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Abstract 

The regular forage use of species-rich meadows gets hindered when poisonous plants spread. 

This can lead to land abandonment, which is critical for the preservation of valuable habitats. 

Nature  conservation  regulations  prohibit  conventional  measures,  while  the  alternative  of 

pricking the plants by hand is too labour intensive. A suitable weed control device along with an 

effective management strategy was developed for this use case, which uses targeted high-

pressure water jets to remove harmful plants with small scale treatment. To increase precision 

and flexibility of the tool a real-time plant detector was employed for the machine control. This 

paper describes the image analysis method and evaluates the timing of the device control by 

the visual plant detector. Results of plot trials on repressing Colchicum autumnale with the 

water-hydraulic process and influence of water output and application speed are presented.

1. Introduction

Poisonous plants are unwelcome in grassland populations for forage production. As they 

spread, the percentage of poisonous plant material in the forage increases and with it the risk of 

poisoning livestock. Nature conservation regulations limit the range of tools that can be used on 

extensive areas, which is why the focus is on mechanical solutions to control poisonous plants 

such as C. autumnale. Motivated by the high labour intensity of manual weed control and the 

widespread loss of fauna when using a mulcher [1] -  which conflicts with the aim of nature 

conservation - a non-chemical site-specific weed control device was developed. This combines 

nature conservation and the interests of agricultural production.

The weeding device, including an initial control concept, has been described in [2]. A detailed 

article on an earlier weed detection approach via drone images was published in [3]. While a 

drone-based weed detection has the advantage of planning routes of the tool in advance to 

increase the efficiency of the deployment, the new real-time approach makes it possible to 

locate and treat the target plants more precisely without delay using cameras right in front of 

the tool. A further reason is to increase practicability and flexibility in use by eliminating the 



need for surveying the sites with drones prior to the treatment, allowing full machine capacity 

utilization in the short treatment period in spring.

For the development of the weed detector, images of the target plants were collected and 

labelled according to [4], from which a convolutional neural network was trained. Furthermore, 

the prototype device described in [2] was extended to include the real-time detection system 

the necessary control  technology was added and initial  camera application software was 

implemented.  The  system  was  developed  by  Nürtingen-Geislingen  University  and  the 

University of Ulm and the companies ANEDO, Martin Energietechnik and URACA within a 

funded project.  This paper describes the image analysis method for weed detection and 

presents its prediction performance. In order to check the correct control, initial tests were 

carried out on the triggering accuracy of the water jet  device with real-time detection. In 

addition,  results  from  plot  trials  investigating  the  weed  repression  of  dynamic  waterjet 

application on C. autumnale at different driving speeds and nozzle sizes are laid out.

2. Materials and Methods

For real-time detection of weeds it  is crucial  to achieve a low inference latency even on 

constrained  hardware.  For  this  reason,  we  chose  an  architecture  from  the  EfficientDet 

convolutional neural network family [6], which was tailored for efficient object detection on 

mobile devices. For our application, it turned out that model complexity is less important than 

the input image size. Consequently, the smallest architecture from the family was used (i.e. the 

EfficientDet-D0) and the image size was set to 768×768 pixel, which turned out to be a good 

compromise between  latency  and  detection  performance.  The  ground  truth  dataset  was 

acquired between March 28 and April 20, 2023 using the procedure described in [4] leading to 

13656, 6607 and 3129 images for training, validation and testing, respectively. The detection 

model was trained for 200 epochs. In order to achieve best inference performance, the model 

was subsequently quantized to 8-bit integers and converted to the tflite file format, which could 

be integrated into the control system of the treatment tool.

To verify the correctness of the tool control, we conducted a water-jet test. The aim was to 

study if the theoretically determined parameters, such as machine geometries and offsets 

between detection and activation of the corresponding nozzles, match the practical application. 

We used a green coloured wood plank with a size of 0.25 m × 0.1 m as plant dummy, which was 

detected as a target plant if placed on concrete pavement. The two target variants consisted of 

either placing one plank lengthwise or orthogonal to the moving direction. Driving speeds were 

2, 4 and 6 km/h when moving over the target regulated with the tractors cruise control. The 



standard rotating nozzle with a working diameter of 0.25 m per section was changed to a point 

nozzle for better traceability of the water jet. Moreover, we only used the pressure created by 

the small primer pump to avoid excessive water mist, which would have made the visual 

evaluation more complicated. Two cameras, one placed right above the nozzle and the other 

placed on the ground facing the target, were used to determine the activation window of the 

nozzle. The 0.2 m × 0.1 m size of the paving stones was used as scale when evaluating the 

videos. Ten replications per speed variant were carried out.

Plot trials were conducted to investigate the effect of the water-hydraulic process on the 

repression of  C. autumnale.  The control strategy with two treatments and short repetition 

interval was kept as in [2]. In total 6 replications per variant were made. We introduced the 

dynamic application of the plots to simulate the tractor-mounted device. Two different nozzle 

sizes (small: 8,9 l/min; big: 14,5 l/min at 330 bar) were studied with speeds of 2 and 4 km/h to 

investigate the influence of driving speed and reduced water output at the same water pressure 

[5].

3. Results

The trained and quantized C. autumnale detector was evaluated on a dedicated test dataset. In 

the context of site-specific weed control, it is more important to identify as many weeds as 

possible even at the cost of some false-positives. Only thus can a long-term reduction of the 

weed population be achieved. For this reason, we employ the so-called F2-score,  which 

prioritizes the recall  compared to the precision of the detector, to determine the decision 

threshold. Here the recall is the probability a weed in the ground truth dataset is correctly 

detected as such, whereas the precision is the probability that a given predicted bounding box 

is actually a weed, see [7] for more information. Since the section width of the tool is 0.25 m, the 

precise localization of the weeds is only of secondary importance. A true positive is thus 

defined if the area of the intersection divided by the area of the union (IoU) of the true and the 

predicted bounding boxes exceeds 50 %. With this, the detector achieved a precision of 50.7 % 

and a recall of 72.7 %, which results in an F2-score of 66.9 %.

Throughout the initial testing of the machine control the dummy target got hit every time, 

independent from driving speed and target variant. As shown in Table 1, however, the treated 

distance before and after the target varied. The nozzle activation at 4 km/h was the earliest for 

both  target  variants,  corresponding  with  a  short  distance  treated  after  the  target.  With 

increasing speed, the total treated distance gets lower. A discontinuous nozzle activation with 

several pulses along the activation window was observed in all cases.



Table 1: Results of the water-jet test with visual target detection

target variant orthogonal lengthwise

speed, km/h 2 4 6 2 4 6

avg. treated distance before target, m 0.49 0.68 0.55 0.54 0.69 0.52

avg. treated distance after target, m 0.59 0.30 0.36 0.63 0.31 0.34

avg. treated distance total, m 1.18 1.08 1.01 1.41 1.25 1.11

SD treated distance total, m 0.06 0.10 0.17 0.05 0.08 0.11

The small nozzle variants showed less effectivity in reducing the visible plant population by the 

time of the hay cut in mid-June compared to the big nozzle variants, see Table 2. Considering 

two years for the latter variant, the reduction rates were greater or equal to 90 % regardless of 

the driving speed. The natural reduction indicated by the control plot variant differed between 

the years 2023 and 2024 and can be taken as indicators for the given weather conditions. 

Application speed seems to have a stronger impact on the small nozzle variant, while the big 

nozzle showed preferable reduction rates at both speeds. This also applied to the long-term 

reduction observed in the second year of the trial, where the small nozzle variant showed less 

effectivity and even an increase in plant population with the application speed of 4 km/h.

Table 2: Percentage reduction in the number of plants after the last treatment relative to 

start of season (2023 & 2024) and change of plant population before the first 

treatment in 2024 using water-jets with different nozzle size and varied speed

strategy
avg. reduction 
of plants 2023

SD
avg. reduction 
of plants 2024

SD
avg. change of 
plant population

SD

small nozzle, 2 km/h 65 % 0.282 45 % 0.170 -7.5 % 0.123

small nozzle, 4 km/h 71 % 0.211 32 % 0.271 4.2 % 0.179

big nozzle, 2 km/h 92 % 0.073 95 % 0.040 -23.9 % 0.139

big nozzle, 4 km/h 93 % 0.083 90 % 0.081 -21.4 % 0.154

control plots w/o treatment 44 % 0.194 28 % 0.201 9.1 % 0.242

4. Discussion

Given the difficulty of identifying green weeds on a grassland site, a reasonably good detection 

performance was achieved. Nevertheless, further optimizing the architecture and datasets 

should yield further accuracy gains. With the current approach each frame from the cameras is 

analysed individually. Incorporating some preceding frames might increase the detection rates, 

but with an increased cost in computational complexity and thus latency.

The results of the water-jet test showed that the theoretically determined parameters were 

correct for the control software in combination with the visual target detector. Offsets of the 

machine geometry and delay times fit for nozzle activation independent of the driving speed. 



Target size is also correctly taken into account, which could be seen by a longer nozzle 

activation when the target was placed lengthwise. Because of the machine design there is a 

delay between valve switching and full power built up of the water jet at the ground. Mainly two 

factors are related to this: First, the tubing length between valve and nozzle and second the 

rotating nozzle design. The rotation of the nozzle is driven by the water pressure and flow 

through the housing. This leads to a dead time the nozzle has to be activated in advance of the 

target plant until the  sought working state  is reached. Due to more distance travelled per 

second the activation has to be even earlier when increasing the driving speed. Therefore, a 

fast  activation  is  most  important  for  sufficient  cutting  and  shredding  of  the  biomass. 

Deactivation of the nozzle can be done directly after passing the whole plant. An unnecessary 

long activation after the target plant raises the risk, that more sections of the machine get 

activated and the overall system pressure drops too low. The discontinuous nozzle activation 

observed in the test is related with the camera application software and has to be eliminated 

such that the nozzle stays on long enough for reaching the desired working state. Due to the 

simplified test design with a different nozzle type and low water pressure, deviating results 

could be possible for the real tool configuration. The findings are basis for the further machine 

control setup and adjustment for precise nozzle activation along with the visual detector. The 

effectivity of the nozzle variants in repressing C. autumnale is related with the water output per 

minute,  which defines the aggressiveness and cutting ability of  the water jet.  There is a 

difference  of  approximately  5.6  l/min  at  330  bar  working  pressure  between both  nozzle 

variants. The reduced cutting ability could be seen directly after treatment of the plots: The 

plants treated with the small  nozzle were only partially cut or damaged, while being fully 

separated by the big nozzle, which is also currently used on the machine. Due to the rotating 

nozzle design a higher application speed means fewer possible hits of the jet on the plant. This 

effect seems to have more influence on the small nozzle variant and can be used to adjust the 

treatments intensity over speed [2]. Surprisingly the faster application speed showed more 

effectivity than the slow variant in 2023. Human errors during treatment or evaluation could be 

a possible reason for this.

5. Conclusion

The real-time weed detector demonstrated reasonably high effectiveness in identifying  C. 

autumnale, with a recall of 72.7 %. With the current state of the machine control, it is possible to 

reliably hit a target, which was detected via the real-time plant detector, with the water jet while 

driving with speeds between 2 and 6 km/h. Future development is aimed towards a more 



harmonized nozzle activation to ensure a proper force distribution of the water jet and the 

optimal activation point  in before a target will  be determined. Field trials with a dynamic 

application  of  the  water  jet  showed good results  in  reducing  the  plant  population  of  C. 

autumnale by the time of the hay-cut when using the bigger nozzle. These findings support the 

treatment strategy for a mechanical control of C. autumnale and show a suitable design for the 

water hydraulic components used on the tractor mounted device.
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