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Effective diffusion is an important macroscopic property for assessing transport in porous5

media. Numerical computations on segmented 3D CT images yield precise estimates for
diffusive properties. On the other hand, geometrical descriptors of pore space such as
porosity, specific surface area and further transport-related descriptors can be easily com-
puted from 3D CT images and are closely linked to diffusion processes. However, the
investigation of quantitative relationships between these descriptors and diffusive prop-10

erties for a diverse range of porous structures is still ongoing. In the present paper, we
consider three different soil samples of each loam and sand for a total of six samples,
whose 3D microstructure is quantitatively investigated using univariate as well as bivari-
ate probability distributions of geometrical pore space descriptors. This information is
used for investigating microstructure-property relationships by means of empirically de-15

rived regression formulas, where a particular focus is put on the differences between loam
and sand samples. Due to the analytical nature of these formulas, it is possible to obtain a
deeper understanding for the relationship between the 3D pore space morphology and the
resulting diffusive properties. In particular, it is shown that formulas existing so far in the
literature for predicting soil gas diffusion can be significantly improved by incorporating20

further geometrical descriptors such as geodesic tortuosity, chord lengths, or constrictivity
of the pore space. The robustness of these formulas is investigated by fitting the regression
parameters on different data sets as well as by applying the empirically derived regression
formulas to data that is not used for model fitting. Among others, it turns out that a
formula based on porosity as well as mean and standard deviation of geodesic tortuosity25

performs best with regard to the coefficient of determination and the mean absolute per-
centage error. Moreover, it is shown that regarding the prediction of diffusive properties
the concept of geodesic tortuosity is superior to geometric tortuosity, where the latter is
based on the creation of a skeleton of the pore space.
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1. Introduction30

The three-dimensional morphology of the pore space has a strong impact on effective macroscopic
properties of porous media [1, 2, 3]. Among others, diffusive properties are of great interest in a wide
spectrum of applications ranging from lithium-ion batteries via solid-oxide fuel cells to civil engineering
[2, 4, 5, 6, 3]. Likewise, the 3D microstructure of the pore space greatly affects water, gas and carbon
fluxes in soils [7]. A typical example of a soil structure mediated gas transport is the emission of35

greenhouse gases into the atmosphere [8]. Gas transport in soils is known to be primarily a diffusion
dominated process. More precisely, diffusion of gas in soils is mainly governed by the so-called soil gas
diffusivity, for which empirical relationships, i.e. regression formulas (also called analytical prediction
formulas), have been developed using easily available soil bulk properties like the air filled porosity
[9, 10, 11] and then further improved by the integration of other soil properties such as soil bulk40

density [12, 13, 14] or specific surface area [15]. Moreover, it turned out that regression formulas of
this type can be improved by incorporating further geometrical descriptors of the pore space [16]. This
motivates a more detailed characterization of the pore space.

Due to recent efforts and technological advancements in the field of soil imaging, notably in X-ray
computed tomography (CT),it is possible to accurately visualize and characterize the soil pore space in45

three dimensions at high resolution. As a result, X-ray CT also offers the unprecedented opportunity
to test the validity and relevance of incorporating physical descriptors of the pore space in empirical
relationships aiming at predicting soil gas diffusivity. Previous studies relying on X-ray CT to derive
gas transport parameters have shown promising results so far. In a study of no-tillage system in
a subtropical climate, significant correlations between the porosity derived with X-ray CT and the50

logarithm of relative gas diffusivity and air permeability were found [17]. In another study [18], the
porosity obtained by means of X-ray CT was also shown to be well correlated with air permeability.
Furthermore, in [19], it has been shown that there is a strong correlation of the lumped tortuosity-
connectivity parameter obtained from standard gas measurements (as described in [20]) and the one
obtained from X-ray CT. Thus, based on the literature, it seems that X-ray CT can be considered55

as a powerful tool to derive gas transport parameters. It is however still unclear which combination
of geometrical descriptors can be used to best predict effective macroscopic properties as effective
diffusivity.

Likewise, the progress in computational power and sophisticated numerical methods enables the com-
putation of orientation-dependent diffusive properties from sound mathematical theory [21]. This is60

possible even on an extensive dataset of real and therefore quite complex geometries, which forms the
basis for the quantitative investigation of microstructure-property relationships within this research.
In particular, we consider the relationship between descriptors of 3D microstructure and diffusive
properties.

In the present paper, we consider different kinds of regression formulas to predict diffusive properties65

from geometric descriptors of 3D pore space. Applying this approach to data from two different soil
textures, we quantitatively investigate the performance and robustness of the considered regression
formulas. We thoroughly investigate geometrical descriptors of the 3D microstructure of the samples’
pore space and analyze them in detail in the context of sand and loam. For this purpose, the loam and
sand samples under consideration as well as the corresponding tomographic imaging techniques are70

explained in Sections 2.1 and 2.2, respectively. Moreover, we provide details regarding the numerical
computation of diffusive properties (Section 2.3) as well as various descriptors of the 3D pore space
morphology (Section 2.4), which are used to characterize its 3D microstructure geometrically and with
regard to its diffusive properties. Finally, in Section 2.5, our methods of model fitting and validation
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are stated, which are used for assessing the predictive power of microstructure-property relationships.75

Then, in Section 3.1, a statistical analysis of 4608 subsamples is carried out to quantitatively investigate
differences between loam and sand by means of univariate as well as bivariate probability distributions.
Moreover, microstructure-property relationships for soil gas diffusion are established in Section 3.2,
where the goal is to derive accurate (and possibly general) prediction formulas, i.e., they do not
require individual sets of fitting parameters for the two soil textures. In contrast to other methods of80

data science as, for example, neural networks, the empirically derived prediction formulas establish an
interpretable relationship between the 3D morphology of the pore space and its diffusive properties.
In particular, in Section 4, we compare the predictive power of conventional models discussed in
the literature with that of more sophisticated models which additionally include further geometrical
descriptors of the 3D pore space morphology. It turns out that the more accurate microstructure85

description achieved in this way allows us to surpass traditional prediction formulas with regard to the
coefficient of determination as well as the mean absolute percentage error. Moreover, a quantitative
comparison between two different notions of tortuosity, namely geodesic and geometric tortuosity,
is carried out to investigate their suitability for establishing microstructure-property relationships.
Section 5 concludes the paper and outlines possibilities for future research.90

2. Materials and methods

2.1. Sample acquisition

The samples analyzed in this study were acquired within the framework of the plant growth exper-
iments described in [22]. In particular, cylindrical columns of 23 cm in height and 7 cm in diameter
were packed with soil, where two different substrates (loam and sand) were used. The loam substrate95

was obtained from the upper 50 cm of a haplic Phaeozem soil profile, dried to 10 % gravimetric water
content and then sieved to < 1mm. The sand substrate constitutes a mix of 83.3 % quartz sand (WF
33, Quarzwerke Weferlingen, Germany) and 16.7 % of the sieved loam. Details on chemical and phys-
ical properties of these substrates are provided in [23]. The loam pots were packed homogeneously to
a bulk density of 1.26 g/cm3, whereas the sand pots were packed to a bulk density of 1.47 g/cm3. At100

the end of the growth period, a total of six samples (aluminum rings of 1.6 cm in height and diameter)
were taken from 5, 10 and 15 cm depth (3 per substrate, one per depth) and were stored at 4 ◦C in
sealed plastic bags prior to X-ray CT scanning.

2.2. X-ray computed tomography scanning and binarization

X-ray CT scanning was performed with an industrial µCT scanner (X-TEK XTH 225, Nikon Metrol-105

ogy) including an Elmer-Perkin 1620 detector panel (1750 × 2000 px). The scanner was operated at
115 kV and a current of 85 µA. A total of 2748 projections with an exposure time of 708ms each were
acquired during a full rotation of the samples. The obtained images were reconstructed into a three di-
mensional tomogram by means of the filtered back projection algorithm with the CT Pro 3D software
(Nikon Metrology) [24]. During reconstruction, the grayscale range was normalized with a percentile110

stretching method, which sets the darkest and brightest 0.2 % voxels to 0 and 255, respectively, and
performs a linear stretching in between. The voxel size equals 10 µm.

Denoising and contrast enhancement of the grayscale images were performed using a 2D non local
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means filter (σ = 15) and an unsharp mask filter (radius=1 and weight=0.6) [25, 26], respectively.
Subsequent binarization of the images was performed to distinguish between pore space and the soil115

matrix. The automatic threshold detection method presented in [27] was used for an adequate and
objective choice of the global threshold.

For each texture and depth, the samples were truncated into stacks of 1536 slices with each 1024×1024
voxels. This coincides with cuboid of 15.36mm height, 10.24mm width and 10.24mm length. For
the purpose of the study, we further divided the cuboid into non-overlapping cubic cutouts with120

128× 128× 128 voxels (1.28mm× 1.28mm× 1.28mm) each. Thus, we obtained 768 cubic cutouts for
each depth and soil texture, which led to a total number of 4608 subsamples. Selected subsamples are
shown in Figure 1.

Finally, isolated pores were removed, which led to only marginal changes with regard to the porosity,
i.e., the 3D binary images contained only few unconnected pores. The overall difference in porosity125

for loam was smaller than 2 % of the initial porosity, for sand even less than 0.5 %.

† ◦ ?

† ◦ ?

Figure 1: Three-dimensional renderings of selected loam (top row) and sand (bottom row) subsamples,
where the solid phase is depicted in gray. The three columns correspond to minimum (left, †), mean
(center, ◦) and maximum (right, ⋆) porosity.
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2.3. Computation of diffusive properties

Diffusive transport of a chemical species with concentration field c : R3 → [0,∞) through porous
media is, in its simplest form, described by the Laplace equation

−∇ · (D∇c) = 0, (1)

where D ∈ R3×3 denotes the effective diffusion tensor, which is the essential input to the transport130

model. It contains all the information that is specific to the porous medium under consideration.
However, it is quite difficult to characterize D for (natural) porous media. If the underlying geometry
is available, e.g. from binary CT data, one possibility to determine the tensor D is to apply the results
of homogenization theory [28, 21], which was originally derived for periodic settings.

In order to carry out the numerical simulations for the effective diffusivities by homogenization within135

a reasonable time frame, the subsamples have been coarsened by combining eight voxels into one
(super-) voxel. If four of the original voxels were solid and four void, the resulting (super-) voxel was
at random turned into a void or solid voxel, otherwise the majority defines the type of the resulting
voxel. Hence, after performing this procedure, the dimensions of the subsamples are 64 × 64 × 64
voxels (1.28mm× 1.28mm× 1.28mm), where a voxel corresponds to 203 µm3 = 8000 µm3.140

For a connected, sufficiently smooth pore space Yp ⊂ Y = [0, 1.28mm]3 and complementing solid
phase Ys = Y \Yp, the entries of the diffusion tensor D are given as

Dij =
1

V (Y )

∫

Yp

Dm

(
∂yiζj(y) + δij

)
dy, for i, j ∈ {1, 2, 3}, (2)

with molecular diffusivity Dm > 0 and the following supplementary cell problems in ζj , j ∈ {1, 2, 3}:




−∇y · (∇yζj + ej) = 0 in Yp,

(∇yζj + ej) · ν = 0 on ∂Ys,

ζj is periodic in y and has vanishing mean

(3)

Here, V (Y ) denotes the volume of V , ν is the unit outer normal of the solid phase, ej the unit vector
in direction j, and δij the Kronecker delta. Note that in the present setting, we assume zero diffusivity
within the solid phase.

The partial differential equations given in (3) are solved within the connected pore space and discretized145

using the local discontinuous Galerkin (LDG) method [29, 30], which is implemented within the parallel
finite element software, M++ [31]. The resulting linear systems are solved using a combination of the
BiCGstab solver and the ILUT preconditioner [32] through Trilinos [33].

As a result of the computations described above, the 3× 3 diffusion tensor D has been determined for
all 4608 subsamples obtained from the X-ray CT scans of sand and loam, as described in Section 2.2.150

Further details regarding the analysis of these diffusion tensors are presented in [34]. In the following,
the soil gas diffusion for the sand and loam subsamples will be described by the ratio of effective and
intrinsic diffusivity which is sometimes called microstructure factor or M -factor [35]. In particular, we
average over the three Cartesian axes directions such that the averaged M -factor is obtained from the
diagonal entries of the diffusion tensor as M = 1

3Dm
(D11+D22+D33). This averaging is motivated by155

the fact that neither the loam nor the sand samples show pronounced anisotropy effects [34].
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2.4. Geometrical descriptors of pore space

In this section, various geometrical descriptors of the 3D pore space morphology and methods for their
estimation from voxelized image data are presented. In Figure 2, two-dimensional versions of these
descriptors are illustrated.160

a b c

d e f

g h

Figure 2: Schematic 2D illustration of microstructure descriptors: Exemplarily chosen 2D slice, where
the pore space is depicted in black (a); surface between pore and solid phases, appearing as 1-
dimensional object in the 2D slice (b); chords in horizontal direction for two exemplarily chosen
vertical height levels (c); subsets of pore space used in the definitions of CPSD (d) and SMIP (e), re-
spectively; shortest distances from pore space to soil (f); two exemplarily chosen shortest paths (from
left to right) (g); skeleton of pore space and shortest paths along the skeleton (from left to right)
depicted in green and red color, respectively (h).
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Porosity ε One of the most fundamental descriptors of the 3D pore space morphology is the porosity
ε ∈ [0, 1]. The estimation of this geometrical descriptor from binarized 3D image data is straight-
forward and carried out by computing the number of voxels assigned to the pore space (depicted in
black in Figure 2a), which is divided by the total number of voxels of the entire sampling window.

Specific surface area S In addition to porosity, we consider the specific surface area of the pore165

space, denoted by S. It is defined as the surface area between the pore space and the solid phase
divided by the volume of the sampling window. This quantity is then estimated from voxelized 3D
image data using an approach presented in [36], which is based on a convolution of the image with a
2× 2× 2 kernel avoiding the reconstruction of the actual surface. In Figure 2b, the interface between
pore and solid phases is depicted in red.170

Mean chord length µ(C) A further descriptor of the 3D pore space morphology is its chord length
distribution [37, 38], where a chord is a line segment that is completely contained in a predefined
phase and can not be extended further without intersecting the complementary phase. Obviously, in
general, the probability distribution of chord lengths depends on the orientation of the line segments.
We compute the chord length distribution of the pore space for the three Cartesian axes directions. In175

particular, for each of these three directions, we compute the mean value of the corresponding chord
length distribution. In the following, the average of these three mean values, denoted by µ(C), is
used for characterizing the 3D pore space morphology. In Figure 2c, five different chords are shown
in horizontal direction and depicted in five different colors, for two exemplarily chosen vertical height
levels.180

Constrictivity β In order to explain this descriptor, we first recall the concept of the continuous pore
size distribution (CPSD) as well as of simulated mercury intrusion porosimetry (SMIP). The continuous
pore size distribution is a function CPSD : [0,∞) → [0, 1], where the value CPSD(r) is given by the
volume fraction of the pore space which can be covered by (possibly overlapping) spheres with radius
r ≥ 0 (such that the spheres are completely contained in the pore space) [38, 39]. Furthermore, by185

rmax the maximum radius r > 0 is denoted such that CPSD(r) ≥ ε/2 where ε is the porosity. Note that
the green shaded area in Figure 2d corresponds to that part of the pore space which can be covered
by potentially overlapping spheres having the same radius as the red circle in Figure 2d.

The concept of SMIP is similar to that of CPSD, with the only difference that SMIP(r) is now given by
the volume fraction of the pore space which can be covered by (potentially overlapping) spheres with190

radius r forming an intrusion from a predefined direction, see Figure 2e for an intrusion of spheres
from left to right. Analogously to rmax, by rmin the maximum radius r > 0 is denoted such that
SMIP(r) ≥ ε/2. In general, rmin depends on the direction of the intrusion. However, as already
mentioned above, the lack of pronounced anisotropy effects in the loam and sand samples motivates
the following averaging. First, rmin is computed for each of the three axes directions separately and,195

subsequently, the average of the three obtained values is used.

The constrictivity of the pore space is then defined as β = ( rmin
rmax

)2. It is a measure for the strength of
bottleneck effects and has been originally introduced in [40]. Since rmin ≤ rmax by definition, it holds
that β ∈ [0, 1], where β ≈ 1 corresponds to a situation such that (almost) no constrictions within
the pore space exist. In [16, 41, 42], it has been shown that this quantity has a significant impact on200

effective macroscopic properties of porous media such as effective diffusivity or permeability.
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Mean spherical contact distance µ(H) Here we consider the distribution of the shortest (contact)
distances from randomly chosen points within the pore space to the solid phase. It is estimated from
voxelized image data by an algorithm presented in [43], which is based on the computation of the
Euclidean distance transform [39, 44]. The mean value of this distribution will be denoted by µ(H) in205

the following. In Figure 2f, the shortest distances from points in the pore space to the solid phase are
visualized by (brighter and darker) colors, where the increase of brightness corresponds to an increase
of contact distance. In particular, the radii of the red spheres in Figure 2f correspond to the shortest
distances from their midpoints to the soil.

Mean value µ(τg) and standard deviation σ(τg) of geodesic tortuosity A further transport-relevant210

quantity is the so-called geodesic tortuosity of the pore space. It describes the lengths and windedness
of transport paths, which are completely contained in the pore space. From 3D image data, the
distribution of (local) geodesic tortuosity is determined by computing the lengths of shortest paths from
randomly selected pore voxels on a predefined starting plane to a parallel target plane, divided by the
distance between those two planes, where shortest paths are computed using Dijkstra’s algorithm [45].215

In Figure 2g, two exemplarily chosen shortest paths (from left to right) are shown in red, where the
color of each pore space pixel corresponds to the extend of shortest distance to the target plane and
the increase of brightness corresponds to an increase of path length. Usually, the starting and target
planes are chosen orthogonal to the relevant transport direction. For the image data considered in the
present paper, we compute the distribution of geodesic tortuosity with respect to each of the three220

Cartesian axes directions. The mean geodesic tortuosity µ(τg) is then determined by averaging over
all shortest path lengths divided by the distance between the starting and target planes. Analogously,
the standard deviation µ(σg) is the empirical standard deviation of these normalized path lengths.

Note that in many applications, only µ(τg) is considered in order to characterize the microstructure of
porous media, despite the fact that σ(τg) contains further useful information about the 3D morphology225

of the pore space, see Section 3.2 for a detailed discussion. Furthermore, besides geodesic tortuosity,
there exist several other concepts of tortuosity in the literature, see e.g. [46, 47] for a comprehensive
overview. An example of such alternative tortuosity concepts is the so-called geometric tortuosity,
which is described in the next paragraph.

Mean value µ(τs) and standard deviation σ(τs) of geometric tortuosity In contrast to geodesic tor-230

tuosity described above, the concept of geometric tortuosity (sometimes called skeletonized tortuosity)
is based on the computation of a skeleton of the pore space, see Figure 2h for an illustration where the
skeleton is depicted in green color. In the present study, we compute the skeleton of the pore space
by means of the Lee thinning [48, 49]. Similar to the concept of geodesic tortuosity, shortest paths
along the transport direction are computed by Dijkstra’s algorithm [45], where in case of geometric235

tortuosity only voxels that belong to the skeleton of the pore space are allowed to be visited. Two such
shortest paths (from left to right) along the skeleton of the pore space are shown in Figure 2h in red.
Finally, we consider the distribution of the lengths of these shortest paths divided by the Euclidean
distances between the starting and the target plane. Mean and standard deviation of this distribution
are denoted by µ(τs) and σ(τs), respectively. As in case of all direction-dependent microstructure240

characteristics considered in the present paper, these quantities are computed for each of the three
Cartesian axis directions separately and then averaged.

Note that there exist various approaches for computing the skeleton of a 3D binary image, which in
turn affects the computation of geometric tortuosity [39, 49].
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2.5. Model fitting and validation245

We now present statistical methods which will be used in Section 3 for a comprehensive structural
analysis of the loam and sand samples as well as for establishing microstructure-property relationships,
which quantitatively characterize the connection between geometrical descriptors of 3D pore space
morphology and soil gas diffusion. In particular, in Section 3.2, regression formulas for the prediction
of the M -factor are considered, which are based on different sets of descriptors of the 3D pore space250

morphology. In general, this approach leads to results that are easier to interpret compared to other
methods from data science such as neural networks.

The regression formulas considered in Section 3.2 contain a small number of regression parameters,
which are fitted by means of training data, i.e., a fraction of the 4608 subsamples described in Sec-
tion 2.2 is selected for determining “optimal” values for the regression parameters. In order to com-255

pute these parameters, the Levenberg-Marquardt algorithm [50] implemented in the python package
scipy [51] is used. This algorithm solves the unconstrained nonlinear least-squares problem of finding
an optimal set of parameter values for a given regression formula and training data.

To evaluate the performance of regression formulas, we select k = 1024 subsamples as test data,
which have not been used for model fitting. Then, the goodness of fit is quantified by computing the260

coefficient of determination, denoted by R2, as well as the mean absolute percentage error, denoted
by MAPE. These two quantities are defined as

R2 = 1−

k∑
j=1

(Mj − M̂j)
2

k∑
j=1

(Mj − M̄)2
and MAPE =

100

k

k∑

j=1

∣∣∣∣∣
M̂j −Mj

Mj

∣∣∣∣∣ , (4)

where M1, . . . ,Mk denote the M -factors computed by means of numerical simulations as described
in Section 2.3 (ground truth), M̄ is the mean of M1, . . . ,Mk, and M̂1, . . . , M̂k denote the M -factors
obtained by an empirically derived regression formula.265

For fitting the model parameters, we use all data of subsamples from 5 cm and 10 cm depth from
both loam and sand (3072 subsamples). Model validation by means of R2 and MAPE is performed
on subsamples from 15 cm depth from both loam and sand (1536 subsamples). The parameters of all
regression formulas considered in this study are fitted on the same (training) dataset, while validation
of the fitted regression formulas is performed on subsamples from a depth which is not used for fitting.270

By performing model fitting and validation on different types of soil (loam and sand), we can show
whether the best fitting regression formula is applicable for a general soil microstructure or only for
structures very similar to those on which the model was fitted.

3. Results

3.1. Statistical analysis of 3D pore space morphology275

The geometrical descriptors stated in Section 2.4 are used to quantitatively characterize the 3D mi-
crostructure of the soil subsamples considered in this paper. Figure 3 shows the histograms which
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have been obtained for various geometrical descriptors of subsamples from loam and sand, respec-
tively. It turned out that some descriptors, such as porosity ε and constrictivity β, can vary a lot
between subsamples from the same soil texture at the chosen scale, whereas on average they differ280

only little between loam and sand, see Figures 3a and 3f. Thus, such descriptors might be less useful
to distinguish between the textures of both soil textures, but rather useful for describing variations of
individual samples from a given soil texture. On the other hand, descriptors like the specific surface
area S and mean chord length µ(C) behave rather different for the two soil textures, see Figures 3b
and 3c. Therefore, they seem to capture the morphological differences between the textures much285

better than ε and β.

A more detailed characterization of soil textures can be achieved by considering bivariate probability
densities for pairs of descriptors, see Figure 4. While the univariate histograms of the mean chord
length µ(C) obtained for subsamples of loam and sand show a certain overlapping, see Figure 3c, the
joint (bivariate) probability densities of µ(C) and the mean spherical contact distance µ(H) allow to290

reliably distinguish between loam and sand, see Figure 4b.

When looking at Figures 3g and 3j, see also Figure 4 (e), we observe that the results obtained for
the two notions of (geodesic and geometric) tortuosity are rather different. In particular, the mean
geodesic tortuosity µ(τg) is smaller for sand in comparison to the corresponding value obtained for
loam (i.e. paths in the pore space of sand are shorter than those of loam), whereas the mean geometric295

tortuosity µ(τs) is greater for sand. This is likely to be caused by the fact that sand comprises of larger
pores than loam such that the paths along the coarse skeleton become comparatively long, whereas
the finer pore structure observed in loam leads to a skeleton with a large number of nodes, which is
closer to the actual axes of the pore space. The two notions of (geodesic and geometric) tortuosity
will be further discussed in Section 4 with regard to their usefulness as geometrical descriptors for300

microstructure-property relationships.

A full analysis of the correlation coefficients between all pairs of geometrical descriptors considered in
this paper is provided in the appendix, see Figure A.1. For selected pairs of geometrical descriptors,
Figure 4 shows bivariate probability densities obtained by kernel density estimation as well as the
corresponding Pearson correlation coefficients. With the exception of (ε, µ(τg)), the joint densities305

of all other pairs of geometrical descriptor shown in Figure 4 strongly depend on the considered soil
texture, which once again highlights the structural differences between loam and sand. This suggests
that any regression formula expressing the M -factor in terms of one of these pairs of geometrical
descriptors would need to be adapted specifically to the distinct textures of sand and loam. Vice
versa, regression formulas based on ε and µ(τg) may be valid independent of the considered soil310

texture.

3.2. Regression formulas for the quantification of microstructure-property relationships

The scatter plots shown in Figure 5 illustrate the dependence of the M -factor on various pairs of
geometrical descriptors. In this section, we consider several empirically derived regression formulas
which will be used for the quantification of microstructure-property relationships and, in particular,315

for predicting the M -factor from the knowledge of an appropriately chosen vector of geometrical
descriptors of the 3D pore space morphology.
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Figure 3: Histograms of geometrical descriptors – namely porosity (a), specific surface area (b), mean
chord length (c), bottleneck radius rmin (d), characteristic pore radius rmax (e), constrictivity (f),
mean and standard deviation of geodesic tortuosity (g,h), mean distance to solid phase (i), mean and
standard deviation of geometric tortuosity (j) – and the M -factor (l) computed from tomographic
image data for the 2 · 3 · 768 = 4608 subsamples of loam (blue) and sand (orange), respectively. The
symbols †, ◦ and ⋆ indicate the values obtained for the subsamples shown in Figure 1.

A simple regression formula, which only involves the porosity ε, is given by

M̂1 = εc1 , for some c1 ≥ 1. (5)

This power-law type of a regression formula is frequently used in the literature, where the most well-
known examples are probably the Buckingham formula (c1 = 2) [20], the Millington-Quirk formula320

(c1 = 4
3) [12], the formula derived by Marshall (c1 = 3

2) [11], and the work of Lai et al. (c1 = 5
3) [52].

The data considered in the present paper leads to c1 = 1.71, which is right in between the values used
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Figure 4: Bivariate probability densities for pairs of geometrical descriptors, visualized as contour
plots based on kernel density estimation, which have been obtained for the 2 · 3 · 768 = 4608 cubic
subsamples of either loam (blue) or sand (orange). Furthermore, the values of Pearson’s correlation
coefficient ρ are given for each descriptor pair, separately computed for loam and sand.

in the Buckingham and Millington-Quirk formulas, but closest to that of Lai et al. [52].

Another simple regression formula is given by

M̂2 = c1ε
c2 , for some c1, c2 > 0, (6)

which is used, for example, in [53] (c1 = 1.9, c2 = 1.4), [54] (c1 = 1.75, c2 = 2.1) and [55] (c1 =325

5.25, c2 = 3.36). Moreover, the formula

M̂3 = c1e
c2ε, (7)
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Figure 5: Scatter plots visualizing the dependence of the M -factor on various pairs of geometrical
descriptors. The (brighter or darker) colors of the data points indicate whether the value of the
corresponding M -factor is high or low. In this figure we do not distinguish between the two soil
texture. For clarity of presentation, only randomly selected 10% of the 4608 cubic subsamples have
been used to generate the 461 data points in each subfigure.

which has been introduced in [56] with c1 = 0.0085 and c2 = 6.8, is considered in the following.
Besides, there are many other prediction formulas that only involve porosity, see e.g. [46, 57] for
further details. However, a further consideration of this type of formulas is beyond the scope of the
present paper, where a particular focus is now put on empirically derived regression formulas that –330

besides porosity – involve further (more sophisticated) descriptors of 3D pore space morphology such
as the mean geodesic tortuosity µ(τg) or the constrictivity β. In particular, we consider the formula

M̂4 = εc1βc2µ(τg)
c3 , for some c1 >, c2 ≥ 0, c3 ≤ 0, (8)

which has been originally introduced in [58] (with c1 = 1.15, c2 = 0.37, c3 = −4.39), and refitted to
63,000 virtually generated microstructures in [16] (with c1 = 1, c2 = 0, c3 = −8.45).
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Since Equation (8) does not hold in the dilute limit (i.e. for ε → 1), the modified formula335

M̂5 = εc1+c2βµ(τg)
c3 , where c1 + c2 ≥ 0, c3 ≤ 0, (9)

has been used in [42] (with c1 = 1.67, c2 = −0.48, c3 = −5.18) and in [16] (with c1 = 1.25, c2 =
−1.25, c3 = −7.82), where the constrictivity β appears now in the exponent of the porosity ε.

Besides formulas based on porosity, constrictivity and mean geodesic tortuosity, further geometrical
descriptors of 3D pore space morphology can be taken into account. For example, the formula

M̂6,j = c1µ(τj)
c2σ(τj)

c3εc4 , where j ∈ {g, s}, (10)

which has been introduced in [59] for j = g (with c1 = 0.06, c2 = −2, c3 = −0.6, c4 = 1) and also340

considered in [16] (with c1 = 1.18, c2 = −9.17, c3 = 0.03, c4 = 1.02), uses the standard deviation σ(τj)
of (geodesic or geometric) tortuosity as an additional geometrical descriptor.

Moreover, we consider the formula
M̂7 = εc1Sc2rc3max, (11)

which has not yet been considered in the literature. In general, the specific surface area S has only
rarely been used in the literature for the prediction of diffusive properties. However, a particular case345

of such a regression formula is presented in [15], which uses the formula M̂ = 1.1(ε − 0.039S0.52).
However, this kind of regression formula can lead to negative values for the M -factor. In contrast,
Equation (11) ensures that M̂7 ≥ 0.

Finally, we predict the M -factor by means of

M̂8 = εc1
(
µ(C)

µ(H)

)c2

, (12)

which – besides porosity – contains the ratio of mean chord length µ(C) and the mean spherical350

contact distance µ(H) of a randomly chosen point within the pore space to the solid phase. The latter
quantity can be regarded as some kind of shape information since this quotient in Equation (12) is
larger for more elongated pores.

4. Discussion

First, we consider the case, where data gained for both loam as well as sand samples (taken in the355

depths of 5 and 10 cm) are used for training. Scatter plots visualizing the values obtained for the

M -factor by numerical simulations versus those of the predicted M -factors M̂i, i = 1, . . . , 8 obtained
for the test data of either loam or sand is shown in Figure 6, where the parameters appearing in the
prediction formulas given by Equations (5)–(12) have been fitted to the entire training data for loam
and sand, see Table A.1. The resulting values obtained for the coefficient of determination (R2) and360

the mean absolute percentage error (MAPE) can also be found in Figure 6. Furthermore, we compare
the performance of the regression formulas given by Equations (5) −(12), where the model parameters
are fitted to data considered in the present paper, with that of regression formulas which have been
proposed previously in the literature, see Table A.2. Bear in mind that when using the latter formulas
we do not refit the model parameters, but use the same parameter values as they have been derived365

– based on different kinds of data and using different methodological approaches – in the original
papers.
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Figure 6: Scatter plots visualizing the values obtained for theM -factor by numerical simulations versus
those of the predicted M -factors M̂i, i = 1, . . . , 8 obtained for the test data of either loam (blue) or
sand (orange). The parameters appearing in the prediction formulas given in Equations (5)−(12) have
been fitted to the entire training data for loam and sand, see Table A.1. In particular, Equation (10),

i.e. M̂6,j , occurs twice since the concepts of both geodesic and geometric tortuosities are considered.

As expected, due to its simplicity, Equation (5) performs worst among all prediction formulas stated
in Section 3.2. In this case, important structural details of the 3D pore space morphology are disre-
garded since only the porosity ε is used to characterize the morphology of the pore space. In case of370

Equation (5), one obtains c1 = 1.71, when fitting it to the entire set of training data considered in
the present paper. This value is roughly in the middle between 1.5 [11] and 2 [20], but quite close
to the values of c1 derived in [12] and [52]. When introducing an additional model parameter, as in
Equations (6) and (7), the MAPE can be reduced to 7.2% and 7.5%, respectively. However, fitting
Equation (6) to our soil data leads to quite different values for c1 and c2 compared to those obtained375
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in [55]. Due to the large difference in the values of the exponent c2 of the porosity ε obtained in the
present study and in [54, 55], respectively, it is not surprising that the predictive power of Equation (6)
with c1 = 1.92 and c2 = 2.29, as derived from our soil data, is significantly better. On the other hand,
note that the value which we obtained for c1 in Equation (6) is similar to the one obtained in [53]. In
case of results derived in [54], applying an already existing regression formula directly to the present380

soil data performs reasonably well (leading to a MAPE of 13.12%), even though refitting the regression
parameters to the soil data considered in the present paper leads – as expected – to better results.
With regard to Equation (7), it is interesting to point out that choosing c1 = 0.02 and c2 = 6.88
leads to a significantly better predictive power compared to that obtained in [56], even though their
parameter values of c1 = 0.01 and c2 = 6.8 are quite close to the ones derived in the present paper.385

A significant improvement of predictive power can be achieved by including further geometrical de-
scriptors of the 3D pore space morphology into the regression formulas. However, fitting the model
parameters in Equation (8) to our soil data leads to c2 = 0.04, i.e., the constrictivity β only plays a
negligible role in the prediction of the M -factor. This effect has already been observed in [16], where
63,000 microstructures have been used for model fitting. Furthermore, directly applying the regression390

formulas derived in [16] and [58] to the present soil data leads to the best results among all (previ-
ously derived) formulas from the literature listed in Table A.2. In general, the validation scores R2

and MAPE can be significantly improved by using Equation (8) compared to the prediction formulas
given in Equations (5)−(7), which only use the porosity ε. This emphasizes the impact of the mean
geodesic tortuosity µ(τg) with regard to the prediction of diffusive mass transport in porous media.395

Interestingly, the value which we obtained in Equation (9) for the coefficient c2 of constrictivity β is
not equal to zero, see Table A.1. This matches with the results derived in [16] and [42]. Anyhow, it
turned out that the predictive power of the regression formula given in Equation (9) is similar to that
of the formula given in Equation (8), even though the value which we obtained for the exponent c2 of
β in Equation (8) is close to zero, i.e., practically Equation (8) does not include the constrictivity β400

at all.

Note that the predictive power can be further increased when using Equation (10) for predicting the
M -factor, where the regression formula given in Equation (10) is based on porosity, mean geodesic
tortuosity as well as the standard deviation of geodesic tortuosity. In this case, for the validation
scores R2 and MAPE we obtained that R2 = 0.9 and MAPE = 5.4%, which turns out to be the best405

result among all prediction formulas considered in the present paper. This indicates that not only
the mean value µ(τg) of shortest path lengths is of interest with regard to the prediction of diffusive
mass transport, but also the corresponding standard deviation σ(τg). However, directly applying
Equation (10) with the values of the regression parameters derived in [16] and [59] leads to a MAPE
of 11.2% and 46.7%, respectively. This large difference can be explained by the corresponding values410

of the regression parameters, where in particular the values obtained for the exponents of µ(τg) and
σ(τg) differ significantly between the results of [16] (c2 = −9.17, c3 = 0.03), [59] (c2 = −2, c3 = 0.6)
and our results (c2 = −6.07, c3 = 0.07) obtained in the present paper.

We also remark that Equation (11), which uses porosity, specific surface area as well as the charac-
teristic pore radius rmax, leads to similar results as Equations (8) and (9). Interestingly, using rmax415

for predicting the M -factor turns out to be useful, even though Equation (8) fitted to our soil data
does practically not make use of the constrictivity β, which is closely linked to rmax. Finally, the
M -factor can be predicted by means of Equation (12). This leads to R2 = 0.87 and MAPE = 6.2%,
which are similar values to those obtained for Equations (8), (9) and (11), see Table A.1. Thus, the
dimensionless quantity in Equation (11) given by the ratio of the mean chord length µ(C) and the420

mean spherical contact distance µ(H), which characterizes the shape of pores, is – in combination
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with porosity – well suited for predicting diffusive properties.

It is worth mentioning, that – in general – the question of the best geometrical descriptors with regard
to the prediction of the M -factor is hard to answer, since certain geometrical descriptors that do not
seem to be correlated with diffusive mass transport can be well suited for establishing microstructure-425

property relationships when they are combined with further microstructure characteristics. Moreover,
for some features of 3D microstructures, several variants of geometrical descriptors are considered
in the literature for one and the same structural feature. For example, as already mentioned in
Section 2.4, there exist different notions of tortuosity, where it turned out that geodesic tortuosity is
superior to geometric tortuosity with regard to the prediction of diffusive mass transport in soil, see430

the validation scores stated in Table A.1 for M̂6,g and M̂6,s. This is likely to be caused by the fact that

the skeleton of the pore space considered in the definition of M̂6,s takes the complex morphology of the
pore space only partially into account. On the other hand, not surprisingly, all regression formulas for
predicting the M -factor, whose parameters have been fitted to the soil data considered in the present
paper, perform better with respect to both validation scores R2 and MAPE than the corresponding435

regression formulas previously derived in the literature (and fitted to other types of image data), see
Tables A.1 and A.2. This highlights the importance of using appropriately chosen data sets, which
represent the nature of the 3D microstructure under consideration, for fitting the parameters of the
regression formulas stated in Section 3.2.

Recall that so far we considered the case, where data gained from both loam as well as sand samples440

(taken in the depths of 5 and 10 cm) were used for training. Results regarding microstructure-property
relationships, where only a subset of the training data (either for loam or sand) is used for fitting the
regression parameters, can be found in the appendix, see Figures A.2, A.3 and A.4. As expected,
the predictive power decreases in most cases when using only a subset of the training data for fitting
compared to using the complete training data. However, using only data from sand for both fitting445

and validation often leads to even better results. This may be due to the fact that many descriptors
as well as the M -factor show a smaller variation for sand than for loam. In addition, similar to
the previously considered case, the concept of geodesic tortuosity leads to better results regarding
the prediction of diffusive transport properties compared to geometric tortuosity. Moreover, it can
be observed that Equation (10) seems to be quite robust in the sense that this regression formula450

leads to a large predictive power even if the corresponding regression parameters are fitted based on
one soil texture and applied to the other soil texture. However, note that the regression formulas
discussed in this section might only be valid to a limited extent if they are applied to other types of
3D microstructures, which are significantly different compared to the soil samples considered in the
present paper.455

In addition, the microstructure-property relationships in this study have been established on fairly
small volumes (1.28mm × 1.28mm × 1.28mm). This had the favorable effect that the variability of
the M -factor across all subsamples was quite large for packed soils and hence suitable for testing the
accuracy of different models. However, not only diffusion but also some geometrical descriptors of
3D pore space morphology like tortuosity are scale-dependent [60]. Therefore, it will be tested in a460

forthcoming study to which extent these models hold for larger soil volumes.
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5. Conclusion

In the present paper, we investigated the relationship between various geometrical descriptors of the
3D pore space morphology and diffusive transport properties for two soil different textures, namely
loam and sand. For this purpose, sand and loam samples in 5, 10 and 15 cm depth have been imaged by465

means of X-ray computed tomography and segmented into two phases (pores and solid). The six binary
3D images obtained in this way have been partitioned into 768 non-overlapping subsamples each, which
resulted in a total number of 4608 subsamples. For each of these subsamples, the 3D morphology of
the pore space has then been characterized by means of various geometrical descriptors including,
among others, the porosity as well as the specific surface area, mean geodesic tortuosity, constrictivity470

and mean spherical contact distance of the pore space. Besides this geometrical characterization of
the pore space, diffusive transport properties have been computed by numerically solving the Laplace
equation with inhomogeneous flux boundary conditions.

A comprehensive statistical analysis of the 3D pore space morphology has been carried out to quantify
structural differences between sand and loam by determining univariate as well as bivariate probability475

distributions for individual geometrical descriptors and for pairs of them. Among others, it turned out
that specific surface area and mean chord length of the pore space can be used to distinguish between
loam and sand.

Moreover, microstructure-property relationships have been investigated for both types of soil, loam
and sand, by means of parametric regression formulas. By using sophisticated geometrical descrip-480

tors of the 3D pore space morphology, which have not yet been considered in the context of soil gas
diffusion, the predictive power of the regression formulas could be increased significantly. Among oth-
ers, the considered descriptors of 3D microstructure include mean and standard deviation of geodesic
tortuosity, constrictivity and mean chord length. In particular, it has been shown that with regard
to the prediction of diffusive properties, the concept of geodesic tortuosity is superior compared to485

geometric tortuosity, which is based on skeletonization of the pore space. Furthermore, the robustness
of the regression formulas has been investigated by fitting the regression parameters to one soil texture
and applying the resulting regression formulas to the other soil texture. It turned out that the best
performing regression formula is based on porosity as well as mean and standard deviation of geodesic
tortuosity, leading to a mean absolute percentage error of about 5 %. While, in general, the predictive490

power of parametric regression formulas depends on the specific soil texture under consideration, the
best regression formula performed well also in the case when fitted on one soil texture and applied to
the other soil texture.

In summary, by our analysis we obtained an improved understanding of the relevance of certain
structural features of 3D soil microstructures – which we measured by means of geometrical descriptors495

– for diffusive transport properties and we were able to predict them much more accurately compared
to the precision of conventional regression formulas from the literature. A possible topic for future
research is extending this analysis to structures at different length scales. Developing an appropriate
multi-scale approach would allow for the prediction of diffusive properties for very large soil structures.
Moreover, the present approach can be applied to more realistically developed soils, where pronounced500

anisotropy effects are to be expected.
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K. Palágyi, eds.), 247–258, Springer, 2007.

[37] G. Matheron, Random Sets and Integral Geometry. New York: J. Wiley & Sons, 1975.610

[38] J. Serra, Image Analysis and Mathematical Morphology. London: Academic Press, 1982.

[39] P. Soille, Morphological Image Analysis: Principles and Applications. Berlin: Springer, 2nd ed.,
2013.

[40] B. Münch and L. Holzer, “Contradicting geometrical concepts in pore size analysis attained with
electron microscopy and mercury intrusion” Journal of the American Ceramic Society, vol. 91,615

no. 12, 4059–4067, 2008.

[41] L. Holzer, D. Wiedenmann, B. Münch, L. Keller, M. Prestat, P. Gasser, I. Robertson, and
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Figure A.1: Correlation coefficients between all pairs of geometrical descriptors (as well as the M -
factor) considered in the present paper computed for the set of all 4608 subsamples (left) and for loam
and sand individually (right), where in the latter case the upper right part of the matrix (blue frame)
shows the values obtained for loam, the bottom left part (orange frame) those for sand.

Regression formula R2 MAPE [%]

M̂1 = ε1.71 0.79 8.40

M̂2 = 1.92ε2.29 0.82 7.23

M̂3 = 0.02e6.88ε 0.79 7.52

M̂4 = ε1.06β−0.04µ(τg)
−7.28 0.89 6.19

M̂5 = ε1.17−0.18βµ(τg)
−7.00 0.88 6.23

M̂6,g = 2.19µ(τg)
−6.07σ(τg)

0.07ε1.63 0.9 5.39

M̂6,s = 1.68µ(τs)
0.23σ(τs)

0.00ε2.28 0.85 6.81

M̂7 = ε2.60S−0.61r−0.45
max 0.87 6.23

M̂8 = ε2.23 (µ(C)/µ(H))0.16 0.87 6.22

Table A.1: Parameter values of regression functions fitted on the entire training data; validation scores
R2 and MAPE obtained for the validation data considered in the present paper.
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Regression formula R2 MAPE [%] Reference

M̂1 = ε2.00 −1.1 27.83 [20]

M̂1 = ε1.50 −0.62 28.03 [11]

M̂1 = ε1.33 −5.1 55.00 [12]

M̂2 = 1.90ε1.40 −62 172.81 [53]

M̂2 = 1.75ε2.10 0.53 13.12 [54]

M̂2 = 5.25ε3.36 −0.016 20.08 [55]

M̂3 = 0.01e6.80ε −4.4 46.70 [56]

M̂4 = ε1.15β0.37µ(τg)
−4.39 0.76 8.56 [58]

M̂4 = ε1.00β0.00µ(τg)
−8.45 0.73 8.93 [16]

M̂5 = ε1.67−0.48βµ(τg)
−5.18 0.084 17.79 [42]

M̂5 = ε1.25−0.25βµ(τg)
−7.82 0.46 13.27 [16]

M̂6,g = 0.06µ(τg)
2.00σ(τg)

−0.60ε1.00 −1.2 30.35 [59]

M̂6,g = 1.18µ(τg)
−9.17σ(τg)

0.03ε1.02 0.6 11.22 [16]

M̂ = 1.1
(
ε− 0.039S0.52

)
−43 146.67 [15]

Table A.2: Regression functions taken from the literature; validation scores R2 and MAPE obtained
for the validation data considered in the present paper.
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Figure A.2:M -factor obtained by numerical simulations versus the predictedM -factor M̂i, i = 1, . . . , 4,
obtained for the validation data, where different regression formulas (given by Equations (5), (6), (7)
and (8); from top to bottom) have been used. The colors of data points represent loam (blue) and
sand (orange), respectively. The parameter values of regression formulas have been fitted on the entire
training data (left), loam (center) and sand (right), respectively.
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Figure A.3:M -factor obtained by numerical simulations versus the predictedM -factor M̂i, i = 5, . . . , 8,
obtained for the validation data, where different regression formulas (given by Equations (9), (10),
(11), (12); from top to bottom) have been used. In particular, Equation (10) is used twice, once for
geodesic tortuosity and once for geometric tortuosity. The colors of data points represent loam (blue)
and sand (orange), respectively. The parameter values of regression formulas have been fitted on the
entire training data (left), loam (center) and sand (right), respectively.
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Figure A.4: Validation scores R2 and MAPE obtained for the regression formulas considered in the
present paper including the values for the corresponding regression parameters, where different data
sets have been used for training/fitting and validation.
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