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Abstract

When developing statistical models, it is of fundamental importance to de-
cide if the various components are independent of one another, preferably
using a formal statistical test. Non-parametric versions of such tests are par-
ticularly useful, as they do not require extensive a priori knowledge about the
underlying models. In this paper, we develop such tests for random marked
closed sets, which have many applications in spatial statistics. More pre-
cisely, we investigate two approaches to testing if the marks are independent
of the closed set. Both approaches are based on second-order characteris-
tics of random marked closed sets. The first approach uses a global rank
envelope test based on the mark-weighted K-function. The second approach
uses an asymptotic test developed for marked point processes. We carry out
extensive simulation studies to assess the performance of these tests, demon-
strating that the global rank envelope test is a better choice. Finally, we
apply this test to two real world data sets.

Keywords: random marked closed set, random field model, envelope test,
subsampling, Monte Carlo test, mark-weighted K-function

1. Introduction

The notion of a random marked closed set (RMCS) is defined in [2] as a
random upper semi-continuous function on a random domain (random closed
set). Many settings in spatial statistics are naturally described by RMCSs.
For example, the closed set could represent forest areas and the mark function
could express the local stand density, or the closed set could represent bodies
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of water and the mark function could represent water quality. In [22], RMCSs
are used to investigate metallic materials, with the grain boundary network
being represented by a random set marked by the disorientation angles of
the grain boundaries.

Marked point processes are special examples of RMCSs. They are used
to model spatial data that consist of measurements at irregularly scattered
spatial locations; see, e.g., [5], [6] and [9]. The locations are treated as a
realization of a spatial point process (which is a particular example of random
closed set) and the associated measurements are treated as the corresponding
marks. In practice, the points and the marks are often correlated. For
instance, in forestry data, the points (representing tree locations) and marks
(representing tree size) could be correlated; see, e.g., the examples in [21]. A
critical task when developing a statistical model of a marked point process
is to determine if the values of the marks are independent of the locations of
the corresponding points.

The simplest model of a marked point process is an independently marked
(or randomly labeled) point process, where the marks are i.i.d. and indepen-
dent of the points. In order to model correlated marks, Karr [11] considered
marks generated by a random field that is independent of the points. Such
marking is called geostatistical marking and the corresponding marked point
process model is called a random field model; cf. [9, Section 5.1.3] and [19].
Several methods have been proposed for testing the hypothesis that a marked
point process has independent marks; see [9, Section 7.5.2], [16]. Tests have
also been proposed for determining if a stationary marked point process fol-
lows the random field model; see [7], [8], [9, Section 7.5.3], [19], [24].

A natural generalization of a marked point process is to consider the
labeling of random closed sets. These are studied in [15], where the connected
components of the set are labeled by nominal marks. Labeled random closed
sets are also studied in [18], where they are used to model multi-phase data,
representing the presence of different sulphides in an ore sample. In [1], where
the random closed set only has two possible marks (representing degenerated
and normal nerve fibre) a test is introduced to determine if the marks are
mutually independent and independent of the set.

The notion of a RMCS further generalizes both marked point processes
and labeled random closed sets. A fundamental question when using a RMCS
to model data is whether the marks are independent of the domain. This
situation is an analogue of the random field model for marked point processes.
If the random field model hypothesis is satisfied, then the statistical analysis
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of the RMCS is simplified considerably, since the two components may be
investigated separately. If it is not satisfied, then care must be taken to
adequately model the nature of the dependency.

In general, when working with data that is assumed to come from a
RMCS, little is known a priori about the random marks and the random
closed set. Indeed, an important application of a test of the random field
hypothesis is to determine whether the random marks and random closed set
can be studied and modeled separately of one another. Thus, it is important
to develop tests that do not rely on detailed knowledge about the models from
which the random marks and random closed set come. For this reason, in
this paper, we develop two non-parametric tests of the random field model
hypothesis. Both approaches are based on second-order characteristics of
RMCSs. The first test is a global rank envelope test (see [17]) based on the
mark-weighted K-function. In order to apply this test, a set of test points
needs to be carefully chosen. The second test overlays the random set with
an independent point process and then uses a test developed for marked
point processes in [8]. We carry out simulations to assess the performance
of these tests. These simulations suggest that the global rank envelope test
performs best. Finally, we apply our methodology to real world radar data
on adjusted hourly precipitation in Germany and to microscopic image data
showing the nanostructure of a thin film organic semiconductor.

2. Random marked closed sets

Consider the space

Φusc = {(X, f) : X ⊆ Rd is closed, f : X → R̄ is upper semi-continuous},

where R̄ = R ∪ {−∞,∞}. A RMCS, (Ξ,Γ), in Rd is defined in [2] as a
random element in Φusc. More precisely, (Ξ,Γ) is a mapping from an abstract
probability space (Ω,A,P) to Φusc such that, for every compact set K in
Rd × R̄,

{ω ∈ Ω : τ((Ξ,Γ)(ω)) ∩K 6= ∅} ∈ A,

where τ(X, f) = {(x, t) ∈ X × R̄ : t ≤ f(x)} is a closed set in Rd × R̄. In
other words, a RMCS, (Ξ,Γ), can be understood as a random upper semi-
continuous function, Γ, defined on a random closed set, Ξ. The domain, Ξ,
is a random element with values in the space of all closed subsets of Rd. We
refer to Γ as the mark field. In the special case where Ξ is the whole space,
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Rd, or some deterministic set D ⊂ Rd, Γ is a standard random field (with
upper semi-continuous trajectories) on Rd (respectively, D).

We say that a RMCS, (Ξ,Γ), is stationary if the random closed sets
τ(Ξ,Γ)+(x, 0) and τ(Ξ,Γ) have the same distribution for all x ∈ Rd. We say
that (Ξ,Γ) is isotropic if θ ◦ τ(Ξ,Γ) and τ(Ξ,Γ) have the same distribution
for all rotations θ ∈ SOd+1 with θ(Rd × {0}) = Rd × {0}. In the following,
we assume that (Ξ,Γ) is a stationary RMCS such that P(o ∈ Ξ) > 0, where
o ∈ Rd is the origin.

Let Γ′ be an upper semi-continuous random field in Rd. If Ξ and Γ′ are
independent and Γ = Γ′ on Ξ, then (Ξ,Γ) is called a random field model.
That is, a random field model is obtained by restricting a random field, Γ′,
to a random domain, Ξ, that is independent of Γ′.

2.1. Second-order characteristics

The tests we consider in this paper are based on second-order characteris-
tics of RMCSs. The first such characteristic is the mark-weightedK-function.
This is an extension of the K-function, which is defined as follows. Let Ψ be
the volume measure induced by Ξ (i.e., Ψ(B) = |Ξ ∩B|, B ∈ Bd, where | · |
is the d-dimensional Lebesgue measure on the d-dimensional Borel σ-algebra
Bd). Then, EΨ(B) = λ|B|, where λ = P(o ∈ Ξ) > 0 is the intensity of a sta-
tionary random measure Ψ. In general, the reduced second moment measure,
K, of a stationary random measure is defined through its Palm distribution;
see [3, p. 33]. The K-function is given by K(r) = K(b(o, r)), where b(o, r) is
a ball of radius r > 0 centered at o ∈ Rd. In our setting, the K-function is
of the form

K(r) =
1

λ
EoΨ(b(o, r)), r > 0,

where Eo is the conditional expectation given o ∈ Ξ. Thus, λK(r) is the
mean volume of the set Ξ within a ball of radius r centered at a ‘typical’
point of Ξ. Using Fubini’s theorem, we get

K(r) =
1

λ2

∫
b(o,r)

C(x) dx, (1)

where C(x) = P(o ∈ Ξ, x ∈ Ξ) is the two-point coverage probability function
of Ξ. Although the notion of a K-function has already been extended to
random closed sets (see, e.g., [1] and [10]), it has not yet, to our knowledge,
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been extended to RMCSs. We extend it as follows. We define Ψ̃, the mark-
weighted version of Ψ, by

Ψ̃(B) =

∫
B

Γ(x) Ψ(dx), B ∈ Bd.

Here, we assume that Γ is non-negative and the integral is finite for any
bounded Borel set B. Then Ψ̃ is a stationary random measure. Its intensity,
λ̃, is the mean of the integral of marks per unit volume. It satisfies λ̃ =
λEoΓ(o) and we assume that 0 < λ̃ < ∞. Under these conditions, the

K-function of Ψ̃ is given by

K̃(r) =
1

λ̃
ẼoΨ̃(b(o, r)), r > 0, (2)

where Ẽo is the expectation with respect to the Palm distribution of Ψ̃ at
o. The quantity λ̃K̃(r) is the mean of the integral of marks within a ball
of radius r centered at a ‘typical’ point of the mark-weighted version of Ξ.
It means that the volume in the definition of K(r) is replaced by a ‘mark-
weighted volume’. If EΓ(o)2 < ∞, the K-function of Ψ can be rewritten
as

K̃(r) =
1

λ̃2

∫
b(o,r)

C̃(x) dx,

where C̃(x) = E[Γ(o)Γ(x) I{o ∈ Ξ, x ∈ Ξ}] and I(A) denotes the indicator of
the set A. If we put t(γ1, γ2) = γ1γ2, then∫

b(o,r)

C̃(x) dx = λEo
∫
b(o,r)

t(Γ(o),Γ(x)) Ψ(dx).

Motivated by this, and extending the approach proposed in [9, p. 351], we
can define the general mark-weighted K-function for the RMCS (Ξ,Γ) by

Kt(r) =
1

λ ct
Eo
∫
b(o,r)

t(Γ(o),Γ(x)) Ψ(dx), r > 0, (3)

where ct =
∫ ∫

t(γ1, γ2)Q(dγ1)Q(dγ2), t is a non-negative measurable test
function which depends on two marks and Q is the conditional distribution
of Γ(o) given o ∈ Ξ. The denominator of Kt(r) is assumed to be positive and
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finite. In particular, the test function t(γ1, γ2) = γ1γ2 gives Kt(r) = K̃(r)
defined in (2). The test function t(γ1, γ2) = γ1 in (3) yields

KΓ(r) =
Eo [Γ(o)Ψ(b(o, r))]

λEoΓ(o)
=

1

λ̃
EoΨ̃(b(o, r)) =

1

λ
ẼoΨ(b(o, r)).

This formulation shows that λ̃KΓ(r) can be interpreted as the mean mark-
weighted volume of the set Ξ within a ball of radius r centered at a ‘typical’
point of Ξ. The mark-weighted K-function, Kt(r), is a cumulative charac-
teristic.

Another second-order characteristic we consider is the κt-function, intro-
duced in [2]. This is a non-cumulative characteristics. Given that P(o, x ∈
Ξ) > 0 and the conditional expectation in (4) is finite, we define κt by

κt(x) = Eo,x t(Γ(o),Γ(x)), x ∈ Rd, (4)

where Eo,x[ · ] = E[ · | o, x ∈ Ξ]. A normalized version of κt is

kt(x) =
κt(x)

ct
, x ∈ Rd. (5)

If (Ξ,Γ) is also isotropic, then κt(x) depends only on ‖x‖, where ‖ · ‖ is the
Euclidean norm, and, with slight abuse of notation, we write κt(r) = κt(x)
and kt(r) = kt(x) for ‖x‖ = r. The cumulative and non-cumulative functions
are related by the identity

λ2Kt(r) =

∫
b(o,r)

C(x)kt(x) dx. (6)

In the isotropic case we get λ2K ′t(r) = σdr
d−1C(r)kt(r), where σd is the

surface of the unit sphere in Rd and C(r) = C(x) for ‖x‖ = r. A similar
formula for marked point processes can be found in [9, p. 352].

In particular, the test function t(γ1, γ2) = γ1γ2 in (5) leads to the so-called
kmm-function,

kmm(x) =
Eo,x [Γ(o)Γ(x)]

(EoΓ(o))2
, x ∈ Rd. (7)

For t(γ1, γ2) = γ1, the resulting non-cumulative function, κe(x), defined as

κe(x) = Eo,xΓ(o), x ∈ Rd, (8)
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is called the E-function. The E-function normalized by the mean mark value
is given by

ke(x) =
κe(x)

EoΓ(o)
=

Eo,xΓ(o)

EoΓ(o)
, x ∈ Rd. (9)

Note that, under the random field model assumption, we have KΓ(r) =
K(r) and κe(x) = EoΓ(o). However, the following example shows that
KΓ(r) = K(r) does not necessarily imply that (Ξ,Γ) is a random field
model. Let Ξ be a stationary random closed set with K-function K(r) and
let Γ(x) = µ + d(x, ∂Ξ)ε(x) for x ∈ Ξ, where µ > 0 is a positive constant,
d(x, ∂Ξ) is the distance of x to the boundary of Ξ, and {ε(x) : x ∈ Rd} is a
continuous centred random field that is independent of Ξ. Then, EoΓ(o) = µ
and Eo[Γ(o)Ψ(b(o, r))] = µEoΨ(b(o, r)) = µλK(r). This gives KΓ(r) = K(r).

2.2. Estimators of the second-order characteristics

In general, we consider a single realization of (Ξ,Γ) within a bounded
window W ⊂ Rd. In this setting, we estimate the considered second-order
characteristics as follows.

In order to estimate the mark-weighted K-function, KΓ, we select N test
points, ξ1, . . . , ξN , in W independently of (Ξ,Γ). A natural estimator of
λKΓ(r) is given by

λ̂KΓ(r) =

∑N
i=1 Γ(ξi) I{ξi ∈ Ξ}Ψ(b(ξi, r))∑N

i=1 Γ(ξi) I{ξi ∈ Ξ}
. (10)

This is a ratio-unbiased estimator because

E
N∑
i=1

Γ(ξi) I{ξi ∈ Ξ}Ψ(b(ξi, r)) = NE [Γ(o) I{o ∈ Ξ}Ψ(b(o, r))]

and E
∑N

i=1 Γ(ξi) = NE [Γ(o) I{o ∈ Ξ}]. In order to use the estimator given
in (10), we need to be able to determine Ψ(b(ξi, r)). However, this may not
be possible if ξi is close to the boundary of W . In order to avoid the resulting
edge effects, we use minus edge correction. That is, we only consider the test
points ξi lying in an eroded window W 	 b(o, r) = {x ∈ W : b(x, r) ⊂ W}.
We obtain an estimator of KΓ(r) by dividing the right-hand side of (10) by
the natural intensity estimator, λ̂ = Ψ(W )/|W |. This gives

K̂Γ(r) =
1

λ̂

∑N
i=1 Γ(ξi) I{ξi ∈ Ξ}Ψ(b(ξi, r))∑N

i=1 Γ(ξi) I{ξi ∈ Ξ}
. (11)
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Note that an estimator of this form was considered in [20].
An estimator of the other second order characteristic that we consider,

κt(r), was proposed in [20]. Let U ⊂ W be a finite test set (for example, the
points of a lattice or a point process). Then, define

κ̂t(r) =
1

#NU(r)

∑
(x,y)∈NU (r)

t(Γ(x),Γ(y)),

for all r such that NU(r) = {(x, y) ∈ (Ξ ∩ U)2 : ‖x − y‖ = r} 6= ∅. In order
to obtain estimates of κt for all r > 0, we use the estimator

κ̂t(r) =

∑
ξi,ξj∈Ξ∩Φ∩W :ξi 6=ξj t(Γ(ξi),Γ(ξj))kb(r − ‖ξi − ξj‖)∑

ξi,ξj∈Ξ∩Φ∩W :ξi 6=ξj kb(r − ‖ξi − ξj‖)
, r > 0, (12)

where kb(r) = k(r/b)/b is some kernel function in R with bandwidth b >
0 and Φ = {ξi} is a stationary and isotropic point process in Rd that is
independent of (Ξ,Γ). As a special case of (12), we get

κ̂e(r) =

∑
ξi,ξj∈Ξ∩Φ∩W :ξi 6=ξj Γ(ξi)kb(r − ‖ξi − ξj‖)∑

ξi,ξj∈Ξ∩Φ∩W :ξi 6=ξj kb(r − ‖ξi − ξj‖)
, r > 0. (13)

3. Tests of the random field model hypothesis

Given data from a single realization of a RMCS, (Ξ,Γ), observed within
a bounded window W ⊂ Rd, we wish to test if the random field hypothesis
is satisfied. That is, we wish to test the null hypothesis, H0, against the
alternative, HA, where

H0 : (Ξ,Γ) is a random field model,
HA : (Ξ,Γ) is not a random field model.

We develop two distinct tests, based on two different second-order character-
istics of the RMCS. The first test is a global rank envelope test that considers
the mark-weighted K-function, KΓ. The second test uses a subsampling ap-
proach and considers the E-function, κe. Note that the tests do not test the
above hypothesis in its entirety, but rather test that a second-order condition,
which is necessary for the random field hypothesis to hold, is satisfied. Both
tests make minimal assumptions about the underlying models from which
the random field and random closed set come. As a result, they are generally
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applicable and can be used when it is not a priori clear if the marks can
be treated as a realization from a given random field model. In applications
where additional information is available (for example, it is known that the
marks come from a Gaussian random field model), it may be possible to
develop more powerful tests that take this information into account.

3.1. Global rank envelope test
The mark-weighted K-function, KΓ, was used in [16] to test the random

labeling hypothesis for marked point processes. We extend this approach to
RMCSs. In this setting, it is necessary to choose an appropriate set of test
points for estimating KΓ. As will be seen, the choice of test point pattern is
critical to the success of the test.

3.1.1. The test

Recall that, under the null hypothesis, the mark-weighted K-function is
the same as the non-weighted K-function. That is, KΓ = K. We can test
whether this is the case or not using a global rank envelope test.

The basic idea, developed in [17], is the following. Suppose we calculate
the values of a test characteristic, T0(r), at ` points, r1, . . . , r`. We take this,
as the test characteristic corresponding to the data. Furthermore, suppose
it is possible to generate q replicates, T1(r), . . . , Tq(r), of this test charac-
teristic under the null hypothesis. We can then conduct a test of the null
hypothesis by comparing these replicates with T0(r). This is done by ranking
T0, . . . , Tq based on how extreme their values are at r1, . . . , r`. More precisely,
for each r ∈ {r1, . . . , r`}, we order the values of the test characteristics as
T(0)(r) ≤ T(1)(r) ≤ · · · ≤ T(q)(r). We then assign a pointwise rank of 1 to
the characteristics with the largest and smallest values, a pointwise rank of
2 to the characteristics with the second smallest and second largest values,
and so on. More formally, we set R(0)(r) = 1, R(q)(r) = 1, R(1)(r) = 2,
R(q−1)(r) = 2, etc. If there are ties in the values Ti(r), we use the mean of
the corresponding ranks. For example, if T(0)(r) = T(1)(r) < T(2)(r), then
R(0)(r) = R(1)(r) = 1.5. The global rank of a characteristic, Ti, is then given
by its lowest pointwise rank, i.e., Ri = min{Ri(r), r ∈ {r1, . . . , r`}}. Using
these ranks, we can estimate the probability that the characteristic T0(r)
is observed under the null hypothesis. A consistent interval containing the
p-value can be estimated by (plow, pupp), where

plow = 1− 1

q + 1

q∑
i=1

I{Ri ≥ R0}, pupp = 1− 1

q + 1

q∑
i=1

I{Ri > R0}.
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In this paper, we reject H0 if (pupp + plow)/2 < α, where α is a prescribed
significance level. However, a more conservative approach can be taken by
choosing pupp as the p-value.

In our setting, the characteristic of interest is an estimate of KΓ, the
mark-weighted K-function. As described in Section 2.2, this function is es-
timated using a set of test points. In order to apply the envelope test, we
need to be able to generate replicates of the test characteristic under the
null hypothesis. This can be done using random reallocation of marks; see
[9, Section 7.5] for the particular case of the test of independent marking for
marked point processes. That is, we generate estimates of the test character-
istic by keeping the spatial locations of the test points used to estimate KΓ

from the observed data but generating random permutations of the marks.
In order for random reallocation to work, the resulting test characteristics
must be exchangeable (i.e., permutation invariant) under the null hypothesis;
see [17]. The exchangeabilty criterion is satisfied if we impose a somewhat
stronger condition that the marks are independent of one another. In order
for this to be the case, we require that, conditional on Ξ, the random field, Γ,
is m-dependent (see [4]) for some m ≥ 0 and the minimal distance between
test points is at least m.

Given a prescribed level of significance, α, our test procedure is as follows.

1. Select test points: choose N test points, ξ1, . . . , ξN ∈ W , independently
of (Ξ,Γ), such that ‖ξi− ξj‖ > m for all i 6= j and let I = {i : ξi ∈ Ξ}.

2. Estimate: estimate KΓ by K̂Γ,0 using the estimator given in (11).

3. Generate random reallocations: generate q random permutations of
{Γ(ξi) : i ∈ I} and estimate KΓ for each permutation, denoting the

estimates K̂Γ,1, . . . , K̂Γ,q.

4. Rank: for each r ∈ {r1, . . . , r`}, assign ranks to K̂Γ,0, . . . , K̂Γ,q as above.

6. Calculate p-values: estimate plow and pupp as above.

7. Decision: if (pupp + plow)/2 < α, reject H0.

3.1.2. Choosing the test points

As discussed above, in order for our approach to work, it is necessary
that the random field, Γ, is m-dependent given Ξ and that the test points
are then chosen so that the minimal distance between any two points is m.
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In practice, m is usually unknown and must be estimated. When (Ξ,Γ)
is isotropic, we suggest using the kmm-function defined in (7), which is a nor-
malized special case of the κt function described above and can be estimated
accordingly. We consider kmm(r), the isotropic form of kmm(x). This function
takes a value of 1 at distances such that the marks are no longer correlated.
Thus, we can choose m to be the value of r such that kmm(r) appears to
have converged to 1. Note that, in practice, it does not appear to matter too
much if m is slightly underestimated.

Having decided on an appropriate minimum distance between points, we
then wish to choose a point pattern that satisfies the following criteria:

1. the point pattern is independent of (Ξ,Γ),

2. the minimal distance between any two points is m,

3. there are as many points in W as possible.

One possible choice for generating the test points is a hard-core process
with hard-core distance m. One such process is the Matérn type II hard-core
process, which is defined as follows. Let Φ be a stationary Poisson point
process, {U(ξ), ξ ∈ Φ} be a sequence of i.i.d. uniform [0, 1] random variables
which are independent of Φ, and h > 0 be a hard-core distance. Then, the
Matérn type II hard-core process is defined as

ΦH = {ξ ∈ Φ : U(ξ) ≤ U(ν) for all ν ∈ Φ such that ‖ξ − ν‖ < h} .

However, although this process satisfies the first two criteria, it does not
maximize the number of points in W .

A better choice is to use the mid points of an optimal packing of spheres
with radius m/2, for example, a hexagonal close packing. In practice, we
construct an optimal packing in a window, W2, such that W ⊂ W2. We then
place W uniformly at random in W2 and take the midpoints contained in W
as the test point pattern. As will be seen in Section 4, this choice of test
point pattern appears to be optimal.

3.2. Subsampling test

The second test we consider is based on the E-function, defined in (8).
This asymptotic test requires the additional assumption that (Ξ,Γ) is isotropic.
In order to calculate the test statistics, it uses subsampling to estimate an
asymptotic covariance matrix. The size of the subsampling window must be
chosen carefully.
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Under the null hypothesis, the function ke(x) given in (9) is a constant
function equal to 1 for all vectors x. Thus, if the null hypothesis holds, the
estimator (13) should be close to a constant function. This will be true if the
random variables {Γ(ξi)} are independent of the {ξi}. Defining the marked

point process Φ̃ = {(ξi,Γ(ξi)) : ξi ∈ Ξ}, this requirement is then equivalent to

the requirement that Φ̃ satisfies the random field model hypothesis for marked
point processes. Therefore, we can test the random field model hypothesis
for (Ξ,Γ) by testing for the independence between the marks and points of

Φ̃.

3.2.1. The test

Note that the E-function estimate obtained using (13) is also an estimate

of the E-function of Φ̃. Thus, we can apply a test of the random field
model hypothesis for marked point processes that is based on the E-function.
Two such tests are described in [8] and [19]. We adopt the approach in [8],
which is as follows. By considering a set of lags, {r1, . . . , r`}, we obtain a
vector of pointwise estimates, K = (κ̂e(r1), . . . , κ̂e(r`)). It can be shown that,
under certain regularity conditions given in [8], the standardized version of
K is asymptotically normal (as W increases without bound) with asymptotic
covariance matrix Σ. Define the (`− 1)× ` matrix A = (aij), where ai1 = 1
and ai,i+1 = −1 for i = 1, . . . , `− 1 and aij = 0 otherwise. Then, we can test
for independence between the marks and points by testing the hypothesis
AEK = 0. Consider the test statistic

T = b|W |(AK)′(AΣ̂A′)−1(AK), (14)

where b is the bandwith of the kernel kb and Σ̂ is a consistent estimator of
Σ obtained by subsampling. This statistic is asymptotically χ2 distributed
with `−1 degrees of freedom. The subsampling is carried out by considering
a subsampling window, W0, which is a rescaled version of W . This window
must be smaller than W but large enough that κ̂e(r) can be estimated for

all r ∈ {r1, . . . , r`}. Then, Σ̂ is estimated from the empirical covariances
of the estimates κ̂e(r), r ∈ {r1, . . . , r`}, that are calculated from the points

Φ̃ ∩ (y + W0) ⊂ W , where y ∈ {x ∈ W : x + W0 ⊂ W}; see [8] for details.
In practice, we only consider a finite number of values of y. Thus, for a
given level of significance α, and a given subsampling window W0, the test
procedure is as follows.
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1. Select test points: generate an isotropic and stationary point process,
Φ. Assign the corresponding marks to obtain Φ̃.

2. Estimate: using Φ̃, estimate Σ̂ via the subsampling approach described
above.

3. Calculate test statistic: calculate T , given in (14).

4. Decision: reject H0 if T > χ2
`−1,1−α, where χ2

`−1,1−α is the (1 − α)
quantile of the χ2 distribution with `− 1 degrees of freedom.

3.2.2. Choice of test points

Unlike the envelope test, there is no minimal distance restriction when
choosing the test points for the subsampling test. Here, the only restriction
is that the points are from a realization of a stationary and isotropic point
process that is independent of (Ξ,Γ). As we wish to maximize the number of

points in Ξ∩Φ̃, we use a low discrepancy sequence for the test points. This is
a sequence of points that is designed to cover a space as uniformly as possible,
typically filling the space more effectively than lattices (such as hexagonal
packings); see [14]. Although such sequences are deterministic, they can be
randomly shifted and rotated, resulting in a stationary and isotropic point
process.

In this paper, we use a Halton sequence for the test points. This is based
on base-b representations of the integers, where b > 0 is an arbitrary integer.
Observe that any integer, k, can be written as k =

∑r
i=1 aib

i−1 for some
finite r and a1, . . . , ar ∈ {0, . . . , b− 1}. The radical inverse of k is then given
by
∑r

i=1 aib
−i. Let {u1

k}, . . . , {udk} be radical inverses of the integers k =
1, 2, . . . , in relatively prime bases b1, . . . , bd. The sequence {(u1

k, . . . , u
d
k)}∞k=1

then forms a Halton sequence in [0, 1]d. This can be easily transformed into
a sequence in a bounded rectangular window W ⊂ Rd. For more details on
such sequences; see [14]. An example of a Halton sequence in the planar
rectangular window is given in Figure 1.
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Figure 1: Halton sequence of 133 points in a square window.

4. Simulation study

In this section, we carry out simulation studies of the two tests described
above in order to investigate their power and general performance. We con-
sider two different random closed set models in R2: a marked Boolean model
and an excursion set model. In order to study how the rejection rates of the
tests change as a function of the degree of dependence between the random
field and the random closed set, we consider marks of the form

Γ(x) = (1− β)Γ1(x) + βΓ2(x), x ∈ R2, β ∈ [0, 1],

where Γ1 is a random field independent of Ξ, Γ2 is a function of Ξ, and
the parameter β controls the degree of dependence between Ξ and Γ. The
models for Γ1 and Γ2 will be specified in Sections 4.1 and 4.2. In both cases
the observation window will be W = [0, 1500]2 and the range of dependence
will be m = 140.

In the case of the first test, we consider three different choices of test
point pattern: hexagonal close packings, the Matérn type II hard-core pro-
cess, and the Poisson process. Typical examples of these point patterns are
illustrated in Figure 2. By considering different point patterns, we are able
to explore how the choice of test points influences the power and reliability
of the envelope test. The test is always based on q = 4999 permutations
and the test statistics are evaluated at ` = 15 lags, ri = 5i, i = 1, . . . , 15.
This range of lags was chosen because the estimates of the mark-weighted
K-function become less accurate for larger values of r.
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Figure 2: Left: a hexagonal configuration with minimal distance 140; middle: a Matérn
type II hard-core point process with hard-core distance 140; right: a Poisson point process.

For the second test, we consider two different subsampling windows:
W0 = [0, 400]2 and W0 = [0, 600]2. We use marked points obtained from
the intersection of a Halton sequence of 10 000 points in W with the random
closed set (where the marks are the values of Γ at the location of the points).
The test statistics are evaluated at ` = 15 lags ri = 5i, i = 1, . . . , 15.

The experiments are carried out as follows. For each random closed set
model, we simulate ns = 100 realizations of the random closed set and the
independent random field Γ1. As Γ2 is a deterministic function of Ξ, this does
not need to be simulated. The same realizations of Ξ,Γ1 and Γ2 are used
for each value of β we consider. For each realization of the random closed
set, Ξ, we generate np = 10 realizations of each test point pattern. These
realizations are also saved and used for each value of β. Thus, for each value
of β, we carry out ns · np = 1000 tests. These tests are performed at a fixed
significance level of α = 0.05. The rejection rates we obtain are simply the
percentage of tests that are rejected.
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4.1. Marked Boolean model

Figure 3: Left: A realization of the Boolean model overlaid with test points obtained
from a hexagonal close packing with minimal distance 140. Middle: A realization of the
independent mark field, Γ1. Right: A realization of the dependent mark field, Γ2.

One of the simplest random closed set models is a Boolean model of balls
in R2,

Ξ =
⋃
i∈N

(ξi + z),

where z = b(o, r0) for some r0 > 0 and the points, {ξi}, form a stationary
Poisson point process, Φ, in R2 with some intensity λΦ. For the marking
field, Γ2, we use

Γ2(x) = cΓ2

∑
ξi∈Φ

k(‖x− ξi‖), x ∈ R2, (15)

where

k(r) = max

{
1−

(
r

r0

)2

, 0

}
, r ≥ 0,

and cΓ2 ∈ R is a scaling constant. We use a shot-noise Poisson random field,
independent of Ξ, for the independent marking field, Γ1. That is, we take

Γ1(x) = cΓ1

∑
ξi∈ΦΓ

k(‖x− ξi‖), x ∈ R2,

where ΦΓ is a stationary Poisson point process in R2 with some intensity λΓ

which is independent of Φ, k is defined as above and cΓ1 ∈ R is a scaling
constant.
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Figure 4: Theoretical values (full lines) of KΓ(r)−K(r) for the marked Boolean model with
three different β, degrees of dependence between Ξ and Γ. For comparison the estimated
functions (dashed lines) based on data and test points from Figure 3 are shown. Red:
β = 0; green: β = 0.5; blue: β = 1.

The intensity of volume measure induced by the Boolean model Ξ is equal
to its volume fraction and is given by λ = 1− exp{−λΦπr

2
0}; see [5, (3.15)].

The two-point probability function of Ξ is C(x) = 2λ−1+(1−λ)2 exp{λΦ|z∩
(z + x)|}; see [5, (3.18)]. Exploiting these formulas and (1), we obtain the
K-function of the volume measure induced by Ξ,

K(r) = πr2 + 2π
(1− λ)2

λ2

∫ r

0

s
(
eλΦγ(s) − 1

)
ds, (16)

where γ(s) = |z ∩ (z + su)| for arbitrary u with ‖u‖ = 1.
The mark-weighted K-function of the RMCS (Ξ,Γ2) may be expressed

by applying the Slivnyak-Mecke formula; see [5, (4.71)]. We get

KΓ2(r) = πr2 +
4(1− λ)

λr2
0

∫ r

0

s q(s) ds, (17)

where q(‖y‖) =
∫
b(o,r0)∩b(y,r0)

k(x) dx. The mark-weighted K-function of the

RMCS (Ξ,Γ) then becomes

KΓ(r) =
(1− β)EΓ1(o)K(r) + βEoΓ2(o)KΓ2(r)

(1− β)EΓ1(o) + βEoΓ2(o)
, (18)
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where EΓ1(o) = cΓ1λΓπr
2
0/2 and EoΓ2(o) = cΓ2λΦπr

2
0/2λ can be obtained

from Slivnyak-Mecke formula.
Since our model is isotropic, the normalized E-function, ke, is given by

ke(r) =
λ2K ′Γ(r)

2πrC(r)
, r > 0. (19)

This relation follows directly from (6).
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Figure 5: An estimate of the kmm-function for the marked Boolean model with β = 0.

For our experiments, we consider a 2-dimensional Boolean model in an
observation window, W = [0, 1500]2 ⊂ R2. We take r0 = 70, λΦ = 100/|W |,
λΓ = 1000/|W |, cΓ2 = 13. The parameter cΓ1 = 2.624 is chosen so that
EΓ1(o) = EoΓ2(o). Hence, by (18), KΓ is a convex combination of K(r) and
KΓ2(r). A simulated realization of Ξ in W is shown in Figure 3, together
with a hexagonal close packing sequence of test points with minimal distance
equal to 140. Figure 3 also shows realizations of the mark fields Γ1 and Γ2.

Figure 4 shows the mark-weighted K-functions, computed from (16), (17)
and (18), for three different values of β. For better visualization we sub-
tracted K(r). Our envelope test is based on the estimates of this character-
istics. Figure 4 shows estimates for given realizations of Γ1 and Γ2 (which
are illustrated in Figure 3). Under the null hypothesis, KΓ = K (red curve,
β = 0). For larger values of β the deviation of KΓ(r) from K(r) increases
and therefore the null hypothesis is more likely to be rejected.
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The theoretical range of dependence for Γ is m = 2r0 = 140. In practice,
as discussed in Section 3.1.2, this is usually unknown and must be estimated.
Figure 5 shows an estimate of the kmm-function based on one realization of
the model with β = 0 (shown in Figure 3). This yields a rough estimate of
m̂ ∈ [100, 120].

In our experiments, we consider two different hexagonal close packings:
one with minimal distance 140 (which, in the best case, results in 133 points
in W ) and one with minimal distance 267 (best case, 37 points in W ). We
also consider a Poisson process with intensity 133/|W | (on average 133 points
in W ) and a Matérn type II hard-core point process with intensity 300/|W |
and minimal distance 140 (on average 37 points in W ). The second hexagonal
packing is considered because it has the same intensity as the Matérn process.
Note that the hexagonal packings and the Matérn hard-core process satisfy
the minimal distance requirement for the envelope test.
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Figure 6: Rejection rates of the envelope test applied to the marked Boolean model using
four different choices of test point pattern. Green: hexagonal packing with minimum dis-
tance 140; black: Poisson process; red: Matérn type II hard-core process; blue: hexagonal
packing with minimum distance 267.

Figure 6 shows how the four different test point patterns perform as β
varies. As expected, the two test point patterns with the most points have
significantly higher powers. They both achieve powers close to 1 for β ≥
0.4. The two point patterns with less points (the Matérn hard-core process
and the hexagonal packing with minimum distance 267) have significantly
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lower power. Furthermore, as expected, the Poisson process, which does
not guarantee a minimal distance between points, does not have the desired
type I error (with 0.071 being significantly larger than 0.05). Thus, the
hexagonal packing with minimal distance 140 (which maximizes the number
of test points while maintaining the desired minimum distance) is clearly the
optimal choice of test point pattern.
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Figure 7: Estimates of the E-function, ke, for marked Boolean models. Blue: β = 1; red:
β = 0. The theoretical value of ke under H0 is represented by the horizontal line. The
theoretical value of ke for β = 1 is shown by the green line.

Recall that the second test is based on the E-function, κe. The normalized
version, ke, is given by (19). Figure 7 shows the theoretical values of ke under
the null hypothesis (β = 0) and for β = 1, together with estimates of ke
obtained from realizations of the RMCS with β = 0 and β = 1 (Figure 3).
Based on a visual examination, one would reject the null hypothesis for the
β = 1 case, as the function is clearly not constant.
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Figure 8: Rejection rates of the subsampling test applied to the marked Boolean model.
Red: W0 = [0, 600]2; black: W0 = [0, 400]2. For comparison, the rejection rates of the
envelope test using the hexagonal packing with minimal distance 140 are shown in green.

Figure 8 illustrates the performance of the subsampling tests for both
choices of subsampling window, W0. For comparison, the envelope test using
the hexagonal close packing with 140 points is included. It is immediately
apparent from the results that the performance of the subsampling test de-
pends strongly on the choice of subsampling window. The test with the
subsampling window of size 400× 400 has a higher power than the envelope
test while approximately maintaining the desired type I error. In contrast,
the test with the subsampling window of size 600 × 600 has a much higher
type I error than desired.

4.2. Excursion set model

The second random closed set model we consider is the excursion set of
a Gaussian random field, Γ′. Here, the random closed set, Ξ, is given by

Ξ =
{
x ∈ R2 : Γ′(x) ≥ u

}
,

where u ∈ R is a fixed threshold. We take the marking field, Γ2, to be Γ′

restricted to Ξ. In this example, we take u = 1 to ensure that the marks
are positive. The marking field, Γ1, is taken to be another Gaussian random
field, independent of Γ′, that is again restricted to Ξ. We take the absolute
value of this field in order to obtain positive marks.
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Both Gaussian random fields are simulated in the window W = [0, 1500]2.
Their expectation is taken to be 1 and we consider a circular covariance
function

CΓ(r) = 1− 2

π

(
r
√
R2 − r2/R2 + arcsin(r/R)

)
I{0 ≤ r ≤ R},

where R = 140. A realization of the excursion set, together with test points
obtained using a hexagonal close packing, is shown in Figure 9.
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Figure 9: A realization of the excursion set model overlaid by a hexagonal sequence of test
points with minimal distance 140.

The theoretical range of dependence for Γ is m = R = 140. We use the
same test points as for a marked Boolean model, i.e. two hexagonal packings,
with minimal distances 140 and 267, a Poisson process with intensity 133/|W |
and a Matérn type II hard-core process with intensity 300/|W | and hard-core
radius 140.

Figure 10 shows the performance of the global rank envelope test for dif-
ferent choices of test point patterns. As with the marked Boolean model, the
patterns with more points (the Poisson process and the hexagonal packing
with minimal distance 140) have much higher power than the tests with less
points. Again, the Poisson point patterns (which do not have a minimal
distance between points) result in a much higher type I error than desired
(here, 0.078 compared to 0.045 for the hexagonal packing with minimal dis-
tance 140).
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Figure 10: Rejection rates of the global rank envelope test applied to the excursion set
model. Green: hexagonal packing with minimal distance 140; black: Poisson process; red:
Matérn type II hard-core process; blue: hexagonal packing with minimal distance 267.
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Figure 11: Estimates of the E-function, ke, for the excursion set model. Blue: β = 1; red:
β = 0. The theoretical value of ke under H0 is represented by the horizontal line. The
theoretical value for β = 1 is shown by the green line.

The E-function for β = 1 has the form

κe(r) = u+

√
π

2

1 + CΓ(r)

arcsinCΓ(r) + π/2
;

see [2, Theorem 2]. The normalized E-function, ke, is obtained by dividing
by EoΓ(o) = 1 +

√
2/π. Figure 11 shows the theoretical value of ke under
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the null hypothesis (β = 0) and for β = 1, together with estimates of ke
obtained from realizations of the RMCS with β = 0 and β = 1. Based on a
visual examination, one would reject the null hypothesis for the β = 1 case,
as the function is clearly not constant. In the β = 0 case, the outcome is not
so clear.
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Figure 12: Rejection rates of the subsampling test applied to the excursion set model.
Red: W0 = [0, 600]2; black: W0 = [0, 400]2. For comparison, the rejection rates of the
global rank envelope test using a hexagonal packing with minimal distance 140 are shown
in green.

The results obtained from the subsampling tests are shown in Figure 12.
The results of the global rank envelope test using a hexagonal close packing
with minimal distance 140 are included for comparison. As in the marked
Boolean model case, the test using a subsampling window of size 600× 600
results in a very incorrect type I error (0.208 compared to 0.045 for the
envelope test). Here, the subsampling window of size 400×400 also seems to
result in an incorrect type I error (0.025). In addition, the power of the tests
when using this subsampling window is lower than the power of the global
rank envelope test. The performance of the subsampling tests also depends
on the choice of the bandwidth, b, in the kernel estimator of κe.

4.3. Further discussion

In the scenarios considered above, the global rank envelope test with an
enforced minimal distance between points appears to be more reliable than

24



the subsampling test. In particular, the global rank envelope test appears to
perform very well when the test point pattern is a hexagonal close packing
with minimal distance close to m, the range of dependency of the random
field.
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Figure 13: Rejection rates for the global rank envelope test with hexagonal close packing
for models with β = 0 (i.e., where the random field model hypothesis is satisfied). Green:
marked Boolean model; red: excursion set model. The desired level of significance is shown
by the horizontal line.

In order to demonstrate that the envelope test is quite robust with respect
to incorrect estimates of m, we carried out experiments where we estimated
the type I error of the envelope test using hexagonal close packings with dif-
ferent minimum distances. We considered the models above with β = 0. The
results are illustrated in Figure 13. For both models, the theoretical value of
m is 140. However, the desired type I error is achieved for lower minimum
distances. Note, however, that these results show that the minimum distance
between points should not be too small, as this results in a loss of control
over the type I error. This argues against the use of a Poisson process as a
test point pattern.

5. Data examples

In this section, we apply our testing methodology to both macroscopic
and microscopic real world data. We first consider an application to radar
data on precipitation in Germany. We also apply our methodology to trans-
mission electron microscopy (TEM) data that describe the nanostructure of
an organic semiconductor.
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5.1. Radar data

In [13], a stochastic model is introduced that describes precipitation over
Germany. It models both the occurrence of precipitation cells and the amount
of precipitation at the locations where precipitation occurs. Thus, precipita-
tion can be described by a RMCS.

Figure 14: Two radar maps showing data on adjusted hourly precipitation over Germany.
Left: sample 1 (with more intensive precipitation); right: sample 2 (with less intensive
precipitation).

A crucial question for stochastic modeling is whether the occurrence of
precipitation and the resulting amount of precipitation can be modeled in-
dependently of each other. Intuitively, this does not seem to be the case,
as precipitation amounts appear to be lower at the boundaries of precipi-
tation cells than at their centers. However, precipitation fields are complex
meteorological objects and some further justification is desired. Therefore,
the tests considered in this paper are applied to adjusted hourly precipita-
tion amounts over Germany obtained from radar measurements. This data
was provided by Deutscher Wetterdienst and was used in [12] to validate a
stochastic model of area precipitation probabilities. The minimum amount
of precipitation observed is 0.1 mm. We consider two samples, labeled 1 and
2, taken at different time points. These are shown in Figure 14.
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We treat the samples as realizations of RMCSs. Although we would not,
in general, expect these RMCSs to be stationary due to the geographical het-
erogeneity of Germany, the samples that we have selected appear to justify
this assumption. In this setting, the subsampling test is clearly not applica-
ble, as the assumption of isotropy is not satisfied. Thus, we only apply the
global rank envelope test.

In order to apply envelope tests to this data, we first estimate m using
the kmm-function. For sample 1 we estimate m̂ = 125 and for sample 2 we
estimate m̂ = 83. Using hexagonal close packings with minimal distances
corresponding to the estimates of m we obtain a p-value of 0.0007 for sample
1 and a p-value of 0.001 for sample 2. In both cases, we clearly reject the
null hypothesis. Estimates of the mark-weighted K-function and the K-
function of the random set are shown for sample 2 in Figure 15. Under
the null hypothesis, both functions should coincide. Our test reveals that
the difference between them is significant. This conclusion is graphically
represented by the 95% global rank envelopes (see [17]) in Figure 16. The
reason for rejecting the null hypothesis lies in larger values of KΓ than would
be expected under the random field model. A similar behavior is observed for
sample 1. The results confirm our intuitive suspicion that the precipitation
cells and precipitation amounts are not independent. This strongly suggests
that, when developing a model for spatial precipitation, amounts should be
modeled dependent on the shape and size of the corresponding precipitation
cells.
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Figure 15: The estimators of mark-weighted K-function (blue line) and K-function of the
random set (red line) for data sample 2.
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Figure 16: The 95% global rank envelopes (dashed lines) with T (r) = K̂Γ(r). For better
visualization we subtracted T0(r), the function estimated from data. The horizontal line
is outside the envelope which means that the null hypothesis is rejected.

5.2. TEM data

In [23], TEM data was used to develop a stochastic model of the 2D
nanostructure of a thin polymer:fullerene film, which is a blend of two organic
semiconductors. Figure 17 shows two cutouts of the same image. On the

28



left, the fullerene-rich phase, which is a collection of roughly spherical sets,
is shown; on the right, the polymer-rich phase is shown.

Figure 17: Images extracted from TEM data of the two phases in the polymer:fullerene
film. Left: the fullerene-rich phase; right: the polymer-rich phase. Observe the texture
present in the image data.

In developing a statistical model for the 2D nanostructure of this material,
it is important to use all pertinent information. This includes not just the
boundaries between the two phases but also additional information that may
be present in the image data. Observe that the images of the two phases in
Figure 17 are textured. It is a priori unclear if this texture reveals information
about the structure of the material. However, if this is the case, then a
stochastic model should endeavor to incorporate this information. Treating
the phases as random closed sets and the texture as the marking field, we
can apply our testing procedure to determine if the texture is independent
of the structure of the phases. In this case, it is reasonable to expect that
the RMCS here is both stationary and isotropic; see [23]. The image data is
in a 1024× 1024 pixel window.

We use the global rank envelope test. In both cases, the correlation range
of the mark field was estimated to be 85 pixels. Thus, the test points are
given by a hexagonal configuration with minimal distance 85. The test does
not reject the random field model hypothesis for either the fullerene-rich
phase or the polymer-rich phase, with a p-value of 0.124 for the fullerene-rich
phase and a p-value of 0.727 for the polymer-rich phase. This justifies the
modeling approach taken in [23], which did not take the texture observed in
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the images into account.

6. Conclusion

In this paper, we developed and investigated two non-parametric ap-
proaches to testing the random field model hypothesis for RMCSs. These
are both based on second order characteristics of RMCSs. The first approach
uses a global rank envelope test based on the mark-weighted K-function.
The second approach uses an asymptotic test developed for marked point
processes. We carried out extensive simulation studies to assess the per-
formance of these tests. On the basis of these studies, we concluded that
the envelope test, using a hexagonal packing for test points, was the better
performing of the two tests. Finally, we applied this test to two real world
data examples. Based on our results, we suggest the envelope test as a tool
for preliminary investigation of data that is being modeled using stationary
random marked closed sets. In particular, this test can assist in deciding
whether or not to model the marks separately from the random closed set.

There are a number of promising avenues for developing extended ver-
sions of our testing approach. For example, it may be possible to extend the
approach of this test to non-stationary models by investigating alternative
second-order characteristics. In addition, more powerful tests could be de-
veloped for specific settings, where the parametric form of the mark field is
known (for example, when the mark field is a Gaussian random field).
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characterization of microstructure of pure copper processed by ECAP.
Image Analysis & Stereology, 32:65–75, 2013.

[23] D. Westhoff, J. J. van Franeker, T. Brereton, D. P. Kroese, R. A. J.
Janssen, and V. Schmidt. Stochastic modeling and predictive simula-
tions for the microstructure of organic semiconductor films processed
with different spin coating velocities. Modelling and Simulation in Ma-
terials Science and Engineering, 23:045003, 2015.

[24] T. Zhang. A Kolmogorov-Smirnov type test for independence between
marks and points of marked point processes. Electronic Journal of
Statistics, 8:2557–2584, 2014.

32


