Analysis of shortest paths and subscriber line lengths in
telecommunication access networks

C. Gloaguen' F. Fleischer %3 H. Schmidt ! V. Schmidt ?

3rd November 2006

Abstract

We consider random geometric models for telecommunication access networks and anal-
yse their serving zones which can be given, for example, by a class of so—called Cox—
Voronoi tessellations (CVTs). Such CVTs are constructed with respect to locations
of network components, the nucleii of their induced cells, which are scattered randomly
along lines induced by a Poisson line process. In particular, we consider two levels of net-
work components and investigate these hierarchical models with respect to mean short-
est path length and mean subscriber line length, respectively. We explain point—process
techniques which allow for these characteristics to be computed without simulating the
locations of lower—level components. We sustain our results by numerical examples which
were obtained through Monte Carlo simulations, where we used simulation algorithms
for typical Cox—Voronoi cells derived in a previous paper. Also, briefly, we discuss tests
of correctness of the implemented algorithms. Finally, we present a short outlook to
possible extensions concerning multi-level models and iterated random tessellations.
Keywords : TELECOMMUNICATION NETWORK MODELLING, STOCHASTIC GEOMETRY,
POINT PROCESS, PALM PROBABILITY, NEVEU’S EXCHANGE FORMULA, SPATIAL TES-
SELLATION, TYPICAL COX—VORONOI CELL, ACCESS NETWORK, SHORTEST PATH, SUB-
SCRIBER, LINE

1 Introduction

Spatial stochastic models have been developed in recent years as alternatives to more tra-
ditional economical approaches for cost measurement and strategic planning of telecommu-
nication networks. These models incorporate both stochastic as well as geometric features
observable in telecommunication networks. While the random setting reflects the network’s
variability in time and space, consideration of geometric structures of network architectures
offer a more realistic view to location-dependent network characteristics than conventional
models.

Prominent examples of networks where stochastic-geometric models have been considered
recently are mobile telecommunication systems, multi-cast networks and switching networks.
These new models using tools and methods of stochastic geometry are based on modulated
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Poisson—Voronoi tessellations ([6], [7]), Poisson—Voronoi aggregated tessellations ([3], [23]),
superpositions of Poisson-Voronoi tessellations (|2]), spanning trees ([4], [5]), and coverage
processes ([1]).

Bearing in mind the fact that roughly 50% of the total capital investment in telecommuni-
cation networks is made in access networks, their modelling and subsequent analysis can be
considered as the most important part of telecommunication network modelling.

The access network or local loop is the part of the network connecting a subscriber to its cor-
responding Wire Center Stations (WCS). The hierarchical physical link is made via network
components: a Network Interface Device (ND), secondary and primary cabinets (CS and
CP) and a Service Area Station (SAI) as shown in Figure 1(a). To each WCS we associate a
serving zone such that the inscribed subnetwork that gathers all lines between the WCS and
the subscribers displays a tree structure; Figure 1(b).

[ ]SAI
7

\ \ !
| N |
service wire distribution cable | feedercable T - D
| i SAI
B—e ® o—0 [ —H

ND!  CS cp P cp TSAI WCS .
connection distribution transport IA—_l SAI
(a) Hierarchical physical link between o (b) Tree structure of a WCS subnetwok not
subscriber and its Wire Center Station (WCS) displaying the links between ND ans CS

Figure 1: Hierachical structure of access networks

The most important feature about the access network is that it is the place where the telecom-
munication network fits into the town and country infrastructure. In the following, we con-
veniently restrict ourselves to the description and analysis of urban access networks.

In recent years, access networks were studied in the context of the so-called Stochastic Sub-
scriber Line Model (SSLM); see [10], [11], [12] and [14]. The SSLM is a random geometric
model that offers tools to describe geometric features of access networks and that allows for
stochastic econometrical analysis, like the analysis of connection costs.

The modelling framework of the SSLM can be subdivided into the network geometry model,
the network component model, and the network topology model. The network geometry
model represents the cable trench system, typically located along the urban infrastructure
system, and in the SSLM modelled by random tessellations. Subsequently the network com-
ponent model places technical network components along the cable trenches according to
independent (Poisson) point processes on lines or in the plane. Finally the components are
connected with respect to the network topology model.

Methods for an optimal choice of the geometry model with respect to given data can be
found in [12]. In [11] an algorithm was introduced in order to simulate typical Cox-Voronoi
cells based on linear Poisson processes on random lines. In the present paper, this algo-
rithm, together with other techniques, is used to investigate two-level hierarchical models,
i.e. models of two different components where the lower—level component is connected to its
closest higher—level component, based on Poisson line tessellations. Efficient computation and



Analysis of Network Characteristics

simulation techniques for network characteristics like mean shortest path length and mean
subscriber line length are shown. These network characteristics can be key—-ingredients to an
efficient cost analysis. Notice that Poisson line tessellations are chosen as geometry model
since earlier investigations showed that, for a lot of real data situations, they can represent a
suitable model for the urban infrastructure.

The investigated stochastic network model that is based on a Poisson line tessellation and two
hierarchically ordered stationary point processes that are located on the lines, is explained
in Section 2. In Sections 3 and 4, a formal definition of the regarded network characteristics,
mean shortest path length and mean subscriber line length, is given. We explain meth-
ods which allow for these characteristics to be computed without simulating the locations
of lower—level components, thereby enhancing simulation speed enormously. In particular,
instead of performing large—scale computations of shortest path lengths and subscriber line
lengths, respectively, for each lower-level component individually, we first use an ergodicity
argument by which these large—scale computations can be reduced to the computation of
a single expectation value with respect to the so—called Palm probability measure induced
by the point process of lower—level components. Then, we apply Neveu’s exchange formula
for stationary marked point processes. This allows us to pass to expectations with respect
to the Palm probability measure induced by the point process of higher—level components,
which are computationally easier to handle. Finally, we compute the latter expectations by
partitioning the underlying line system and by applying inner Voronoi tessellations with re-
spect to the edges of the cells formed by the Poisson line process. Section 5 shows numerical
results of the computations performed for the two network characteristics mentioned above.
Topics of run—time and of testing the implemented software are also discussed in this section.
Section 6 gives a short outlook to possible extensions of the regarded models with respect to
multi-level hierarchies and to more complicated geometry models. Mathematical background
for the tools applied in this paper can be found in Appendix A whereas detailed proofs for
the derived theorems are given in Appendix B.

All implementations that have been performed for the computation and the simulation of
network characteristics and corresponding models are integrated in the GeoStoch library,
which has been developed by the Institute of Applied Information Processing and the Institute
of Stochastics of Ulm University. This JAVA-based library comprises software tools designed
to analyze data with methods from stochastic geometry; see [17] and http://www.geostoch.de.

2 Stochastic modelling of telecommunication access networks

In order to model telecommunication access networks, different aspects have to be taken into
account. First the geometry of the underlying infrastructure has to be modelled, which in
most cases is represented by the (urban) street system. After this step, network equipment
components have to be placed randomly on the streets or (spatially) within the cells formed
by these streets. Finally, the connections between the equipment components have to be
considered. This section specifies and explains the investigated stochastic models with respect
to the choice of the geometry model as well as the choice of models for equipment placement
and equipment connections.

In the following we regard two-level hierarchical models. They describe two different equip-
ment types which are placed along the infrastructure system. More precisely, we start by
considering a Poisson line process (cmp. Appendix A.5), which is intended to model the un-
derlying road system. Given a realization of such an underlying line system we independently
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generate either two (marked) point processes on each line, which can be seen as spatial point
processes concentrated on the system of lines, or we generate one of the two point processes
(the lower—level) within the cells formed by the lines of the underlying line system.

In such a setting, we have that for a linear placement of the lower—level point process the
higher-level point process might represent for example the locations of the WCS, whereas
the lower—level point process is intended to model the locations of the SAI. For a spatial
placement of the lower—level point process the higher—level point process might represent the
locations of the SAI, whereas the lower—level point process is a model for the locations of the
subscribers.

2.1 Network geometry and higher-level components

As a model for the underlying infrastructure system, or in other words the network geometry,
a Poisson line tessellation is chosen which is induced by a stationary and isotropic Poisson line
process X, with intensity ~; see Figure 2(a) and Appendix A.7. The higher-level components
are placed on the lines of this line system, in agreement with the rules defined by the SSLM.
Furthermore, the locations of higher—order components are assumed to form a (non-marked)
stationary point process Xz = {X, },>1 in R? with intensity Az (cmp. Appendix A.2).

Later on in Section 5, we will assume that X is a doubly stochastic Poisson processs (also
called Cox process) whose (random) intensity measure is concentrated on the lines of the
underlying Poisson line pocess Xy; see Figure 2(b) and Appendix A.6. However, for the
purposes of Sections 3 and 4, this assumption is unnecessarily strong. Thus, for the moment,
we only assume that Xy satisfies the following conditions. Given Xj, consider independent
stationary and ergodic (linear) point processes on each line of X, and let Xy be the super-
position of these point processes. It is well known that their (linear) intensity \;, measured
along the lines of X, is connected to the (full-dimensional) intensity Ay via

)\H = )\1"}/. (2.1)

Furthermore, suppose that each location X,, of a higher—level component has an influence
zone Z(X,,) and that the sequence {E(X,,)},>1 forms a Voronoi tessellation induced by Xp.
If the process of higher—level components is given by a Cox process as described above we call
the Voronoi tessellation induced by Xy a Coz—Voronoi tessellation (CVT); see Figure 2(c)
and Appendix A.7.

Theorem 2.1 Let =% denote the typical cell of the Voronoi tessellation {=(X,,)}n>1 induced
by the stationary point process Xg = {Xn}n>1 of higher-level components. Then,

1

)\ = N T im0
LT Ex, i (L(EY)

(2.2)

where Ex,, denotes expectation with respect to the Palm probability measure P, of Xy
(cmp. (A.10)) and where L(Z*) denotes the (Palm) line system within the typical cell Z*.

Proof Using (2.1) and the fact that the mean area of the typical cell of X is the reciprocal
of Ay (cmp. (A.16)), we get immediately that

m = ]EXHVQ(E*) .
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(a) Poisson line process (b) Coz process

Figure 2: Poisson line process and Cox—Voronoi tessellation (CVT)

Furthermore, we have IEx,, (v1(L(E*))) = vIEx,v2(E*). This proves (2.2). O

Notice that, apart from Poisson line tessellations, the SSLM also allows for other choices of
geometry models, depending on the given real data; see [12].

2.2 Lower—level components and shortest paths

With respect to the placement of lower—level components two different scenarios are regarded.
In a first scenario, given Xy, the lower—level components are placed according to independent
Poisson point processes with (linear) intensity A2 on the lines of the Poisson line process
Xy; see Fig. 3(a). Then, the union {X,},>1 of all locations X, of lower-level components
forms a stationary (doubly stochastic Poisson) point process in IR? whose (planar) intensity is
denoted by Ar. Notice that similar to the situation considered in (2.1), Ay can be connected
to )\L via )\L = )\Q’y.

To exclude trivial cases, we always assume in this paper that 0 < Ay, A, < oo.

Let N(X,) denote the location of the nearest (in the Euclidean sense) higher-level component
of X,, and let P(X,,N(X,)) be the shortest path from X, to N(X,) along the edges of
the graph induced by the Poisson line process Xy; see Figure 4 and Appendix A.8. By
¢(P(X,,,N(Xp,))) we denote the length of the path P(X,,, N(X},)).

An important network characteristic of special interest is the mean shortest path length,
i.e., the average distance with respect to the underlying graph structure from the lower—level
components to their nearest (in the Euclidean sense) higher-level components. In order to
analyze this characteristic, each location X, of the lower-level components is associated with
the mark ¢(P(X,, N(X,))) > 0. This leads to the stationary marked point process (cmp.
Appendix A.3)

Xp = {[Xn, o(P(Xo, N(Xa)) a1 (2.3)
whose mark space is the non—negative z—axis [0, c0).

In a second scenario, the lower—level components are not placed on the edges, but into the
cells formed by the Poisson line process Xy, according to an independent (stationary) Poisson
point process { X! },>1 in R? with (planar) intensity A;. Afterwards, for each n, the location
X of the nth lower-level component is connected with the location N (X)) of its nearest (in
the Euclidean sense) higher-level component. This is done in the following way.
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Figure 3: Two scenarios for the placement of lower-level components
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Figure 4: Some sample shortest paths from a lower—level to a higher-level component

Let E,, = Z(N(X],)) be the Voronoi cell of N(X],) and let L(Z,,) denote the restriction of the
Poisson line process Xy to =,. Then, the location X/, is first connected to its nearest point
of the line system L(Z,); see Figure 3(b). This “projection point” is denoted by X,/. We are
interested in the mean subscriber line length, representing the average shortest distance of the
projected points X on the lines to the locations N (X)) of their higher-order components,
with respect to the underlying graph structure induced the Poisson line process X,;. Again,
these distances can be expressed via the marks ¢(P(X],, N(X}))), attached to the locations
X/ of lower-level components. However, in this second placement scenario, one can split up
the marks according to

c(P(X5, N(X7))) = ¢ (X5, X7) + ¢(P(Xy, N (X)), (2.4)

where ¢/ (X, X is the cost value of the “edge” with respective endpoints X/, and X/. Note
that in Section 5, we assume ¢/(X/,, X)/) = 0 in order to enhance the clarity of presentation.

3 Mean shortest path length

In this section we investigate the mean shortest path length for the first location scenario of
lower—level components described in Section 2.2.
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3.1 Simulation methods

At first glance, a natural approach in order to practically analyze the mean shortest path
length seems to be the following procedure. First, simulate the network in a N(suppogedly
large) sampling window W C IR?, then compute the shortest path length c¢(P(X,, N(X,)))
for each location )Z'n of lower—level components generated in the sampling window, and,
finally compute the average cr (W) of these shortest path lengths, where

crg(W) = — > Iw (Xn)e(P(Xp, N (X)) .- (3.1)

However, it becomes very rapidly clear that this method has some distinct disadvantages. If
the sampling window W is too small, the problem of edge—effects is significant. If, on the
other hand, W is large, the computational problem arises that a lot of memory and runtime
is needed for single simulation runs.

Therefore, we propose an alternative approach by using the Palm probability measure P’y
of the stationary marked point process X; = {[Xy,c(P(Xn, N(Xn))]}n>1; see (2.3) and
(A.10). This alternative approach is based on the following asymptotic property of the
random variable ¢z (W) defined in (3.1). Let {W;};>1 be a so—called averaging sequence of
unboundedly increasing sampling windows; see [8]. Then, by the ergodicity of the stationary
marked point process X, we have that

11— 00

holds with probability 1, where

G = Am ]EZ 15(X,)e(P(X,, N(X,))) = Ex, ¢(P(o, N(0))). (3.3)

n>1

Recall that the symbol B in (3.3) means an arbitrary (bounded) Borel set B € B(IR?) with
0 < 1»(B) < oo and Ex, denotes expectation with respect to the Palm probability measure
IP%, introduced in (A.10).

Thus, motivated by the limit theorem given in (3.2), we will compute the expectation ¢} ;; =
Ex, ¢(P(0o,N(0))), which will be much easier than computing the average crr (W) given in
(3.1). Moreover, by Neveu’s exchange formula stated in Theorem A.1, we can express cj ;
in an even more favorable way; see Section 3.2.

3.2 Application of Neveu’s formula

The following result admits a practically more feasible representation of the expectation
¢y = Ex,c¢(P(o,N(0))) appearing in (3.2) and, in the consequence, a more efficient way to
approximately compute the mean shortest path length ¢z (W) considered in (3.1).

Theorem 3.1 Consider the point process Xy = {Xn}nzg of logations of higher—level com-
ponents and the (marked) point process X1, = {[Xpn, c(P(Xyn, N(Xp)))|}n>1- Then,

Ex, ¢(P(o,N(0))) = Ex, /L(:*) c(P(u,0))du, (3.4)

Ex;,v1(L(Z))

where =* denotes the typzcal cell of the Voronoi tessellation induced by Xy and L(Z*) is the
(Palm) line system within =*.
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Figure 5: The intensity of lower-level components

A proof of Theorem 3.1 is given in Appendix B. Notice that Theorem 3.1 is a consequence
of Neveu’s exchange formula for Palm distributions (cmp. A.11 and [19]). Neveu’s exchange
formula is a very widely used tool in different kinds of applications in order to express the
relationship of expectations for functionals of two stationary point processes with respect to
their Palm distributions ([2], [5], [18], [21]).

By (3.4), we can further simplify the computation of the mean shortest path length cz g (W)
considered in (3.1). Namely, instead of computing the expectation ¢} ;; = Ex, ¢(P (0, N(0)))
appearing in (3.2), we will estimate the quotient of expectations on the right—hand side of
(3.4). For doing so, we just have to simulate the typical serving zone Z* of higher-level
components, together with their corresponding (typical) line system, where L(Z*) denotes

this line system restricted to =*.

We also remark that the expression for Ex, ¢(P (0, N(0))) given in (3.4) can be alternatively
written in the form

Ex, c(P(o, N(0))) = M Ex,, /L . clPlmo) du. (3.5)

which immediately follows from Theorems 2.1 and 3.1. This shows in particular that the
expectation Ex, ¢(P(0, N(0))) does actually not depend on \g; see also Figure 5.

3.3 Computational algorithm

In order to get an estimator ¢z for ¢ ;;, we use the expression (3.4) derived in Theorem 3.1.
The idea is to simulate the typical Voronoi cell Z*; and the (typical) line system L(Z*), a
certain number of times, k say. Furthermore, we partition the line system L(Z}) in =¥ for

1 =1,...,k into its line segments E; = {Si(l), Si@).., Si(Mi)}, where M; is the total number of
line segments in = for 1 < ¢ < k. Notice that the line which contains the origin is subdivided
into two segments; see Figure 6(a).

Hence, taking classical sample means, we get that limy_.. ¢ (k) = ¢} ;; with probability 1,

where
1 1 o
cru(k) = 1 = Z Z;Z;/S.(” ¢(P(u,0))du,
5 vni(L(E)))  =ti=tTm

i=1
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l.e., 1 -
(k) = ———— > > / , €(P(u,0))du. (3.6)
5 n(e(E) =57

Notice that the intensity A is known in some cases. Then, alternatively, we can use the
relationship (3.5) in order to get still another estimator érp (k) for cj 5, where

¢(P(u,0))du. (3.7)

In both cases, it remains to know how the integrals on the right-hand sides of (3.6) and (3.7),
respectively, can be computed. This is shown in the following theorem, where some additional
assumptions will be made on the cost function ¢ : E — [0, 00) introduced in Section A.8.

Theorem 3.2 Suppose that the values c(e) of the cost function ¢ : E — [0,00) only depend
on the lengths of the edges e € E and that c(e) is monotonously increasing with respect to the
length of e, where c(e) = 0 if v1(e) = 0. Let S = S(A, B) be a line segment with respective
endpoints A and B, and let g = ¢(P(B,0)) — ¢(P(A,0)). Then,

c¢(P(A,B)) > |ds] - (3.8)
Moreover, there exists a point D € S such that
c¢(P(A,0)) + c(P(D,A)) =c(P(B,o)) + c¢(P(D, B)) (3.9)
and
A
/ c¢(P(u,0))du = ¢(P(A,0))vi(D— A)+ / c¢(P(A,u))du
S D
B
+c(P(B,0))v1(D — B) + /D ¢(P(B,u))du. (3.10)

Corollary 3.3 If ¢(S) is the length of the segment S = S(A, B), i.e. ¢(S) = v1(S), then

/S e(P(u,0)) du = F((8): c(P(A(S), 0)), c(P(B(S),0))) (3.11)

where 1 1 1
f(z:61,60) = sz + 5(01 + 62)z — 1(92 —60)%. (3.12)

Proofs of Theorem 3.2 and of Corollary 3.3 are given in Appendix B.

If c(e) = vi(e) forany e € E; fori =1,...,k and k > 1 then by Corollary 3.3, we immediately
get the following final expressions for the estimators ¢z (k) and érp (k).

Corollary 3.4 For each k > 1 let E; = {Si(j)}?iil be the partion of the line system L(ZY)
restricted to the ith typical cell E: fori=1,...,k and let AZ(-j) and Bi(j), respectively, denote
the endpoints of the segment SY), Then,

i

k M; ‘ | |
cru (k) = k; 2.0 Fr(S9); (P(AD), 0), (P(BY, 0)) (3.13)
> m(L(E) =
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(a) Partitioning of L(E}) into segments (b) Mean shortest path length for single segment

Figure 6: Partitioning and weighted mean shortest path length

and Y | | |
cLn(k) =T D0 F0n(S7):e(P(A7),0).c(P(B ,0)). (3.14)
i=1 j=1

where the function f is given in (3.12).

By the representation formulae (3.13) and (3.14), it suffices to compute the path lengths
C(P(AZ(])),O) and c(P(Bi(J)),o) for j = 1,...,M; and ¢ = 1,...,k in order to determine
the estimators ¢r (k) and ¢ (k). This can be done, for example, by applying Dijkstra’s
algorithm; see Section 5 below.

4 Mean subscriber line length

In this section we consider the case, where the lower—level components are not placed on the
edges, but into the cells formed by the Poisson line process Xy, according to an independent
(stationary) Poisson point process { X/, },>1 in R? with (planar) intensity A ; see Section 2.2.

Recall that, for each n, the location X of the nth lower-level component is connected with
the location N(X]) of its nearest (in the Euclidean sense) higher-level component. For
this purpose, X/ is first connected to its nearest point X, of the line system L(Z,), where
E, = E(N(X],)) is the Voronoi cell of N(X/,) and L(Z,,) denotes the restriction of the Poisson
line process Xy to =,,.

An interesting characteristic is the so—called mean subscriber line length

1 W) = e 2 5 Iwl(X1) e(PXL N X)) (41)

for some sampling window W C IR?, where the cost value ¢(P(X!, N(X!))) of the shortest
path from X/ to N(X])) is given in (2.4).

10
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4.1 Simulation and usage of Neveu’s formula

In order to practically analyze the mean subscriber line length drz (W), we propose an ap-
proach which is analogous to that considered in Section 3, i.e. an approach based on the Palm
probability measure IP%, of the stationary marked point process X; = {[X},,c(X])]}n>1,

L

where ¢(X]) = ¢(P(X],,N(X],))).- Then, by the ergodicity of X/, we have that

lim dpg(W;) =dry (4.2)
1—00
holds with probability 1, where {W;};>; is an averaging sequence of unboundedly increasing

sampling windows and
* 1 / / / o
dry = 3B IE; Ip(X5,) c(P(X5,, N(X,))) = Ex; c(P(o,N(0))) (4.3)

for some (bounded) Borel set B € B(IR?) with 0 < v5(B) < oc.

Furthermore, applying Neveu’s exchange formula (A.11), we get the following expression for
the expectation IEy, c(P(o,N(0))) appearing in (4.3).

Theorem 4.1 Consider the point process Xy = {Xy,}n>1 of higher-level components and
the (marked) point process X; = {[X],,c(P(X},N(X})))]}n>1- Then,

Ex; ¢(P(o,N(0))) = ]EX+2(E*) Ex, /:* ¢(P(u,0))du, (4.4)

where Z* denotes the typical cell of the Voronoi tessellation induced by Xy .

A proof of Theorem 4.1 can be found in Appendix B.

4.2 Computation via inner Voronoi cells

Using (4.3) and (4.4), we get an estimator dpy for the limit d;j j; considered in (4.2). Again
we start by simulating the typical line system and the typical Voronoi cell =* with respect to
the higher—level components k times, getting k& independent and identically distributed copies
El,..., 85 of 2%, where k > 0 is an arbitrary fixed integer. In Figure 7 two samples for the
typical Voronoi cell are displayed. Apart from the nucleus (thick dot), the cell itself (thick
lines), and the underlying line system (medium lines), the so—called inner Voronoi tessellation
with respect to the underlying line system is displayed (thin lines). The cells of the inner
Voronoi tessellation are formed with respect to the edges of the cells of the underlying line

system.

Notice however that there are no inner Voronoi cells with respect to the boundary of the
typical Voronoi cell =*, since obviously, a lower—level point should be projected solely to a
segment of the underlying line system L(Z*) restricted to Z*. For example, in the realization
of the typical Voronoi cell =* shown at the right-hand side of Figure 7, all points of the small
triangle in the left—upper corner are projected onto an ,isolated” segment of the line system
L(Z*). This means that the shortest path from these points to the corresponding higher—level
component, located at the origin, is not completely contained in the typical Voronoi cell Z*.

11
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Figure 7: Samples for the typical Voronoi cell with underlying line structure and inner Voronoi
tessellation

AS)=Y S B(S)

Figure 8: Decomposition of the micro—cell ¥ into three subsets ¥ 4, Up, and V¢

By the inner Voronoi tessellation, the typical cell is decomposed into a (random) number
K of “micro—cells”, {\Il(j)}jzl,m, Kk say, where each of these micro—cells ¥ corresponds to a
segment S = S(A, B) of the line system L(Z*), whose endpoints are denoted by A and B,
respectively. This means that S itself is an edge of two micro—cells.

Each micro—cell ¥ is further decomposed into three non—overlapping subsets ¥4, ¥p, and
U, respectively; see the example given in Figure 8. In this example, we have A(S) = ¥4 and
the thick line on the right is part of the boundary of the typical Voronoi cell =*. Moreover, the
locations of lower—level components in ¥p are connected with the endpoint B(S), whereas
the locations in W¢ are projected onto S.

If the origin belongs to the interior of the line segment S, then S is decomposed into two
subsegments with endpoints (A,0) and (o, B), respectively, and V¢ is split into two sets
corresponding to these two subsegments.

Owing to the fact that for each ¢ = 1,...,k, the inner Voronoi tessellation completely sub-

12
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divides the i¢th copy =
classical sample means, we get that limy_, d (k) = dz y With probablhty 1, Where
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Notice that the expression for Ex: ¢(P(o, N(0))) given in (4.4) can be alternatively written
in the form

Ex; c(P(o,N(0))) = A7 Ex, / c(P(u,0))du. (4.6)

=k

Thus, if \; and v are known, an alternative estimator dyz for dj ;; is given by

drm (k) = My — ZZ/(J) . (4.7)

=1 j=1

As stated in Section 2.2 we suppose in the remaining part of this paper that the cost value
(X!, X!) of the “edge” with respective endpoints X/ and X! is equal to zero. By (2.4), we
then have that

o(P(X,, N(X))) = e(P(X}, N(X}))).-

Furthermore, for the integrals appearing in (4.5) and (4.7), we have

/I/z(.j) c¢(P(u,0)du = /I/z(.j) c(P(up,0)du,

where u,, denotes the closest point, seen from u, of the line system L(Z}) within the set \Ifgj ),
The following (obvious) result shows a way how these integral can be computed numerically.

Theorem 4.2 Let ¥ be a micro—cell within the typical cell =* and let S = S(A, B) be the cor-
responding segment with endpoints A and B, respectively, of the underlying line system L(Z*)
restricted to Z*. Then, with the abbreviation ca(S) = ¢(P(A,0)) and cg(S) = ¢(P(B,0)),

/ c(P(u,0))du = ca(S)r2(¥a) + cp(S)ra(¥p) + / c(P(u,0))du. (4.8)
v Ve

The proof of Theorem 4.2 immediately follows from additivity of the Lebesgue integral with
respect to the domain of integration.

Notice that the first two summands on the right-hand side of (4.8) can be easily computed if
Dijstra’s algorithm is used in order to determine c4(S) and cp(S), respectively; see Section 5
below. With regard to computation of the third summand f}(¥¢), we can proceed similarly
as in the proof of formula (3.10) derived in Theorem 3.2 (cmp. Appendix B), however it might
be necessary to subdivide W in order to obtain “linear functions” as integrands. Furthermore,
in case ¢(X,,, X)/) > 0, the integrands in the integrals occuring in (4.8) have to be replaced.
Then the computation is a little more challenging however not a principal problem.
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(b) Same realization for different values of A1 and ~

but same quotient k

(a) Realization of CVT and underlying lines

Figure 9: Scaling of CVT and underlying line structure
5 Numerial analysis

In this section we present numerical results for the two regarded network characteristics of
mean shortest path length and mean subscriber line length, respectively. We start however by
a brief discussion of scaling properties and run—time issues of the algorithms and by pointing
out possible tests of their random outputs. Recall that in this section we assume Xy to be
a doubly stochastic Poisson process as pointed out in Section 2.1. Then, the whole model is
completely described by the three parameters Az, A\; and 7. Besides this we assume that ¢(.5)
is the length of the segment S, i.e. ¢(S) = v1(S). Due to the fact that in our case all cost
functionals are almost surely positive, we applied Dijkstra’s algorithm for the computation of
shortest path lengths; see [13]. Notice that this algorithm provides both the shortetst path
itself as well as its length.

5.1 Scaling properties of CVT

As it has already been explained in [11], with respect to the two remaining parameters \;
and 7, a scaling invariance property holds for any fixed value of the quotient kK = /1.
In particular suppose that v = ay(® and \; = a,)\go) for some 4O, X© > 0, fixed and
a > 0. Then, with respect to the typical cell =* of the corresponding Voronoi tessellation,
the expected number of vertices is constant, whereas the expected perimeter and the square
root of the expected area of the typical cell grow linearly, proportionally to a~!; see Figure 9.

Furthermore, the following scaling property shows that it is possible to provide estimates
for the characteristics described in Sections 3 and 4 corresponding to a given parameter pair
(7, A1) by using estimates for a different parameter pair having the same quotient x and by
performing a suitable standardization afterwards.

Theorem 5.1 For any pair (y,\1) of parameters v,\; > 0, consider the (ergodic) limits
=gy, ) and d5 ;= d; (v, A1) given in (3.2) and (4.2), respectively. Then

* * 2
’Y(l) CLH(7(1)= )\51)) = 7(2) CLH(7(2)7 )\g )) (5-1)
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and
O & (YD AN = 4@ g (@ AP (5.2)

provided that 7(1)/)\9) = 7(2)/)\52).

A proof of Theorem 5.1 is given in Appendix B.

5.2 Run-time issues

Even though it is not necessary to simulate lower—level components if we use our simulation
technique as described in the previous sections, the most limiting factor with regard to
run—time is the computation of shortest path lengths c4(S) = ¢(P(A(S),0)) and cp(S) =
c¢(P(B(S),0)) by Dijkstra’s algorithm. This computation has to be performed for a certain
set of vertices of the underlying line system as well as for their intersection points with
the boundary of Z* and is of order O(nlogn), where n is the size of the set of vertices in
the corresponding graph. By this fact one can easily see that the possibility to omit the
simulation of lower—level components is a huge advantage, since not only the simulation itself
is no longer necessary, but also the application of Dijkstra’s algorithm becomes much faster,
in particular for larger values of Ay. Notice however that, especially for large k = v/Aq,
run—times can become very long, because in such a case the size of the set of vertices of the
graph considered above can become quite large. On the other hand, if « is quite small, there
are few lines but relatively many higher—level points on them. From a practical viewpoint,
this does not seem to be a very realistic assumption. Therefore, we restrict our investigations
to k € [10,120].

5.3 Tests of implemented algorithms

Since outputs of our implemented algorithms are random, traditional testing procedures are
not very suitable to ensure correct results. Instead, methods of testing random software
have to be applied. Some examples for such tests will be mentioned in the following. For
a detailed discussion of random software testing see e.g. [16]. Testing procedures for the
correctness of the simulation of the typical Cox—Voronoi cell =Z* have been discussed in detail
n [11], therefore, only a short summary is given of the three different investigated methods
of testing. As a first method tests using known formulae were considered, in particular it was
tested if the algorithm provides correct estimates for the mean area (A1) ™! of Z*. As a second
method the results for the algorithm were compared to results for another (already tested)
algorithm and as a third method the scaling invariance property mentioned in Section 5.1
was used to construct tests for the correctness of the implemented algorithm.

Similarly, Theorem 5.1 has been used to construct tests for the mean shortest path length
and the mean subscriber line length, respectively. The null-hypothesis of such tests state
that (5.1) resp. (5.2) holds, where it is assumed that v = ¢~y and )\gz) = a)\gl) for some
a > 0.

All of these tests are based on classical asymptotically Gaussian distributed test statistics.
The tests showed good results overall, hence we may assume that the implemented algorithm
works correctly for the construction of the typical cell and the underlying line structure as
wells as for the computation of the mean shortest path length and the mean subscriber line
length.

15



Analysis of Network Characteristics

50

& I
LH diHgo ]

40-|
30|

20

1y 1y

(a) Mean shortest path length (b) Mean subscriber line length

Figure 10: Network characteristics for £ = 10 (0), k = 50 (+) and k = 120 (o)

5.4 Numerical results

With regard to the estimation of mean shortest path length as well as mean subscriber line
length we used k& = 50000 iterations. Figure 10 shows a visualization of the scaling invariance
effect for the mean shortest path length and the mean subscriber line length (without last
meter). If we take k to be fixed for different values of , then the estimated results for ¢}
as well as for dj ;; are proportional to 1/v. Therefore the graphs displayed in Figure 10 for
k =10, k = 50, and x = 120 are linear and should pass through the origin. Of course, the
latter property can not be directly checked since it means that v — oo.

In Table 1, the corresponding estimated values for ¢} ;; and dJ ;; are displayed. A first impor-
tant observation one can make, is that for the same parameter pair (v, A;) we always have
that ¢} ;; < dj ;. If K increases, the quotient ¢} ;;/dj ;; also slightly increases, meaning that in
this case the mean shortest path length becomes larger in relation to the mean subscriber line
length; see Table 2. Another interesting observation is that for both characteristics values
seem to increase for increasing . Obviously this is due to the fact that the expected area
Evy(E*) of the typical cell Z* of the Cox—Voronoi tessellation also increases. Therefore it
is worth looking at Table 3, where the characteristics are scaled by the square root of the
expected area for the typical cell, i.e. by (A1)~ /2. Here, the observation is that for increas-
ing k, the regarded quotient is decreasing for the mean shortest path length as well as for
the mean subscriber line length. A possible explanation for this is that for increasing « and
constant expected area of the typical cell, the number of lines in the typical cell increases.
Therefore, with regard to mean shortest path length and mean subscriber line length, the
value decreases. Another possible explanation for this is that, as it was shown in [11], the
mean perimeter of the typical Cox—Voronoi cell =* decreases for increasing « under the con-
dition that IE(v5(Z*)) is kept constant. This results in typical cells being more regularly
shaped in average and therefore values for the regarded functionals tend to be smaller.

Recall that by Theorem 5.1 we have

cLu (v A1) = m(K) 4~ (5.3)
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Table 1: Estimates of mean shortest path length ¢} ;; and mean subscriber line length dj ;;
(without last meter) for different values of ~y

(a) k=10 (b) kK =50 (c) k=120
‘ B H CLu ‘ di g ‘ ‘ 2 H CLu ‘ dig ‘ ‘ 0 H CLu ‘ di g ‘
0.125 || 17.355 | 23.894 0.125 || 36.074 | 47.494 0.125 || 53.355 | 68.841
0.25 8.615 | 11.870 0.25 17.972 | 23.665 0.25 || 26.641 | 34.360
0.4 5.409 7.435 0.4 11.267 | 14.815 0.4 16.699 | 21.502
0.5 4.323 5.950 0.5 9.003 | 11.857 0.5 13.317 | 17.191
0.8 2.711 3.726 0.8 5.618 | 7.397 0.8 8.310 | 10.723
1.0 2.169 | 2.981 1.0 4.499 | 5.920 1.0 6.668 | 8.609
1.25 1.727 | 2.374 1.25 3.600 | 4.735 1.25 5.316 | 6.865
1.5 1.440 1.974 1.5 2.996 3.942 1.5 4.427 | 5.710

Table 2: Quotient of estimated mean shortest path length ¢}, and mean subscriber line
length d7 ;; for different values of

K 10 | 20 | 30 | 40 | 50 | 60 | 90 | 120
Ca/dig 1| 0727 10.739 | 0.751 | 0.756 | 0.760 | 0.763 | 0.770 | 0.775

Table 3: Estimates of the mean shortest path length ¢} ;; and the mean subscriber line length

d;  scaled by \/IE(v2(Z%))

K 10 | 20 | 30 | 40 | 50 | 60 | 90 | 120
&/ VEW2(E9) || 0.686 | 0.667 | 0.653 | 0.644 | 0.638 | 0.632 | 0.617 | 0.609
&5 11/ V/E((E9) || 0.944 [ 0.903 | 0.870 | 0.852 | 0.840 | 0.828 | 0.801 | 0.786
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Figure 11: Estimates for the slopes m(x) and m/(x) for different x and the fitted function

and
di (v, ) =m/(k)y (5.4)

where m(x) and m’(k) are constants depending only on the quotient x = v/A;. If we return
to the graphs displayed in Figure 10, we can obtain the estimates m(x) and m’(k) for the
slopes m(x) and m/(k) of the lines for x constant and 1/ variable.

The knowledge of m(x) and m/(k) thereby leads to the possibility of estimating the mean
shortest path length and the mean subscriber line length without having to do simulations for
any given parameter pair (7, A1), since then, only these parameter values need to be plugged
into (5.3) and (5.4) to obtain estimates for ¢} ; and dj ;. Computationally these slopes
are estimated for certain discrete values of k and subsequently a function is fitted using the
measurement points. Figure 11 displays some values of estimated slopes as well as a fitted
function. Regarding the estimated values we used

b and m/(k) = d'k”,

m(k) = ak
where a,a’ € R and b,V € (0,1]. Using the least squares method we obtained a = 0.7739, b =
0.450 and a’ = 1.1242, b’ = 0.425. For applications this induces an easy way to compute mean
shortest path lengths and mean subscriber lengths without performing any furter simulations.
For example, if we take the two model parameters to be v = 2 (mean length of the line system
per unit area) and A\; = 0.04 (mean number of higher—level points per unit area) we directly
obtain esimates m(50) = 4.5001 and m/(50) = 5.9280 that lead to estimates for ¢} (v, A1)
and dj ; (v, A1) given by 2.2501 and 2.9640, respectively.

6 Discussion and outlook

In this paper we presented efficient techniques for the estimation of mean shortest path
length and mean subscriber line length in two-level hierarchical models, using Monte Carlo
simulation. In particular, the formulae given in Section 5.4 provide a fast and efficient way
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to precisely estimate these characteristics without performing any further simulations for any
pair of model parameters v, A;. Apart from the numerical results, certainly of interest in
their own right, the techniques introduced in this paper are useful for the simulation and
estimation of similar characteristics for more sophisticated models. In this context we would
like to mention some different possible extensions.

First of all, often the distribution (additionally to the expectation) of the mean shortest path
length and mean subscriber line length, respectively, are of interest. This might for example
be useful with respect to a risk analysis based on tail probabilities. Notice that distributions
for these characteristics can be obtained in a very similar fashion compared to expectations,
thereby recycling most of the tools given here.

Secondly, in some cases there might arise a need of extending the underlying geometry model,
since, depending on real data, sometimes other tessellation models or models that are more
complicated, like iterated tessellations, might be a better choice for an underlying geometry
model as the Poisson line tessellations regarded here. Especially in the case of iterated tessel-
lations ([15]) whose initial tessellations are of Poisson line type, our simulation techniques of
the network characteristics demand only slight adaption. For other tessellation types, further
modifications are needed, but notice that the computation formulae for network character-
istics still hold as long as the placement of network components is performed using Poisson
processes. Hence, regarding these aspects, no modifications have to be done.

Finally it might be of interest to regard more than two levels of hierarchy. At least approxi-
mative formulae can be provided in the case of such multi-level models. If there is a need to
be more exact, the simulation of the components of the different levels might become neces-
sary. In the context of cost analysis by using simulation studies, and regarding the fact that
the associated software becomes more and more complex, the topic of random software tests,
as it was briefly mentioned in Section 5 will become more and more important. With regard
to the algorithms used throughout this paper, we performed a lot of test series in order to
be quite sure that our algorithms are correctly implemented.

In summary, we think that the topics described in this paper, together with the techniques
described in [12] for fitting random tessellation models to real data are a first step towards an
efficient and fast cost analysis tool for telecommunication access networks, based on models
of random geometry.

Acknowledgements. This research was supported by France Télécom R&D through research grant
No. 423668 97. The authors are grateful to Michael Rosch for his help in performing the simulations,
which lead to the numerical results.

References

[1] F. BACCELLI AND B. BLASZCZYSZYN (2001). On a coverage process ranging from the Boolean
model to the Poisson-Voronoi tessellation. Advances in Applied Probability 33, 293-323.

[2] F. BAacceLLl, C. GLOAGUEN, AND S. ZUYEV (2000). Superposition of Planar Voronoi Tessel-
lations. Communications in Statistics, Series Stochastic Models 16, 69-98.

[3] F. BacceLLl, M. KLEIN, M. LEBOURGES, AND S. ZUYEV (1996). Géométrie aléatoire et ar-
chitecture de réseaux. Annales des Télécommunication 51, 158-179.

[4] F. BAccELLIL, D. KOFMAN, AND J.L. ROUGIER (1999). Self organizing hierarchical multicast
trees and their optimization. Proceedings of IEEE Infocom 99, 1081-1089, New York.

19



Analysis of Network Characteristics

[5]
[6]
7]

18]

[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]

[20]
[21]
[22]

[23]

A

F. BACCELLI AND S. ZUYEV (1996). Poisson-Voronoi spanning trees with applications to the
optimization of communication networks. Operations Research 47, 619-631.

B. BrAszczyszyN AND R. ScHOTT (2003). Approximate decomposition of some modulated
Poisson—Voronoi tessellations. Advances in Applied Probability 35, 847-862.

B. B1ASZCZYSZYN AND R. SCHOTT (2005). Approximations of functionals of some modulated
Poisson—Voronoi tessellations with applications to modeling of communication networks. Japan
Journal of Industrial and Applied Mathematics, 22(2), 179-204.

D.J. DALEY AND D. VERE-JONES (1988). An Introduction to the Theory of Point Processes.
Springer, New York.

R. DIESTEL (1997). Graph Theory. Springer, New York.

C. GLOAGUEN, P. CouPE, R. MAIER AND V. SCHMIDT (2002). Stochastic modelling of urban
access networks. In Proc. 10th Internat. Telecommun. Network Strategy Planning Symp. (Munich,
June 2002), VDE, Berlin, 99-104.

C. GLOAGUEN, F. FLEISCHER, H. SCHMIDT AND V. SCHMIDT (2005). Simulation of typi-
cal Cox-Voronoi cells with a special regard to implementation tests. Mathematical Methods of
Operations Research 62(3), 357-373.

C. GLOAGUEN, F. FLEISCHER, H. SCHMIDT AND V. ScHMIDT (2006). Fitting of stochastic
telecommunication network models, via distance measures and Monte-Carlo tests. Telecommu-
nication Systems 31, 353-377.

D. JUNGNICKEL (1997). Graphs, Networks and Algorithms. Springer, Berlin.

R. MAIER (2003). Iterated Random Tessellations with Applications in Spatial Modelling of
Telecommunication Networks. Doctoral Dissertation, University of Ulm.

R. MAIER AND V. SCHMIDT (2003). Stationary iterated tessellations. Advances in Applied Prob-
ability 35, 337-353.

J. MAYER AND R. GUDERLEI (2004). Test oracles and randomness. Lecture Notes in Informatics
P-58:179-189, Kollen Druck+Verlag GmbH, Bonn.

J. MAYER, V. SCHMIDT AND F. SCHWEIGGERT (2004). A unified simulation framework for
spatial stochastic models. Simulation Modelling Practice and Theory 12, 307-326.

M. Mriyazawa (1995). Note on generalizations of Mecke’s formula and extensions of H = AG.
Journal of Applied Probability 32, 105-122.

J. NEVEU (1976). Processus ponctuels. In A. Dold and B. Eckman (eds): Lecture Notes in
Mathematics 598, Springer, Berlin, 249-445.

R. SCHNEIDER AND W. WEIL (2000). Stochastische Geometrie. Teubner, Stuttgart.
R. SERFOZO (1999). Introduction to Stochastic Networks, Springer, Berlin.

D. STovAaN, W.S. KENDALL AND J. MECKE (1995). Stochastic Geometry and its Applications.
2nd ed., J. Wiley & Sons, Chichester.

K. TCHOUMATCHENKO AND S. ZUYEV (2001). Aggregate and fractal tessellations. Probability
Theory Related Fields 121, 198-218.

Mathematical background

In this section, the basic notation used in the present paper is introduced. Furthermore, we briefly
explain the notions and some properties of random point processes and random tessellations, serving
as models for the network components and for the network geometry, respectively. The notions of
graphs and shortest paths are also mentioned. For a more detailed discussion of the topics mentioned
here, the reader is referred to [9], [13], [19], [20], and [22], for example.
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A.1 Basic notations

In the following, let R be the set of real numbers and let IN be the set of positive integers, which is
extended by INg = INU {0} to the set of all non—negative integers.

The abbreviations int B, 0B, and B¢ are used to denote the interior, the boundary, and the comple-
ment of a set B C R?, respectively, where R? denotes the 2-dimensional Euclidean space. For any
vector z = (z1,22) in R? we define the Euclidean norm ||.|| : R* — [0, 00) by

llal| = (22 +23)". (A1)

Furthermore, B,.(r) and BZ () denote, respectively, the 2-dimensional closed and open ball centered
at z € R? with radius » > 0,i.e. B.(z) = {y € R?: |[|[z—y|| <7} and B (z) = {y € R? : ||z—y]| < r}.

On R? we define two topological groups, namely the group t, : y — y + x of all translations for
z € R? and the group ¥r : y — Ry of all rotations around the origin, where R denotes a 2 x 2-
matrix, orthogonal and with det R = 1. This allows us to introduce the following operations on sets
B C R?, the translation t,B = {y + = : y € B} for € R? and the rotation 9zB = {Ugz : x € B}
around the origin o, respectively.

Furthermore, we introduce the families of all closed sets, compact sets, and convex bodies (compact
and convex sets) in R?, denoted by F, K, and C, respectively.

Recall that (R? B(IR?)) is a measurable space with B(IR?) denoting the family of Borel sets of the
R?. Furthermore, let BO(IRQ) denote the family of all bounded Borel sets in R?. Two prominent
examples of measures acting on (R?, B(IR?)) are given by the (2-dimensional) Lebesgue measure
vy : B(R?) — [0, 00], where we may interpret v5(B) as area of B for any Borel set B € B(R?), and by
(locally finite) counting measures ¢ on (IR, B(IR?)), respectively, where the latter measures can be
expressed by the (countable) sum ¢ = > | §,, for n € No U {oo}. Here, for + € R* and B € B(R?)
we call the probability measure §,(B) = Ig(z) on (R? B(IR?)) the Dirac measure. Notice that any
z € R? is called an atom of the counting measure ¢ if o({z}) > 0. Moreover ¢ is called simple if
o({z}) € {0,1} for z € R? and locally finite if for any compact set K € K we have that p(K) < co. In
the sequel we will consider only the set of simple and locally finite counting measures and therefore
we will denote this set by M = M(R?) equipped with the o—algebra M = M(R?), which is the
smallest o—algebra of subsets of M(IR?) containing all sets of the form {¢ € M(R?) : ¢(B) = j},
where j € Ny and B € BO(IRQ).

The support of ¢ is the set supp(p) = {z € R? : p({z}) > 0}, which is locally finite itself if ¢
is locally finite. Also we introduce the shift operator t, : M(R*) — M(R?) defined by t,p(B) =
o(t;1B) = p(t_,B) for = € R? as well as the rotation operator 95 : M (R*) — M (IR?) by 9re(B) =
¢(93'B) = ¢(9z-1B) for any rotation R around the origin.

Recall that a random closed set = in R? is a measurable mapping = : Q — F from some probability
space (2, A, IP) into the measurable space (F, B(F)), where B(F) denotes the smallest oc—algebra of
subsets of F that contains all sets { FF € F, FNK # ()} for any K € K. Particularly, the random closed
set E is called a random compact set or a random convex body if P(2 € K) =1 or P(E € C) =1,
respectively.

A.2 Planar point processes

Definition
A random point process X in R? is a measurable mapping X : Q — M from some probability space
(Q, A, P) into the measurable space (M, M), i.e. one way of looking at point processes is to regard

them as counting measures Zzesupp( x) 0= and, hence, interpreting X (B) as the (random) number

of points of X in B € B(]RQ). Notice that we can also identify a point process X with its support
supp(X) and, hence, get an alternative interpretation of X as a (planar) random closed set. Moreover,
it is sometimes also convenient to write X = {X,,},>1, which expresses X as a sequence X1, Xa,. ..
of random vectors X, : @ — R? for n > 1.
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Basic properties

The distribution of X is denoted by P x and defined by Px (4) = P(X € A) for A € M. We call the
point process X stationary if Px = IP;, x for any = € R?, i.e. if the shifted process t, X has the same
distribution as the original X. Moreover X is called isotropic, if Px = Py, x for any rotation ¥
around the origin, i.e. if the distribution of the rotated process ¥z X coincides with the distribution
of the original process.

Intensity measure
The intensity measure A : B(R*) — [0, 0] of a point process X is defined by

A(B)=EX(B), BeB(R?, (A.2)

i.e., A(B) is the expected number of points of X in B. If X is stationary and A is not equal to the
zero measure, it can be shown that A(B) = Avy(B), where A > 0 is called the intensity of X and can
be interpreted as the expected number of points per unit area, i.e. A = EX((0, 1]?).

Poisson point processes
Let X be a point process in R?, fulfilling

P(X(B) = k) = e AB) %@k , BeBy(R?),keNg, (A.3)

then X is called Poisson point process with intensity measure A.

A.3 Planar marked point processes

Definition

Marked point processes can be seen as a generalization of point processes, where each point is addi-
tionally equipped with a mark taken from some mark space D. More technically, one assumes D to be
a so—called Polish space and denotes by B(D) the o—-algebra of its Borel sets. Let Mp = M (]R2 x D)
be the set of all measures ¢ : B(R?) x B(D) — INo U {oc} which are simple and locally finite in the
first component, i.e., each ©» € Mp can be represented as

YBxG) = > Sum(BxG). (A.4)

[z,m]€supp(¥)

Finally, let Mp = M(R? x D) be the smallest o—algebra of subsets of Mp containing all sets of
the form {1 € Mp : (B x G) = j} for B € By(R?), G € B(D) and j € Ny. Then, the mapping
Xp : Q — Mp from (Q, A,P) into (Mp, Mp) is called random marked point process in R* with
mark space (D, B(D)) and can be represented analogously to (A.4).

Basic properties

The distribution of Xp is denoted by Px, and defined by Px,(A) = P(Xp € A) for A € Mp.
Again, it is often convenient to consider alternative representations of Xp, for example the repre-
sentation as a collection of random marked points, expressed by Xp = {[X,,, Dy }n>1, where both
X, :Q — R? and D,, : Q — D are measurable mappings. Xp is called independently marked
if {X,}n>1 and {D,},>1 are independent and beyond that {D,},>1 consists of independent and
identically distributed random variables. Stationarity and isotropy are now introduced with respect

to the first component of the marked point process Xp, i.e. Xp is stationary if Xp < {[ts X0, D]}

for all z € R? and isotropic if Xp 4 {[9rXn, Dy} for all rotations ¥ around the origin, where 4
denotes equality in distribution.

Intensity measure
The intensity measure Ap : B(R?) x B(D) — [0, o] of a marked point process Xp is defined by

Ap(BxG)=EXp(BxG), BeB(R?,GeB(D), (A.5)
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i.e.,, Ap(B x Q) is the expected number of points of Xp in B with a mark in G. In case of sta-
tionarity, analogous to stationary non—marked point processes, the intensity measure Ap admits the
decomposition (see [20], p. 89)

p(B xG) = A /R 2 /D Tp(z) Ig(m)P(dm)dz, B € B(R?),G € B(D), (A.6)

where A > 0 is again called intensity and P : B(D) — [0, 1] is the Palm mark distribution of Xp,
given by

P(G) = )\V;(B)IE S @) de(m), GeB(D), (A7)

[z,m]€supp(Xp)

for any B € B(R?) with 0 < v2(B) < co.

A.4 Neveu’s exchange formula

In the following we present Neveu’s exchange formula adapted to (marked) point process in R%. To
capture the randomness inherent in such a system of several random processes, we consider a so—
called flow {6, : = € R?} on the space Q, i.e. a family of bijective shift operators 6, : @ — Q such
that 6, o 0, = 0,4,, where o denotes the concatenation operator. Furthermore, we assume that the
mapping f : R? x Q — Q with f(z,w) = 6,w is measurable. For z € R? we assume that 6, is
compatible with our shift operator ¢, as defined in Section A.1, which means that

Xp(0sw, B x G) =t Xp(w, B x G) = Xp(w,t_oB x G) (A.8)

for any marked point process Xp : @ — Mp and all B € B(R?), G € B(D). Notice that then we can
get the stationarity of Xp by assuming that

P(0,A) =P, A) =P(A), (A.9)
for all A € A and = € R?, where 0,4 = {f,w:w € A}.
0)

Also, using the definition of the operator 6,,, we introduce the Palm distribution ]Pg(
marked point process Xp as the probability measure Py on A ® B(D) by

for a stationary

P% (A xG) )\1/2 /Q/R?xc ) Ta(0pw) X (w,d(x,g))P(dw) (A.10)

for any B € B(R?) with 0 < v2(B) < co.

Theorem A.1 (Neveu’s exchange formula) Let Xp and X be arbztmry stationary marked point

processes on R? with mark spaces D and D and intensities A and )\ respectively. Then, for any
measurable function f: R? x D x D x Q — [0, 00),

/ /2 (z,9, 9,9zw) 5w, d(z,9)P%, (dw,g))
A (A.ll)

5[ [ Ha g Xl d. )P, (de.).
QxD JR2xD D
A.5 Poisson line processes

Consider the space S of all affine 1-dimensional subspaces (lines) in R* andlet £L={L € S : 0 € L}.
A point process X in F' = F \ {0} is called a (planar) line process if for the intensity measure A of
X it holds that A(F"\ S) = 0. In case of stationarity, A can be disintegrated as follows. Suppose
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that A is locally finite and not equal to the zero measure. Then, there exists a constant A, € (0, 00)
and a probability measure © on B(L), called the orientation distribution of X, such that

A(B) =\ /L /L Ap(L+ )0 (de)O(dL) (A.12)

for any B € B(S), where v; denotes the 1-dimensional Lebesgue—measure on the orthogonal comple-
ment L+ € £ of L € £. In order to interpret the constant A\, we note that (A.12) yields

Ao = %]EX(LES LN Bi(o) #0). (A.13)

Hence 2), is the expected number of lines hitting the unit ball B;(0) centered at the origin and
with radius 1. In particular, we consider the case of X being a stationary and isotropic Poisson line
process. Then, X can be represented in the form X = >_ -, d¢, .. ,, where {R,} is a stationary
Poisson point process in [0,00) with intensity A, and where {V,,} is an independent sequence of
independent and identically distributed random variables with uniform distribution on [0,2 7). For
each line £, v, ), the angle V,, is measured in anti—clockwise direction between the positive x—axis
and the outer orientation vector of the line, whereas R, denotes the perpendicular distance of the
line to the origin. Notice that (A.12) can be written as

27 [e%}
A(B):;—fr /O /O 5(Cpy)drdv, B e B(S). (A.14)

Furthermore, each line £(g,, v, ) in R? can be described by its Hessian normal form LR, v, = 1(z,y) €
R? : zcos Vi +ysinV, = R, }. It is easy to see that the expected total length I Zn>1 V1 (K(Rn,vn) N
Bi(0)) of lines £(g, v, in the unit ball Bi(o) is given by mA,. Thus, v = A, is the expected total
length per unit area and called the intensity of the random closed set X, = (J,~; {(r,,v,)- For

simplicity, both X, and X = Zn21 de, vy are called Poisson line processes; see also Fig. 2(a).

A.6 Cox processes induced by Poisson line processes

In order to describe (doubly stochastic) point processes in R? located on the lines of Poisson line
processes, we use the concept of Coz processes. Such processes can be seen as a generalization of
(inhomogeneous) Poisson point processes in R?. More formally, let X, be a stationary and isotropic
Poisson line process with intensity v. Then, given X, the Cox process X, is a Poisson point process
in R? with (conditional) intensity measure A.(- | X;) = Av;(X¢N-) for some A > 0. In particular, X,
is a stationary and isotropic point process in IR? whose intensity measure A, satisfies the relationships

Ac()) = EX.() = AEv (X, N -) = Aera(-) (A.15)

where A\, = A is the intensity of X.. Furthermore, the point processes on the individual lines of the
Poisson line process X, are (1-dimensional) Poisson point processes with intensity A. Thus, A can
be interpreted as mean number of points per unit length of X,. In Fig. 2(b), a realization of a Cox
process is shown, induced by Poisson point processes on the lines of a Poisson line process.

A.7 Cox—Voronoi tessellations and typical cells

Planar tessellations

A tessellation in R? is a countable family T = {C), },>1 of convex bodies C), € C such that int C,, # 0
for all n, int C, Nint Cp, = 0 for all n # m, U5, Cn = R?, and > ns1 Liounrz0y < oo for
any K € K. Notice that the sets C,,, called the cells of 7, are polygons in R?. The family of all
tessellations in R? is denoted by 7. A random tessellation {Z,},>1 in R? is a sequence of random
convex bodies =, such that P({Z,},>1 € 7) = 1. Notice that a random tessellation {Z,,},>1 can
also be considered as a marked point process >_ -, dja(z,),z0], Where o : C' — R, ¢ =C\ {0}, is
a measurable mapping such that o(C) € C and a(C + ) = o(C) + z for any C € €’ and = € RY,
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and where 22 = =, — «a(E,) is the centered cell corresponding to =, which contains the origin.

The point «(C) € R is called the associated point of C' and can be chosen, for example, to be the
lexicographically smallest point of C.

Poisson line tessellations and induced tessellations

A Poisson line tessellation (PLT) is induced by a random Poisson line process X, in R? which
itself can be interpreted as an independently marked Poisson process on [0,00) x [0,27]. Generally,
the intensity vpr7 of a PLT coincides with the intensity of its generating Poisson line process (see
Section A.5) and, hence, can be interpreted as mean total length of edges per unit area. Based on
the doubly stochastic point process X, defined in Section A.6, a Cox-Voronoi tessellation can easily
be introduced by applying the nearest-neighbor principle to this type of point process; see Fig. 2(c).

Typical cell and zero cell of stationary tessellations

Suppose that the marked point process X, = anl dja(=,),z0) is stationary with positive and finite
intensity A\, = E#{n : a(Z,) € [0,1)?}. By P° we denote the family of all convex polytopes
with their associated point at the origin. Then, the Palm mark distribution Pg?i of X, is given by
P (B) = A E#{n : a(E,) € [0,1)% E% € B} for any B € B(F) N P°. Notice that a random
polytope =Z* : Q@ — P°, whose distribution coincides with IPg?z, is called the typical cell of X..
Furthermore, it holds that

ATl = / v2(C) PR (dC), (A.16)
7)0

i.e., the expected area Evy(Z*) = [, 12(C) ]ngj (dC) of the typical cell =* is equal to A7 1.

A.8 Graphs and shortest paths

A graph is a pair G = (V, E) of sets that satisfies E C [V]?, which means that the elements of E
are 2-element subsets of the finite set V', which contains at least two elements. The elements of V'
are called wvertices of the graph G, while the elements of E are its edges. With respect to a set of
edges F, a cost function ¢ : E — [0,00) can be defined that assigns to each edge e € E a cost value
c(e), for example its Euclidean length if v € R? for all v € V. A subgraph P with a vertex set
Vp = {vg, v1, ..., v} and edge set Ep = {vgv1, v102, ..., vs_10; } is called a path from the initial vertex
vp to the terminal vertex vy. If a corresponding cost function c is given, the (weighted) path length is

defined by
k

o(P) = Z c(vi-1, i) . (A.17)
i=1
If P(u,v) denotes all possible paths between the two vertices u and v, then the shortest path P(u,v)

between u and v is given as

P(u,v) = arg Pegi(r; ” ¢(P) (A.18)

The value ¢(P(u,v)) is often called the length or distance between u and v.

B Mathematical proofs

B.1 Proof of Theorem 3.1

Recall that both intensities Ay and A\, of X and X, respectively, can be expressed by A1, A2, and
v; see Section 2. In fact, we have

)\H = )\1’)/ and )\L = )\2’)/. (Blg)
Furthermore, consider the function f : R? x [0,00) x © — [0, 00) given by

¢ if Xg(0_,w, B‘;@H(z)) =0,

) (B.20)
0 otherwise

f(:c,c,w):{
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for any = € R?, ¢ = ¢(P(z,0)) > 0, and w € Q. Then, f(z,c,w) = c if —z € R? is an atom of the
counting measure Xy (w,.) such that there are no other atoms of Xy (w,.) which are closer (in the
Euclidean sense) to the origin o than —z. Thus, applying Neveu’s exchange formula (A.11), we have
that

Ex,dPo.NO) = [ [ f-0.0.0)Xn(odPk, (dw.9)

P (B.21)

] 0.0 X, d,g) P, ().
Q JR?2xD

Notice that given the typical Voronoi cell Z* and the (typical) line system L(Z*) within =*, the
(random) number of points of X, on L(Z*) is Poisson distributed with expectation n = Aavq1 (L(Z*)).
Thus, taking into account the definition of the function f given in (B.20), we get that the inner
integral on the right hand side of (B.21) can be expressed in the form

_ 77 Uu
z,q,0,w0) X1 (w,d(x, m— / / du . dug ,
| 000X dia.g) = ) §3V1 -~

due to the (conditional) uniform distribution of the lower—level components on L(Z*). Hence,

= 3 e ’777 # c(P(u,0))du
/RZXDf(l’,gyozw)XL(W,d(zag)); k! Vl(L(’_‘*)) /L(E*) (P( s ))d

=X /L(E*) c(P(u,0))du.

Putting things together, we get that

Ex, c(Plo. N(0)) = 32 X Ex, /L . P o)d

Combining this with (2.2) and (B.19), the theorem is proven. O

B.2 Proof of Theorem 3.2
We first show that (3.8) holds. If ¢(P(B,0)) = ¢(P(A,0)), then obviously ¢(P(A, B)) > |ds| = 0. Let
now ¢(P(B,0)) > ¢(P(A,o0)) and suppose that

c¢(P(B,0)) > c(P(A, B)) + c¢(P(4, 0)).

Then the path length ¢(P(A, B)) 4+ ¢(P(A,0)) from B to o via A would be smaller than ¢(P(B,0)),
which is a contradiction to the definition of the shortest path length ¢(P (B, 0)). Thus, (3.8) is shown.
If ¢(P(A, B)) = 0, then, by the monotonicity of ¢ : E — [0, c0), we have that

¢(P(B,u)) = c¢(P(A,u))
for each u € S. Furthermore, (3.8) implies that
¢(P(B,0)) = c¢(P(A,0)),

and i.e., (3.9) and (3.10) are obviously true for any D € S. We now assume that ¢(P(A, B)) > 0.
Suppose first that
c¢(P(B,0)) = c(P(A, B)) + c¢(P(4, 0)).

Then it is easy to see that (3.9) and (3.10) hold for D = B. If ¢(P(B,0)) > ¢(P(A,0)) and
¢(P(B,0)) < c(P(A,B)) + c(P(4,0)),

then, by the monotonicity of ¢ : E — [0,00), there is a “distance peak” D which lies between the
two endpoints A and B, respectively, of S; see Figure 6(b). Notice that the distance peak D is
characterized to be an inner point of the segment S, where ¢(P(D, 0)) takes the same value no matter
if the origin o is reached via A or B. In other words, (3.9) and (3.10) hold. O
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B.3 Proof of Corollary 3.3
Using the abbreviations c4(S) = ¢(P(4,0)) and cp(S) = ¢(P(B,0)) as well as ds = ¢g(S) — ca(5)
(as already defined in Theorem 3.2) and having in mind that ¢(S) = v1(95), (3.9) gives that
v1(S) +ca(S) —ca(S) v1(S) 4+ ca(S) — es(S5)
2 ’ 2 ’

Furthermore, we may write (3.10) in the form

(D —A) = vi(D—B) =

/SC(P(MO))CZUZfl(Vl(S);CA(S)ch(S))+f2(V1(S);CA(5)7CB(5))7

where Oy — 61 20, +1/2 0y — 06
f1($§91a92):x+ ;_ 120t /(x; 2~ 01)) (B.22)

and 01 — 62 01 +02+1/2 0y — 6
f2($;91,92)=$+ 1 =02 O 46 7 1/2 40 1)) (B.23)

2 2
Notice that f1(v1(S);ca(S),cs(S)) is the sum of the first two summands in (3.10), whereas the term
f2(1(9);¢ca(S), cp(S)) is the sum of the last two summands in (3.10). By elementary calculations,
we now get that the sum of the expressions in (B.22) and (B.23) gives (3.12). a

B.4 Proof of Theorem 4.1

Using Neveu’s exchange formula (A.11) and proceeding similarly as the proof of Theorem 3.1, we get
that

Ex; c(P(o,N(0))) = N AL Ex, /:* ¢(P(u,0))du = Ag Ex,, /:* ¢(P(u,0))du,

where in the first equality we used that, given the typical Voronoi cell Z* and the (typical) line system
L(Z*) restricted to =Z*, the random number of points of X within =* is Poisson distributed with ex-
pectation 17 = Av5(E*). We can then finish the proof by using the fact that A\ ;' = Ex,, v2(Z*). O

B.5 Proof of Theorem 5.1

We only show that (5.1) holds, because the proof of (5.2) is analogous. Let v(?) = a~() and
A2 = oA for some @ > 0. Then, we can use the scaling properties of the typical cell =*() of
the Voronoi tessellation induced by the (Coxian) point process X g) of higher-level components with
parameter pair (y(®, /\g“); see Figure 9. This gives that

E 0 / v1 (P (u,0)) du = a? E / 11 (PP (u,0)) du, (B.24)
" J L) (=x1) H o JL2)(2%2)

where L) (Z*()) is the (Palm) line system within =*() and v, (P (u,0)) is the length of the corre-
sponding shortest path from u to o. Thus, by (2.2) and (3.4), we have that

YW ern(WAY) = yIAVE o / o(PW(u, 0)) du
H L) (2=)
(2))\(2)
_ 7 1 (1)
= E. o c(P“ (u,0))du
a2 xP /L(l)(E*(l)) ( (u,0))
= 7(2)A§2)EX<2>/ c(P (u,0)) du
" JL@)(=%2)

= AP p(?,AP),

where, in the third equality, we used (B.24) together with the assumption that the cost value of any
segment of the path P()(u, o) is its length. |
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