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∗Frane Téléom R&D RESA/NET/NSO 92131 Issy les Moulineaux Cedex 9, Frane(atherine.gloaguen�franeteleom.om), ∗∗Department of Applied Information Pro-essing and Department of Stohastis, University of Ulm, 89069 Ulm, Germany(frank.�eisher�uni-ulm.de), ∗∗∗Department of Stohastis, University of Ulm, 89069 Ulm,Germany ({hendrik.shmidt,volker.shmidt}�uni-ulm.de)Abstrat. We onsider random geometri models for teleommuniation a-ess networks and analyse their serving zones whih an be given, for example,by a lass of so�alled Cox�Voronoi tessellations (CVTs). Suh CVTs are on-struted with respet to loations of network omponents, the nuleii of theirindued ells, whih are sattered randomly along lines indued by a Poissonline proess. In partiular, we onsider two levels of network omponents andinvestigate these hierarhial models with respet to mean shortest path lengthand mean subsriber line length, respetively. We explain point�proess teh-niques that allow for these harateristis to be omputed without simulatingthe loations of lower�level omponents. We sustain our results by numerialexamples whih were obtained through Monte Carlo simulations, where we usedsimulation algorithms for typial Cox�Voronoi ells derived in a previous paper.Keywords: teleommuniation network modelling, stohasti geometry, pointproess, Palm probability, Neveu's exhange formula, spatial tessellation, typi-al Cox�Voronoi ell, aess network, shortest path, subsriber line1 IntrodutionSpatial stohasti models have been developed in reent years as alternatives to more tra-ditional eonomial approahes for ost measurement and strategi planning of teleom-muniation networks; see, for example, [1℄, [2℄, [3℄, [4℄, [5℄, [6℄, and [14℄. These modelsinorporate both stohasti as well as geometri features observable in teleommuniationnetworks. While the random setting re�ets the network's variability in time and spae,onsideration of geometri strutures of network arhitetures o�er a more realisti viewto loation-dependent network harateristis than onventional models.The aess network or loal loop is the part of the network onneting a subsriber to itsorresponding Wire Center Stations (WCS), i.e. the plae where the teleommuniationnetwork �ts into the town and ountry infrastruture. The hierarhial physial link ismade via network omponents. To eah WCS we assoiate a serving zone suh that theinsribed subnetwork that gathers all lines between the WCS and the subsribers displaysa tree struture.In reent years, aess networks were studied in the ontext of the so-alled StohastiSubsriber Line Model (SSLM); see [7℄, [8℄, [9℄ for example. The SSLM is a randomgeometri model that o�ers tools to desribe geometri features of aess networks and1



(a) Poisson line proess (b) Cox proess () CVTFig. 1: Poisson line proess and Cox�Voronoi tessellationthat allows for stohasti eonometrial analysis, like the analysis of onnetion osts.The modelling framework of the SSLM an be subdivided into the network geometrymodel, the network omponent model, and the network topology model. The networkgeometry model represents the able trenh system, typially loated along the urban in-frastruture system, and in the SSLM modelled by random tessellations. Subsequently thenetwork omponent model plaes tehnial network omponents along the able trenhesaording to independent (Poisson) point proesses on lines or in the plane. Finally theomponents are onneted with respet to the network topology model.Methods for an optimal hoie of the geometry model with respet to given data an befound in [8℄. In [9℄ an algorithm was introdued in order to simulate typial Cox-Voronoiells based on linear Poisson proesses on random lines; see Fig. 1. In our ontribution,this algorithm, together with other tehniques, is used to investigate two�level hierarhialmodels, i.e. models of two di�erent omponents where the lower�level omponent is on-neted to its losest higher�level omponent, based on Poisson line tessellations. E�ientomputation and simulation tehniques for network harateristis like mean shortestpath length and mean subsriber line length are shown. These network harateristisare key�ingredients to an e�ient ost analysis. Notie that Poisson line tessellations arehosen as geometry model sine earlier investigations showed that, for a lot of real datasituations, they an represent a suitable model for the urban infrastruture. We explainmethods whih allow for these harateristis to be omputed without simulating the lo-ations of lower�level omponents, thereby enhaning simulation speed enormously. Inpartiular, instead of performing large�sale omputations of shortest path lengths andsubsriber line lengths, respetively, for eah lower�level omponent individually, we �rstuse an ergodiity argument by whih these large�sale omputations an be redued tothe omputation of a single expetation value with respet to the so�alled Palm proba-bility measure indued by the point proess of lower�level omponents. Then, we applyNeveu's exhange formula for Palm expetations of stationary marked point proesses.This allows us to pass to expetations with respet to the Palm probability measure in-dued by the point proess of higher�level omponents, whih are omputationally easierto handle. Finally, we ompute the latter expetations by partitioning the underlying linesystem and by applying inner Voronoi tessellations with respet to the edges of the ellsformed by the Poisson line proess. An extended version of this ontribution is given inthe paper [10℄.All implementations that have been done for the omputation and the simulation of2



network harateristis and orresponding models are integrated in the GeoStoh library.This JAVA�based library omprises software tools designed to analyze data with methodsfrom stohasti geometry; see [11℄ and http://www.geostoh.de.2 Stohasti modelling of teleommuniation aess networksIn the following we regard two�level hierarhial models, i.e., two di�erent equipmenttypes are plaed along the infrastruture system. More preisely, we start by onsideringa Poisson line proess, whih is intended to model the underlying road system. Given a re-alization of suh an underlying line system we independently generate either two (marked)point proesses on eah line, whih an be seen as spatial point proesses onentrated onthe system of lines, or we generate one of the two point proesses within the ells formedby the lines of the underlying line system.2.1 Network geometry and higher-level omponentsAs a model for the underlying infrastruture system, or in other words the network geom-etry, a Poisson line tessellation is hosen whih is indued by a stationary and isotropiPoisson line proess Xℓ with intensity γ. The higher�level omponents are plaed on thelines of this line system, in agreement with the rules de�ned by the SSLM. Furthermore,the loations of higher�order omponents are assumed to form a (non�marked) stationarypoint proess XH = {Xn}n≥1 in IR2 with intensity λH .Later on in Setion 5, we will assume that XH is a doubly stohasti Poisson proessswhose (random) intensity measure is onentrated on the lines of the underlying Poissonline poess Xℓ. However, for the purposes of Setions 3 and 4, this assumption is unne-essarily strong. Thus, for the moment, we only assume that XH satis�es the followingonditions. Given Xℓ, onsider independent stationary and ergodi (linear) point pro-esses on eah line of Xℓ and let XH be the superposition of these point proesses. Their(linear) intensity λ1, measured along the lines of Xℓ, is onneted to the (full�dimensional)intensity λH via λH = λ1γ .Furthermore, suppose that eah loation Xn of a higher�level omponent has an in�u-ene zone Ξ(Xn) and that the sequene {Ξ(Xn)}n≥1 forms a Voronoi tessellation induedby XH ; see Fig. 1().Theorem 2.1 Let Ξ∗ denote the typial ell of the Voronoi tessellation {Ξ(Xn)}n≥1 in-dued by the stationary point proess XH = {Xn}n≥1 of higher�level omponents. Then,
λ1 =

1

IEXH
ν1(L(Ξ∗))

, (2.1)where IEXH
denotes expetation with respet to the Palm probability measure IP∗

XH
andwhere L(Ξ∗) denotes the (Palm) line system within the typial ell Ξ∗.2.2 Lower�level omponents and shortest pathsWith respet to the plaement of lower�level omponents two di�erent senarios are re-garded. In a �rst senario, given Xℓ, the lower�level omponents are plaed aording toindependent Poisson point proesses with (linear) intensity λ2 on the lines of the Poissonline proess Xℓ; see Fig. 2(a). Then, the union {X̃n}n≥1 of all loations X̃n of lower�levelomponents forms a stationary (doubly stohasti Poisson) point proess in IR2 whose3



(planar) intensity is denoted by λL. Notie that λL = λ2γ . To exlude trivial ases, wealways assume in this paper that 0 < λH , λL < ∞ .Let N(X̃n) denote the loation of the nearest (in the Eulidean sense) higher�levelomponent of X̃n and let P (X̃n, N(X̃n)) be the shortest path from X̃n to N(X̃n) alongthe edges of the graph indued by the Poisson line proess Xℓ . By c(P (X̃n, N(X̃n))) wedenote the length of the path P (X̃n, N(X̃n)).An important network harateristi of speial interest is the mean shortest pathlength, i.e., the average distane with respet to the underlying graph struture from thelower�level omponents to their nearest (in the Eulidean sense) higher�level omponents.In order to analyze this harateristi, eah loation X̃n of the lower�level omponentsis assoiated with the mark c(P (X̃n, N(X̃n))) > 0. This leads to the stationary markedpoint proess
XL = {[X̃n, c(P (X̃n, N(X̃n)))]}n≥1 , (2.2)whose mark spae is the non�negative x�axis [0,∞].In a seond senario, the lower�level omponents are not plaed on the edges, but intothe ells formed by the Poisson line proess Xℓ, aording to an independent (stationary)Poisson point proess {X ′

n}n≥1 in IR2 with (planar) intensity λL. Afterwards, for eah n,the loation X ′
n of the nth lower�level omponent is onneted with the loation N(X ′

n) ofits nearest (in the Eulidean sense) higher�level omponent. This is done in the followingway.Let Ξn = Ξ(N(X ′
n)) be the Voronoi ell of N(X ′

n) and let L(Ξn) denote the restritionof the Poisson line proess Xℓ to Ξn. Then, the loation X ′
n is �rst onneted to its nearestpoint of the line system L(Ξn); see Fig. 2(b). This �projetion point� is denoted by X ′′

n.We are interested in the mean subsriber line length, representing the average shortestdistane of the projeted points X ′′
n on the lines to the loations N(X ′

n) of their higher�order omponents, with respet to the underlying graph struture indued the Poisson lineproess Xℓ. Again, these distanes an be expressed via the marks c(P (X ′
n, N(X ′

n))), at-tahed to the loations X ′
n of lower�level omponents. However, in this seond plaementsenario, one an split up the marks aording to

c(P (X ′
n, N(X ′

n))) = c′(X ′
n, X

′′
n) + c(P (X ′′

n, N(X ′
n))) , (2.3)where c′(X ′

n, X ′′
n) is the ost value of the �edge� with respetive endpoints X ′

n and X ′′
n.Note that in Setion 5, we assume c′(X ′

n, X
′′
n) = 0 in order to enhane the larity ofpresentation.3 Mean shortest path lengthIn this setion we investigate the mean shortest path length for the �rst loation senarioof lower�level omponents desribed in Setion 2.2.3.1 Simulation methodsAt �rst glane, a natural approah in order to pratially analyze the mean shortest pathlength seems to be the following proedure. First, simulate the network in a (supposedlylarge) sampling window W ⊂ IR2, then ompute the shortest path length c(P (X̃n, N(X̃n)))for eah loation X̃n of lower�level omponents generated in the sampling window, and,4
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(b) Spatial plaement and projetion to nearestlineFig. 2: Two senarios for the plaement of lower-level omponents�nally ompute the average cLH(W ) of these shortest path lengths, where
cLH(W ) =

1

#{n : X̃n ∈ W}

∑

n≥1

1IW (X̃n)c(P (X̃n, N(X̃n))) . (3.1)However, it beomes very rapidly lear that this method has some distint disadvan-tages. If the sampling window W is too small, the problem of edge�e�ets is signi�ant.If, on the other hand, W is large, the omputational problem arises that a lot of memoryand runtime is needed for single simulation runs.Therefore, we propose an alternative approah by using the Palm probability measure
IP∗

XL
of the stationary marked point proess XL = {[X̃n, c(P (X̃n, N(X̃n)))]}n≥1, intro-dued in (2.2). This alternative approah is based on the following asymptoti propertyof the random variable cLH(W ) de�ned in (3.1). Let {Wi}i≥1 be a so�alled averagingsequene of unboundedly inreasing sampling windows. Then, by the ergodiity of thestationary marked point proess XL, we have that

lim
i→∞

cLH(Wi) = c∗LH (3.2)holds with probability 1, where
c∗LH =

1

λLν2(B)
IE

∑

n≥1

1IB(X̃n)c(P (X̃n, N(X̃n))) = IEXL
c(P (o, N(o))) . (3.3)Reall that the symbol B in (3.3) means an arbitrary (bounded) Borel set B ∈ B(IR2)with 0 < ν2(B) < ∞ and IEXL

denotes expetation with respet to the Palm probabilitymeasure IP∗
XL

.Thus, motivated by the limit in (3.2), we will ompute c∗LH = IEXL
c(P (o, N(o))),whih will be muh easier than omputing the average cLH(W ) given in (3.1). Moreover,by Neveu's exhange formula for Palm expetations, we an express c∗LH in an even morefavorable way; see Setion 3.2.3.2 Appliation of Neveu's formulaThe following result admits a pratially more feasible representation of the expetation

c∗LH = IEXL
c(P (o, N(o))) appearing in (3.2) and, in the onsequene, a more e�ient wayto approximately ompute the mean shortest path length cLH(W ) onsidered in (3.1).5



Theorem 3.1 Consider the point proess XH = {Xn}n≥1 of loations of higher�levelomponents and the (marked) point proess XL = {[X̃n, c(P (X̃n, N(X̃n)))]}n≥1. Then,
IEXL

c(P (o, N(o))) =
1

IEXH
ν1(L(Ξ∗))

IEXH

∫

L(Ξ∗)

c(P (u, o)) du , (3.4)where Ξ∗ denotes the typial ell of the Voronoi tessellation indued by XH and L(Ξ∗) isthe (Palm) line system within Ξ∗.Notie that by Theorem 3.1, we an further simplify the omputation of the meanshortest path length cLH(W ) onsidered in (3.1). Namely, instead of omputing theexpetation c∗LH = IEXL
c(P (o, N(o))) appearing in (3.2), we will estimate the quotientof expetations on the right�hand side of (3.4). For doing so, we just have to simulatethe typial serving zone Ξ∗ of higher�level omponents, together with their orresponding(typial) line system, where L(Ξ∗) denotes this line system restrited to Ξ∗.We also remark that the expression for IEXL

c(P (o, N(o))) given in (3.4) an be alter-natively written in the form
IEXL

c(P (o, N(o))) = λ1 IEXH

∫

L(Ξ∗)

c(P (u, o)) du , (3.5)whih immediately follows from Theorems 2.1 and 3.1. This shows in partiular that theexpetation IEXL
c(P (o, N(o))) does atually not depend on λ2 .3.3 Computational algorithmIn order to get an estimator ĉLH for c∗LH , we use the expression (3.4) derived in Theo-rem 3.1. The idea is to simulate the typial Voronoi ell Ξ∗, and the (typial) line system

L(Ξ∗), a ertain number of times, k say. Furthermore, we partition the line system L(Ξ∗
i )in Ξ∗

i for i = 1, . . . , k into its line segments Ei = {S
(1)
i , S

(2)
i .., S

(Mi)
i }, where Mi is the totalnumber of line segments in Ξ∗

i for 1 ≤ i ≤ k. Notie that the line whih ontains theorigin is subdivided into two segments; see Fig. 3(a).Hene, taking lassial sample means, we get that limk→∞ ĉLH(k) = c∗LH with proba-bility 1, where
ĉLH(k) =

1
k∑

i=1

ν1(L(Ξ∗
i ))

k∑

i=1

Mi∑

j=1

∫

S
(j)
i

c(P (u, o)) du . (3.6)Alternatively, if the intensity λ1 is known, we an use the relationship (3.5) in order toget still another estimator čLH(k) for c∗LH , where
čLH(k) = λ1

1

k

k∑

i=1

Mi∑

j=1

∫

S
(j)
i

c(P (u, o)) du . (3.7)In both ases, it remains to know how the integrals on the right�hand sides of (3.6) and(3.7), respetively, an be omputed. This is shown in the following theorem, where someadditional assumptions will be made on the ost funtion c : E → [0,∞) .6
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(b) Mean shortest path length for single segmentFig. 3: Partitioning and weighted mean shortest path lengthTheorem 3.2 Suppose that the values c(e) of the ost funtion c : E → [0,∞) onlydepend on the lengths of the edges e ∈ E and that c(e) is monotonously inreasing withrespet to the length of e, where c(e) = 0 if ν1(e) = 0. Let S = S(A, B) be a line segmentwith respetive endpoints A and B, and let δS = c(P (B, o)) − c(P (A, o)). Then,
c(P (A, B)) ≥ |δS| . (3.8)Moreover, there exists a point D ∈ S suh that

c(P (A, o)) + c(P (D, A)) = c(P (B, o)) + c(P (D, B)) (3.9)and
∫

S

c(P (u, o)) du = c(P (A, o))ν1(D − A) +

∫ A

D

c(P (A, u)) du

+ c(P (B, o))ν1(D − B) +

∫ B

D

c(P (B, u)) du . (3.10)Corollary 3.1 If c(S) is the length of the segment S = S(A, B), i.e. c(S) = ν1(S), then
∫

S

c(P (u, o)) du = f(ν1(S); c(P (A(S), o)), c(P (B(S), o))) , (3.11)where
f(x; θ1, θ2) =

1

4
x2 +

1

2
(θ1 + θ2)x −

1

4
(θ2 − θ1)

2 . (3.12)If c(e) = ν1(e) for any e ∈ Ei for i = 1, . . . , k and k ≥ 1 then by Corollary 3.1, weimmediately get the following �nal expressions for the estimators ĉLH(k) and čLH(k).Corollary 3.2 For eah k ≥ 1 let Ei = {S
(j)
i }Mi

j=1 be the partion of the line system L(Ξ∗
i )restrited to the ith typial ell Ξ∗

i for i = 1, . . . , k and let A
(j)
i and B

(j)
i , respetively,denote the endpoints of the segment Sj

i . Then,
ĉLH(k) =

1
k∑

i=1

ν1(L(Ξ∗
i ))

k∑

i=1

Mi∑

j=1

f(ν1(S
(j)
i ); c(P (A

(j)
i ), o), c(P (B

(j)
i , o))) (3.13)7



and
čLH(k) =

λ1

k

k∑

i=1

Mi∑

j=1

f(ν1(S
(j)
i ); c(P (A

(j)
i ), o), c(P (B

(j)
i , o))) , (3.14)where the funtion f is given in (3.12).By the representation formulae (3.13) and (3.14), it su�es to ompute the pathlengths c(P (A

(j)
i ), o) and c(P (B

(j)
i ), o) for j = 1, . . . , Mi and i = 1, . . . , k in order todetermine the estimators ĉLH(k) and čLH(k). This an be done, for example, by applyingDijkstra's algorithm; see Setion 5 below.4 Mean subsriber line lengthIn this setion we onsider the ase, where the lower�level omponents are not plaedon the edges, but into the ells formed by the Poisson line proess Xℓ, aording to anindependent (stationary) Poisson point proess {X ′

n}n≥1 in IR2 with (planar) intensity λL;see Setion 2.2.Reall that, for eah n, the loation X ′
n of the nth lower�level omponent is onnetedwith the loation N(X ′

n) of its nearest (in the Eulidean sense) higher�level omponent.For this purpose, X ′
n is �rst onneted to its nearest point X ′′

n of the line system L(Ξn),where Ξn = Ξ(N(X ′
n)) is the Voronoi ell of N(X ′

n) and L(Ξn) denotes the restrition ofthe Poisson line proess Xℓ to Ξn.An interesting harateristi is the so�alled mean subsriber line length
dLH(W ) =

1

#{n : X ′
n ∈ W}

∑

n≥1

1IW (X ′
n) c(P (X ′

n, N(X ′
n))) (4.1)for some sampling window W ⊂ IR2, where the ost value c(P (X ′

n, N(X ′
n))) of the shortestpath from X ′

n to N(X ′
n)) is given in (2.3).In order to pratially analyze the mean subsriber line length dLH(W ), we proposean approah whih is analogous to that onsidered in Setion 3, i.e., an approah basedon the Palm probability measure IP∗

X′

L
of the stationary marked point proess X ′

L =

{[X ′
n, c(X

′
n)]}n≥1, where c(X ′

n) = c(P (X ′
n, N(X ′

n))). Then, by the ergodiity of X ′
L, wehave that

lim
i→∞

dLH(Wi) = d∗
LH (4.2)holds with probability 1, where {Wi}i≥1 is an averaging sequene of unboundedly inreas-ing sampling windows and

d∗
LH =

1

λLν2(B)
IE

∑

n≥1

1IB(X ′
n) c(P (X ′

n, N(X ′
n))) = IEX′

L
c(P (o, N(o))) (4.3)for some (bounded) Borel set B ∈ B(IR2) with 0 < ν2(B) < ∞.Furthermore, applying Neveu's exhange formula for Palm expetations, we get thefollowing expression for the expetation IEX′

L
c(P (o, N(o))) appearing in (4.3).Theorem 4.1 Consider the point proess XH = {Xn}n≥1 of higher�level omponents andthe (marked) point proess X ′

L = {[X ′
n, c(P (X ′

n, N(X ′
n)))]}n≥1. Then,

IEX′

L
c(P (o, N(o))) =

1

IEXH
ν2(Ξ∗)

IEXH

∫

Ξ∗

c(P (u, o)) du , (4.4)8
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Fig. 4: Computational aspets of d̂LH: Typial Cox�Voronoi ell with innerVoronoi tessellation (left) and example of inner Voronoi ell (right)where Ξ∗ denotes the typial ell of the Voronoi tessellation indued by XH .Using (4.3) and (4.4), we get an estimator d̂LH for the limit d∗
LH onsidered in (4.2),where limk→∞ d̂LH(k) = d∗

LH with probability 1, and where
d̂LH(k) =

1
k∑

i=1

ν2(Ξ
∗
i )

k∑

i=1

Ki∑

j=1

∫

Ψ
(j)
i

c(P (u, o)) du . (4.5)The seond summation is done over the (random) number Ki of inner Voronoi ells Ψ
(j)
i .Fig. 4 provides a graphial explanation of the omputation. For further details, it isreferred to [10℄.5 Numerial analysisReall that in this setion we assume XH to be a doubly stohasti Poisson proess aspointed out in Setion 2.1. Then, the whole model is ompletely desribed by the threeparameters λL, λ1 and γ. Besides this we assume that c(S) is the length of the segment

S, i.e. c(S) = ν1(S).5.1 Saling properties of CVTAs it has already been explained in [9℄, with respet to the two remaining parameters λ1and γ, a saling invariane property holds for any �xed value of the quotient κ = γ/λ1. Inpartiular suppose that γ = aγ(0) and λ1 = aλ
(0)
1 for some γ(0), λ(0) > 0, �xed and a > 0.Then, with respet to the typial ell Ξ∗ of the orresponding Voronoi tessellation, theexpeted number of verties is onstant, whereas the expeted perimeter and the squareroot of the expeted area of the typial ell grow linearly, proportionally to a−1 .Furthermore, the following saling property shows that it is possible to provide es-timates for the harateristis desribed in Setions 3 and 4 orresponding to a givenparameter pair (γ, λ1) by using estimates for a di�erent parameter pair having the samequotient κ and by performing a suitable standardization afterwards.9
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c∗LH = c∗LH(γ, λ1) and d∗
LH = d∗

LH(γ, λ1) given in (3.2) and (4.2), respetively. Then
γ(1) c∗LH(γ(1), λ

(1)
1 ) = γ(2) c∗LH(γ(2), λ

(2)
1 ) (5.1)and

γ(1) d∗
LH(γ(1), λ

(1)
1 ) = γ(2) d∗

LH(γ(2), λ
(2)
1 ) (5.2)provided that γ(1)/λ

(1)
1 = γ(2)/λ

(2)
1 .5.2 Numerial resultsWith regard to the estimation of the mean shortest path length as well as the meansubsriber line length we used k = 50000 iterations. Fig. 5 shows a visualization of thesaling invariane e�et for the mean shortest path length and the mean subsriber linelength. If we take κ to be �xed for di�erent values of γ, then the estimated results for

c∗LH as well as for d∗
LH are proportional to 1/γ. Therefore the graphs displayed in Fig. 5for κ = 10, κ = 50 , and κ = 120 are linear and should pass through the origin. Of ourse,the latter property annot be diretly heked sine it means that γ → ∞.A �rst important observation one an make, is that for the same parameter pair (γ, λ1)we always have that c∗LH > d∗

LH . This observation might be explained by the fat that theells of the Cox�Voronoi tessellation of the upper�level omponents are onvex polygons,hene if eah point on the underlying line system is weighted by the distane measure ofthe points in the ell projeted to it, points lying lose to the enter of the ell get a largerweight than these near the edge. With regard to the estimation of c∗LH , these weights arealways onstant. Therefore, we have that the mean shortest path length is larger thanthe mean subsriber line length for the same pair of parameters.If κ inreases, the quotient c∗LH/d∗
LH also slightly inreases, meaning that in this asethe mean shortest path length beomes larger in relation to the mean subsriber linelength. 10
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(b) Mean subsriber line lengthFig. 6: Estimates for m(κ) and m′(κ) for di�erent κ and the �tted funtionAnother interesting observation is that the values of both harateristis seem to in-rease for inreasing κ. Obviously this is due to the fat that the expeted area IEν2(Ξ
∗)of the typial ell Ξ∗ of the Cox�Voronoi tessellation also inreases.Reall that by Theorem 5.1 we have

c∗LH(γ, λ1) = m(κ) γ−1 and d∗
LH(γ, λ1) = m′(κ) γ−1 , (5.3)where m(κ) and m′(κ) are onstants depending only on the quotient κ = γ/λ1. If wereturn to the graphs displayed in Fig. 5, we an obtain the estimates m̂(κ) and m̂′(κ) forthe slopes m(κ) and m′(κ) of the lines for κ onstant and 1/γ variable.The knowledge of m̂(κ) and m̂′(κ) thereby leads to the possibility of estimating themean shortest path length and the mean subsriber line length without having to dosimulations for any given parameter pair (γ, λ1), sine then, only these parameter valuesneed to be plugged into the formulas in (5.3) to obtain the estimates for c∗LH and d∗

LH ,respetively. Computationally these slopes are estimated for ertain disrete values of κand subsequently a funtion is �tted using the measurement points. Fig. 6 displays somevalues of estimated slopes as well as a �tted funtion. Regarding the estimated values weused
m(κ) = aκb and m′(κ) = a′κb′ ,where a, a′ ∈ IR and b, b′ ∈ (0, 1]. Using the least squares method we obtained a = 1.5477,
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