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Abstract

In meteorology it is important to compute the probabilities of certain weather events occurring.
There are a number of numerical and statistical methods for estimating the probability that a
weather event occurs at a fixed location (a point). However, there are no widely applicable
techniques for estimating the probability of such an event occurring in a geographical region (an
area). In this paper, we propose a model-based approach for the computation of area probabilities
using point probabilities. We develop this approach in the context of estimating the probability
of the meteorological event ‘occurrence of precipitation’. We treat the point and area probabili-
ties as coverage probabilities of a germ-grain model, where the grains can roughly be interpreted
as precipitation cells. The germ-grain model is completely characterized by a sequence of local
intensities and a grain size. We compute these model characteristics using available point prob-
abilities. A non-negative least-squares approach is used to determine the local intensities and a
semivariogram estimation technique is used to find the grain size. We are then able to determine
area probabilities either analytically or by repeated simulation of the germ-grain model. We val-
idate our model, using radar observations to assess the precision of the computed probabilities.

Keywords: Probabilistic weather prediction, Germ-grain model, Cox point process,
Semivariogram estimation, Forecasting, Area weather event

1. Introduction

Meteorological services such as Deutscher Wetterdienst (DWD) are responsible for provid-
ing weather warnings. In order to give timely and reliable warnings, they need to be able to
accurately estimate the probability that a potentially harmful meteorological event, such as wind
gusts or precipitation exceeding some threshold, occurs in a specific geographical area. Such an
event is said to occur if it occurs somewhere in the area. We call the corresponding probability
an area probability.

The existing methodologies used by DWD and other meteorological services are designed to
estimate point probabilities rather than area probabilities. That is, they estimate the probability
of a weather event happening at a specific point, rather than somewhere in a wider area. Area
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probabilities are quantitatively different from their corresponding point probabilities. For exam-
ple, the probability that an event occurs somewhere in an area is greater than the probability it
occurs at a given point within the area.

Available point probabilities generally correspond to geographically distinct locations. Be-
cause of their spatial correlation structure, these probabilities provide information not only about
the considered locations but also about their surroundings. This means that they contain signif-
icant information about area probabilities. However, it is not clear how this information can be
used most effectively. There is no known analytical formula for deriving area probabilities from
a collection of geographically distinct point probabilities. In Epstein (1966) and Krzysztofowicz
(1998), theoretical relationships are established between point and area probabilities. However,
these approaches assume circular precipitation cells and make a number of very restrictive as-
sumptions, including circular forecast areas and uniformly distributed precipitation cells. These
assumptions imply that the point probabilities are equal for all points in the forecast area and a
certain neighborhood, which makes the model applicable to a regional scale only. In addition,
in order to compute area probabilities, these approaches require additional information about
precipitation cell sizes to be specified by the forecaster. This, however, prevents an automated
generation of weather warnings, where an algorithmic computation of area probabilities based
solely on point probabilities is desired.

In recent decades, there has been an increasing interest in the analysis, modeling and sim-
ulation of meteorological data sets using spatial stochastic models, especially spatial point pro-
cesses. Some current examples can be found in Elsner et al. (2013), Karpman et al. (2013) or
Kriesche et al. (2014). In the present paper, we continue work in this direction by introduc-
ing a statistical method for computing area precipitation probabilities from point precipitation
probabilities using a spatial stochastic model for the representation of precipitation cells. In
the literature several stochastic approaches for the modeling of rain events are proposed. Be-
sides single-site and multi-site models where mainly the temporal development of rain events
is considered (Cowpertwait et al., 2011; Ramesh et al., 2012; Kaczmarska et al., 2014), some
approaches for the continuous spatial modeling (Rodriguez-Iturbe et al., 1986) or the continu-
ous spatial-temporal modeling of rain events have been introduced, too (see e.g. Cox and Isham,
1988; Cowpertwait, 1995; Northrop, 1998; Wheater et al., 2000, 2005; Segond and Onof, 2009).
A good review of the basic models can be found in Onof et al. (2000). Although none of these
papers deals with area probabilities, they still provide some valuable ideas for the modeling of
rain cells, e.g., the modeling of cell centers by Poisson-based point process and the consideration
of circular rain cells. However, there are some strong limitations that make the provided contin-
uous spatial models inappropriate for the purposes of the present paper. On the one hand, spatial
stationarity of rain events is assumed, which restricts the modeling of rain fields to relatively
small regional areas. A non-stationary approach is only provided for multi-site models, see e.g.
Wheater et al. (2005). On the other hand, these models can only be fitted to rain fields obtained
from radar data, which again prevents the automated generation of warning events based solely
on available point probabilities.

In the present paper we extend the work performed in previous publications, to develop a
more robust and less restrictive approach. More precisely, we consider a global model where
the considered meteorological objects, here precipitation cells, are distributed inhomogeneously
over the entire observation window (e.g., Germany). We are able to calculate all the model
characteristics algorithmically from a sequence of point probabilities. In particular, no observed
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precipitation rates are necessary. We can then compute area precipitation probabilities for ar-
bitrary areas of interest within the observation window. The method proposed in this paper is
expected to play a key role in fulfilling a specific requirement of DWD, which is the calcula-
tion and dissemination of area probabilities for hazardous weather warnings (precipitation, wind
gusts, thunderstorms, etc.) for customer-specific areas using semi-automated warning systems.

Our paper is organized as follows. Sect. 2 describes the computation of point precipitation
probabilities, which play a fundamental role in our paper. We give a brief overview of the meth-
ods used by DWD to derive probabilities for the occurrence of precipitation exceeding certain
thresholds. We also describe the data used in this paper, which includes the point precipitation
probabilities. In Sect. 3, we propose a new model-based approach to computing area probabil-
ities. We represent both point and area probabilities as coverage probabilities of a germ-grain
model. The germ-grain model is characterized by a sequence of local intensities and a grain size.
The grains loosely model precipitation cells. We describe how our model characteristics can
be computed using point probabilities provided by DWD. Area probabilities can be determined
either directly or by repeated simulation of the germ-grain model. In Sect. 4, we carry out model
validation. The area probabilities computed using our model are compared with observed rela-
tive frequencies of precipitation events based on radar observations. We give a summary of our
results and discuss avenues for future research.

2. Point precipitation probabilities

The exact relationship between point and area precipitation probabilities is unclear. How-
ever, it is clear that point probabilities for distinct locations contain valuable information on area
precipitation events due to their spatial correlation.

2.1. Computation of probabilities for point events

At DWD, point probabilities of given weather events occurring, such as precipitation or wind
gusts exceeding a certain warning threshold, are estimated using a multistage procedure. In the
first step, a preliminary deterministic weather forecast is obtained from the numerical model
GME (Majewski, 1998; Majewski et al., 2002) and the Integrated Forecasting System of the
European Centre for Medium-Range Weather Forecasting (IFS/ECMWF). These data have sys-
tematic errors which arise from uncertainties about the initial weather conditions, inaccuracies
in the numerical model simulating weather evolution, and the failure of the numerical model to
adequately represent synoptic observations (the error of representativity). These errors are re-
duced in a statistical post-processing step at DWD. The applied method is model output statistics
(MOS), see (Knüpffer, 1996). For a general introduction to MOS, we refer to Wilks (1995).
The applied MOS system uses historical observations from about 1600 synoptic weather stations
worldwide to estimate the systematic errors of GME and IFS/ECMWF at these locations and to
correct the operational forecasts. More precisely, the input data are time series of both historical
observations and the output of the numerical models. These time series range from 2001 up to
2014 currently. Changes in the numerical models are accounted for via binary predictors and a
higher weighting of the most recent time period. All in all, roughly 150 forecast variables are
computed with various reference periods and with forecasting times up to ten days ahead. Each
dependent variable (predictand) is estimated based on the most relevant independent variables
(predictors) via a stepwise linear regression. The predictors based on the output of the numerical
models tend to have the highest explanatory power. However, recent meteorological observations
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can also have considerable explanatory power, especially for small forecast ranges. For example,
consider the predictand ‘precipitation amount during 1 hour’. Usually the forecast of this value
from the numerical model is a very good predictor. However, other model variables and the latest
observed rain rates may also have significant explanatory power. DWD uses a two stage MOS
procedure. First, the forecasts from the GME model and IFS/ECWMF are post-processed indi-
vidually. Then, in a second step, the resulting forecasts are merged using MOS again in order to
derive statistically optimal weights for the individual forecasts.

2.2. Description of data

In this paper, we consider point probabilities of precipitation exceeding 0.1 mm within one
hour. These are generated for 503 German and Luxembourgian synoptic weather stations, includ-
ing secondary national non-WMO (World Meteorological Organization) stations. The threshold
of 0.1 mm was chosen in order to allow for a consistent validation with gauge adjusted radar
analyses, see Sect. 4.1. A summer period from June 1 until July 31, 2012 and a winter period
from November 1 until December 31 of the same year were selected in order to address seasonal
changes in precipitation patterns. Re-forecasts of the two stage MOS system of DWD were
started for each day of the selected time periods and the individually post-processed forecasts of
the GME and IFS/ECMWF models were mixed. Seven forecast steps from 3 UTC (Universal
Time, Coordinated) every three hours up to 21 UTC are used, each providing the point probabil-
ities that precipitation exceeding an amount of 0.1 mm occurs during the preceding time period
of one hour. Altogether, 854 forecast steps of precipitation were obtained, each consisting of 503
point probabilities, corresponding the 503 considered weather stations.

3. Area precipitation probabilities

In this section, a statistical method for the computation of area precipitation probabilities is
introduced. In particular, we present a spatial stochastic model for the representation of both
point and area precipitation probabilities as coverage probabilities of a germ-grain model. In the
following, we always consider an arbitrary but fixed forecast step, which means that no temporal
dynamic is taken into account in our model.

3.1. Stochastic model for the occurrence of precipitation

The occurrence of precipitation is one of the most complex processes considered in mete-
orology, which makes a precise computation of probabilities extremely difficult. As already
mentioned in Sect. 2.1, point probabilities computed from numerical and statistical forecast
models are subject to several sources of uncertainty concerning e.g. initial weather conditions or
inaccuracies in the model equations due to discretization and physical parameterization. A sta-
tistical post-processing (e.g. by using MOS) reduces systematic errors of the numerical models
but, however, cannot correct for random errors. To account for that, it seems natural to model
precipitation probabilities as random variables and to consider the probabilities computed by
DWD as possible realizations. According to this approach we consider an arbitrary probability
space (Ω,F ,P), where each elementary event ω ∈Ω corresponds to a possible realization of the
numerical weather prediction model for the considered forecast step and vice versa.

To begin with, we consider the random field {Pt , t ∈W} with Pt : Ω→ [0,1] modeling the
(random) point precipitation probability at location t in a bounded and convex Borel set W ⊂R2.
In the example of application discussed in this paper, W is a rectangle comprising the boundaries
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of Germany. To allow for a reasonable modeling of Pt , various assumptions have to be made. At
first, we suppose that for each ω ∈Ω the point precipitation probabilities Ps1(ω), . . . ,Psn(ω) are
available for a sequence s1, . . . ,sn of locations of interest in W , for example the locations of syn-
optic weather stations. Furthermore, we suppose an intuitive relationship between precipitation
probabilities and the occurrence of precipitation, which constitutes our basic modeling assump-
tion. We say that there is precipitation at location t ∈W if and only if t is covered by a certain
precipitation field. In general, precipitation fields can look very irregular, see for example Fig. 3
(b) in Sect. 4.1, and thus, some simplification seems to be helpful. We assume that a precipitation
field can be represented as the union of random precipitation cells, with each of them having a
random cell center and a random cell shape.

We supposed that precipitation cells, or to be more precise their cell centers, are formed
in a random way according to a random intensity function {Λt , t ∈W} of cell formation with
Λt : Ω→ [0,∞) being the random intensity at location t ∈W . It is clear that there is a close rela-
tionship between the characteristics of precipitation cells, i.e., the intensity function {Λt , t ∈W}
and the cell size on the one hand, and the field of point probabilities {Pt , t ∈W} on the other
hand. Therefore, a suitable modeling approach for {Λt , t ∈W} has to be found first. Unfortu-
nately, both {Pt , t ∈W} and {Λt , t ∈W} are unknown in general, only realizations of the random
variables Ps1 , . . . ,Psn are available. To account for the fact that meteorological information is
only given for the locations s1, . . . ,sn, we make the simplifying assumption that {Λt , t ∈W} is
a piecewise constant random function, which takes a constant value within a natural neighbor-
hood of each location si for i = 1, . . . ,n. For that purpose, we consider the Voronoi tessellation
{V (s1), . . . ,V (sn)} of s1, . . . ,sn in W , where the Voronoi cell V (si) of si in W is defined as

V (si) = {x ∈W : |x− si|< |x− s j| for all j = 1, . . . ,n with j 6= i}, (1)

for all i = 1, . . . ,n. Consequently, we assume that the random intensity function {Λt , t ∈W} of
cell formation can be represented as

Λt =
n

∑
i=1

Ai IV (si)(t) for all t ∈W, (2)

where IV :W→{0,1} denotes the indicator of the set V ⊂W and the random variables A1, . . . ,An :
Ω→ [0,∞) can be interpreted as random local intensities for the formation of precipitation cells.
In the next step, the modeling of the centers of precipitation cells itself is addressed, where
we consider a random Cox point process {Xi, i ≥ 1} in W with (random) intensity function
{Λt , t ∈W}, see e.g. Chiu et al. (2013) or Illian et al. (2008). The Cox process {Xi, i≥ 1} is de-
fined on the extended probability space (Ω× Ω̃,F ⊗F̃ ,Q), where for each (ω, ω̃) ∈Ω× Ω̃ the
elementary event ω identifies a possible realization of the numerical weather prediction model
and ω̃ corresponds to the spatial distribution of precipitation cells.

After modeling the cell centers, the shape of precipitation cells has to be addressed. Due to
the irregularity of precipitation fields (see e.g. Fig. 3 (b) in Sect. 4.1) it seems to be practically
impossible to find a model for precipitation cells, which exactly matches real precipitation fields
but is still easy to handle. Therefore, we make the simplifying assumption that there is precip-
itation at location t (i.e., t belongs to a precipitation field, see above) if t is close enough to the
center of at least one precipitation cell. Equivalently, we say that there is precipitation at t if t is
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covered by a germ-grain model M defined on (Ω× Ω̃,F ⊗ F̃ ,Q), which is given by

M =
∞⋃

i=1

b(Xi,R). (3)

Here, b(x,r) denotes the two-dimensional ball with center at x ∈ R2 and radius r > 0 and the
random variable R : Ω→ (0,∞) is interpreted as random spatial precipitation range. We want
to emphasize that the germ-grain model M can only roughly be understood as a model for pre-
cipitation cells but that the modeling of precipitation probabilities as coverage probabilities can
be quite accurate even if single realizations of M look atypically compared to observed precipi-
tation fields. Note that given a particular realization ω ∈ Ω, the germ-grain model M is a well-
known inhomogeneous Boolean model based on a Poisson point process with intensity function
{Λt(ω), t ∈W} and with circular grains with radius r = R(ω), see e.g. Chiu et al. (2013).

3.2. Representation formulas for precipitation probabilities
We recall once more the key assumptions made in Sect. 3.1. We suppose that there is pre-

cipitation at location t ∈W if and only if t is covered by the germ-grain model M given in (3),
which is completely characterized by the sequence A1, . . . ,An of random intensities for the local
formation of precipitation cells and the random spatial precipitation range R. Based on these
assumptions, we get the following representation of {Pt , t ∈W} as

Pt = P(t ∈M |A1, . . . ,An,R) = 1− exp

(
−

n

∑
i=1

Ai v2 (b(t,R)∩V (si))

)
for all t ∈W, (4)

where v2(·) denotes the two-dimensional Lebesgue measure. A particular advantage of the model
proposed in this paper is the circumstance that an intuitive generalization of formula (4) to the
representation of area precipitation probabilities is easily possible. Following the modeling ideas
considered above, it is natural to say that there is precipitation somewhere within an arbitrary area
B ⊂W if and only if the distance of B to the center of at least one precipitation cell is smaller
than the random precipitation range R, which is the case if and only if B intersects the germ-grain
model M. To be more precise, the random area precipitation probability for any Borel set B⊂W
is modeled by P(B∩M 6= /0 |A1, . . . ,An,R), which can be expressed as

P(B∩M 6= /0 |A1, . . . ,An,R) = 1− exp

(
−

n

∑
i=1

Ai v2 ((B⊕b(o,R))∩V (si))

)
, (5)

where o ∈ R2 is the origin and A⊕B = {x+ y, x ∈ A,y ∈ B} denotes the Minkowski sum of any
sets A and B. Note that the representation formula given in (5) can be derived as follows. We
have

P(B∩M 6= /0 |A1, . . . ,An,R) = 1−P(#{i : Xi ∈ B⊕b(o,R)}= 0 |A1, . . . ,An,R)

= 1− exp

(
−
∫

B⊕b(o,R)

n

∑
i=1

Ai1V (si)(t)dt

)

= 1− exp

(
−

n

∑
i=1

Ai

∫
R2
1(B⊕b(o,R))∩V (si)(t)dt

)

= 1− exp

(
−

n

∑
i=1

Ai v2 ((B⊕b(o,R))∩V (si))

)
,
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(a) June 7, 2012, 06 UTC (b) December 22, 2012, 21 UTC

Figure 1: Available data for two selected forecast steps: the locations of the considered 503 weather stations and the
corresponding Voronoi tessellation, where each Voronoi cell is colored according to the point precipitation probability at
the corresponding weather station.

where #A denotes the cardinality of a countable set A. The second equality is based on the prop-
erty of {Xi, i≥ 1} being a Poisson point process if A1, . . . ,An and R are given. The representation
formula of point probabilities given in (4) follows immediately from (5) by setting B = {t}.

3.3. Computation of model characteristics
In order to compute point and area probabilities according to (4) and (5) the random model

characteristics A1, . . . ,An and R need to be determined first. For that purpose, available real-
izations of the point probabilities Ps1 , . . . ,Psn are used. In applications, the computation of the
random model characteristics and of area precipitation probabilities is performed in dependence
of the realization of the numerical weather prediction model and therefore, an arbitrary but fixed
ω0 ∈Ω is considered in the following. We introduce a simplifying notation for the corresponding
realizations of Ps1 , . . . ,Psn , A1, . . . ,An and R, that is psi = Psi(ω0) and ai = Ai(ω0) for i = 1, . . . ,n,
and r = R(ω0). In our example of application, ω0 is the particular realization of the global
models GME and IFS/ECMWF that provides the basis for the computation of the available data
described in Sect. 2.2. Fig. 1 illustrates the available data for two forecast steps, where each
Voronoi cell V (si) is colored according to the given point probability pi at location si of the
corresponding weather station for i = 1, . . . ,503.

A simultaneous computation of the unknown characteristics a1, . . . ,an and r does not seem
to be possible. Therefore, we propose a multi-step procedure that can be outlined as follows:

1. For each r′ > 0, intensities a(r
′)

1 , . . . ,a(r
′)

n are computed from ps1 , . . . , psn under the condi-
tion that R is equal to r′.
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2. The precipitation range r is computed as a function of ps1 , . . . , psn and the family of con-

ditional intensities {a(r
′)

1 , . . . ,a(r
′)

n ,r′ > 0}.
3. Finally, the intensities a1, . . . ,an are computed as a(r)1 , . . . ,a(r)n by setting r′ = r in step 1.

These steps are illustrated in detail in the following sections.

3.3.1. Computation of local intensities for the formation of precipitation cells
At first, the computation of conditional intensities based on a given precipitation range

is proposed. We assume that for each r′ > 0 there is a sequence of nonnegative intensities
a(r
′)

1 , . . . ,a(r
′)

n ≥ 0, such that

ps j = P(s j ∈M |{Ai}= {a(r
′)

i },R = r′) = 1− exp

(
−

n

∑
i=1

a(r
′)

i ν2(b(s j,r′)∩V (si))

)
(6)

for all j = 1, . . . ,n according to (4). However, note that the characteristics a(r
′)

1 , . . . ,a(r
′)

n and r′

are not necessarily suitable to describe point probabilities for locations t /∈ {s1, . . . ,sn}. It is clear
that the system of equations stated in (6) is equivalent to

log

(
1

1− ps j

)
=

n

∑
i=1

a(r
′)

i ν2(b(s j,r′)∩V (si)) for all j = 1, . . . ,n, (7)

which describes a system of n linear equations with n unknown variables a(r
′)

1 , . . . ,a(r
′)

n . Under

the constraint that a(r
′)

1 , . . . ,a(r
′)

n ≥ 0, however, an exact solution of (7) does not exist in general.

For that reason, we suggest to compute a(r
′)

1 , . . . ,a(r
′)

n in a nonnegative least-squares sense, i.e.,

(a(r
′)

1 , . . . ,a(r
′)

n ) = argmin
a′1,...,a

′
n≥0

 n

∑
j=1

(
log

(
1

1− ps j

)
−

n

∑
i=1

a′i ν2(b(s j,r′)∩V (si))

)2
 . (8)

The right-hand side of (8) can be computed according to the algorithm given in Lawson and
Hanson (1974), Chap. 23. In general a(r

′)
1 , . . . ,a(r

′)
n determined according to (8) are not an exact

solution of (6). However, a comparison between the available probabilities ps1 , . . . , psn and prob-
abilities computed according to (6) with intensities derived from (8) reveals only a negligible
difference. In particular, no systematic deviation is observed.

In the next section, a method for the computation of the precipitation range r is proposed,
such that (4) can be assumed to hold for all t ∈W . When r has been determined, the intensities
a1, . . . ,an are given by (8) with ai = a(r)i for i = 1, . . . ,n.

3.3.2. Iterative estimation of the semivariogram
Intuitively, the random precipitation range R should have a significant impact on the spatial

correlation of {Pt , t ∈W}, at least for pairs of points with a small distance. To quantify the
degree of spatial dependence, we suggest to consider the semivariogram γ(·) of {Pt , t ∈W}, see
e.g. Cressie (1993) and Fernández-Avilés et al. (2015). However, a meaningful estimation and
analysis of γ(·) based on realizations of Ps1 , . . . ,Psn would only be possible if {Pt , t ∈W} was
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assumed to be second-order stationary and isotropic, in particular if {Pt , t ∈W} had a constant
mean function {µt , t ∈W} with µt = EPt . This is an assumption, which can hardly be justified.
Depending on the climatological area and the current weather conditions at each forecast step,
the precipitation probabilities show a clear spatial trend, see e.g. the available data shown in Fig.
1.

A common approach to the estimation of the semivariogram γ(·) in the non-stationary or
non-isotropic case is to decompose {Pt , t ∈W} into a deterministic mean function {µt , t ∈W} as
introduced above and a random function of residuals {ξt , t ∈W}, i.e.,

Pt = µt +ξt for all t ∈W, (9)

and to assume that {ξt , t ∈W} is the restriction of a centered, wide-sense stationary and isotropic
random field {ξt , t ∈ R2} to W . This implies that the semivariograms of {Pt , t ∈W} and {ξt , t ∈
W} are the same and therefore, an estimation of γ(·) based on realizations of the residual function
{ξt , t ∈ W} seems reasonable. However, this is a certain problem since only realizations of
Ps1 , . . . ,Psn are given, whereas neither µs1 , . . . ,µsn nor realizations of ξs1 , . . . ,ξsn are available.

To deal with this problem we consider an iterative approach for the estimation of the semi-
variogram γ(·) proposed in Neuman and Jacobson (1984). In the following, a brief review of this
approach is given. Suppose that the mean function {µt , t ∈W} can be represented as

µt =
k

∑
i=1

fi(t)βi for all t ∈W, (10)

where k is an arbitrary integer, f1(·), . . . , fk(·) are chosen to be a sequence of monomials, and
β1, . . . ,βk are certain trend coefficients. In our example of application we put k = 10 and
( f1(t), . . . , f10(t))= (1, t(1), t(2), t2

(1), t(1)t(2), t
2
(2), t

3
(1), t

2
(1)t(2), t(1)t

2
(2), t

3
(2)) are monomials ranging up

to 3rd order for any location t = (t(1), t(2))∈W . We introduce the following simplifying notation.
Let P = (Ps1 , . . . ,Psn) be the random vector of point probabilities, X = (xi, j) with xi, j = f j(si) for
i = 1, . . . ,n and j = 1, . . . ,k be a deterministic design matrix, ξ = (ξs1 , . . . ,ξsn) be the random
vector of residuals, Σ be the covariance matrix of ξ , and β = (β1, . . . ,βk) is denoted as trend
vector. Using (10) and the introduced notation, (9) yields that

P = Xβ +ξ , (11)

which is a well-known linear regression model with correlated residuals. Since Σ is unknown,
generalized least squares cannot be used. However, ordinary least squares could be applied, but
this would result in biased estimators for β and Σ. The iterative approach presented in Neuman
and Jacobson (1984) allows for an estimation of β and Σ with drastically reduced biases, although
this bias cannot be removed completely. This is due to the circumstance that the estimation of
Σ is always biased when considering linear regression with correlated residuals, even if the true
covariance matrix Σ of ξ is known. In Cressie (1993), Chap. 3.4.3, and Beckers and Bogaert
(1998), some simple examples are given to illustrate this bias problem.

Estimators for the trend vector β , the covariance matrix Σ, and thus also for the semivari-
ogram γ(·) can be computed according to the following algorithm.
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1. Compute an estimator β̂ for β using ordinary least squares, i.e., by

β̂ = argmin
b∈Rk

(P−Xb)>(P−Xb) = (X>X)−1X>P. (12)

2. Based on the estimator β̂ obtained in the previous step, determine a vector of empirical
residuals ξ̂ . Then, compute an estimator γ̂(·) of the semivariogram γ(·) based on ξ̂ ac-
cording to the method-of-moment estimator suggested in Fernández-Avilés et al. (2015).
Finally, compute an estimator Σ̂ for the covariance matrix Σ of ξ using the unique relation-
ship between the semivariogramm and the covariance function of a random field.

3. Recompute the estimator β̂ for β using generalized least squares with covariance matrix
Σ̂, i.e., by

β̂ = argmin
b∈Rk

(P−Xb)>Σ̂
−1(P−Xb) = (X>Σ̂

−1X)−1X>Σ̂
−1P. (13)

4. Repeat steps 2 and 3 until β̂ , ξ̂ , and γ̂(·) converge to stable values.

A quick convergence of this algorithm can only be ensured if a continuous semivariogram esti-
mator is obtained in step 2. For that purpose, an exponential semivariogram model is fitted before
the covariance matrix Σ̂ is computed, see Cressie (1993) and Faulkner (2002). The exponential
model is chosen since it seems to fit best the semivariogram computed using the methods-of-
moment estimator.

3.3.3. Computation of the precipitation range
Finally, we describe an approach to the computation of the precipitation range R from residual

semivariograms estimated according to Sect. 3.3.2. Again, we consider a fixed ω0 ∈ Ω and the
corresponding realizations ps1 , . . . , psn , a1, . . . ,an and r of Ps1 , . . . ,Psn , A1, . . . ,An and R. On the
one hand, an estimator γ̂(·) for γ(·) is computed based on the residuals of ps1 , . . . , psn . On the
other hand, we first consider a sequence t1, . . . , tm of locations in W that is comparable to (but
different from) s1, . . . ,sn. Then, for any r′ > 0 we introduce the deterministic field {p(r

′)
t , t ∈W}

of point precipitation probabilities that correspond to the precipitation range r′, where

p(r
′)

t = P(t ∈M |{Ai}= {a(r
′)

i },R = r′) = 1− exp

(
−

n

∑
i=1

a(r
′)

i v2
(
b(t,r′)∩V (si)

))
(14)

for all t ∈W with a(r
′)

1 , . . . ,a(r
′)

n as computed in Sect. 3.3.1. We suppose that {p(r
′)

t , t ∈W} is

a possible realization of a random field {P(r′)
t , t ∈W}, such that the assumptions made in (9)

and (10) remain valid if {Pt , t ∈W} is replaced by {P(r′)
t , t ∈W}. Based on this, consider the

semivariogram γ(r
′)(·) of the field of residuals {ξ (r′)

t , t ∈ R2} that corresponds to {P(r′)
t , t ∈W}

and compute an estimator γ̂(r
′)(·) for γ(r

′)(·) based on the residuals of p(r
′)

t1 , . . . , p(r
′)

tm . Finally,
determine the precipitation range r in such a way that the squared L2-distance between γ̂(·) and
γ̂(r
′)(·) is minimized, i.e.,

r = argmin
r′>0

{∫ c2

c1

(
γ̂(h)− γ̂

(r′)(h)
)2

dh
}
, (15)
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(a) (b)

Figure 2: Results for forecast step ‘December 22, 2012, 21 UTC’. Left: estimated trend function. Right: comparison
of residual semivariograms estimated from the available data (black) and from the introduced model for precipitation
ranges 10, 12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30 and 32.5 km (in colors).

with c1,c2 > 0 being some suitable integration limits. Note that the precipitation range r also con-
trols the appearance of the field {Pt(ω0), t ∈W}. For a too small precipitation range {Pt(ω0), t ∈
W} will be close to a piecewise constant field, whereas only for large enough r the probability
Pt(ω0) depends on more than one intensity value (see (4)) causing the field to be sufficiently
smooth. Therefore, only ranges exceeding a certain minimal range (which depends on the sizes
of the Voronoi cells) should be considered in (15).

To conclude this section, we illustrate the results which are obtained with the algorithm
described above in our example of application. In Fig. 2 (a) the trend function {µt , t ∈W}
estimated from ps1 , . . . , ps503 is depicted for one forecast step, where µt is only considered for
locations t within Germany to avoid boundary effects. A comparison with Fig. 1 (b) shows a good
accordance. In Fig. 2 (b) the estimated residual semivariogram γ̂(·) (black) is compared to the
estimated residual semivariograms γ̂(r

′)(·) for a sequence of 10 possible precipitation ranges (in
colors). It is clearly visible that the precipitation range has indeed an impact on the dependence
structure of the residuals and that the semivariogram estimated from the data goes well with
those estimated for different model characteristics. For the majority of forecast steps we obtained
similar results.

3.4. Computation of area precipitation probabilities

For each sequence of point probabilities ps1 , . . . , psn the corresponding model characteristics
a1, . . . ,an and r are computed according to (8) and (15). Then, for each Borel set B ⊂W , the

11



corresponding area precipitation probability π(B) is given by

π(B) = P(B∩M 6= /0 |{Ai}= {ai},R = r) = 1−exp

(
−

n

∑
i=1

ai v2 ((B⊕b(o,r))∩V (si))

)
, (16)

see also (5). Note that a direct computation of π(B) from this formula has certain disadvan-
tages. The intersection areas of B⊕ b(o,r) and the Voronoi cells V (si) need to be determined
numerically, which is both computationally expensive and imprecise. As an alternative approach
we suggest to estimate π(B) as a relative frequency by repeated simulation of the germ-grain
model M, which is a Boolean model for ω0 ∈ Ω. An estimation based on 1,000 realizations of
M provides a high degree of precision and is computationally more efficient than the direct com-
putation of π(B) based on (16). In principle, however, both the direct and the simulation-based
computation are possible.

4. Model validation

The model for the computation of area precipitation probabilities proposed in this paper has
been implemented in Java using classes and methods from the GeoStoch library, a Java-based
software developed at Ulm University (Mayer et al., 2004). For each of the 854 available forecast
steps described in Sect. 2.2 the model characteristics are determined from the 503 given point
probabilities in order to allow for the computation of area precipitation probabilities. In Fig. 3
(a), a realization of the germ-grain model M is illustrated for one forecast step. A comparison
with Fig. 1 (b) shows that centers of precipitation cells are mainly generated in those areas,
where given point precipitation probabilities are high.

4.1. Description of radar data

Computed area precipitation probabilities are compared with radar-derived precipitation anal-
yses from the German operational radar network of DWD (Winterrath et al., 2012). The DWD
radar network consists of 16 sites that cover Germany and provide precipitation scans every 5
minutes. Radar reflectivities are transformed into precipitation rates using empirical reflectivity-
precipitation rate relationships. Precipitation rates are accumulated for every hour and an adjust-
ment is performed using about 1300 rain gauges at conventional meteorological measurement
sites in order to provide adjusted quantitative precipitation analyses. An additional clutter fil-
ter for hydrological applications described in Winterrath and Rosenow (2007) removes spurious
pixel-scale precipitation events. The minimal observed precipitation amount per hour is 0.1 mm
1, which is why the threshold value for the MOS-derived point probabilities has been set ac-
cordingly (see Sect. 2.2). An illustration of adjusted precipitation amounts derived from radar
data for one example forecast step is given in Fig. 3 (b). It is clearly visible that precipitation
mainly occurred in those regions of Germany, where point precipitation probabilities are high
(compare with Fig. 1 (b)) and where many precipitation cells are simulated by our stochastic
model (compare Fig. 3 (a)). However, we emphasize once more that the germ-grain model M

1The consideration of a higher threshold would also be possible, where we expect that the precipitation range gets
smaller and cells occur less frequently the more the threshold grows. A problem arises if the precipitation range gets too
small in comparison to the sizes of the Voronoi cells V (s1), . . . ,V (sn), see the discussion in Sect. 3.3.3.

12



(a) (b)

Figure 3: Results for forecast step ‘December 22, 2012, 21 UTC’. Left: realization of the germ-grain model M with
characteristics computed from available point probabilities. Right: adjusted precipitation amounts in mm derived from
radar data.

described in Sect. 3.1 should not be regarded as a model for real precipitation cells. In partic-
ular, single realizations of M may look atypically compared to real precipitation fields, see Fig.
3. Furthermore, a single realization of M should not be compared with radar observations since
the former is based on (point) precipitation probabilities, whereas the latter shows precipitation
events that can be considered to be realized by the mentioned precipitation probabilities. There-
fore, a comparison seems only reasonable if a longer time period is considered, which is done in
the next section.

4.2. Validation of probabilistic forecast approach
A validation of our model is performed by comparing computed area precipitation prob-

abilities with precipitation indicators derived from radar observations. For any test area B a
sequence of area probabilities π1(B), . . . ,π854(B) is computed according to the model introduced
in Sect. 3 for all available forecast steps. Furthermore, a sequence of precipitation indicators
I1(B), . . . , I854(B) is considered, where I j(B) is equal to 1 if there is precipitation somewhere
within B in forecast step j with respect to radar observations and 0 otherwise.

In order to assess the quality of computed area probabilities we consider the following scores.
At first, the bias b is introduced, which is defined as the difference between the mean computed
precipitation probability and the relative frequency of precipitation, i.e.,

b =
1

854

854

∑
j=1

π j(B)−
1

854

854

∑
j=1

I j(B). (17)
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In a good weather prediction the bias b given in (17) should be close to zero. A clearly negative or
positive bias would indicate that computed probabilities are systematically too low or too high,
respectively. Next, the Brier score bs (Brier, 1950) is considered, which is the mean squared
difference between computed probabilities and observed precipitation indicators given by

bs =
1

854

854

∑
j=1

(π j(B)− I j(B))2. (18)

Of course, the Brier score should be as small as possible. However, there is no intuitive interpre-
tation of this score, since the Brier score also depends on a term denoted as uncertainty (which
is expressed only by the variability of I j for j = 1, . . . ,854, see e. g. Wilks (1995)). Therefore, a
closely related quantity is considered. Assume that another sequence π̃1(B), . . . π̃854(B) of area
precipitation probabilities computed from a reference method is available and consider the cor-
responding Brier score b̃s. Then, the Brier skill score bss defined as

bss = 1− bs

b̃s
(19)

is considered in order to investigate whether the proposed method provides better results than
another (previous) reference method. If no reference method is available, which is the case in
our validation, the so-called climate mean is considered, where each probability π̃i(B) is put to
the relative frequency of precipitation 1

854 ∑
854
j=1 I j(B). If the newly developed method leads to

an improvement of weather prediction, the Brier skill score should be clearly positive. Finally,
we suggest to consider the joint empirical correlation coefficient ρ of the computed probabilities
π1(B), . . . ,π854(B) and the observed precipitation indicators I1(B), . . . , I854(B). Clearly, ρ should
be as close to one as possible, where ρ = 1 would indicate a perfect weather prediction and
ρ = 0 would suggest no relationship between computed precipitation probabilities and observed
precipitation events.

We consider test areas B1, . . . ,B503 which are chosen to be the Voronoi cells V (s1), . . . ,V (s503)
around the locations s1, . . . ,s503 of the weather stations. The Voronoi cells V (s1), . . . ,V (s503) are
suitable for model validation since they include areas with different size, shape, and orientation.
Area probabilities computed according to the model introduced in this paper are a function of
model characteristics, which in turn are computed from the available point probabilities. There-
fore, a validation is not only performed for area probabilities that correspond to the 503 Voronoi
cells V (s1), . . . ,V (s503) but also for point precipitation probabilities that correspond to the loca-
tions s1, . . . ,s503.

In Fig. 4 the bias of given point probabilities and computed area probabilities is illustrated.
On the left-hand side the Voronoi cells V (s1), . . . ,V (s503) are colored according to the bias of
point probabilities at the locations of corresponding weather stations, whereas on the right-hand
side the bias of the area probabilities that correspond to the Voronoi cells is depicted. Again, only
cells within Germany are considered to avoid boundary effects. The biases for point probabilities
range from -0.04 to 0.06 for most weather stations, which are acceptably small showing a good
consistency of the model output statistics with the radar data. There are three outliers with biases
up to 0.14, which might be caused by problems with the radar measurements. The biases for
area probabilities range from -0.06 to 0.09, which is almost in the same range as for the point
probabilities. When looking at the north-east and the north-west of Germany, it seems that biases
of the point probabilities are amplified when deriving area probabilities.
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(a) Bias of given point probabilities that correspond to
the locations of weather stations

(b) Bias of computed area probabilities for the Voronoi
cells that correspond to the locations of weather stations

Figure 4: Bias of point and area precipitation probabilities.

Fig. 5 provides histograms of the Brier skill scores computed for point (left) and area prob-
abilities (right). The Brier skill score is clearly positive for all considered Voronoi cells, imply-
ing that the presented method indeed provides an improvement in computing area precipitation
probabilities. There are again outliers for the point probabilities, the mean value of 0.28 shows
a positive signal though. It is a pleasant result that the area precipitation probabilities are not
affected by these outliers and that the mean Brier skill score of 0.4 is even larger than for the
point probabilities.

Similar results are obtained when considering histograms of the joint empirical correlation
coefficients of precipitation probabilities and precipitation indicators, see Fig. 6. For each
Voronoi cell a clearly positive correlation between computed probabilities and observed pre-
cipitation events is detected, where the mean correlation is even higher than that observed for
given point probabilities. This shows impressively that area precipitation probabilities computed
by the statistical method proposed in this paper correspond well with radar observations.

To conclude our validation, reliability diagrams for area precipitation probabilities are con-
sidered. Basically, a reliability diagram illustrates whether precipitation indeed occurs rarely or
often for forecasts with small or high precipitation probabilities, respectively. A mathematical
description is given as follows. At first, the unit interval [0,1] is decomposed into a sequence
U1, . . . ,U20 of 20 equal subintervals. Then, for any test area B and each fixed subinterval Uk, the
reliability ρ(Uk) is defined as the relative frequency of precipitation among those forecast steps
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(a) Brier skill scores of given point probabilities that
correspond to the locations of weather stations

(b) Brier skill scores of computed area probabilities for
the Voronoi cells that correspond to the locations of

weather stations

Figure 5: Histograms of Brier skill scores computed for point and area precipitation probabilities. The red line indicates
the mean score.

for that the computed area precipitation probability takes a value in Uk. More precisely,

ρ(Uk) =
#{1≤ j ≤ 854 : π j(B) ∈Uk, I j(B) = 1}

#{1≤ j ≤ 854 : π j(B) ∈Uk}
for k = 1, . . . ,20. (20)

Additionally, the midpoint mk of each subinterval Uk is computed and the sequence of points
(m1,ρ(U1)), . . . ,(m20,ρ(U20)) is called a reliability diagram. Ideally, the computed probabilities
should be equal to the observed relative frequencies and all points of the diagram should be close
to the curve x = y. In Fig. 7 reliability diagrams for two Voronoi cells are illustrated, where it
is shown that precipitation occurs frequently if computed precipitation probabilities are high and
vice versa. Similar results were obtained for other Voronoi cells, too.

5. Conclusion

In this paper a method for the computation of area precipitation probabilities has been intro-
duced. We proposed an intuitive approach to model point and area precipitation probabilities as
coverage probabilities of random precipitation fields, which are approximated by a germ-grain
model. The model characteristics are computed from available point probabilities using several
statistical methods. Our model has been applied to some disjoint areas within Germany and a
validation has been performed. A comparison of area probabilities computed from our model
with precipitation events derived from radar shows excellent results. For most of the analyzed
areas no systematic bias of computed probabilities was found, there is a high correlation be-
tween precipitation probabilities and the occurrence of precipitation, and reliability diagrams
show a particularly nice performance. Moreover, to run the method no further input of the fore-
caster is necessary and the method works in a quite reasonable computation time allowing for
an automated generation of area probabilities. This means that the presented method is suitable
for applications in modern weather prediction. The high impact of the presented method is also
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(a) Correlation coefficients of given point probabilities
and observed precipitation indicators that correspond to

the locations of weather stations

(b) Correlation coefficients of computed area
probabilities and observed precipitation indicators for
the Voronoi cells that correspond to the locations of

weather stations

Figure 6: Histograms of joint empirical correlation coefficients of precipitation probabilities and corresponding precipi-
tation indicators. The red line indicates the mean correlation coefficient.

shown by the fact that so far no applicable approach to the computation of area probabilities is
available, whereas the number of potential problems and applications is high.

However, in this paper the performance of the model has only been validated for areas that
are located within Germany and that have certain range of sizes. Although the validation has
been performed for areas with different size, shape, and orientation, it is not obvious how the
method works for areas that are significantly smaller or larger or have a completely different
shape than those investigated here. The same holds if a region with different climatological con-
ditions is considered. Another requirement of this method is that the typical size of precipitation
cells should not be too small compared to the density of weather stations. Thus, the presented
approach is not suitable for applications where a small scale weather event is considered (e.g.
precipitation exceeding a high threshold) or where distances between locations with given point
probabilities are too large.

In this sense, the presented approach can be considered as a first step towards the prediction
of area weather events and further refinements are planned as subjects of our future research.
On the one hand, a more realistic modeling of precipitation cells will be considered, includ-
ing several ideas proposed in previous publications, e.g., elliptical precipitation cells (see e.g.
Wheater et al., 2000), different cell types (Cowpertwait, 1995) or clustered precipitation cells
(Rodriguez-Iturbe et al., 1986). On the other hand, more sophisticated problems in probabilistic
weather prediction will be considered. In particular, the computation of area probabilities for
the occurrence of precipitation that exceeds a certain (high) threshold is under preparation. As
mentioned before, an application of the existing model to such a small scale weather event might
cause problems. Therefore, an integration of precipitation amounts into the model is currently
under preparation. Furthermore, an application of our method to other weather events, e.g. the
occurrence of (strong) wind gusts, is of great interest. Even a combination of several weather
events, e.g. the impact of strength and direction of winds to the precipitation range in the current
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(a) Voronoi cell around station 10410 (b) Voronoi cell around station H744

Figure 7: Reliability diagrams for area precipitation probabilities.

model, seems possible and will be considered in future research.
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