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Abstract

Random geometric graphs defined on Euclidean subspaces, also called Gilbert graphs,
are widely used to model spatially embedded networks across various domains. In such
graphs, nodes are located at random in Euclidean space, and any two nodes are con-
nected by an edge if they lie within a certain distance threshold. Accurately estimating
rare-event probabilities related to key properties of these graphs, such as the number of
edges and the size of the largest connected component, is important in the assessment of
risk associated with catastrophic incidents, for example. However, this task is computa-
tionally challenging, especially for large networks. Importance sampling offers a viable
solution by concentrating computational efforts on significant regions of the graph. This
paper explores the application of an importance sampling method to estimate rare-event
probabilities, highlighting its advantages in reducing variance and enhancing accuracy.
Through asymptotic analysis and experiments, we demonstrate the effectiveness of our
methodology, contributing to improved analysis of Gilbert graphs and showcasing the
broader applicability of importance sampling in complex network analysis.

Keywords: Gilbert Graph, Spatial Point Process, Unbiased Estimation, Rare-Event Proba-
bility, Importance Sampling

1 Introduction

Random geometric graphs have emerged as powerful mathematical models for representing
spatially embedded networks in various fields such as wireless communication, sensor networks,
and materials science, see e.g. Baccelli and B laszczyszyn [2001, 2009a,b], Baumeier et al.
[2012], Franceschetti and Meester [2007], Kenniche and Ravelomananana [2010], Thiedmann
et al. [2009]. These graphs are defined by distributing nodes at random in a metric space,
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connecting pairs of nodes within a certain distance threshold, and forming a network that
captures spatial relationships. In particular, in this paper, we consider random geometric
graphs on a d-dimensional subset of the Euclidean space Rd for any fixed integer d ≥ 1, where
a graph is created by a collection of (random) points with an edge between any two points
that are within the (Euclidean) distance of one length unit from each other. Such a graph is
also known as Gilbert graph [Gilbert, 1961]. For a wide and deep mathematical treatment of
Gilbert graphs, we refer the reader to Penrose [2003].

Accurate estimation of key characteristics in Gilbert graphs, such as the mean values of the
size of the largest component or the maximum degree, is crucial for understanding the behavior
and performance of systems modeled by these graphs. However, except for a few isolated
special cases, such fundamental characteristics cannot be computed in closed form. On the
other hand, Monte Carlo simulation has become a central tool in the study of such networks;
see e.g. Baccelli and B laszczyszyn [2010], B laszczyszyn et al. [2013], where the simplicity of
the Gilbert graph model makes it possible to estimate the typical behavior of large random
networks by standard Monte Carlo simulation to a very high precision. However, in many
applications, it is not enough to know the average case. We need to understand how the system
behaves with respect to rare events, where a rare event is an event that occurs infrequently
but can have a significant impact. For instance, in the context of telecommunication networks,
it is not enough that the network provides good service on average; rather, users expect it to
work well with very high probability. These challenges have been the motivation for questions
of rare-event probabilities in spatial random networks, which is now a vibrant research field.

To understand the scope and complexity of such research problems, we first note that in-
vestigating rare events is a challenging topic even for basic random graph models that do not
involve any form of geometric information, such as the Erdős–Rényi graph. For example, there
is a series of papers that investigate probabilities of large deviations for the number of triangles
in this type of graphs, see Ganguly et al. [2024], Chakraborty et al. [2021], Stegehuis and Zwart
[2023]. Also, the largest connected component was recently investigated, see Andreis et al.
[2023], Jorritsma et al. [2024]. While [Andreis et al., 2023] is only dealing with the Erdős-Rényi
graph, the more recent paper [Jorritsma et al., 2024] considers more general (kernel-based)
random graphs.

However, for Gilbert graphs, rare events are harder to analyze. For instance, while it is
easy to analyze the probability of having atypically many edges in the Erdős–Rényi graph,
this problem is difficult in the case of Gilbert graphs [Chatterjee and Harel, 2020]. Loosely
speaking, the large deviations are governed by a condensation effect, i.e., the most likely reason
for observing too many edges is to have a larger number of nodes in a small area that gives
rise to a clique. In contrast, the behavior in the regime of lower large deviations is completely
different. There, the most likely reason to observe too few edges comes from consistent changes
throughout the sampling window [Hirsch et al., 2020]. Only very recently it became possible
to understand the rare-event behavior of the largest connected component in spatial models of
complex networks [Andreis et al., 2021].

All of the challenges highlighted above illustrate the need for simulations to estimate rare-
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event probabilities for Gilbert graphs. Moreover, we believe that it is important to have a clear
motivation why it is interesting to analyze random graphs under rare events. This becomes
clear by the following arguments: (i) Spatial random networks are used in many applications,
such as telecommunication networks which are at the foundation of our modern society. Hence,
it is essential not only to understand how these networks work on average but also to know
what happens in rare events of extreme stress. (ii) While the network models used in practice
are more complicated than the Gilbert graph considered in this paper, we believe that our
results can be a first step in the direction of rare-event analysis in spatial random networks.
(iii) Besides this practical motivation, the rare-event analysis of spatial random networks has
developed into a vibrant research topic in the domain of random graphs. In particular, in
recent years we see an increasing number of works devoted to the large-deviation analysis of
such networks. We believe that similar to the classical case of random variables, there is a
high potential in combining the importance-sampling schemes developed in this paper with
large-deviation principles.

In the light of these challenges, the overall aim of our paper is to show the effectiveness of
the powerful technique of importance sampling for the purpose of rare-event analysis in the
context of the Gilbert graph. More precisely, we pursue the following goals: (i) We propose
conditional Monte Carlo and importance sampling estimators for a variety of rare events in
the Gilbert graph such as the question whether edge count, maximum degree or clique count
are below a fixed threshold. (ii) While these estimators are of a general abstract form, we
present a specific grid-based scheme, which we show is easy to implement. (iii) Our paper
is the first one which gives an estimator with bounded relative error in the context of the
Gilbert graph. More precisely, in Theorem 1 we show that under mild conditions, for a fixed
sampling window both our proposed conditional Monte Carlo and the importance-sampling
estimator have bounded relative error. (iv) Finally, we illustrate this in a scaling regime of
a growing window, where we can prove that the importance sampling estimator exhibits a
bounded relative error, whereas the conditional Monte Carlo does not. This illustrates that the
more complicated importance-sampling scheme holds the promise of more substantial reduction
in variance, where the theoretical results are also supported by an extensive simulation study.

To summarize this, we can state that importance sampling offers a promising approach to
address the computational challenges associated with estimating properties of Gilbert graphs.
By assigning appropriate weights to samples, importance sampling focuses computational effort
on regions of the graph that contribute significantly to the desired property, thus improving
the efficiency of estimation. The present paper explores the application of importance sam-
pling techniques for estimating key graph properties in Gilbert graphs, where we explore the
theoretical foundations of importance sampling, emphasizing its benefits in reducing variance
and improving the accuracy of estimators. Additionally, we discuss the intricacies of adapting
importance sampling to the specific characteristics of these graphs, considering factors such as
spatial distribution, distance metrics, and connectivity constraints. Through analysis and sim-
ulations, we demonstrate the effectiveness of importance sampling in providing more efficient
and accurate estimates of critical graph properties. We specifically identify two key regimes to
illustrate asymptotic efficiency of the proposed importance sampling estimator. Our findings
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not only contribute to the methodological toolbox for analyzing random geometric graphs but
also shed light on the broader applicability of importance sampling in the realm of complex
network analysis.

The subsequent sections of this paper are organized as follows. In Section 2, we introduce
some notation that is useful throughout the paper. The problem setup of rare-event simulation
for Gilbert graphs along with important examples is presented in Section 3. In Section 4,
we summarize two existing methods for rare-event simulation, namely näıve and conditional
Monte Carlo methods, and then introduce the general framework of our importance sampling
approach. The focus of Section 5 is put on implementation of the importance sampling method
using blocking regions on the sampling window. In Section 6, we compare the variances of all
the methods and study the the asymptotic efficiency of the proposed method over two important
regimes. Simulation results are presented in Section 7, whereas Section 8 concludes.

2 Notation and Efficiency Notions

Throughout the paper, the underlying probability space is denoted by (Ω,F ,P). The sets of
real numbers and integers are denoted by R and Z, respectively, while the sets of non-negative
real numbers and non-negative integers are correspondingly denoted by R+ and Z+. For any
probability measure µ and random element X, we write X ∼ µ to denote that X is distributed
according to µ. The distribution of a Poisson random variable with rate parameter β > 0 is
denoted by Poi(β). For a real-valued random variable X, its expectation and variance are
denoted by E[X] and Var(X), respectively. When necessary, to emphasize the dependency on
a measure µ, we use the notation Pµ, Eµ and Varµ to make it clear that probability, expectation
and variance, respectively, are taken under the measure µ. For any fixed integer d ≥ 1 and any
Borel set S ⊆ Rd, we denote its volume by Vol(S) which is, formally speaking, the d-dimensional
Lebesgue measure of the set S. In particular, we denote the volume of the d-dimensional
Euclidean sphere of unit radius by υd, i.e.,

υd =
πd/2

Γ(d/2 + 1)
, (1)

where Γ : R+ → R+ is the gamma function.

For the asymptotic analysis considered in Section 6.2, we use two standard notions of effi-
ciency. Suppose that {Yt : t > 0} is a family of (real-valued) estimators parameterized by t > 0
such that limt→∞ E[Yt] = 0. We say that the family has an asymptotic bounded relative error
as t→∞ if

lim sup
t→∞

Var (Yt)

E[Yt]2
<∞. (2)

A slightly weaker notion is logarithmic efficiency, which holds if

lim inf
t→∞

| logVar (Yt) |
2| logE[Yt]|

≥ 1, or, equivalently, lim sup
t→∞

Var (Yt)

E[Yt](2−ε)
= 0, (3)
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for each ε > 0. Here, “weaker” means that logarithmic efficiency implies an asymptotic bounded
relative error. Since limt→∞ E[Yt] = 0, the variance Var (Yt) in Eqs. (2) and (3) can be replaced
by the second moment E [Y 2

t ]. For more details on these notions of efficiency, we refer to
Asmussen and Glynn [2007] and Rubinstein and Kroese [2017].

3 Rare Events in Gilbert Graphs

In this section, we introduce the notions of Gilbert graphs and of rare events associated with
this type of graphs. We further provide some examples of rare events.

Consider the d-dimensional sampling window W = [0, λ]d, for some λ > 0 and some integer
d ≥ 1. Then, for each n ∈ Z+, let Gn be the family of all finite subsets of size n on W , i.e.,

Gn =
{
x = {x1, x2, . . . , xn} : xi ∈ W for all i = 1, . . . , n

}
,

where n = 0 corresponds to the empty set. Put G =
⋃

n∈Z+
Gn and notice that the elements of

G are so-called simple point patterns, i.e., they do not have multiple points.

A point process is a random element X : (Ω,F)→ (G ,G), where G denotes the Borel σ-
algebra on G . By ρ : G → [0, 1] we denote the probability measure on G under which, for each
n ∈ Z+, the restriction Xn = {X1, . . . , Xn} ∈ Gn of X to Gn is a point process which consists
of n independent and uniformly distributed points in the window W . Furthermore, a point
process X = {X1, . . . , XN} ∈ G is called a κ- homogeneous Poisson point process on W with
intensity κ > 0 if for the (random) total number of points N it holds that N ∼ Poi(κλd), and
for any n ∈ Z+, conditioned on N = n, we have X ∼ ρ.

From now onward, to simplify the notation, we put

β = κVol(W ) = κλd, and qn = exp(−β)
βn

n!
for each n ∈ Z+. (4)

That is, {qn : n ∈ Z+} is the probability mass function of the Poisson distribution Poi(β).
Furthermore, by FPoi : Z+ → [0, 1] we denote the cumulative distribution function of Poi(β),
i.e.,

FPoi(n) =
n∑

i=0

qi for each n ∈ Z+. (5)

For any x ∈ G , let G(x) be the graph constructed by taking the points in x as nodes and
connecting every two distinct points x, x′ ∈ x by an edge if and only if ∥x−x′∥ ≤ 1, where ∥ · ∥
denotes the Euclidean norm in Rd. A random graph G(X) is called a Gilbert graph if the set
of nodes X = {X1, . . . , XN} constitutes a κ-homogeneous Poisson point process in W for some
κ > 0. Then, for any B ∈ G, it holds that

P (X ∈ B) =
∑
n∈Z+

qn Pρ(Xn ∈ B), (6)
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with Xn = {X1, . . . , Xn} ∼ ρ for each n ∈ Z+. Two realizations of Gilbert graphs on a bounded
subset of the Euclidean plane R2 are shown in Figure 1.

(a) (b)

Figure 1: Example realizations of Gilbert graphs on a 2-dimensional window W = [0, λ]2, where
black points represent the nodes, red lines represent the edges, and each circle centered at a
node has a unit radius. Small intensity κ typically leads to few nodes and few edges as in (a)
while large κ typically leads to a bigger graph with more edges as in (b).

Consider a κ-homogeneous Poisson point process X in W and let A ∈ G be a non-empty
set of realizations of X such that P(X ∈ A) is close to zero, i.e., the occurrence of A is very
unlikely. Then, {X ∈ A} is called a rare event. However, note that this definition contains
a certain degree of vagueness from a mathematical point of view. Furthermore, assume that
A ∈ G satisfies the hereditary property, i.e., for any x,x′ ∈ G such that x ⊆ x′, x′ ∈ A
implies that x ∈ A. A consequence of the hereditary property is that for any sequence of
points x1, x2, . . . ∈ W , it holds that

I(xn ∈ A) ≥ I(xn+1 ∈ A) for each n ≥ 1, (7)

where xn = {x1, . . . , xn} and I(B) : Ω→ {0, 1} denotes the indicator of the event B ∈ F , i.e.,
I(B)(ω) = 1 if ω ∈ B, and I(B)(ω) = 0 otherwise.

When A is taken to be the set of all the configurations of the Gilbert graph with no edges,
the corresponding rare event probability P(X ∈ A) appears as the grand partition function of
the popular hard-spheres model in grand canonical form. This model has many applications in
various disciplines, including physics, chemistry, and material science; see e.g. Krauth [2006],
Moka et al. [2021]. In particular the probability density of the hard-spheres model is given
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by f(x) = I(x ∈ A)/P(X ∈ A), x ∈ G , and efficient estimation of P(X ∈ A) is crucial for
understanding key properties of the model [Döge et al., 2004].

We will now give five more examples of sets A ∈ G that satisfy the hereditary property, and
describe situations where the probability P(X ∈ A) is close to zero. Note that, if we take the
threshold parameter ℓ = 0 in these examples, then the probability P(X ∈ A) is the same for
the first four examples, being equal to the grand partition function of the hard-spheres model.

Example 1 (Edge Count). For any x ∈ G , the number of edges in G(x) will be denoted by
EC(x). Furthermore, for a given threshold ℓ ∈ Z+, let A = {x ∈ G : EC(x) ≤ ℓ} be the event
of interest. Then, the value of P (X ∈ A), i.e., the probability that the number of edges in the
Gilbert graph G(X) is at most ℓ, can be very small for values of κ and ℓ such that ℓ is much
smaller than the expected number of edges E [EC(X)].

Example 2 (Maximum Degree). We say that two nodes of a graph are adjacent if there
is an edge between them. For any x ∈ G , the degree of a node x ∈ x of G(x), denoted by
Deg(x), is the number of nodes x′ ∈ x adjacent to x, i.e., such that 0 < ∥x − x′∥ ≤ 1. The
maximum degree of the graph G(x) is given by MD (x) = max{Deg(x) : x ∈ x}. Consider the
event A = {x ∈ G : MD (x) ≤ ℓ} that the maximum degree is less than or equal to ℓ, for some
ℓ ∈ Z+. Then, for values of κ and ℓ such that ℓ is much smaller than the expected maximum
degree E[MD (X)], the probability P (X ∈ A) can be very small.

Example 3 (Maximum Connected Component). For any x ∈ G , two nodes x, x′ ∈ x of
G(x) with x ̸= x′ are said to be connected if there is a sequence of nodes x1, x2, . . . , xn ∈ x
for some integer n > 1 such that x1 = x, xn = x′, and for all k = 2, . . . , n, xk and xk−1 are
adjacent to each other. A subset of nodes x′ ⊆ x of G(x) is called a connected component
if all the nodes in x′ are connected with each other and none of the nodes in x′ is connected
with any node in x \ x′. Let MCC(x) be the size of the largest connected component in G(x),
where the size of a connected component is the number of nodes belonging to this connected
component. Consider the event A = {x ∈ G : MCC (x) ≤ ℓ + 1} for some ℓ ∈ Z+ such that ℓ
much smaller than E[MCC(X)]. Then, also in this case, the probability P (X ∈ A) that the
size of each connected component is at most ℓ + 1, can be very small.

Example 4 (Maximum Clique Size). A clique of a graph is a subgraph that is complete,
which means that any two distinct vertices in the subgraph are adjacent. Denote the maximum
clique size by MCS(x) and consider the event A = {x ∈ G : MCS(x) ≤ ℓ+ 1}, for some ℓ ∈ Z+

which is much smaller than E[MCS(X)]. The probability P (X ∈ A) that all cliques are at
most of size ℓ + 1, is then close to zero.

Example 5 (Number of Triangles). Another important quantity is the number of triangle
subgraphs in an undirected graph, where a triangle is a clique with 3 vertices and 3 edges.
Let NTG(x) denote the number of triangles in G(x), and consider the event A = {x ∈ G :
NTG (x) ≤ ℓ} for some ℓ ∈ Z+. Then, the probability P (X ∈ A) that the number triangles
in G(X) is not larger than ℓ, can be very small if ℓ is much smaller than E[NTG(X)]. Note
that instead of triangles, we can consider cliques of any fixed size k ≥ 3 and the event that the
number of cliques of size k is at most ℓ.
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4 Estimation Methods

In this section, we first review two existing methods for estimating probabilities of the form
given in Eq. (6), namely näıve Monte Carlo and conditional Monte Carlo. Then, we present a
general framework of the proposed importance sampling method, which consistently exhibits a
variance less than or equal to that of the two existing methods. The following simple observation
helps in understanding why the proposed method is efficient.

Observation 1. For any event B ∈ F , let ξ1, ξ2 : Ω→ [0, 1] be two random variables such that
ξ1 = I(B) and E[ξ2] = E[ξ1] = P(B). Then, Var(ξ2) ≤ Var(ξ1), which easily follows from the
fact that ξ22 ≤ ξ2 almost surely and E[ξ2] = E[ξ1] = E[ξ21 ]. This essentially suggests that for
estimating the probability P(B), instead of using samples of ξ1, it can be more efficient to use
samples of ξ2 whenever possible.

For any fixed B ∈ F , a simple and basic method for estimating the probability P(B) is näıve
Monte Carlo. To see this, let X be a κ-homogeneous Poisson point process in the window W
and consider B = {X ∈ A} for some A ∈ G and the random variable

Y = I(X ∈ A). (8)

Now, for any integer m ≥ 1, let Y1, . . . , Ym be a sequence of independent and identically
distributed (iid) copies of Y . Then, the sample mean

ZNMC =
1

m
(Y1 + · · ·+ Ym) (9)

is an unbiased estimator of P(X ∈ A); i.e., Eρ[ZNMC] = Eρ[Y ] = P(X ∈ A). Note that it is
easy to generate a sample of Y . Namely, one only needs to generate a sample x ∈ G of the κ-
homogeneous Poisson point process X in the window W , and take Y = 1 if X ∈ A, otherwise,
take Y = 0.

On the other hand, for the edge count problem (see Example 1), a conditional Monte Carlo
estimator was recently proposed by Hirsch et al. [2022]. We now state this method more
generally in our set-up. Suppose that X1, X2, . . . : Ω → W is a sequence of independent
random points that are uniformly distributed in W . Let Xn = {X1, . . . , Xn} for each n ∈ Z+,
and M = max{n ∈ Z+ : I(Xn ∈ A) = 1} for some A ∈ G which satisfies the hereditary
property. Then, from Eq. (6) we get that

P(X ∈ A) = Eρ

∑
n∈Z+

qn I(Xn ∈ A)

 = E

[
M∑
n=0

qn

]
= E [FPoi(M)] , (10)

where FPoi is the cumulative distribution function of Poi(β) given in Eq. (5). Now, consider the

random variable Ŷ : Ω→ [0, 1] which is defined as

Ŷ =
∑
n∈Z+

qn I(Xn ∈ A) = FPoi(M), (11)
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and, for any integer m ≥ 1, let Ŷ1, . . . , Ŷm be a sequence of iid copies of Ŷ . Then, from Eq. (10)
we have

ZCMC =
1

m
(Ŷ1 + · · ·+ Ŷm) (12)

is also an unbiased estimator of P(X ∈ A). Furthermore, by Observation 1, it is evident
that the variance of the conditional Monte Carlo estimator ZCMC does not exceed that of the
näıve Monte Carlo estimator ZNMC given in Eq. (9), because for the random variables Y and

Ŷ introduced in Eqs. (8) and (11), respectively, it holds that Y ∈ {0, 1} and Ŷ ∈ [0, 1], while

E[Y ] = E[Ŷ ]; see also Proposition 1 later in Section 6.

However, note that the estimator Ŷ given in Eq. (11) is still a weighted sum of Bernoulli
random variables. Using importance sampling, we now construct an estimator for P(X ∈ A)
with a possibly further reduced variance, where each Bernoulli random variable I(Xn ∈ A) in
Eq. (11) will be replaced by a non-binary random variable, which takes values in the interval
[0, 1] and has the same expectation.

Recall that in both methods considered above, i.e., for getting the näıve and conditional
Monte Carlo estimators for P(X ∈ A), the random points X1, X2, . . . : Ω → W were indepen-
dent and uniformly distributed in the cubic sampling window W = [0, λ]d. Instead of this sam-
pling scheme, i.e., instead of generating each of these points independently of the other points,
we now use a different procedure, where each point generation can depend on the locations
of already generated points. Formally, we are no longer considering the probability measure
ρ : G → [0, 1] introduced in Section 3, under which the restriction Xn = {X1, . . . , Xn} ∈ Gn

of the κ-homogeneous Poisson point process X to Gn is a point process that consists of n in-
dependent and uniformly distributed points for each n ∈ Z+. But, instead of ρ, we consider
a new probability measure µ : G → [0, 1] which is absolutely continuous with respect to ρ on
A ∈ G, i.e.,

ρ(A′) =

∫
A′
L(x)µ(dx), for each A′ ∈ G ∩ A, (13)

where we assume that the Radon–Nikodym derivative L : A → R+ fulfills L(x) ≤ 1 for any
x ∈ A. Then, for each n ≥ 1, we get that

Pρ(Xn ∈ A) = Eµ[I(Xn ∈ A)L(Xn)]. (14)

This equality can be used in order to construct a third unbiased estimator for P(X ∈ A),
besides the estimators ZNMC and ZCMC discussed above. For this, let

Ỹ =
∑
n∈Z+

qn I(Xn ∈ A)L(Xn), (15)

where it follows from Eqs. (6) and (14) that P(X ∈ A) = Eµ[Ỹ ]. Furthermore, for any integer

m ≥ 1, let Ỹ1, . . . , Ỹm be a sequence of independent and identically distributed copies of Ỹ .
Then,

ZIS =
1

m
(Ỹ1 + · · ·+ Ỹm) (16)
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is an unbiased estimator for the probability P(X ∈ A).

Proposition 1 in Section 6 establishes the relationship between the variances of the three
estimators ZNMC, ZCMC and ZIS, showing that the variance of ZIS does not exceed the variance
of ZCMC, which in turn does not exceed the variance of ZNMC, where it is our goal to select µ
so that the event {X ∈ A} is not rare under µ, and hence from now on we refer to µ as the
importance sampling measure.

5 Importance Sampling Using Blocking Regions

In Section 4, we presented a general idea of importance sampling to estimate the probabil-
ity P(X ∈ A), where A ∈ G is some rare-event of interest. We now present an example of
an importance sampling measure µ, where the choice of µ is inspired by the perfect sampling
method for hard-spheres models proposed by Moka et al. [2021].

The key idea of this importance sampling method is to generate points sequentially so that
each point falls outside a certain blocking region created by the existing points. Specifically,
for any existing configuration xn = {x1, . . . , xn}, we say that a region B(xn) ⊆ W is blocked
by xn if any new point x selected in B(xn) is guaranteed to satisfy xn ∪ {x} /∈ A. That is,
selecting the next point over the blocked region results in a configuration outside A. Note
that B(x), possibly the whole window W , is defined for any configuration x ∈ G , not just for
configurations in A.

Since random points X1, X2, . . . generated under ρ are independent and uniformly distributed
in the cubic sampling window W = [0, λ]d, we have that ρ(dx) = (1/λnd)dx, for any x ∈ Gn and
for all integers n ≥ 1, where λd is the volume of W . Suppose now that for every configuration
x ∈ G , a blocking region B(x) can be identified easily and its volume can be computed exactly.
Then, under µ, random points X1, X2, . . . are sequentially generated such that Xn is uniformly
generated on the non-blocking region W \B(Xn−1), where Xn−1 = {X1, . . . , Xn−1} is the set
of already generated points. We stop the procedure when either Xn /∈ A or B(Xn) = W .
Then, with x0 denoting an empty set of points, the Radon–Nikodym derivative L : A → R+

introduced in Eq. (13) is given by

L(xn) =
n−1∏
i=0

(
1− Vol(B(xi))

Vol(W )

)
, for any n ≥ 1 and xn ∈ A, (17)

where B(x0) = ∅; i.e., the blocking region is empty when there are no points. Note that the
term (1− Vol(B(xi))/Vol(W )) in Eq. (15) is the ratio of the uniform density 1/Vol(W ) = 1/λd

on the whole window W and the uniform density 1/(λd − Vol(B(xi))) over the non-blocked
region W \B(xi) for the (i+ 1)th point. Given that Vol(B(x)) ≤ λd for any x ∈ G , we ensure
that L(x) ≤ 1 for any x ∈ A, as desired. With this choice of the importance sampling measure

µ, the estimator ZIS for P(X ∈ A), introduced in Eq. (16), is determined by Ỹ given in Eq. (15)
with L : A→ [0, 1] taken to be as in Eq. (17); see also Algorithm 1 below.

Ideally, in each iteration of the algorithm, we would like to identify the blocking region
with the maximum possible volume; see Figure 2a. Unfortunately, it can be computationally
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Algorithm 1 Importance Sampling Method

1: B ← ∅
2: n← 0 and L0 ← 1
3: repeat
4: n← n + 1

5: Ln ← Ln−1 ×
(

1− Vol(B)
Vol(W )

)
6: Generate the next point Xn uniformly on W \B
7: Xn ← {X1, . . . , Xn}
8: Update the blocking region B for the next point
9: until B = W or Xn /∈ A
10: Ỹ ←

∑n
i=0 qi Li

11: return Ỹ

challenging to identify such a maximal blocking region and to compute its volume exactly so
that a uniformly distributed point can be generated over the region outside the blocking region.
However, since any subset of a maximal blocking region is also a valid blocking region, we can
identify such sub-blocking regions in a computationally easy way. For this, we use a grid on
W . In particular, we partition the window W into a cubic grid of size Kd. Each cell in the
grid is uniquely indexed by a vector of dimensions d (k1, . . . , kd) ∈ {0, 1, . . . , K − 1}d so that
×d

j=1 [kjλ/K, (kj + 1)λ/K] is the cell with index (k1, . . . , kd).

To implement Algorithm 1, the first point X1 is generated uniformly on the window W .
At the n-th iteration, suppose that Xn−1 denotes the set of points generated in the previous
iterations. To generate the n-th point, we identify a set of cells that are completely covered
by the maximum blocking region and take the blocking region B(Xn−1) as the union of these
cells. Then, we generate the next point Xn uniformly over the non-blocking cells. See Figure 2
for an illustration of this grid-based approach to find blocking regions.

Below we describe procedures for constructing the blocking regions B(X1), B(X2), . . . for
Examples 1-5. For this, we define the distance Dist(C,C ′) between any two distinct cells C and
C ′ as

Dist(C,C ′) = sup
{
∥x− x′∥ : x ∈ C, x′ ∈ C ′}, (18)

which is the greatest possible distance between a point in C and a point in C ′. If Dist(C,C ′) ≤ 1,
then the cells C and C ′ are called neighbors, denoted by C ∼ C ′. For any point x ∈ W , C(x)
denotes the cell for which x ∈ C(x). Observe that since we are generating each point x uni-
formly on a cell, with probability 1, x must be an interior point of the cell, and thus x belongs
to only one cell.

Edge Count. Consider the rare-event probability defined in Example 1: the probability of
the event A = {x ∈ G : EC(x) ≤ ℓ}. That is, we want to estimate the probability that the
number of edges EC(x) in the graph G(x) is less than ℓ. After generating n points, suppose
xn = {x1, . . . , xn} ∈ A is the current configuration. A cell C of the grid is said to be of order
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(a) (b)

Figure 2: Illustration of generating points under the proposed importance sampling method
for the edge count problem with ℓ = 10 on a two-dimensional window. There are 9 existing
points creating 7 edges. The black region in (a) is the maximum possible blocking region and
selecting the next point over the black region in (a) will result in the number edges being more
than 10. Ideally, we would like to generate the next point outside this maximal blocking region
(as in (a)). However, identifying that region is difficult. The grid based importance sampling
method easily approximates this region from inside as shown in (b).

k if
∣∣{i = 1, . . . , n : C ∼ C(xi)}

∣∣ = k. That is, exactly k of {C(x1), . . . , C(xn)} are within unit
distance from C under the distance definition Eq. (18). Denote the union of all the order k
cells by Dk(xn). Let en = EC(G(xn)). Then, the region

B(xn) =
⋃

k>ℓ−en

Dk(xn)

is blocked because selecting the next point over B(xn) will prevent the event A from occurring.
In each iteration, after generating the next point x, we update the order of all the cells that
are neighbors to C(x).

Maximum Degree. For Example 2, where A = {x ∈ G : MD (x) ≤ ℓ} and MD (x) denotes
the maximum degree of the graph G(x), the grid based importance sampling procedure is
similar to the procedure stated above, except a cell C is blocked either if C is of order greater
than ℓ or if there is an existing point xi with degree at least ℓ and C ∼ C(xi). This is because,
in both the cases, a new point on C will lead to the maximum degree of the graph greater than
ℓ. Thus, for this example, the blocked region B(xn) is given by

B(xn) =

(⋃
k>ℓ

Dk(xn)

)
∪

( ⋃
x∈xn

{C : C ∼ C(x) and deg(x) ≥ ℓ}

)
,

12



where xn is the existing configuration and deg(x) is the degree of the node at x.

Maximum Connected Component. To construct the blocking region for the rare event
A = {x ∈ G : MCC (x) ≤ ℓ + 1} in Example 3, for any configuration xn ∈ A after generating
n points, decompose the set of points into connected components. Consider all the connected
components of size ℓ + 1. We call a cell C blocked if there exists x ∈ xn such that x is part of
a connected component of size ℓ + 1 and C ∼ C(x). Then, the overall blocked region B(xn) is
the union of all the blocked cells.

Maximum Clique Size. For Example 4, where A = {x ∈ G : MCS(x) ≤ ℓ + 1}, suppose
that xn ∈ A is the configuration after generating n points. Similar to the above procedure
for the maximum connected component, identify all the cliques in xn of size ℓ + 1. We now
call a cell C blocked if there exists a clique x′ ∈ xn of size ℓ+1 such that C ∼ C(x) for all x ∈ x′.

Number of Triangles. Finally, for Example 5, where A = {x ∈ G : NTG (x) ≤ ℓ}, we
generate points until there are exactly ℓ triangles. After that, for each point generation, we
identify the cells C where a new point selection over C results in a new triangle. The union of
such cells is the blocking region for that point generation.

Remark 1 (Graphs with a Fixed Number of Nodes). Recall that the total number of nodes N
in the Gilbert graph is a Poisson random number. Now suppose that the graph is constructed
with the number of nodes fixed, say N = n. Then, from Eq. (11), the conditional Monte Carlo

estimator Ŷ becomes identical to the Näıve Monte Carlo estimator Y given by Eq. (8) (i.e.,
FPoi is replaced by the degenerative distribution with all the mass at n). That is

Y = Ŷ = I(Xn ∈ A),

where for the configuration Xn n of points it holds that Xn ∼ ρ. Thus, the conditional Monte
Carlo method brings no variance reduction in this scenario; i.e., Var(Ŷ ) = Var(Y ). On the
other hand, the proposed importance sampling can still reduce the variance, because

Ỹ = I(Xn ∈ A)L(Xn),

where Xn ∼ µ. Since L(Xn) ∈ [0, 1], we have Var(Ỹ ) < Var(Y ), except for trivial cases with
values of n, where L(Xn) = 1 almost surely.

6 Efficiency Analysis

In this section, we first demonstrate that our importance sampling estimator achieves the lowest
variance among the three estimators presented in Section 4. We then illustrate its asymptotic
efficiency in comparison to the other methods through two interesting scenarios: one with a
fixed sampling window and the other with a growing window. For this, to simplify the notation,
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let

pn = Pρ(Xn ∈ A) and p∗ = P(X ∈ A) =
∑
n∈Z+

qnpn, (19)

for a rare event A of interest that satisfies the hereditary property, where we recall that X
denotes a κ-homogeneous Poisson point process on the sampling window W = [0, λ]d.

6.1 Variance Comparison

Proposition 1 demonstrates that the variance of the importance sampling estimator is lower
than that of the conditional Monte Carlo estimator, which, in turn, is lower than that of the
näıve Monte Carlo estimator. Here, the notation Varµ(Ỹ ) emphasizes that Ỹ is constructed

using points that are generated under the importance measure µ, as in Eq. (15), while Varρ(Ŷ )

and Varρ(Y ) emphasize that both Ŷ and Y are constructed using points that are generated
under ρ as in Eq. (11) and Eq. (8), respectively.

Proposition 1. For any intensity κ and window size λ, we have

Varµ(Ỹ ) ≤ Varρ(Ŷ ) ≤ Varρ(Y ).

Remark 2 (Relationship with Optimal Importance Sampling). Using Theorem 1.2 in Chapter
V of [Asmussen and Glynn, 2007], we can conclude that the optimal (i.e., zero-variance) impor-
tance sampling measure µ∗ for the rare-events considered in this paper has a Radon–Nikodym
derivative L∗ : A→ [0, 1] given by

L∗(xn) = pn for all xn ∈ A and n ∈ Z+,

where pn is given in Eq. (19). Unfortunately, sampling from such optimal measure is impractical
as it involves the unknown probabilities pn. If we had access to all pn, we could directly compute
p∗ = P(X ∈ A) exactly using Eq. (19). Our proposed importance sampling measure µ strikes
a balance between practicality and variance reduction. Specifically, the importance sampling
estimator retains a positive, yet minimized, variance, as demonstrated in Proposition 1. This is
achieved by bringing the values of L(xn) closer to L∗(xn) = pn, as supported by Observation 1.

Proof of Proposition 1. First observe that Eρ[Y ] = Eρ[Ŷ ] = Eµ[Ỹ ]. Therefore, it is sufficient to
prove that

Eµ[Ỹ 2] ≤ Eρ[Ŷ
2] ≤ Eρ[Y

2] = p∗, (20)

where the equality Eρ[Y
2] = p∗ holds, because Y is a Bernoulli random variable. The second

inequality Eρ[Ŷ
2] ≤ Eρ[Y

2] follows from Observation 1. To prove the inequality Eµ[Ỹ 2] ≤
Eρ[Ŷ

2], note that

Eρ[Ŷ
2] =

∑
n∈Z+

∑
m∈Z+

qnqm Pρ(Xn ∈ A and Xm ∈ A) =
∑
n∈Z+

q2n pn + 2
∑
m<n

qmqn pn,
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where we used the fact that {Xn ∈ A} ⊆ {Xm ∈ A} for all m < n. Then, using Eq. (14), we
get that

Eµ[Ỹ 2] = Eµ

∑
n∈Z+

qnI(Xn ∈ A)L(Xn)

2
=
∑
n∈Z+

∑
m∈Z+

qnqm Eµ [I(Xn ∈ A)I(Xm ∈ A)L(Xn)L(Xm)]

=
∑
n∈Z+

q2n Eµ

[
I(Xn ∈ A)L(Xn)2

]
+ 2

∑
m<n

qnqm Eµ [I(Xn ∈ A)L(Xm)L(Xn)] . (21)

Since 0 ≤ L(Xi) ≤ 1 for all i, this gives that

Eµ[Ỹ 2] ≤
∑
n∈Z+

q2n Eµ [I(Xn ∈ A)L(Xn)] + 2
∑
m<n

qnqmEµ [I(Xn ∈ A)L(Xn)]

=
∑
n∈Z+

q2n Pρ(Xn ∈ A) + 2
∑
m<n

qnqm Pρ(Xn ∈ A) (22)

= Eρ

∑
n∈Z+

q2n I(Xn ∈ A) + 2
∑
m<n

qnqm I(Xn ∈ A)I(Xm ∈ A)


= Eρ

∑
n∈Z+

qnI(Xn ∈ A)

2 , (23)

which is equal to Eρ[Ŷ
2], hence completing the proof.

Proposition 1 established that in general our importance sampling method is superior to or,
at the very least, as effective as the conditional Monte Carlo method in minimizing variance.
Our next result, Proposition 2, provides more insights on this aspect. To this end, for m ≤ n,
define

γm,n = Eρ

[
L(Xm)

∣∣Xn ∈ A
]

=
Eρ[L(Xm)I(Xn ∈ A)]

pn
. (24)

That is, γm,n is the conditional expectation of L(Xm) given Xn ∈ A, where Xn is a set of
n uniformly and independently distributed points on the observation window W = [0, λ]d.

Proposition 2. It holds that

Eρ[Ŷ
2] =

∑
n∈Z+

q2npn + 2
∑
m<n

qnqmpn, (25)

and

Eµ[Ỹ 2] =
∑
n∈Z+

q2nγn,npn + 2
∑
m<n

qnqmγm,npn. (26)
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Proof. The expression in Eq. (25) is established as Eq. (22) in the proof of Proposition 1.
To prove Eq. (26), consider Eq. (21), and then using the definition of the Radon-Nikodym
derivative L, we can write for every m ≤ n that

Eµ [I(Xn ∈ A)L(Xm)L(Xn)] = Eρ [I(Xn ∈ A)L(Xm)] .

Furthermore, using Eq. (24), we obtain

Eµ[Ỹ 2] =
∑
n∈Z+

q2n pn
Eρ [I(Xn ∈ A)L(Xn)]

pn
+ 2

∑
m<n

qnqm pn
Eρ [I(Xn ∈ A)L(Xm)]

pn
,

which is identical to Eq. (26) from the definition of γm,n given by Eq. (24).

To see an implication of Proposition 2, take ℓ = 0 in any of the first four examples in
Section 3. Then, A is the set of all the hard-spheres configurations. If we further assume that
the cell edge length, which is λ/K, in the grid is selected sufficiently smaller than 1, then as
in [Moka et al., 2021], for every xn ∈ Gn ∩ A, we can show that Vol(B(xn)) ≥ nc υd, for a
positive constant c with υd denoting the volume of a unit radius d-dimensional hyper-sphere
given by Eq. (1). The value of c can increase with the refinement of the grid used in importance
sampling. Therefore, using the definition of L(Xm), for all m,n with m ≤ n, we have

γm,n ≤
m−1∏
i=0

(
1− ic υd

λd

)+

, (27)

where r+ = max(0, r) for any r ∈ R. Note from Bernoulli’s inequality that 1 + rt ≤ (1 + t)r for
all r ≥ 0 and t ≥ −1. Therefore,

γm,n ≤
(

1− cυd
λd

)∑m
i=1(i−1)

=
(

1− cυd
λd

)m(m−1)/2

.

Thus, for any n, γm,n decays with a rate faster than exponential in m2 to reach zero for large m.

As a result, from Proposition 2, Eµ[Ỹ 2] can be much smaller than Eρ[Ŷ
2], or equivalently,

Varµ(Ỹ ) can be much smaller than Varµ(Ŷ ), as supported by the simulation results in Section 7.

6.2 Asymptotic Analysis

As mentioned above, in this analysis our goal is to theoretically illustrate the limiting per-
formance of the proposed importance sampling method in two asymptotic regimes where p∗

approaches 0. In the first regime, with a fixed observation window, we show that both the
conditional Monte Carlo estimator and the proposed importance sampling estimator are effi-
cient, whereas in the second regime, with a growing window, we show that only the importance
sampling estimator retains efficiency.

Towards this end, let M be a integer-valued random variable with

P(M = n) =
qnpn∑
i∈Z+

qipi
, n ∈ Z+, (28)
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where qn and pn are defined in Eq. (4) and Eq. (19) respectively. In other words, M is the
number of points in a realization X of the points of the Gilbert graph conditioned on X ∈ A.

Suppose an asymptotic regime is parameterized by a non-negative parameter t ∈ Z+ such
that the rare-event probability p∗ = p∗(t) tends to 0 as t → ∞. As an example of such a
regime, we can fix both the window size λ and threshold ℓ, and increase the intensity κ to ∞
as t → ∞. Another regime could be where the intensity κ is constant and both ℓ and λ go
to ∞. In general, an asymptotic regime consists of changing combination of these parameters
such that p∗ goes to zero asymptotically.

It is easy to see that the näıve Monte Carlo estimator Y , defined in Eq. (8), exhibits neither
the bounded relative error nor the logarithmic efficiency over any regime where limt→∞ p∗ = 0.
This is true because Varρ(Y ) = p∗(1 − p∗) and Varρ(Y )/(p∗)(2−ϵ) = 1/(p∗)(1−ϵ) − (p∗)ϵ goes to
∞ as t→∞ for all 0 < ϵ < 1. Therefore, the näıve Monte Carlo estimator is not efficient over
any asymptotic regime where the rare-event probability p∗ goes to zero. Thus, we focus only
on the conditional Monte Carlo estimator Ŷ , defined in Eq. (11), and the importance sampling

estimator Ỹ , defined in Eq. (15).

Recall that both Ŷ and Ỹ are unbiased estimators of p∗. As a consequence, from Propo-
sition 1, we can easily notice that in any regime, if Ŷ has asymptotic logarithmic efficiency
(respectively, bounded relative error), then Ỹ also has asymptotic logarithmic efficiency (re-
spectively, bounded relative error).

6.2.1 A Regime with a Fixed Sampling Window

Theorem 1 establishes the asymptotic efficiency of both Ŷ and Ỹ over an asymptotic regime.
Corollary 1 presents an interesting application of this theorem where the window W and the
threshold parameter ℓ are fixed and the intensity κ increases unboundedly.

Theorem 1. Consider an asymptotic regime parameterized by t, where limt→∞ p∗ = 0, and for
each t > 0, let St ⊆ Z+ be the support of M defined in Eq. (28) and denote its cardinality by
|St|. Furthermore, suppose for all sufficiently large t > 0 that |St| ≤ n0 for some n0 < ∞ and

minn∈St pn > 0. Then, the conditional Monte Carlo estimator Ŷ and the importance sampling
estimators Ỹ exhibit bounded relative error as t→∞.

Before proving Theorem 1, we first provide a specific corollary of the theorem.

Corollary 1. Consider the regime where λ and ℓ are fixed. Then, for all examples stated in
Section 3, both Ŷ and Ỹ exhibit bounded relative error as the intensity κ→∞.

Proof. Note that κ appears in the definition of Poisson distribution {qn : n ≥ 0}; see Eq.
(4). Hence, κ does not influence pn. From the hereditary property, pn is decreasing in n.
Furthermore, since the window size λ and threshold ℓ are fixed, for all examples stated in
Section 3, for sufficiently large values of n, every configuration x ∈ Gn satisfies x /∈ A. Thus,
there exists n0 such that pn = 0 if and only if n > n0. That is, the support of M is {0, . . . , n0}
for all κ > 0. Thus, pN ≥ minn=0,...,n0 pn = pn0 > 0, almost surely, and thus we complete the
proof of the corollary using Theorem 1.
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Proof of Theorem 1. We only need to show that Ŷ has bounded relative error as it implies
bounded relative error for Ỹ . From Eq. (2), we need to show that lim supt→∞ Eρ[Ŷ

2]/(p∗)2 <∞.
Now let N and N ′ be independent and identically Poisson distributed random variables, with
distribution given by Eq. (5). Then, with the notation a ∨ b = max(a, b), we get that

Eρ[Ŷ
2] =

∑
n,m∈Z+

qnqmpn∨m

= E [pN∨N ′ ]

= E [pNI(N ′ < N)] + E [pN ′I(N ′ ≥ N)]

= E [pNI(N ′ < N)] + E [pNI(N ′ ≤ N)] ,

where in the second expectation of the last equality, we swapped N and N ′ as they are identically
distributed. As a consequence, it follows that

2E [pNI(N ′ < N)] ≤ Eρ[Ŷ
2] ≤ 2E [pNI(N ′ ≤ N)] . (29)

Let nt = maxSt be the maximum element of St. From the hereditary property in Eq. (7),
for each t, pn ≥ pn′ whenever n < n′. Therefore, St = {0, 1, . . . , nt} and hence, P(N ∈ St) =
P(N ≤ nt). Note that for each t, we have

p∗ = E[pN ] =
∑
n∈St

qnpn ≥ pnt P(N ≤ nt), (30)

and
E [pNI(N ≥ N ′)] =

∑
n∈St

qnpnP(n ≥ N ′) ≤
∑
n∈St

qnP(n ≥ N ′) ≤ P(N ≤ nt)
2,

where the first inequality holds because pn ≤ 1 and the second inequality is a simple consequence
of the fact that nt is the maximum element of St. Thus,

Eρ[Ŷ
2]

(p∗)2
≤ 1

c2
P(N ≤ nt)

2

P(N ≤ nt)2
=

1

c2
<∞,

where c = minn∈St pn and the first inequality holds because pnt ≥ c.

6.2.2 A Regime with a Growing Sampling Window

To demonstrate that over some regimes the importance sampling estimator Ỹ can be efficient
while the conditional Monte Carlo estimator Ŷ fails to be efficient, we now concentrate on the
hard-sphere scenario, by setting ℓ = 0 in Examples 1 through 4 of Section 3. Note that for this
hard-sphere scenario, p∗ is the probability that every pair of points in a κ-homogeneous Poisson
point process on the window W = [0, λ]d is separated by at least a unit distance. Recall that β
is the expected number of nodes of the Gilbert graph, as defined in Eq. (4). For the asymptotic
regime here, we assume that the volume of the window W is βδ (that is, λ = βδ/d) and the

intensity κ = β1−δ for some δ > 1, and study the asymptotic behaviors of Ŷ and Ỹ as β →∞.
Note that, since δ > 1, the volume of the window W increases faster than the expected number
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of nodes of the graph. The limit point limβ→∞ p∗ and the rate of convergence to the limit point
vary depending on the value of δ. In particular, Lemma 1 is a result from Moka et al. [2021]
and it implies that p∗ is a rare-event probability for 1 < δ < 2 as β → ∞. For simplicity
of analysis, we assume the ideal case where the importance sampling uses maximal-volume
blocking regions.

Lemma 1 (Theorem 1 of Moka et al. [2021]). Suppose λ = βδ/d with δ > 1. Then,

lim
β→∞

1

β2−δ
log p∗ = −υd

2
, if 1 < δ < 2.

and

lim
β→∞

p∗ =

{
exp(−υd/2), if δ = 2,

1, if δ > 2,

Theorem 2 shows that the importance sampling estimator Ỹ is efficient asymptotically as
β →∞ while the conditional Monte Carlo estimate Ŷ is inefficient.

Theorem 2. Suppose λ = βδ/d with 1 < δ < 2. Then, as β →∞, the following is true:

(i) The importance sampling estimator Ỹ exhibits logarithmic efficiency.

(ii) The conditional Monte Carlo estimator Ŷ exhibits neither bounder relative error nor
logarithmic efficiency.

We prove statements (i) and (ii) of Theorem 2 separately. The following Lemma 2 is useful
for establishing (i).

Lemma 2. Suppose λ = βδ/d with 1 < δ < 2. Then,

sup
n≤2β

√
Eµ[L(Xn)2]

pn
= exp

(
O
(
β2−δ(d+1)/d + β3−2δ

))
.

In the lemma, O(·) denotes the standard big O notation: A function h(β) said to be O(g(β))
for a non-negative function g(β) if lim supβ→∞ h(β)/g(β) is finite. A proof of the lemma is
provided in Appendix A.

Proof of Theorem 2 (i). Because of Eq. (3), we need to show that

lim
β→∞

Eµ[Ỹ 2]

(p∗)2−ϵ
= 0, (31)

for all ϵ > 0. Under the importance sampling, we have L(Xn) = 0 if and only if Xn /∈ A. Thus,
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Ỹ =
∑

n∈Z+
qnL(Xn). Furthermore, using the Cauchy–Schwarz inequality, we get that

Eµ[Ỹ 2] =
∑

n,m∈Z+

qnqmEµ[L(Xn)L(Xm)]

≤
∑

n,m∈Z+

qnqm

√
Eµ[L(Xn)2]

√
Eµ[L(Xm)2]

=

∑
n∈Z+

qn

√
Eµ[L(Xn)2]

2

.

Thus, we establish Eq. (31) by showing that for any ϵ > 0,

lim
β→∞

 1

(p∗)1−ϵ

∑
n∈Z+

qn

√
Eµ[L(Xn)2]

 = 0. (32)

Now for each β, if we take nβ = max{n ∈ Z+ : pn ̸= 0}, then pn ̸= 0 if and only if n ≤ nβ.
Since p∗ =

∑
n∈Z+

qnpn, with the notation a ∧ b = min(a, b), we have

1

p∗

∑
n∈Z+

qn

√
Eµ[L(Xn)2] =

1∑
n∈Z+

qnpn

∑
n∈Z+

qn

√
Eµ[L(Xn)2]

≤ 1∑
n≤2β qnpn

∑
n≤2β

qnpn

√
Eµ[L(Xn)2]

pn
+

1

p∗

∑
n>2β

qn

√
Eµ[L(Xn)2]

≤ E
[

1

pM

√
Eµ[L(XM)2]

∣∣∣∣ M ≤ 2β

]
+

1

p∗

∑
n>2β

qn

√
Eµ[L(Xn)2], (33)

where M is distributed as Eq. (28). From Lemma 2, we get that

E
[

1

pM

√
Eµ[L(XM)2]

∣∣∣∣M ≤ 2β

]
= exp

(
O
(
β2−δ(d+1)/d + β3−2δ

))
.

From Lemma 1, p∗ = exp
(
−υdβ

2−δ

2
(1 + o(1))

)
, and thus for any ϵ > 0,

(p∗)ϵE
[

1

pM

√
Eµ[L(XM)2]

∣∣∣∣M ≤ 2β

]
= exp(−O(β2−δ)) exp

(
O
(
β2−δ(d+1)/d + β3−2δ

))
−→ 0,

(34)

as β →∞, because 2−δ > 2−δ(d + 1)/d and 2−δ > 3−2δ. Furthermore, since P(N > 2β) =∑
n>2β qn is the tail probability of a Poisson random variable with mean β, from the Chernoff

bound it follows that P(N > 2β) ≤ exp(−cβ) for some fixed constant c > 0; see, e.g., Short
[2013]. Thus, for all ϵ > 0,∑

n>2β qn
√
Eµ[L(Xn)2]

(p∗)1−ϵ
≤ P(N > 2β)

(p∗)1−ϵ
≤ exp(−cβ) exp

(
υdβ

2−δ(1− ϵ)

2
(1 + o(1))

)
−→ 0,

(35)
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as β → ∞, because 2 − δ < 1. From Eqs. (34), (35) and (33), we obtain Eq. (32) and thus
Eq. (31).

Proof of Theorem 2 (ii). Since the bounded relative error implies the logarithmic efficiency, it

is enough to show that lim supβ→∞

(
Eµ[Ŷ 2]/(p∗)2−ϵ

)
= ∞ for some ϵ > 0. Let N and N ′ are

iid Poisson random variables with distribution given by Eq. (5). Then,

E [pNI(N ′ < N)] ≥ E [pNI(N ′ < N ≤ β)] ≥ p⌈β⌉P(N ′ < N ≤ β),

where ⌈a⌉ denotes the smallest integer greater than a and the last inequality follows from the
fact that pn decreases with n. Therefore, from Eq. (29), for any ϵ > 0, we get that

Eρ

[
Ŷ 2
]

(p∗)2−ϵ
≥ 2

p⌈β⌉
(p∗)2−ϵ

P(N ′ < N ≤ β). (36)

We complete the proof by showing that P(N ′ < N ≤ β) → 1/8 and p⌈β⌉/(p∗)2−ϵ → ∞ as
β →∞. Note that

P(max(N ′, N) ≤ β) = P(N ′ < N ≤ β) + P(N < N ′ ≤ β) + P(N ′ = N,N ≤ β).

Since N ′ and N are independent and identically distributed, P(max(N ′, N) ≤ β) = P(N ≤ β)2

and the first two terms on the right of the above expression are identical. Thus,

P(N ′ < N ≤ β) =
1

2

(
P(N ≤ β)2 − P(N ′ = N,N ≤ β)

)
. (37)

It is easy to see that

P(N ′ = N,N ≤ β) ≤ P(N ′ = N) = exp(−2β)
∑
n∈Z+

β2n/(n!)2,

where the summation term is well-known as the modified Bessel function of the fist kind of order
zero, denoted as I0(2β). Hence, P(N ′ = N) = exp(−2β)I0(2β). From Kasperkovitz [1980], we
get that exp(−2β)I0(2β)→ 0 as β →∞. We also know from Short [2013] that limβ→∞ P(N ≤
β) = 1/2. Therefore, from Eq. (37), it follows that limβ→∞ P(N ′ < N ≤ β) = 1/8.

Now to complete the proof, from Eg. (36), it remains to show that

lim
β→∞

p⌈β⌉
(p∗)2−ϵ

=∞.

Since Vi ≤ iυd, from Lemmas 3 and 4 in Appendix A, we have

p⌈β⌉ ≥ exp

− 1

βδ

⌈β⌉−1∑
i=1

iυd

 exp(−O(β3−2δ)) = exp

(
−⌈β⌉(⌈β⌉ − 1)υd

2βδ

)
exp(−O(β3−2δ)).

From Lemma 1, we know that p∗ = exp
(
−β2−δυd

2
(1 + o(1))

)
for δ > 1. Thus,

p⌈β⌉
(p∗)2−ϵ

≥ exp

(
β2−δυd

2
(2− ϵ)(1 + o(1))− ⌈β⌉(⌈β⌉ − 1)υd

2βδ

)
exp(−O(β3−2δ)) (38)

Since ⌈β⌉(⌈β⌉ − 1) = O(β2) and 2− δ > 3− 2δ, by selecting ϵ < 1, we see that the limit of the
term on the right-hand side of Eq. (38) tends to infinity as β →∞.
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7 Simulation Results

In this section, we illustrate the effectiveness of our importance sampling estimator by com-
paring it to the näıve and conditional Monte Carlo estimators through simulation results in
three different settings, focusing on the edge count and maximum degree examples. The
Python implementation of our simulation is available at https://github.com/saratmoka/

RareEvents-RandGeoGraphs.

We recall that ZNMC is the sample mean näıve rejection estimator of P(X ∈ A), defined by
Eq. (9). That is, ZNMC = (Y1 + · · · + Ym)/m, where Y1, . . . , Ym are iid copies of Y . Similarly,
the sample mean conditional Monte Carlo estimator ZCMC and the sample mean importance
sampling estimator ZIS are defined by Eq. (12) and Eq. (16), respectively. We use RVNMC,

RVCMC and RVIS to denote the estimated relative variances of Y , Ŷ and Ỹ , respectively. For
instance,

RVCMC =
1
m

(Ŷ 2
1 + · · ·+ Ŷ 2

m)

Z2
CMC

− 1,

where Ŷ1, . . . , Ŷm are samples used for ZCMC. Similarly, we compute RVNMC and RVIS. To ensure
that all the sample mean estimators ZNMC, ZCMC and ZIS have the same confidence intervals, the
number of samples m is selected such that estimates of the relative variances of these sample
mean estimators fall below a small fixed value (0.001 in our experiments). For instance, since
RVCMC/m is an estimate of the relative variance of the conditional Monte Carlo estimator ZCMC,

copies of Ŷ are generated until the value of RVCMC/m becomes smaller than 0.001.

Experiment 1. The goal of this experiment is to estimate the probability of no edges in the
Gilbert graph (i.e., hard-spheres model) at different values of the intensity on a fixed window.
For that, we take W = [0, 10]2 and ℓ = 0 in Examples 1 – 4 from Section 3. Table 1 presents
results for the näıve and conditional Monte Carlo estimators for different values of the inten-
sity κ. Table 2 presents the corresponding results for the importance sampling estimator at
different grid sizes.

From these results, we observe that the relative variance (i.e., variance divided by the square
of the rare-event probability) of the importance sampling estimator is substantially smaller than
that of the other two estimators. For instance, when the intensity is 0.4, the relative variance of
the importance sampling estimator is more than 1000 times better than that of the conditional
Monte Carlo, which is in turn 1000 times better than the näıve Monte Carlo estimator. This
means we can make stable and reliable estimates of P(X ∈ A) using few samples of Ỹ compared
to the other two approaches.

Experiment 2. Here, the goal is to compare the methods for Example 1. Specifically, we estimate
the probability that the number of edges in the graph does not exceed a given threshold ℓ. For
this, we fix W = [0, 20]2 and κ = 0.3 and vary ℓ. In this setting, the expected number of
edges is estimated to be 54. We exclude the näıve Monte Carlo approach from our simulations,
as the rare-event probability is extremely small, making reliable estimation computationally
expensive. Table 3 compares the conditional Monte Carlo estimator Ŷ and the importance
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Table 1: Estimated mean and relative variances of the näıve Monte Carlo estimator Y and the
conditional Monte Carlo estimator Ŷ for Experiment 1.

Intensity Näıve Monte Carlo Conditional Monte Carlo
κ ZNMC RVNMC ZCMC RVCMC

0.1 0.31 2.24 0.31 0.96
0.2 1.81× 10−2 54.28 1.81× 10−2 9.95
0.3 3.62× 10−4 2.76× 103 3.66× 10−4 98.96
0.4 1.00× 10−6 9.99× 105 3.58× 10−6 1.05× 103

Table 2: Estimated mean and relative variances of the importance sampling estimator Ỹ for
Experiment 1, at three different grid sizes.

Grid Size
Intensity 100× 100 200× 200 300× 300
κ ZIS RVIS ZIS RVIS ZIS RVIS

0.1 0.31 0.14 0.31 0.07 0.31 0.05
0.2 1.81× 10−2 0.54 1.81× 10−2 0.26 1.81× 10−2 0.18
0.3 3.65× 10−4 1.26 3.65× 10−4 0.56 3.65× 10−4 0.38
0.4 3.46× 10−6 2.42 3.46× 10−6 0.97 3.46× 10−6 0.65

sampling estimator Ỹ . Notably, we observe that the variance of Ỹ is substantially smaller than
that of Ŷ when the rare-event probability is extremely small.

Table 3: Estimated mean and relative variances of the conditional Monte Carlo estimator Ŷ and
the proposed importance sampling estimator Ỹ (with two different grid sizes) for Experiment 2.

Importance Sampling
Threshold Conditional Monte Carlo Grid size: 200× 200 Grid size: 300× 300
ℓ ZCMC RVCMC ZIS RVIS ZIS RVIS

0 8.00× 10−15 4.21× 108 6.69× 10−15 42.97 6.73× 10−15 12.37
1 1.42× 10−13 8.95× 106 1.45× 10−13 6.76× 104 1.40× 10−13 3.22× 104

5 5.37× 10−10 3.15× 105 5.270× 10−10 2.10× 104 5.071× 10−10 1.28× 104

Experiment 3. Our final objective is to compare the methods for Example 2 by estimating the
probability that the maximum degree of the graph does not exceed a given threshold ℓ. For
this, we set W = [0, 20]2 and vary both the intensity κ and the threshold ℓ. For our importance
sampling, we fix the grid size to be 200×200. Here, we again observe that the relative variance
of the importance sampling estimator Ỹ is significantly smaller than that of the conditional
Monte Carlo estimator Ŷ , see Table 4.
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Table 4: Estimated mean and relative variances of the conditional Monte Carlo estimator Ŷ
and the proposed importance sampling estimator Ỹ for Experiment 3.

Intensity Threshold Conditional Monte Carlo Importance Sampling
κ ℓ ZCMC RVCMC ZIS RVIS

1 4 3.56× 10−3 38.8 3.56× 10−3 9.06
1.5 4 1.01× 10−8 7.8× 103 1.06× 10−8 110.00
2 5 3.06× 10−12 5.2× 104 3.09× 10−12 179.00

8 Conclusion

In this paper, we considered the problem of estimating rare-event probabilities for random
geometric graphs, also known as Gilbert graphs. We proposed an easily implementable and
efficient importance sampling method for rare-event estimation. Using analysis and simula-
tions, we compared its performance with existing methods: näıve and conditional Monte Carlo
estimators. In particular, we showed that the importance sampling estimator always exhibits
smaller variance than the other two methods. Furthermore, we established an asymptotic
regime where the importance sampling estimator is efficient while the other estimators are inef-
ficient. Our simulation results show that the proposed estimator can have variance thousands of
times smaller than the other estimators when the rare-event probabilities are extremely small.

A Proof of Lemma 2

We now provide a proof of Lemma 2. For this we use two lemmas stated below: Lemma 3
and Lemma 4. Note that the blocking volumes are monotonically non-decreasing. That is,
B(Xi−1) ⊆ B(Xi) is for each i. Also, the blocking volume added by a point is at most υd, the
volume of a unit radius sphere. In other words, with

Vi = Vol(B(Xi)),

we have Vi− Vi−1 ≤ υd, where the equality holds when the center of the i-th sphere is one unit
away from the boundary of the window and 2 units away from the centers of the other spheres.
As a consequence, we get that

Vi =
i∑

j=1

(Vj − Vj−1) ≤ iυd. (39)

Throughout the section, we assume that λ = βδ/d with 1 < δ < 2.

Lemma 3. For all sufficiently large values of β > 0, it holds that

pn ≥ exp

(
− 1

βδ

n−1∑
i=1

Eµ[Vi]

)
exp

(
−

n−1∑
i=1

∞∑
j=2

(iυd)
j

βjδ

)
, n ≤ 2β.
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Proof. Recall from Eq. (17) that

L(Xn) =
n−1∏
i=1

(
1− Vi

λd

)+
=

n−1∏
i=1

(
1− Vi

βδ

)+
.

From Eq. (39), for all i < n ≤ 2β, we have

Vi ≤ iυd < nυd ≤ 2βυd.

Since δ > 1, for sufficiently large values of β, we have 2βυd < βδ, and thus, Vi/β
δ < 1 for all

i < n ≤ 2β. Consequently, using the Taylor expansion of log(1− u), u < 1, and the definition
of pn, we obtain

pn = Eµ

[
exp

(
n−1∑
i=1

log(1− Vi/β
δ)

)]
= Eµ

[
exp

(
−

n−1∑
i=1

∞∑
j=1

V j
i

βjδ

)]
,

for large values of β with n ≤ 2β. Furthermore, we have

pn = Eµ

[
exp

(
− 1

βδ

n−1∑
i=1

Vi

)
exp

(
−

n−1∑
i=1

∞∑
j=2

V j
i

βjδ

)]
,

Then, from Eq. (39),

pn ≥ Eµ

[
exp

(
− 1

βδ

n−1∑
i=1

Vi

)]
exp

(
−

n−1∑
i=1

∞∑
j=2

(iυd)
j

βjδ

)

≥ exp

(
− 1

βδ

n−1∑
i=1

Eµ[Vi]

)
exp

(
−

n−1∑
i=1

∞∑
j=2

(iυd)
j

βjδ

)
,

where the last inequality is a consequence of Jensen’s inequality since exp(·) is convex.

Lemma 4. For any n ≤ 2β,√√√√Eµ

[
exp

(
2

βδ

n−1∑
i=1

(iυd − Vi)

)]
= exp

(
O
(
β2−δ(d+1)/d + β3−2δ

))
, (40)

and

n−1∑
i=1

∞∑
j=2

(iυd)
j

βjδ
= O(β3−2δ). (41)

Proof. For each i = 1, . . . , n − 1, define the indicator random variable Ii = I(Vi − Vi−1 < υd).
Then,

iυd − Vi =
i∑

j=1

(υd − (Vj − Vj−1)) =
i∑

j=1

Ii (υd − (Vj − Vj−1)) ≤ υd

i∑
j=1

Ii, (42)
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Thus,

n−1∑
i=1

(iυd − Vi) ≤ υd

n−1∑
i=1

i∑
j=1

Ij = υd

n−1∑
j=1

(n− j)Ij,

for each i = 1, . . . , n−1. Note that Ii = 1 means the ith point Xi is generated within 1 unit from
the boundary of the window W or within 2 units from the centers of all the existing i−1 points.
Since for any j = 1, . . . , i − 1, the probability of ∥Xi − Xj∥2 ≤ 2 is at most 2dυd/(βδ/d − Vi),
we have

Pµ (Ii = 1|X1, . . . , Xi−1) ≤
βδ − (βδ/d − 2)d

βδ − Vi

+
i−1∑
j=1

2dυd
βδ − Vi

.

Since Vi ≤ iυd, with ri = βδ−(βδ/d−2)d

βδ−iυd
+ iυd

βδ−iυd
, we have Pµ (Ii = 1|X1, . . . , Xi−1) ≤ ri. Conse-

quently,

Eµ

[
exp

(
2

βδ

n−1∑
i=1

(iυd − Vi)

)]
≤ Eµ

exp
2υd

βδ

n−1∑
j=1

(n− j)Ij


= Eµ

exp
2υd

βδ

n−2∑
j=1

(n− j)Ij

Eµ

[
exp

(
2υd
βδ

In−1

) ∣∣X1, . . . , Xm−2

]
≤ Eµ

exp
2υd

βδ

n−2∑
j=1

(n− j)Ij

((1− rn−1) + rn−1 exp(2υd/β
δ)
)
.

By repeating the same procedure for all the terms in the above expectation and substituting
the values of ci’s, we establish that

Eµ

[
exp

(
2

βδ

n−1∑
i=1

(iυd − Vi)

)]
≤

n−1∏
i=1

(
1 + rn−i(e

2iυd/β
δ − 1)

)
≤ exp

(
n−1∑
i=1

rn−i(e
2iυd/β

δ − 1)

)
.

(43)

Then, notice that since δ > 1, for each i < n ≤ 2β, iv/βδ → 0 as β → ∞. Furthermore,
βδ − (βδ/d − 2)d = O(βδ(d−1)/d), and hence, ri = O

(
(βδ(d−1)/d + i)/βδ

)
. Also,

exp(2iυd/β
δ)− 1 =

∞∑
j=1

(2iυd)
j

j!βjδ
=

2iυd
βδ

∞∑
j=0

(2iυd)
j

(j + 1)!βjδ
≤ 2iυd

βδ
exp(2iυd/β

δ).

Since exp(2iυd/β
δ)→ 1 as β →∞ for all i < n ≤ 2β, we have

n−1∑
i=1

rn−i(exp(2iυd/β
δ)− 1) = O

(
n2βδ(d−1)/d

β2δ
+

n3

β2δ

)
= O

(
β2−δ(d+1)/d + β3−2δ

)
,
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which completes the proof of (40) using (43). Now to prove (40), observe for large β that if
i < n ≤ 2β,

n−1∑
i=1

∞∑
j=2

(iυd)
j

βjδ
=

υ2
d

β2δ

n−1∑
i=1

i2
∞∑
j=0

(iυd)
j

βjδ
=

υ2
d

β2δ

n−1∑
i=1

i2
1

1− iυd/βδ
≤ υ2

d

β2δ

1

1− nυd/βδ

n−1∑
i=1

i2,

where we used iυd < nυd in the last inequality. We complete the proof by observing that
n/βδ ≤ 2β/βδ → 0 as β →∞ and

∑
i<n i

2 ≤
∑

i<2β i
2 = O(β3).

Proof of Lemma 2. Observe that

Eµ[L(Xn)2] ≤ Eµ

[
exp

(
− 2

βδ

n−1∑
i=1

Vi

)]

= exp

(
− 2

βδ

n−1∑
i=1

Eµ[Vi]

)
Eµ

[
exp

(
− 2

βδ

n−1∑
i=1

(Vi − Eµ[Vi])

)]

≤ exp

(
− 2

βδ

n−1∑
i=1

Eµ[Vi]

)
Eµ

[
exp

(
2

βδ

n−1∑
i=1

(iυd − Vi)

)]
,

where the last inequality follows from the upper bound in Eq. (39). Thus, using Lemma 3, we
have √

Eµ[L(Xn)2]

pn
≤ exp

(
n−1∑
i=1

∞∑
j=2

(iυd)
j

βjδ

)√√√√Eµ

[
exp

(
2

βδ

n−1∑
i=1

(iυd − Vi)

)]
. (44)

We now complete the proof using Lemma 4.
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