that
includes a number of heavy precipitation events. The COSMO-
DE-EPS runs every three hours and its postprocessing that
generates the calibrated point precipitation probabilities is issued
two hours after the start of the COSMO-DE-EPS when its
computation has normally finished.

Postprocessed forecasts are provided for hourly lead times up
to 21 hours ahead. However, most results presented in this paper
are based on forecasts up to 3 hours ahead in order to use point
forecasts with short lead times and best accuracy as input for the
stochastic model of the area probabilities. Deteriorations of the
stochastic model and the area probabilities become most apparent
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in this way. Since COSMO-DE-EPS and related point forecasts
are updated every three hours, the use of 1 to 3 hourly optimized
forecasts allows for a continuous verification in time without
overlaps of forecast intervals.

3. Area precipitation probabilities

The proposed method for the derivation of area probabilities is
based on a spatially continuous stochastic model for precipitation
cells. We give a brief overview of this method in the following.
A more detailed description can be found in Kriesche et al.
(2015, 2017a) , where the latter paper applies to the modeling of
thunderstorm cells.

The basic idea is to model precipitation patterns based on
random circular precipitation cells, see Sec. 3.1. Accordingly,
it is assumed that there is precipitation at any given point if
and only if this point is covered by at least one precipitation
cell. The parameters of the stochastic model of precipitation
cells are estimated in such a way that point probabilities derived
from the model match those probabilities from the available
data and their correlation structure, see Sec. 3.2 . Based on the
fitted model, the area probability for an arbitrary area can then
be derived as the probability that this area is at least partially
covered by one of the random precipitation cells. This is more
formally stated in Sec. 3.3 . The sizes of the precipitation cells
influence the spatial correlation structure of modeled precipitation
patterns and are essential for the spatial expansion from point
to area probabilities. The radii of the circular precipitation
cells, which are parameters of the stochastic model with a
meteorological interpretation, are estimated spatially constant but
fitted for the current meteorological situation, in order to address
different spatial correlations of convective events and large scale
precipitation scenarios. Statistics of estimated precipitation cell
radii are provided in Sec. 4.2 .

3.1. Stochastic model for precipitation cells

We give a brief, simplified overview of the underlying stochastic
model for precipitation cells. Consider a fixed one–hour forecast
period with an arbitrary lead time and let s1, . . . , sn ∈W denote
the n = 1, 786 locations of grid points of a regular 20 km ×
20 km grid in a rectangular observation window W comprising
the domain of Germany. By ps1 , . . . , psn we denote the point
probabilities at s1, . . . , sn that are available in the data described
in Sec. 2.3. Centres of precipitation cells are modeled using a
spatial Poisson process {Xi, i = 1, . . . , Z} in W with intensity
function {λt, t ∈W}, see Chiu et al. (2013), where Z is a random
variable that describes the number of cell centres in W . For each
location t the intensity λt can be interpreted, roughly speaking,
as the expected number of cell centres in a unit area around t. To
simplify the computations we suppose the intensity function to be
piecewise constant, i.e.

λt = ai for t in V (si), i = 1, . . . , n , (1)

where V (si) denotes the Voronoi cell† of grid point si
in W and a1, . . . , an are some non–negative intensities of
precipitation cell occurrence. In particular, this allows for a
spatially inhomogeneous distribution of precipitation cells, which
is crucial for applications on a non–local scale. Each cell centre
is attached with a radius r and the resulting discs {b(Xi, r), i =

†The Voronoi cell of si consists of those locations in W that are closer to si than
to any other grid point. In our particular example of application the Voronoi cells
of all grid points that are not located at the boundary of the observation window are
squares with sides of 20 km length.

1, . . . , Z} represent single precipitation cells. The union set

M =

Z⋃
i=1

b(Xi, r) (2)

is then used as a model for the spatial precipitation pattern in the
considered forecast period. Area probabilities will be modeled as
coverage probabilities of M , see Sec. 3.3.

3.2. Estimation of model parameters

In order to estimate area probabilities, the model M for the union
set of precipitation cells has to be simulated repeatedly. For that
purpose we first need to compute the parameters a1, . . . , an and r
based on the given point probabilities ps1 , . . . , psn .

3.2.1. Estimation of intensity parameters

The intensity parameters a1, . . . , an implicitly depend on the cell
radius r . Thus, we assume temporarily that the optimal radius
r of precipitation cells is known. A statistical approach to the
computation of r is described in Sec. 3.2.2 . The basic modeling
assumption is that there is precipitation at any given point t in
W if and only if t is covered by the union set M , i.e. if t ∈M .
Accordingly, there is precipitation at grid point si if the disc
b(si, r) contains at least one random precipitation cell centre. Note
that the random number of points of {Xi, i = 1, . . . , Z} falling
into b(si, r) has a Poisson distribution with mean value

n(si, r) =

n∑
j=1

aj |b(si, r) ∩ V (sj)| , (3)

where |S| denotes the area (i.e. the two–dimensional Lebesgue
measure) for a subset S ⊂W .

Therefore, the probability of precipitation at si is

psi = P (si ∈M) = 1− e−
∑n

j=1 aj |b(si,r)∩V (sj)| , (4)

which is equivalent to

ln

(
1

1− psi

)
=

n∑
j=1

aj |b(si, r) ∩ V (sj)| (5)

for i = 1, . . . , n . This results in a system of n linear equations for
the n unknowns a1, . . . , an . Due to the constraint that intensity
functions cannot be negative, i.e. aj ≥ 0 for j = 1, . . . , n this
system of equations can only be solved approximately using an
optimisation algorithm. Verifications for actual cases however
show sufficiently precise solutions, see Kriesche et al. (2015).

3.2.2. Estimation of cell radius

The cell radius r reflects the spatial precipitation range and
is estimated globally constant for the forecast region. Larger
precipitation cells cover wider areas, thus r is expected to
be closely related to the spatial correlation structure of the
point probabilities ps1 , . . . , psn . For the quantification of spatial
dependencies we suppose that ps1 , . . . , psn are realisations of
some random field {Pt, t ∈W} at s1, . . . , sn and consider the
semivariogram γ : [0,∞)→ [0,∞) of {Pt, t ∈W} defined as

γ(||t1 − t2||) =
1

2
var(Pt1 − Pt2) , (6)

where it is assumed that the variance of the difference Pt1 − Pt2

for any two points t1 and t2 only depends on their horizontal
distance ||t1 − t2|| , see e.g. Montero et al. (2015) .

c© 0000 Royal Meteorological Society Prepared using qjrms4.cls



Area precipitation probabilities 5

An estimate γ̂ of the semivariogram can be computed based
on ps1 , . . . , psn using an iterative algorithm. Furthermore, for
each r′ from a sequence {r1, . . . , rk} of possible precipitation
cell radii, we determine the corresponding intensities a′1, . . . , a

′
n

as described in Sec. 3.2.1 with fixed radius r′, compute point
probabilities according to (4) and determine, using the same
iterative algorithm, an estimate γ̂(r

′) based on obtained point
probabilities. The radius r of the precipitation cells for the current
weather finally results as best fit

r = argmin
r′∈{r1,...,rk}

{∫ c2

c1

(
γ̂(r
′)(h)− γ̂(h)

)2
dh

}
, (7)

where the integrals are evaluated numerically and c1 and c2
are some suitable integration limits. As a compromise between
covering a sufficiently large variety of possible radii and allowing
computations to be done in a reasonable time we choose k = 9

and {r1, . . . , rk} = {7.5 km, 10 km, . . . , 27.5 km} .

3.3. Prediction of area probabilities

Having computed the intensity parameters a1, . . . , an and the
precipitation cell radius r, the estimation of area probabilities is
straight forward. Similar as for point probabilities we assume that
there is precipitation within an area B if and only if there is an
intersection of B with at least one precipitation cell. The union set
M of precipitation cells with radius r intersects the area B, if at
least one point of the random set {Xi, i = 1, . . . , Z} of cell centres
falls into the enlarged areaBr = {t ∈W : minb∈B ||b− t|| ≤ r} .
The generalisations of (3) and (4) read

n(Br) =

n∑
j=1

aj |Br∩ V (sj)| (8)

for the expected number of cell centres within Br and

π(B) = 1− e−
∑n

j=1 aj |Br∩V (sj)| (9)

for the area precipitation probability π(B) .
As the numerical computation of the intersections Br∩ V (sj)

according to (9) is expensive, area probabilities can also be
estimated using Monte Carlo simulation. A large number of
realisations of the random union set M in (2) is generated
using highly efficient simulation algorithms, see, e.g. Møller and
Waagepetersen (2004), and the area probability π(B) is estimated
as the relative frequency of intersections with areaB. About 1,000
realisations of M are sufficient to obtain precise precipitation
probabilities for arbitrary areas that can be defined ad hoc.

4. Validation of area probabilities

A validation of the modeled area probabilities is carried out with
the following approaches. Independent radar data is used as an
area covering observation system for verification. Various scores
of the area probabilities are computed for areas with different sizes
and shapes, see Sec. 4.1 . The impact of the estimated cell radius
r is addressed in Sec. 4.2 as it plays an important role in terms of
the spatial correlation of precipitation. Furthermore a comparison
with uncalibrated area probabilities of the COSMO-DE-EPS is
provided in Sec. 4.3 .

4.1. Verification with radar data

4.1.1. Description of radar data

The area probabilities of precipitation are verified with radar–
derived precipitation analyses from the German operational radar

network of DWD, see Winterrath et al. (2012) . The DWD radar
network consists of 16 sites covering Germany and provides
precipitation scans every five minutes. Radar reflectivities are
transformed into precipitation rates using empirical reflectivity–
precipitation rate (Z-R) relationships. For every hour precipitation
amounts are derived and adjusted using about 1300 rain gauges
at conventional meteorological measurement sites in order to
provide adjusted quantitative precipitation analyses. An additional
clutter filter for hydrological applications removes spurious pixel–
scale precipitation events, see Winterrath and Rosenow (2007) .

The minimum analysed precipitation amount per hour is
0.1 mm, the threshold value for the MOS–derived point
probabilities has been set accordingly (see Sec. 2.3) in order
to allow for consistent verification. The relative frequencies of
analysed radar precipitation events are in good agreement with
the forecasts of both point and area probabilities as confirmed in
the following.

4.1.2. Verification results

The stochastic model of precipitation cells proposed in Sec. 3
allows for an estimation of precipitation probabilities for arbitrary
areas. In order to obtain verification areas with various sizes,
shapes and orientations, a homogeneous Poisson point process
has been generated in the observation window and the verification
areas are chosen as the cells of the resulting Voronoi tessellation.
A mean number of 1400 points is chosen that was found to
provide a reasonable selection of smaller and larger verification
areas. The verification areas are displayed in Fig. 1 along with
forecast biases, Brier skill scores, and observed frequencies
of precipitation. The Brier skill score is computed using as
reference the relative frequency over time for each grid point or
Voronoi cell, respectively. Verification is only performed where
coverage of radar data is sufficient. For the scores only one–,
two– and three–hourly forecasts are recorded in order to avoid
multiple use of observations by overlapping forecasts in time.
The quality of the area probabilities of course depends on the
underlying point forecasts. In Tab. 1 mean verification scores
for point and area probabilities are listed in order to assess
the impact of the stochastic model. Additionally the empirical
correlation coefficient between area probability and observed
precipitation is included. No additional bias is introduced when

score point prob. area prob.
bias -1.17 (+/-0.012) -1.00 (+/-0.019)
BSS 0.236 (+/-0.059) 0.316 (+/-0.064)
corr 0.492 (+/-0.056) 0.58 (+/-0.046)

Table 1. Mean verification scores for point and area probabilities: Bias in
percentage points, Brier skill score (BSS), and empirical correlation coefficient
(corr). The numbers in brackets denote the standard deviations of the
verifications scores.

propagating the precipitation probabilities from points into areas,
which is an important issue in terms of calibrated probabilistic
forecasts. Since the point forecasts are statistically calibrated (see
Sec. 2.2) retaining calibration for the area probabilities is desired.
Furthermore, there is no conditional bias given the size of the area,
as Fig. 1 (left) indicates.

The other scores, Brier skill score and correlation coefficient
are even improved for the area probabilities, which reveals that the
area probabilities correspond very well to the radar observations.
The spatial distribution of Brier skill scores given in Fig. 1 (centre)
shows, in combination with the frequency of precipitation (right),
that this score is highest for areas with lots of precipitation in the
south of Germany. These high Brier skill scores originate from the
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Figure 1. Scores of area probabilities for a selection of forecast areas: bias (left), Brier skill score (centre), frequency of precipitation (right)

point forecasts, but are also retained for the area probabilities. The
empirical correlation coefficients have highest values for the areas
with most precipitation events, too.

Figure 2 provides reliability diagrams of point and area
probabilities that show the relative frequency of precipitation
events according to radar observations for bins of forecasted
precipitation probabilities. Whereas the point probabilities are
well calibrated, being close to the ideal line of identity in general,
the area probabilities show slight underforecasting for low and
stronger overforecasting for high probabilities. This indicates that
the area probabilities have a slightly lower statistical resolution
and are little more over–confident than the underlying point
forecasts. Bin–wise confidence intervals of the probabilities are
very small due to the large number of observations and not shown
therefore.

This issue may be related to the sizes of the cell radii and is
further addressed in Sec. 4.2 .

4.2. Impact of precipitation cell radii

The sizes of precipitation cells determine the spatial correlation
structure of the modeled precipitation patterns. Their impact
on area probabilities is as follows: smaller cells cause higher
area probabilities in general. This meets the meteorological
expectation that small scale convection shows higher spatial
variability than large scale events. Higher variability leads to
an increased probability that there is precipitation anywhere in
an area. The stochastic model estimates higher intensities for
smaller cell radii and generates more precipitation cells in order
to fit the point forecasts. That correspondingly results in increased
probabilities that a precipitation cell intersects an area in question.
When using the optimal radius between 7.5 km and 27.5 km
according to the method prescribed in Sec. 3.2.2, the bias of
area precipitation probabilities is negligible with -1.0 percentage
points. The biases for the optimal radius and for fixed radii
of 7.5 km and 27.5 km are listed in Tab. 2 . In accordance to
theoretical expectations smaller radii cause larger probabilities
and thus positive biases and vice versa. Due to the large number
of data the results are considered significant, compare the standard
deviations in Tab. 1 . This shows that the estimation of cell radii
has an significant impact and that the selected radii are well chosen
according to the resulting area probabilities.

Figure 3 (left) displays the histogram of the determined radii
of one–, two– and three–hourly forecasts. Most frequently radii of
10 km are selected, which can be considered physically reasonable
for events of convective precipitation that occurred frequently in

radius 7.5 km 7.5–27.5 km 27.5 km
bias 5.4 -1.0 -7.6

Table 2. Bias of area precipitation probabilities in percentage points with
constant radii of 7.5 km, best fit between 7.5 km and 27.5 km, and constant
radii of 27.5 km

the considered period. The distribution of larger radii is more
or less uniform but much more radii of 27.5 km appear. The
radii have been restricted to a maximum value of 27.5 km a
priori, however, since larger radii would be rarely chosen and the
computation time would increase unnecessarily.

The point forecasts are updated every three hours, so that for
a forecast length of 10 hours up to four forecasts for the same
valid time exist (e.g. a 10–hour forecast issued 02 UTC is valid
for 12 UTC and is updated three hours later by the 7–hour forecast
issued at 05 UTC, etc.). Figure 3 (right) presents the distribution
of changes of radii between older and newer forecasts for the same
valid time. Most often the radius is unchanged, which shows that
the selection method of the radius is stable and does not change
erratically with slightly changed point forecasts. In operational
applications computation costs are saved if the radii can be reused
for later updates of the forecasts.

A lag-1 autocorrelation coefficient of 0.42 was found that
reflects persistency in time of the evolving precipitation patterns
and the resulting cell radii from one hour to the next. The
coefficient is remarkably large when considering that the radii
of the precipitation cells are assumed to be constant across the
forecast area and that a local change in weather regime at some
place has impact on the globally selected radii. It is certainly
also possible that the globally fixed radius of precipitation cells
is the reason for the missing statistical resolution as indicated in
the reliability diagram of the area precipitation probabilities in
Fig. 2 (right). The point probabilities (Fig. 2, left) show a very
weak underforecasting for probabilities between about 0.1 to 0.2
and a stronger overforecasting for probabilities between about 0.5
and 0.8 . The area probabilities amplify this distinctive behaviour
which results in underforecasting for probabilities between about
0.1 and 0.4 and overforecasting for probabilities of 0.6 and
more. Generally the area probabilities are higher than the point
probabilities, which can also be seen in the histograms of Fig. 2
(although the total number of forecasts is slightly different).
There is a large number of point forecasts close to 0 and the
numbers decrease with the height of the point probabilities. For
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Figure 2. Reliability diagrams of point (left) and area probabilities (right)

Figure 3. Histogram of precipitation cell radii in km for one–, two– and three–hourly forecasts (left). Distribution of changes of radii in km with forecast updates (right)

the area probabilities there is a decrease up to around 0.7 only,
thereafter the numbers of forecasts with higher area probabilities
increase, showing a particularly large number of forecasts with
probabilities close to 1 . It was found that neither reliability nor
histogram of area probabilities significantly depend on the sizes
of areas, which indicates that our stochastic model is suitable for
arbitrary areas. We expect that simply in- or decreasing the radii
of precipitation cells would just lead to a forecast bias and cannot
adjust for both the underforecasting (for lower probabilities)
and overforecasting (for higher probabilities) simultaneously. To
obtain a better resolution more variation in the radii or location-
dependent radii to better account for regional weather conditions
could be suitable, however. But, in general, statistical resolution is
limited by the underlying point probabilities.

4.3. Comparison with raw upscaled ensemble probabilities

In order to conclude model validation, area precipitation
probabilities obtained from the stochastic model described
in Sec. 3 are compared to the upscaled raw ensemble
estimates introduced in Sec. 2.1 . For comparison purposes, area
probabilities are derived based on our stochastic model for
the same grid of 28 km resolution as the upscaled ensemble

probabilities. The point probabilities are derived not before two
hours after the start of the COSMO-DE-EPS in order to ensure
its computation has finished. One–hourly point forecasts, for
example, are therefore based on three–hourly forecasts of the
ensemble. Consequently, area probabilities from our stochastic
model for lead times of one, two and three hours are matched
with the corresponding three–, four– and five–hourly forecasts of
the ensemble. Figure 4 displays biases and Brier skill scores of
area probabilities in 28 km resolution computed by our stochastic
model. The results are qualitatively similar to those for the random
decomposition into Voronoi cells presented in Fig.1 with small
biases in general and high Brier skill scores in the south of
Germany where lots of rain occurred during the verification
period. The corresponding ensemble estimates are considered in
Fig. 5 and show small negative biases and lower Brier skill scores
in general. Especially in the south the high Brier skill scores of
our stochastic model cannot be reached.

Table 3 summarises the scores of Figs. 4 and 5 and additionally
includes the mean empirical correlation coefficient between
predicted precipitation probabilities and observed precipitation as
well as the mean standard deviation of forecasts. The scores of the
area probabilities based on our stochastic model are comparable
with those of the verification areas considered in Tab. 1 . There
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Figure 4. Bias (left) and Brier skill score (right) of area probabilities derived from the proposed stochastic model for the quadratic cells of a regular 28 km grid

Figure 5. Bias (left) and Brier skill score (right) for upscaled raw ensemble estimates for the quadratic cells of a regular 28 km grid (corresponding to Fig. 4)

score point prob area prob. ensemble prob.
bias -1.17 -0.8 -6.2
BSS 0.236 0.324 0.288
corr 0.492 0.591 0.582
stdev 0.288 0.315 0.319

Table 3. Mean verification scores for point and area probabilities: Bias in
percentage points, Brier skill score (BSS), correlation coefficient between
predicted precipitation and observed precipitation (corr) and standard
deviation of forecasts (stdev) in percentage points

is a mean bias of -6.2 percentage points for the upscaled
probabilities from the ensemble and a significantly smaller mean

Brier skill score, indicating that the proposed stochastic model
outperforms the raw ensemble. The mean correlation coefficients
are comparable, however. Also the mean standard deviations of
point and area forecasts are almost equal, which shows that the
improved mean Brier skill score of the stochastic model is not
obtained by reduced statistical sharpness.

5. Conclusion and Outlook

In the present paper a recently developed approach to the
computation of area probabilities based on models and methods
from stochastic geometry as introduced in Kriesche et al. (2015)
is motivated, discussed and evaluated from a meteorological
point of view. As a result, the area probabilities derived by
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means of this stochastic modeling approach are qualified to be
used operationally for the automated generation of specific user
products on arbitrary areas. Calibration of point probabilities for
precipitation is well preserved for area probabilities, which is
considered essential in high quality probabilistic forecasting.

The comparison of the stochastically modeled area probabili-
ties with upscaled relative frequencies of the raw COSMO-DE-
EPS reveals essential advantages of the stochastic model in terms
of bias and Brier skill score. The upscaled relative frequencies
based on raw ensemble members correspond well with radar data
given they are not calibrated, though, showing a good quality
of the COSMO-DE-EPS for probabilistic precipitation (on the
upscaled 28 km scale). The high Brier skill scores in Southern
Germany that result from the stochastic model could not be
reached, however. It is not clear, anyway, how to calibrate them
with synoptic ombrometer data. A stringent calibration would
require a relationship between area precipitation and point mea-
surements, where methods of stochastic geometry would probably
be appropriate again.

So far, the optimal precipitation cell radius is globally estimated
based on the available forecasts of point probabilities. Its size
has a significant impact on the estimated area probabilities, not
only theoretically, but as is also clearly seen in our forecast
verification. However, the territory of Germany is large and often
various weather regimes appear simultaneously, which requires
a compromise for the estimation of the optimal global radius.
Locally estimated radii could lead to more differentiating and
sharper area probabilities. Additional data seems to be required
for this, e.g. model fields of the COSMO-DE-EPS.

The proposed methods of stochastic geometry are suitable for
further applications in operational weather forecasting where, in
particular, forecast of strong precipitation events are of great
interest for warning management at DWD. As a first step towards
this need, Kriesche et al. (2017b) generalised the stochastic model
considered in the present paper for precipitation amounts and for
the probabilities that given thresholds of precipitation rates are
exceeded.

The stochastic approach of modeling area probabilities is
considered applicable for other meteorological variables as well,
but calibration and verification depends on whether appropriate
observations are available. For example, area probabilities for
strong screen–level wind gusts would be of great interest.
Proper evaluation seems problematic, however, as area–based
observations or observations with high spatial and temporal
resolution are not available. For wind gusts verification is
considered mandatory, since orography and other land surface
properties are highly relevant. Note that an approach for the
modeling of thunderstorm cells has been proposed in Kriesche
et al. (2017a), which is based on lightning data as an area covering
observation system.

Finally, as a prerequisite of operational use, the stochastic
model considered in the present paper has been technically
implemented as a test product at DWD that derives predefined
area probabilities for several resolutions based on point forecasts
of precipitation that are generated within AutoWARN. As the
estimation of the optimal global radius is the main computational
effort, the stochastic model has been optimised so that the global
radii of previous forecasts are used as initial values for the
optimisation for subsequent forecasts.
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