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Abstract

Relationships between microstructure characteristics and effective transport prop-

erties of granular materials are crucial for many real-world applications. In the

present paper, microstructure-property relationships of sphere packings are in-

vestigated by means of modeling and simulation. Virtual microstructures are

generated with the random close packing algorithm providing initial systems of

randomly distributed, non-overlapping and densely-packed spheres of a given

class of polydisperse size distributions. The initial sphere packing is further

densified until a certain criterion is reached, namely a predefined mean contact

angle. This way, we obtain a large database of slightly overlapping sphere sys-

tems. Subsequently, effective transport properties of the sphere systems (solid)

and their complementary sets (pores) are determined using the computationally

efficient resistor network method. Finally, the generated virtual microstructures

are used to establish formulas expressing effective transport properties of the

considered sphere packings in terms of the mean contact angle and the standard

deviation of the particle radii.
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Effective macroscopic properties of heterogeneous media depend strongly on

the geometry of their underlying microstructure [1]. In particular, in the case of

granular media, the microstructure is of great importance for the overall—so-

called effective—transport properties. This means that the effective transport

properties may significantly differ from the intrinsic or bulk transport properties5

of the considered material. The knowledge of effective transport properties

in granular materials, such as battery electrodes the active material of which

is granular [2, 3], plays a decisive role in many applications. Thus, a better

quantitative understanding of relationships between those properties and the

corresponding microstructure characteristics can help in the development of10

improved granular materials.

Relationships between effective transport properties of granular and, in gen-

eral, porous materials and their microstructure characteristics have been studied

for quite some time now. Many formulas have been proposed, expressing effec-

tive transport properties in terms of volume fraction of the transporting phase,15

see [4] for a review. Note that theoretical results for those relationships can

only be derived for certain structural scenarios which are hardly representative

for real materials [1]. However, in case that it is sufficient to know upper or

lower bounds of the effective transport properties, rigorous results are avail-

able [5, 1], where the so-called Wiener bounds [6] (anisotropic arrangement of20

phases) and the Hashin-Shtrikman bounds [7] (isotropic arrangement of phases)

are the most prominent ones. These bounds indicate thresholds for the best or

the worst effective transport.

If a more precise estimation of effective transport properties is required,

usually the effective medium theory (EMT) is used [8]. Especially in the field25

of cell modeling for lithium-ion batteries, the well-known Bruggeman relation

is employed, see for example [9]. This relation is used to estimate the effec-

tive transport properties of both the solid and the liquid electrolyte phases

inside the electrode structures of the battery. But, as it was pointed out in [9],

the Bruggeman relation, which is used for the ionic transport in the liquid30

electrolyte, is not applicable to a network of contacting particles. Besides the

2



Bruggeman relation, empirical formulas relating microstructure characteristics

to transport properties were derived in [10, 11] using a large database of virtual,

but realistic, microstructures which were generated using models from stochas-

tic geometry [12]. Even if these formulas lead to a good fit for a large class of35

microstructures, deviations are observed when using them for systems of packed

spheres as already discussed in Section 5.1 of [11].

As far as the computation of the effective transport properties in the solid

phase of contacting spheres is concerned, in [13] a formula was developed which

takes the percolation threshold into account. However, the analysis in [13]40

does not consider polydisperse distributions of particle sizes. Therefore, in the

present paper, we focus on the development of empirically fitted prediction for-

mulas which express the effective transport properties of both the solid phase

and the pore phase of densely-packed assemblies of overlapping spheres with

a polydisperse size distribution by morphological characteristics. The formu-45

las are derived by extensive numerical analysis employing the so-called resistor

network (RN) method [14, 15] on virtually generated granular structures.

The rest of this paper is structured as follows. In Section 1, we first recall

the RN method sketching the basic idea behind the method. In Section 2,

we investigate a series of virtually generated sphere assemblies, calculate their50

porosities and effective transport properties using the RN method and discuss

the results. In the same section, we propose empirically fitted formulas based on

numerical simulations to quantify relationships between the microstructure of

the sphere systems and the corresponding effective transport properties. Finally,

Section 3 summarizes and concludes.55

1. Resistor network method

In this section, we recall the RN method for the calculation of effective

transport properties of assemblies of spheres. For a more detailed explanation

of the method, we refer to [14].
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1.1. Conservation law60

In the present paper, we consider steady-state transport problems which can

be described by the continuity equation

∇ · ~F = 0 , (1)

where ~F is the flux density vector related to the underlying transport phe-

nomenon. Depending on the specific physical problem, the flux vector can be

the heat flux density vector ~q in the case of conservation of energy, the species

flux density vector~j in the case of conservation of species and the current density

vector~i in the case of conservation of charge. Consequently, the constitutive law

in Equation (1) becomes either Fourier’s, Fick’s first or Ohm’s law, respectively:

~q = −λ · ∇T ,

~j = −D · ∇c ,

~i = −κ · ∇ϕ .

(2)

Here, the considered material is represented via the thermal conductivity tensor

λ, the diffusivity tensor D or the electric conductivity tensor κ and the driving

forces are the negative gradient of either the temperature T , the concentration

c or the electric potential ϕ, respectively.

For the computation of effective transport properties of transport phenom-65

ena fulfilling Equation (1), the RN method can be used independently of the

underlying physical problem, see also [16].

1.2. Transport modeling using resistor networks

In the following, we show how effective transport properties are modeled

in the present paper using resistor networks. Exemplarily, we deal with the70

effective electric conductivity denoted by κeff.

In order to calculate effective transport properties by means of the resistor

network approach, one has to convert the considered transport phase into an

equivalent circuit of resistors. The resulting resistor network consists of nodes

4



Figure 1: 2D sketch of a single resistance between two overlapping spheres inside a network

of overlapping spheres.

and edges representing the resistors between the nodes. If two nodes are con-75

nected by an edge, transport can take place between them. This conversion

is achieved differently for the solid phase consisting of a system of overlapping

spherical particles and the pore phase, i.e. the complementary set of the sphere

system.

1.2.1. Transport through solid phase80

The solid phase is converted into a circuit of resistors as follows. As can be

seen in Figure 1, the basis of the resistor network is the transport path through

the solid phase depicted by a cluster of spheres connecting the boundaries of

the assembly. The nodes are given by the sphere centers and edges are put

between two nodes if the corresponding spheres overlap. Moreover, a potential

is assigned to each node and weights are assigned to the edges, which define the

corresponding resistances. For a pair of nodes I, J , let ϕI and ϕJ denote their

potentials. If I and J are connected by an edge, the corresponding resistance
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of this edge, denoted by RI,Jsolid, is defined by

RI,Jsolid =
1/κI + 1/κJ

4 rc
. (3)

Note that RI,Jsolid depends only on the respective bulk conductivities of the parti-

cles κI and κJ and the contact radius rc between them, see the right-hand side

of Figure 1. In this way, Equation (3) accounts for geometric bottleneck effects.

A system of linear equations is set up, see Equation (6), using the combina-

tion of Kirchhoff’s law, i.e.

0 = II =
∑

J∈N (I)

II,J (4)

and Ohm’s law, i.e.

II,J =
ϕI − ϕJ

RI,Jsolid

. (5)

Here N (I) denotes the set of neighbors of I. Moreover, II denotes the electric

current at node I and II,J denotes the electric current from I to J . Thus, at

every node I the sum of the electric current is

II =
∑

J∈N (I)

ϕI − ϕJ

RI,Jsolid

=
∑

J∈N (I)

(ϕI − ϕJ)GI,Jsolid = 0 , (6)

where the conductance GI,Jsolid = 1

RI,Jsolid

is the reciprocal of the respective resis-

tance. Equation (6) can be represented as ~I = G~ϕ, where ~I = II is the current

vector, G = GI,J is the conductance matrix, and ~ϕ = ϕJ is the unknown poten-

tial vector. Due to the applied potential drop of ∆ϕ around a reference potential

ϕ0 at the boundary nodes, the system of linear equations given in Equation (6)

can be solved for the potential vector ~ϕ. Finally, the effective current Ieff can

be evaluated as the sum of all currents entering or leaving the boundary nodes

and the effective electric conductivity is given by

κeff =
Ieff

∆ϕ

Ldomain

Adomain
, (7)

where Ldomain and Adomain is the domain length and cross section area, re-

spectively. In [14], a solution scheme for the above described methodology is85

presented, where the set-up description of the system of linear equations and

the calculation of the effective current is outlined in more detail.
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1.2.2. Transport through pore phase

Concerning the pore phase, the conversion into an equivalent circuit of re-

sistors involves the so-called Laguerre tessellation or generalized Voronoi tes-90

sellation [17], see Figure 2. To be more precise, we consider the Laguerre tes-

sellation, where the generators are given by the midpoints of the particles and

their weights are given by the corresponding radii. For detailed information

regarding the Laguerre tessellation of sphere packings, we refer to [18]. The

computation is done by employing the software library Voro++ [19]. By means95

of the Laguerre tessellation we are able to decompose the pore phase by so-called

Laguerre cells such that—roughly speaking—the Laguerre cell corresponding to

a given spherical particle represents all points of the pore phase around this

particle.2

Having computed the Laguerre tessellation, the nodes of the resistor network100

are given by the vertices of the Laguerre cells, i.e. by its 0-dimensional facets.

The nodes are interpreted as the pore centers of the corresponding pore network.

Furthermore, the 1-dimensional facets of the Laguerre tessellation, which can

be interpreted as the medium axes of the interconnecting pores, form the edges,

i.e. the pore throats, between the nodes. Similar to the case of the solid phase,105

a potential ϕI is associated with each node I and pore throat resistances RI,Jpore

are assigned to the edges between I and J for all connected nodes, see Figure 2.

For a given pair of connected nodes I and J , the pore throat resistance RI,Jpore

is calculated in three steps. As a first step, the geometry of an individual pore

throat is defined by decomposing the surrounding region of the corresponding110

edge into compartments. In case of 2D, the compartments are constructed as

the areas which are given by triangles defined by the nodes of the considered

edge and the associated sphere centers, where the intersection area with the

2Note that for general systems of overlapping spheres, the Laguerre cell corresponding

to a given particle might be empty [17]. This property depends on the degree of pairwise

overlapping between the particles [18]. In our case, where the particles are only slightly

overlapping, each spherical particle generates a non-empty Laguerre cell.
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Figure 2: 2D sketch of resistances of a pore throat inside a pore network.

associated spheres is subtracted from. In the 3D case, the surrounding region

is the volume given by tetrahedrons, which, as an extension of the 2D case, are115

additionally defined by the centers of the faces, i.e. 2-dimensional facets, of the

Laguerre cells which meet at the considered edge. The intersecting volumes of

the associated spheres are then subtracted from the tetrahedrons.3

In a second step, based on this decomposition, the considered individual pore

throat is divided into sub-throats, see the gray-shaded area on the right-hand

side of Figure 2 for the 2D case, and the grey-shaded volume in Figure 3 for the

3D case. The resistance RI,Jm of a sub-throat m of the edge between I and J is

3Formally, the surrounding region is defined by the set T \S. Here S denotes the associated

spheres, while T is defined as the convex hull of the edge defining nodes, the associated sphere

centers and the centers of the 2-dimensional facets which meet at the considered edge and

which belong to the Laguerre cell corresponding to the associated sphere.
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Figure 3: 3D sketch of a throat construction in a pore network. Bottom: Pore throat at a

shared edge, where three Laguerre cells meet. Top: The grey-shaded volume represents a

sub-throat.
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calculated as the sum of wire resistances. For this purpose, we further subdivide

the sub-throat m into a wire of nincr parts, called increments, and obtain

RI,Jm =

nincr∑
n=1

∆Rnm = ρ

nincr∑
n=1

∆Ln

Anmean

, (8)

where ρ is the bulk resistivity and ∆Rnm is the resistance of the n’th increment.

Moreover, ∆Ln is the length and Anmean is the mean length of the line which120

has to be passed in the 2D case and the mean cross section area of the n’th

increment in the 3D case. Note that in Figure 2, nincr is equal to 3. The

number of increments nincr is successively increased and thereby the size of

∆Ln is successively reduced until the resulting resistance of the sub-throat in

Equation (8) does not significantly change by a further increase of nincr. To be125

precise, the iteration is stopped in case that a further increase of nincr leads to

change of the corresponding resistance by less than 5%.

Finally, in the third step, the resistance RI,Jpore of the individual pore throat

between I and J is calculated as a parallel connection of the msthr sub-throat

resistances RI,Jm as

RI,Jpore =

(
msthr∑
m=1

1

RI,Jm

)−1

. (9)

Similar to the case of the solid phase considered in Section 1.2.1 the combi-

nation of Kirchoff’s and Ohm’s law is used to set up a system of linear equations.

Imposing a potential drop ∆ϕ around a reference potential ϕ0 at the boundary130

nodes, the system of linear equations is solved for the effective electric current.

Then, the effective conductivity is obtained using Equation (7).

Summarizing, we have presented the RN method to compute effective trans-

port properties for overlapping sphere assemblies and the corresponding comple-

mentary phase considered as solid phase and pore phase of a granular material,135

respectively. A validation of this method can be found in [14]. In the following

we apply the RN method to investigate quantitative microstructure-property

relationships for assemblies of overlapping spheres with a polydisperse size dis-

tribution.
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2. Effective transport properties140

In this section, we use the RN method to compute effective transport pa-

rameters for assemblies of overlapping spheres. The radii of these spheres are

random, where we consider a certain class of polydisperse size distributions.

In the present paper, we choose a one-parametric size distribution, where the

parameter uniquely determines the standard deviation of the radii and thus145

the polydispersity. In the following, we first explain how the assemblies were

created. Then, we empirically derive formulas quantifying the influence of the

morphology of those sphere systems on their effective transport properties. Fi-

nally, the results are evaluated and discussed.

2.1. Generation of virtual random sphere assemblies150

The virtual sphere assemblies were generated as follows. First, an initial as-

sembly of non-overlapping spheres was generated using the random close pack-

ing algorithm (RCP) [20] in a cubic sampling window. Generally, the RCP

delivers a randomly distributed, densely packed and overlap-free assembly of

monosized spheres. However, following [21], the basic RCP was extended to155

account for more general size distributions of spheres. In the present paper,

we consider discrete radius distributions which can take five different radii

r1, . . . , r5 > 0 such that the probability of a sphere radius being ri is given

by qi = P(X ∈ Ai)/P(X ∈ ∪5
i=1Ai), where X is a normally distributed random

variable with mean rmean > 0 and standard deviation rσ > 0 and A1, . . . , A5160

are disjoint intervals on the positive real line depending on rmean and rσ.

To be precise, we choose A1 = (rmean − 3rσ, rmean − 9rσ/5], A2 = (rmean −

9rσ/5, rmean − 3rσ/5], A3 = (rmean − 3rσ/5, rmean + 3rσ/5], A4 = (rmean +

3rσ/5, rmean + 9rσ/5] and A5 = (rmean + 9rσ/5, rmean + 3rσ] and for each

i = 1, . . . , 5, we defined ri as the midpoint of the interval Ai. Note that rσ

cannot be arbitrarily large, since r1 has to fulfill

0 < r1 = rmean −
12

5
rσ = 1− 12

5
rσ . (10)
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This means that theoretically, rσ has to fulfill rσ < 5/12. Since radii close to zero

would lead to problems when discretizing the sphere system, we do not use the

full range of rσ. A discretization of the sphere systems is necessary to compute

the microstructure characteristics mean geodesic tortuosity and constrictivity,165

see Section 2.2.3. We thus allow values of rσ between 0 and 0.25. In doing

so, we generated virtual granular materials, which consisted of five types of

particles with different sizes. In Figure 4a, an initial sphere packing produced

by the RCP with model parameters rmean = 1 length unit lu and rσ = 0.25 lu

is exemplarily shown.170

In a further step, in order to establish conducting pathways through over-

lapping spheres, the initial sphere packings were further densified. To this end,

we used an algorithm which we call numerical sintering and which is similar to

the procedure used in [22, 23]. In our case, while isotropically and successively

reducing the cubic sampling window, the spheres are pushed towards each other175

until a certain degree of densification is reached. In the present paper, we used

the mean contact angle θmean to represent the degree of densification, where

θmean is defined as the mean of all contact angles of an assembly. An individual

contact angle for a pair of overlapping spheres is the maximum of the two an-

gles enclosing the contact radius of the two spheres. Choosing θmean as a model180

parameter serves several purposes. First, considering electronic transport via a

network of particles, better conduction can be expected for larger contact areas

and thus larger contact angles. Secondly, the model parameter strongly influ-

ences the so-called specific surface area [24]. In the field of lithium-ion batteries

(LIBs), for instance, this is a measure of active surface area per unit volume185

available for electrochemical reactions. Thirdly, when mechanical aspects of

electrodes are considered, contact angles and contact radii correlate to particle-

to-particle forces and serve as a measure for electrode stress states. In [25], for

instance, the general solution of the well-known Hertz contact model for two

non-conforming convex solids was presented. It was validated by FEM analysis190

that the resistance between two elastically contacting ellipsoids—and spheres

as a special case—can be calculated equivalently using Equation (3). However,
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the geometrical contact radius rc needs to be replaced by an equivalent contact

radius of the mechanical elliptical contact area which accounts for the elastic

deformation of the particles in the vicinity of the contact point.195

It was shown that ordering in granular media, e.g. due to vibration [26]

as well as the presence of a flat wall [27, 28] influence effective transport. In

this paper, randomly distributed assemblies of spheres and periodic boundaries

guarantee to avoid such effects. In Figure 4b, the exemplary initial sphere

packing from Figure 4a was densified following the above described methodology.200

The densification was stopped when reaching θmean = 30◦.

We generated 100 different scenarios of randomly distributed and densely

packed sphere assemblies, where in each scenario the values of the model pa-

rameters rσ and θmean were chosen at random. The parameter rσ was chosen

uniformly at random between 0 and 0.25 lu representing mono-sized up to highly205

polydisperse size distributions. The parameter θmean is chosen uniformly at

random between 0.05◦ and 30◦ resembling barely and highly overlapping sphere

packings, respectively. The mean particle radius rmean = 1 lu is fixed for all

cases. In order to obtain sphere systems which are representative with respect

to their effective transport properties, the number of spheres in each generated210

assembly was chosen to be 5000. As was pointed out in [29], a number of parti-

cles of above 500 is sufficient in order to evaluate effective transport properties

for mono-sized particle systems. However, due to the polydisperse sphere sys-

tems considered in the present paper and due to the efficiency of our methods,

we have chosen the number of particles to be equal to 5000.215

2.2. Prediction of effective conductivity

2.2.1. The role of tortuosity and constrictivity

Based on the 100 scenarios described in Section 2.1 we investigated the re-

lationship between the model parameters rσ and θmean and the microstructure

characteristics mean geodesic tortuosity τ and constrictivity β of the solid and

the pore phase, respectively. See [30] for the formal mathematical definition

of τ and β. These parameters are of central importance for effective transport
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Figure 4: Generation of sphere packing. a) Initial random distribution of spheres, where

rmean = 1 lu and rσ = 0.25 lu. b) Isotropical densification of initial structure.
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Figure 5: Mean geodesic tortuosity τ (top) and constrictivity β (bottom) over θmean, where

different ranges of rσ are highlighted with different colors. The results are shown for the pore

phase (left) and the solid phase (right).
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properties such as effective conductivity or permeability.4 Note that in a previ-

ous study [11], where we used three different stochastic microstructure models

to simulate more than 8000 virtual porous microstructures, the parametric pre-

diction formula

M̂0 =
φ1.67−0.48β

τ5.18
(11)

was empirically derived for the so-called M -factor M = κeff/κbulk, which is the

ratio of effective over bulk conductivity. Here φ denotes the volume fraction of

the conducting phase, τ its mean geodesic tortuosity and β its constrictivity.220

While τ measures the windedness of shortest transportation paths, β is a

descriptor for bottleneck effects of the transporting phase. If β = 1, there

are no bottlenecks at all and the closer β is to 0, the stronger the effect of

bottlenecks [30]. In Figure 5, τ and β are drawn as functions of θmean for both

the solid and the pore phases of the sphere systems considered in the present225

paper. Different ranges of rσ are indicated by different colors and symbols. One

can observe that the mean contact angle strongly influences the microstructure

characteristics mean geodesic tortuosity τ and constrictivity β of the pore and

solid phase, whereas the dependence of τ and β on rσ is much less pronounced.

The dependence of τ and β on the parameters θmean and rσ of the sphere packing230

suggests that effective transport parameters of the microstructures based on the

sphere packings considered in the present paper can be expressed in terms of rσ

and θmean. Therefore, in addition to the prediction formula (11), we empirically

derive further prediction formulas which quantify the relationship between rσ

and θmean one the one hand and the considered effective transport parameters235

on the other hand.

2.2.2. Expressing porosity by model parameters

For each virtual sphere assembly considered in Section 2.1, the effective

transport properties for both the solid and the pore phases were calculated

4For the computation of τ and β, the virtual sphere assemblies were discretized on a cubic

grid with a grid size of 1/30 lu.
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using the RN method described in Section 1. In the following, charge transport240

was considered as a representative of the transport phenomena mentioned in

Section 1, where we consider effective electric conductivity κeff as the transport

property of interest. In particular, similar to the investigations described in

Section 2.2.1, we evaluate the dimensionless ratio M = κeff/κbulk, where κbulk is

the bulk conductivity of the material. In the following, we call M the effective245

transport parameter.

Figure 6a shows the dependency of the porosity φpore on the model param-

eters θmean and rσ. We observe that the porosity is decreasing with increasing

values of θmean. This effect is not surprising since the higher the value of θmean

the stronger is the degree of densification during the numerical sintering. More-

over, a slight increase of porosity is observed if rσ is increasing. This effect

seems to be counter-intuitive, since for non-overlapping particles, a higher poly-

dispersity allows for a denser packing [31]. This is obviously true for θmean close

to 0. However, this is not true for θmean = 30◦. Recall that the densification

process is done by isotropically and successively reducing the cubic sampling

window. This way, the spheres are pushed towards each other forming overlaps.

As the upper bound of θmean does not allow for large overlaps between spheres

in assemblies with large rσ, a desired densification state is achieved earlier than

in sphere assemblies with lower rσ. In other words, the desired densification

state is achieved earlier in case of assemblies with different sizes resulting in

higher porosities. Based on our simulated data, we found that the porosity can

be expressed as a function of θmean and rσ by

φ̂pore =
b0

b1 − expb2 θmean−b3 rσ
, (12)

which nicely approximates the porosity φpore of the sphere assemblies, where

b0 = −15.625, b1 = −43.277, b2 = 0.166 and b3 = 1.334 were determined by

means of the least-squares method. Note that the mean absolute percentage

error (MAPE) of the prediction formula given in Equation (12) is relatively low250

being equal to 3.17 %.
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Figure 6: Influence of sphere packing parameters θmean and rσ on porosity a), effective trans-

port through the solid phase b), and effective transport through the pore phase c). The red

points indicate the results obtained by the RN method, while the black curves indicate the

results obtained from the parametric prediction formulas given in Equations (12), (13), and

(14), respectively.
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2.2.3. Predicting effective transport parameters

In Figure 6b, the effective transport parameter of the solid phase Msolid is

considered. One can observe that this quantity also depends on θmean and rσ.

For instance, if rσ reaches the lowest and θmean the largest value, then the effec-255

tive transport parameter MRN
solid is at its maximum, where the superscript RN

means that this quantity is computed by means of the resistor network method

explained in Section 1. It is interesting to note that the influence of rσ on MRN
solid

becomes smaller if the degree of densification decreases, i.e., θmean approaches

zero. More precisely, this means that the effective transport parameter does not260

significantly change along rσ provided that θmean is close to 0◦. In this case,

the reducing contact area between particles induced by the low values of θmean

clearly dominates the effective transport parameter MRN
solid. Note that for cases

of very large θmean and very low rσ the effective transport parameter MRN
solid can

be larger than 1. As was pointed out in Section 1, in the framework of the RN265

method for the solid phase, a vital part is the correct computation of the resis-

tances of individual contact pairs. Obviously, for extreme cases, if the porosity

φpore approaches zero and, vice versa, if the packing factor φsolid = 1− φpore is

close to 1, the contact areas between the spheres are likely to overlap each other.

As for the present paper, the calculation of individual contact pair resistances270

is based on the geometric bottleneck effect of a single contact pair and does not

account for the influence of neighboring contact pairs. In other words, in cases

of large contact angles and, additionally, low porosity, overlapping contact areas

between contact pairs seem to lead to an overestimation of the effective trans-

port parameters provided by the RN method. On the one hand, this shows the275

limits of the RN method considering solid phase transport, on the other hand,

we argue that in cases of porosities close to zero, the use of RN method needs

further adjustments. From literature, values of θmean between 0◦ and 30◦ [32]

and packing factors below 90 % [15] seem to be preferred regarding the RN

method as presented here.280

19



We found that the relationship between the effective transport parameter of

the solid phase MRN
solid and the model parameters θmean and rσ can be appropri-

ately described by the quantity

M̂solid = (φsolid − φsolid,c)a0+
a1

θmean
+

a2
a3−θmean

+a4 rσ , (13)

where a0 = 0.8015, a1 = 0.3227, a2 = −13.88, a3 = 47.37 and a4 = 0.5284 were

determined by means of the least-square method. Note that φsolid = 1 − φpore

is the volume fraction of the solid phase , i.e. packing factor, and φsolid,c is

the percolation threshold which is estimated from the simulation results to be

equal to 0.62. The mean absolute percentage error of the prediction formula285

given in Equation (13) is 24.91 % which still is reasonably low. Regarding the

overestimation of the RN method for high values of θmean and φsolid, it can be

seen in Figure 6b that in the given range the prediction formula (13) does not

exceed the theoretical threshold of 1.

Finally, in Figure 6c, the effective transport parameter of the pore phase

Mpore is focused. The influence of rσ seems to be even less pronounced than for

the solid phase. Besides that, the qualitative behavior of MRN
pore in dependence

of θmean and rσ is rather similar to the one of porosity shown in Figure 6a.

Moreover, it turns out that the simple Bruggeman relation [33, 34] yields a

good agreement with the numerical results if the coefficient βbrugg is suitably

fitted. From our simulation results, the quantity

M̂pore =
(
φ̂pore

)βbrugg

(14)

delivers a good approximation of the effective transport parameter MRN
pore com-290

puted using the RN method, where βbrugg = 1.342 was determined by the

least-square method. This leads to a MAPE of 13.64 %. Note that for the

porosity, we plug in the quantity φ̂pore from Equation (12).

2.3. Discussion of prediction formulas

Note that the prediction formulas given in Equations (13) and (14) lead to a295

significantly better fit for the sphere assemblies considered in the present paper
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than Equation (11) of [11] which predicts the effective transport parameters by

means of their mean geodesic tortuosity and constrictivity, see Figure 7. This is

not surprising since Equation (11) has been derived for virtual microstructures

exhibiting a rather different morphology than the sphere assemblies considered300

in the present paper. Furthermore, limitations of Equation (11) for microstruc-

tures arising from systems of slightly overlapping spheres haven been already

discussed in Section 5.1 of [11]. Note that one reason for the large error regard-

ing the prediction of the M -factor of the solid phase of sphere assemblies can

be explained by the fact that Equation (11) was derived for virtual microstruc-305

tures which are percolating even for low volume fractions of the conducting

phase. In other words, in contrast to Equation (13), the percolation thresh-

old of the sphere assemblies considered in the present paper is not captured

in Equation (11). This leads to an overestimation for low values of Msolid.

Vice versa, the prediction formulas given in Equations (13) and (14) express310

effective transport properties by means of the parameters θmean and rσ, which

are only well defined for assemblies of slightly overlapping spherical particles.

Thus those prediction formulas are restricted to materials, the microstructure

of which consists of an assembly of slightly overlapping spherical particles.

3. Summary and conclusion315

In the present paper, we combined the generation of virtual sphere packings

with the RN method to study relationships between the morphology of sphere

assemblies and their effective transport properties. In particular, we focused on

the degree of overlap between the spheres and a model parameter controlling

the polydispersity of the considered sphere systems.320

For this purpose, we created 100 different assemblies of 5000 spherical par-

ticles by means of a random close packing algorithm. The assemblies were

densified using a simple numerical sintering algorithm. The generated struc-

tures differed with respect to the degree of polydispersity, i.e., the parameter

rσ determining the standard deviation of the spheres’ radii, and with respect325
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Figure 7: Visualization of the goodness-of-fit of the predictors M̂solid and M̂pore given in

Equations (13) and (14) for sphere assemblies compared to the predictor M̂0 given in Equa-

tion (11).

to the degree of densification, i.e., the mean contact angle θmean between the

spheres. It was shown that both, geometrical microstructure characteristics and

effective transport properties depend on the model parameters rσ and θmean.

On the one hand, concerning porosity φpore and the effective transport pa-

rameter of the solid phase Msolid, we empirically derived parametric prediction330

formulas expressing those quantities by θmean and rσ. On the other hand, for

the considered sphere packings, the well-known Bruggeman relation leads to

good estimation of the effective transport parameter of the pore phase Mpore.

In this case, we can use the derived expression for porosity in terms of θmean

and rσ to obtain relationships between the latter model parameters and the335

effective transport parameter of the pore phase Mpore. The obtained results

lead to a better understanding of microstructural influence on transport phe-

nomena of sphere assemblies, which can be used for tailoring microstructures

with enhanced transport properties.

In the present paper, the focus was on the evolution of effective transport of340

geometrically overlapping sphere assemblies. However, in the field of LIBs for

instance, due to manufacturing processes, e.g. calendaring, or during operation,
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e.g. swelling of active material particles while inter- and deintercalation, stresses

arise inside the porous electrode. In such situations, contact areas scaling with

the contact forces occur. As a future task, the influence of stresses on the ef-345

fective transport properties in mechanically compacted particle packings can be

investigated using the framework presented here. The RN method can be modi-

fied by the inter particle resistance formula from [22, 25], and applied to virtual

sphere systems followed by a statistical analysis of microstructure-property re-

lationships similar to [35]. This way, the overall stress and transport response350

of the system can be tracked simultaneously over its compression state [22, 25].

Note that in addition to stresses, interfacial characteristics like surface rough-

ness of spheres influence the particle-to-particle transport properties and thus

the overall effective transport properties of the system [36, 37, 38].

Moreover, the RN assumes a constant direct current (DC) in order to cal-355

culate effective electric conductivity. Note that for the characterization of elec-

trodes used in LIBs, impedance spectra are also taken into account in the liter-

ature. As an example, those can be helpful to predict rate capabilities [39]. In

principle, the RN can be extended by capacitors in order to perform impedance

analysis under alternating currents (AC) [36, 40].360
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