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Agglomeration is an industrially relevant process for the production of bulk materials in which the product properties depend on the
morphology of the agglomerates, e.g., on the distribution of size and shape descriptors. Thus, accurate characterization and control
of agglomerate morphologies is essential to ensure high and consistent product quality. This paper presents a pipeline for image-
based inline agglomerate characterization and prediction of their time-dependent multivariate morphology distributions within a spray
fluidized bed process with transparent glass beads as primary particles. The framework classifies observed objects in image data into
three distinct morphological classes–primary particles, chain-like agglomerates and raspberry-like agglomerates–using various size and
shape descriptors. To this end, a fast and robust random forest classifier is trained. Additionally, the fraction of primary particles
belonging to each of these classes, either as individual primary particles or as part of a larger structure in the form of chain-like or
raspberry-like agglomerates, is described using parametric regression functions. Finally, the temporal evolution of bivariate size and
shape descriptor distributions of these classes is modeled using low-parametric regression functions and Archimedean copulas. This
approach improves the understanding of agglomerate formation and allows the prediction of process kinetics, facilitating precise control
over class fractions and morphology distributions.

1 Introduction

Agglomeration is a widely used particle formulation process that improves the handling of intermediate bulk solids, such
as powder, pellets and granules that require further processing before their final application, and generates solid materials
with desired end-user product features. In agglomeration processes, primary particles are combined into larger clusters
(agglomerates) by establishing bonds between individual primary particles. These bonds can be established due to interaction
forces (e.g., electrostatic or van der Waals forces), by chemical bonds [1, 2] due to surface reactions of the contacting
particles, or by capillary forces due to liquid bridges or by solid bridges. In the latter two examples, a liquid or a solid-
containing liquid is required to provide the material that generates the bridges between the primary particles. Agglomeration
technologies that utilize these principles are, e.g., pressure agglomeration, binder agglomeration, spray agglomeration and
thermal agglomeration [3]. Agglomerates can have superior properties compared to powders of primary particles, e.g., better
flowability, higher bulk density and improved mechanical properties, etc., resulting in less dust formation and better strength
and durability as well as a high surface-to-volume ratio [4, 5, 6]. The morphology, i.e., the structure of the agglomerates,
determines the performance of the bulk material [7].

Spray fluidized bed (SFB) agglomeration is a common agglomeration technique that combines agglomeration and drying in
a single vessel by atomizing a binding agent onto a bed of solid particles fluidized by hot gas. SFB agglomeration finds
numerous applications in the chemical, food and pharmaceutical industry as it allows mixing, structure formation and drying
of agglomerates in a single apparatus. This enables, e.g., the containment of dust while ensuring cost effectiveness and high
efficiency [8, 9, 10, 11, 12]. These advantages are further enhanced if the spray agglomeration is operated in continuous mode,
as this enables uniform operation with constant production rates and uniform agglomerate properties.

In situ process information on the agglomerate structure is required to control the agglomerate formation process with
respect to the kinetics and towards autonomous process control. In situ information allows for inverse design of agglomerate
structures, i.e., based on product requirements process conditions are selected such that the desired structure is achieved.
Inverse design can be used to implement model-based feedback control that autonomously drives agglomerate formation
processes to produce desirable agglomerate structures [13, 14, 15, 16, 17].

However, agglomeration typically occurs within a timescale of minutes. To enable process control, information on agglomerate
formation must be obtained on smaller time scales, e.g., within several seconds. An option to fulfill this time constraint are
sequences of in situ high-speed images of individual agglomerates, from which morphological descriptors can be extracted to
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quantify the current state of the agglomeration process. This is routinely done with respect to agglomerate size and some
measures of sphericity, more detailed descriptors have not been considered yet. Implementation of the analysis in a recursive
fashion, i.e., updating available information by new measurement information, could enhance the real-time capability of
structure assessment.

This paper presents a computationally efficient pipeline for image-based particle analysis designed for inline agglomera-
tion characterization for perspective use in autonomous process control, integrating image segmentation, object (particle
or agglomerate) classification and parametric modeling of object morphologies. Specifically, the pipeline employs fast,
convolution-based denoising [18] combined with Otsu thresholding [19] to effectively extract individual objects from im-
age data. A comprehensive set of morphological descriptors is then computed from these segmented objects in order to
characterize the agglomeration status and to classify observed objects in image data into three distinct classes: (i) primary
particles, which have not yet agglomerated or have broken from agglomerates again; (ii) chain-like agglomerates, consist-
ing of a few primary particles aligned in a nearly linear configuration; and (iii) raspberry-like agglomerates, which denotes
large clusters of agglomerated particles with multiple contact points between them. For fast classification, methods from
artificial intelligence [20] are utilized to achieve high computational efficiency, suitable for inline classification. The classi-
fication enables the subsequent modeling of descriptor distributions for each individual particle/agglomerate classes, using
parametric families of probability distributions. To gain an even deeper understanding of the state of agglomeration within
the process, it is important to consider descriptors that capture both the size and shape of objects within each class. To
account for the dependency between these descriptors, we use so-called Archimedean copulas to determine joint distributions
of the considered descriptors [21, 22, 23]. Utilizing regression techniques on the parameters of these copula-based models
enables time-dependent modeling and prediction of distributions of size and shape descriptor (vectors), providing insight into
structural evolution of agglomerates over time [24]—an essential step towards model-based control, especially in the context
of model-predictive control.

This paper is structured as follows. Section 2.1 describes the experimental study of agglomeration in the SFB using glass
beads. Then, the imaging procedure and the subsequent image segmentation is explained in Section 2.2. Section 2.3 presents
various geometrical descriptors used for classifying particles and agglomerates, with a random forest classifier explained
in more detail in Section 2.4. Moreover, a parametric modeling approach for bivariate distributions of size and shape
of particles/agglomerates as well as the temporal evolution of these distributions is explained in Section 2.5.2. This is
followed by a sensitivity analysis that investigates the quantity of model quality for different amounts of data in Section 2.6.
Section 3 provides the results of classification, time-dependent modeling and the sensitivity analysis. Section 4 concludes this
contribution.

2 Materials and methods

2.1 Experimental setup

This work is based on the experimental work on SFB agglomeration of [25]. We briefly summarize the experimental setup
and conditions that generate the agglomerates used in this study.

A pilot scale cylindrical fluidized bed with an inner diameter of 300mm was used (general setup depicted in Figure 1). A
two-fluid spray nozzle (Düsen-Schlick GmbH, model 940/6 with a hemispheric cap, liquid orifice diameter: 0.8mm) was
used, positioned 420mm above the air distributor plate. The heated fluidization air enters through the air distributor plate.
Primary particles are suspended by the fluidization gas. An aqueous binder solution is sprayed onto the fluidized particles,
so that the surface of the particles is wetted and liquid bridges are formed after inter-particle collisions. Hot air dries and
transforms the liquid bridges into solid bridges, thereby forming agglomerates. A filter is used to remove dust from the
exhaust gas before it exits the equipment.

In the experiments [25], transparent glass beads are used as primary particles (ρp = 2500 kg/m3, average volume-weighted
diameter d1,3 = 0.24mm). Hydroxy-propyl-methyl-cellulose (Pharmacoat 606 from Shin-Etsu, Japan) is taken as binder
solution (binder content reported in Table 1). The experiments were performed in continuous mode with fixed atomization
flow rate (0.08m3/min) and average binder spray rate (32 g/min). Conditions for all experiments denoted by Experiments A
- E [25] are summarized in Table 1. Experiments A, B and C were performed with the same binder content (4 wt-%)
but different gas inlet temperatures which were set to 80 ◦C, 90 ◦C, 100 ◦C, respectively. Experiments D, B and E were
conducted with same gas inlet temperature of 90 ◦C and the binder content in the spray was set to 2 wt-%, 4wt-% and 6
wt-%, respectively. All experiments ran for 120 minutes. Samples were taken from the bed and the product outlet at time
steps t ∈ T = {10, . . . , 120}. The present work will be based on data collected from their experiments A and E, having the
most different experimental conditions (extreme cases).
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Figure 1: Process setup. Scheme of the pilot-scale spray fluidized bed for continuous spray agglomeration [25].

Table 1: Process parameters. Experimental conditions for spray fluidized bed agglomeration

A B C D E
Inlet gas temperature [℃] 80 90 100 90 90
Binder content in wt% 4 4 4 2 6
Fluidization air mass flow rate [kg/hr] 284 286 280 282 280
Particle feed rate [g/min] 145.5 158.5 181.9 165.9 154.6

2.2 Imaging and image processing

In-situ image sequences of particles/agglomerates were acquired using commercial equipment (Camsizer, MicroTracRetsch).
There, sample material of the experiment is putted into a dosage hopper. A vibrating chute then guides the particles so that
they fall freely in front of an illuminated plane. During this free fall high-speed images are taken at 60 fps with an image
size of 1012 pixels by 742 pixels at a spatial resolution of 15 µm/pixel. Per experiment and sampling time point, at least 20
images were acquired, with 21.6 objects being observed per image on average .

In order to characterize individual objects within image data and their descriptor distributions, the objects have to be
extracted first from the images.

An image I : X → {0, . . . , 255} is considered as a mapping from the set of all pixel positions X = {1, . . . , 1012}×{1, . . . , 742}
to the set of 8-bit pixel values. To extract individual particles/agglomerates, first each pixel is classified as either background
or foreground, i.e., a function Ī : X → {0, 1} is computed to classify pixels. More precisely, a pixel (i, j) ∈ X with Ī(i, j) = 1
is considered to be a foreground pixel, whereas Ī(i, j) = 0 indicates a background pixel. The function Ī is computed by
utilizing a non-local means filter [18] followed by an Otsu thresholding [19]. The former decreases noise present in an image I,
whereas the latter is a histogram based heuristic for threshold computation. More precisely, by means of non-local denoising
a smoothed version I ′ : X → [0, 255] of I : X → {0, 255} is computed which is given by

I ′(x) =

∑
z∈Z21

x

w(x, x+ z) · I(x+ z)∑
z∈Z21

x

w(x, x+ z)
, with Z21

x = {z ∈ Z2 : |z|∞ ≤ 21, x+ z ∈ X}, (1)

where w(x, y) is a distance-based weight, given by

w(x, y) = exp

− 1

100

∑
z∈Z5

x,y

(I(x+ z)− I(y + z))
2

 , with Z5
x,y = {z ∈ Z2 : |z|∞ ≤ 5, x+ z, y + z ∈ X}. (2)
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Here, | · |∞ denotes the maximum norm and Z = {. . . ,−1, 0, 1, . . .} the set of all integers. Intuitively, the weight w(x, y)
measures the similarity between the intensity patterns (so-called patches) surrounding the pixels x and y. Pixels with more
similar local patterns (in terms of the squared sum of their difference) contribute more significantly to the value in the
denoised image.

After computing the smoothed image I ′, Otsu’s method is applied to determine a global intensity threshold η ∈ [0, 255],
see [19] for detail. By applying the global threshold η to I ′, this yields the phasewise segmentation Ī : X → {0, 1}, given by

Ī(x) =

{
0, if I ′(x) < η,

1, else.
(3)

An object-wise segmentation p : X → N ∪ {0} is subsequently achieved by setting p(x) = 0 if Ī(x) = 0 and assigning each
connected components of pixel positions x ∈ X with Ī(x) = 1 a unique positive integer. This value is often referred to as
the index (or label) of the connected component. Thereby, two pixel positions x, y ∈ X are considered to belong to the same
connected component if and only if there exist a sequence z1, . . . , zk ∈ {x ∈ X : Ī(x) = 1} such that x = z1, zk = y and
|zi − zi+1|2 = 1 for all i ∈ {1, . . . , k− 1}, where | · |2 is the Euclidean norm. In the following, pixel positions belonging to the
object with index i are denoted by pi = {x ∈ X : p(x) = i}.

Figure 2: Preprocessing of images. a) Exemplary cutout of an image depicting particles/agglomerates of Experiment
A at time step 50 min. b) Denoised (non-local means) of a). c) Corresponding phasewise segmentation of b). Exemplary,
primary particles are highlighted in blue, chain-like agglomerates in orange and raspberry-like agglomerates in green.

2.3 Structure analysis and particle classes

During the SFB agglomeration process, the primary particles agglomerate. Our aim is to characterize the size and shape of
both the agglomerates and the primary particles. To quantify the state of agglomeration, we divide the objects observed in
image data into three different classes: primary particles, chain-like agglomerates and raspberry-like agglomerates.

To decide the class membership of objects observed in image data, we use various geometrical descriptors such as the area-
equivalent diameter, which is given by d(pi) = 2

√
a(pi)/π for particle/agglomerate with index i, where a(pi) is the area of

pi. Note that we compute the area of the i-th particle/agglomerate pi by deploying the point-count method [26]. A further
geometrical descriptor considered is the area aconvex(pi) of the convex hull of pi, where again the point-count method is
deployed for the computation of the area. Figure 3a) visualizes the difference between the area of pi and its convex hull in
red.

Then, the solidity of pi is given by s(pi) = a(pi)/aconvex(pi). The solidity is a geometrical descriptor that quantifies how much
the shape of pi deviates from being perfectly convex. A solidity value of 1 indicates a fully convex object. Additionally, we
compute the lengths of the major and minor axes of the ellipse that has the same normalized second central moments as pi,
see Figure 3b). Further details on the computation of such a “moment-equivalent” ellipse can be found in [27]. The lengths
of the major and minor axes are denoted by v1(pi), v2(pi) ∈ [0,∞), respectively. Based on these lengths, the eccentricity
e(pi) is computed by

e(pi) =

√
1−

(
v2(pi)
v1(pi)

)2

, (4)

see [28]. The eccentricity can be interpreted as a measure that quantifies how much a particle/agglomerate deviates from the
circular shape, where a circle has an eccentricity of 0. The orientation o(pi) ∈ [−π/2, π/2) is computed as the angle between
the major axis and the y-axis of the coordinate system, see Figure 3c). Figure 3d), shows the minimal radius r1(pi) of the
sphere that encloses the object and the maximum radius r2(pi) of the sphere that inscribes the object. The relationship
between these two descriptors, i.e., r(pi) = r1(pi)/r2(pi), is a further descriptor that is considered for classifying objects.
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Additionally, we consider Feret diameters to construct further geometrical descriptors. The Feret diameter into a direction
is defined as the distance between two parallel planes that are normal with respect to the chosen direction and enclose the
convex hull of an object [29, 30]. A visualization of the Feret diameter of an object in an exemplarily chosen direction is given
in Figure 3e). For classification purposes, we use the largest Feret diameter of pi as an additional geometrical descriptor,
which we denote by h(pi).

α

v1

v2

hr1
r2

a) b) c)

d) e) f)

Figure 3: Illustration of geometrical descriptors. (a): The convexity is computed by dividing the area of the object by
the area of the convex hull (red). (b): An ellipsoid is fitted to the object and the major and minor axis are determined. (c):
The orientation α is given by the angle between the major axis of a fitted ellipsoid and a vertical line. (d): maximum radius
of sphere that inscribe the object and minimum radius of sphere that enclose the object. (e): distance of each pixel to the
object border. (f): One exemplary Feret diameter h.

Further geometrical descriptors of pi are computed from the Euclidean distance transform of pi which assigns each pixel
of pi with the pixel’s Euclidean distance to the boundary of pi, see Figure 3f). Then, we compute the mean and standard
deviations of the Euclidean distances of all pixels associated with pi, denoted by λmean(pi) and λstd(pi), respectively. In
addition, we compute the maximum Euclidean distance of pixels to the particle border λmax(pi) as a geometrical descriptor
for classification purposes. Moreover, for each pi, we compute the perimeter δ(pi) by identifying boundary pixels using
four-neighborhood connectivity. The length of each boundary pixel is then determined based on its local neighborhood
configuration: a pixel with two vertically or horizontally adjacent neighbors is assigned a length of 1, a pixel with two
diagonally adjacent neighbors is assigned a length of

√
2, and a pixel with one vertically or horizontally adjacent neighbor

and one diagonally adjacent neighbor is assigned a length of 1+
√
2

2 . The total perimeter δ(pi) is obtained by summing these
lengths and multiplying by the pixel length [31] is used. With the perimeter and the area of object i, we can compute the
roundness ψ(pi) in the following way, see [30]:

ψ(pi) = 4π
a(pi)

δ(pi)2
. (5)

For classification purposes, we also consider the centroid and the gray value-weighted centroid of pi, denoted as z1 and z2,
respectively. The latter is calculated by weighting each pixel’s contribution according to its gray value. Then, the Euclidean
distance between the centroid and the weighted centroid, i.e., z(pi) = |z1(pi)−z2(pi)|, is considered as additional geometrical
descriptor.

Another descriptor to characterize object i is the fractal dimension κ(pi), which is computed using the tiled box counting
method, see [32, 33]. Last but not least, the texture of an object is characterized by computing descriptors that quantify the
gray values of pixels associated with objects.

Specifically, we compute the following textural descriptors: the mean gray value gmean(pi) of pixels associated with pi, the
standard deviation gstd(pi) of gray values of pixels associated with pi, as well as the minimum gmin(pi) and maximum gmax(pi)
gray value of pixels associated with pi. In total, this work utilizes ν = 22 different descriptors for classification purposes. For
a better overview, the descriptors are summarized in Table 2.
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Table 2: Overview of geometrical and textural descriptors for particles.

Geometrical/textural descriptor Symbol Range Unit

area-equivalent diameter d (0,∞) µm
area a (0,∞) µm2

area of convex hull aconvex (0,∞) µm2

solidity s (0, 1] -
length of major axis v1 (0,∞) µm
length of minor axis v2 [0,∞) µm
eccentricity e [0, 1] -
orientation o [−π/2, π/2) -
minimal radius of a sphere enclosing the object r1 (0,∞) µm
maximum radius of a sphere inscribing the object r2 (0,∞) µm
ratio of r1 and r2 r (0,∞) -
largest Feret diameter h (0,∞] µm
mean border distance λmean (0,∞) µm
standard deviation border distance λstd [0,∞) µm
maximal border distance λmax (0,∞) µm
perimeter δ [0,∞) µm
roundness ψ [0,∞) -
centroid z1 [0, 15.3]× [0, 11.13] mm
gray-value weighted centroid z2 [0, 15.3]× [0, 11.13] mm
fractal dimension κ [0, 2] -
mean gray value gmean [0, 255] -
standard deviation gray values gstd [0, 255] -
minimum gray value gmin [0, 255] -
maximum gray value gmax [0, 255] -

2.4 Particle classification

In this section we describe the procedure to assign each object in the segmented image data to one of the following classes:
primary particles, chain-like agglomerates and raspberry-like agglomerates. Since hand-labeling is impractical for large
datasets, especially in online image processing, and no direct functional relationship is known between geometrical/textural
descriptors (as introduced in Section 2.3) and object classes, a classification tool from artificial intelligence is employed.
Specifically, a commonly used random forest classification framework [20] is trained to learn a mapping m : Rν → {0, 1, 2}
from the set of interpretable descriptor vectors to a class label, where the label 0 corresponds to primary particles, 1 to
chain-like agglomerates, and 2 to raspberry-like agglomerates.

Roughly speaking, a random forest consists of several decision trees that will be used to generate a “vote” on the class
membership of a particle/agglomerate with descriptor vector P ∈ Rν . The random forest’s classification is given by the
majority of the votes of the individual trees.

Thus, in order to introduce the notion of a random forest, we first introduce binary decision trees. We will denote a binary
decision tree T = (V,E,F , w) as a quadruple of a set of vertices V , a set of edges E ⊂ V × V , a set of decision functions F
and a function of w that implicitly assigns a class label to P . The graph (V,E) forms a perfect binary tree, meaning that
each node v ∈ V has either zero or exactly two children. The set of children of v is denoted by N(v) = {v′ ∈ V | (v, v′) ∈ E}.
The tree has a unique root node vr ∈ V , and all leaf nodes Vl = {v ∈ V : N(v) = ∅} are at the same depth. The depth of a
leaf node vl ∈ Vl is given by the length k of the shortest sequence e1, . . . , ek ⊂ E in which consecutive edges share a node, and
vr, vl are contained in e1, ek, respectively. The set of decision functions F = {fv : Rν → N(v) : v ∈ V,N(v) ̸= ∅} contains for
each non-leaf node a function that maps each descriptor vector P ∈ Rν to a unique child note u ∈ N(v). Furthermore, the
function w : Vl → {0, 1, 2} maps each leaf node to a particle class in {0, 1, 2}. The vote of the decision tree T for a descriptor
vector P is determined as follows: By computing the unique path (vr, fv(P ), ffv(P )(P ), . . . , vl) ⊂ V from the root node vr of
the tree T to a leaf node vl ∈ Vl is identified. Then, the tree T assigns the object with the descriptor vector P to the class
with label w(vl).

In this work, the decision functions fv ∈ F are threshold-based decisions applied to individual descriptors. Specifically, the
decision functions take the form:

fv(P ) =

{
v1, if Pj > P ∗,

v2, else,
(6)
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where {v1, v2} = N(v) are the child nodes of v, P ∗ ∈ R is a threshold and Pj is the j-th descriptor within the descriptor vector
P = (P1, . . . , Pν). Thus, the decision function fv is uniquely determined by the tuple (j, P ∗) of the considered descriptor
given by j ∈ {1, . . . , ν} of the descriptor vector P ∈ Rν and the corresponding threshold P ∗.

For training data consisting of a sequence P ⊂ Rν of descriptor vectors and corresponding class labels in {0, 1, 2} for each
descriptor vector, a decision tree T can be efficiently computed by the so-called CART algorithm [20]. Specifically, for a
perfect binary tree (V,E) this algorithm, iteratively, determines the functions fv : Rν → N(v) for all v ∈ V with N(v) ̸= ∅
by greedily maximizing some quality measure Q(fv,P) for some set of descriptor vectors P.

We consider a quality measure that is based on the so-called Gini coefficient G. The Gini coefficient gives a measure for the
impurity of classes of some sequence P of descriptor vectors. More precisely, this coefficient is given by

G(P) =

2∑
k=0

(1− qk)qk, (7)

where qk ∈ [0, 1] is the fraction of descriptor vectors of P that were assigned to the class k. The quality Q(fv,P) of a function
fv for a sequence P ⊂ Rν of descriptor vectors is then given by

Q(fv,P) =
∑

u∈N(v)

G(Pu)|Pu|, (8)

where Pu is the maximum subsequence of P for which it holds that fv(P ) = u for all v ∈ Pu, and | · | denotes the length of
the sequence under consideration.

The CART-algorithm starts with the root vr ∈ V of a tree (V,E) and the sequence P of all measured particle descriptors, and
computes a function fvr that minimizes Q(fvr ,P). Afterward, the same procedures are repeated for child nodes u ∈ N(vr)
with the corresponding sequences Pu of descriptor vectors until, for all non-leaf nodes v ∈ V , the function fv is determined.
At a last step, the value of the function w : {v ∈ V : N(v) = ∅} → {0, 1, 2} is set to the class in {0, 1, 2} that is most frequently
among the classes of the particle descriptor vectors of Pv in the training data. See [20] for more details.

This procedure results in an optimal classification of the training data [20]; however, considering all components Pj , j ∈
{1, . . . , ν} of the descriptor vectors P ∈ P in the computation of fv, v ∈ V, N(v) = ∅ often leads to overfitting, and thus
poor performance on unseen data. To mitigate this, a subset J ⊂ {1, . . . , ν} of |J | < ν descriptor component indices is chosen
before training a decision tree T . Then, when computing, the decision functions F are restricted to descriptors with an index
in J .

A random forest is a collection of B ∈ N binary decision trees T1, . . . , TB . These are constructed by independently calibrating
B > 1 binary decision trees T1, . . . , TB , each of which with an independently chosen random subset J1, . . . , JB ⊂ {1, . . . , ν}
of descriptor indices. Then, the random forest can be deployed for classifying an object with descriptor vector P ∈ Rν ,
by (i) determining the B class assignments of P according to decision trees T1, . . . , TB followed by (ii) majority voting
along these class assignments. This approach effectively addresses the overfitting problem. The choice of a random tree’s
hyperparameters—the number B of considered decision trees as well as the number |J | of considered particle descriptors, and
the depth of the binary trees (V1, E1), . . . , (VB , EB)—is subject to the training procedure. For more details and heuristics for
choosing these hyperparameters, see [34]. We optimize these hyperparameters, by means of a grid-search. The grid-search is
performed by training and evaluating random forests with 50, 100 and 200 decision trees, considering maximum tree depths
of 3, 5, 7 and ν, and sizes of J equal to 5 ≈

√
ν and ν. During the gird-search, all possible combinations of hyperparameters

are used for training. The best hyperparameters are those that lead to the random forest with the highest percent of correctly
classified particles/agglomerates on the training data. The prediction of a class label using a random forest, is very fast, thus
combined with the fast computation of the image segmentation and particle descriptors, an online classification of imaged
particles/agglomerates is enabled. Furthermore, the decisions fv of the individual trees can be interpreted, giving insight
into, the influence of interpretable particle descriptors on the classification, see Section 3.2.

2.5 Particle class and descriptor modeling

The previously introduced automatic classification method enables the efficient classification of a large particle/agglomerate
database. In this section, the focus is on modeling the evolution of primary particles, chain-like and raspberry-like agglom-
erates over time. This is achieved by analyzing two aspects: first, the temporal evolution of the class size fractions, and
second, the evolution of bivariate distributions of descriptors within individual classes over time. In the following, methods
for modeling these evolutions are presented generally. Later, these methods will be deployed to data sets acquired from the
Experiments A and E, see Section 3 for further details.

2.5.1 Temporal evolution of class sizes

First, we analyze the size of an object class over time by means of the area-weighted fraction of objects belonging to this
class compared to all observations. For this, let M be a set of pairs (t, y) of time steps t ∈ T and corresponding size fractions
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y ∈ [0, 1] of the considered class. We will model the value of y with respect to t by means of a parametric regression function
ζ : [0,∞) → R. The specific form of the regression functions is given by

ζ(t) = c1 − c2 exp(−c3 t) (9)

for any t ∈ [0, 120], where c1, c2, c3 ∈ R are the parameters of the regression function and exp: R → [0,∞) is the Euler’s
function. Thereby, the parameter c1 describes the asymptotic value of g for t → ∞; c2 determines the value of g for small
values of t, and c3 determines how fast g reaches its asymptotic value c1.

For a set M of pairs (t, y) the parameters of the regression function ζ can be calibrated by minimizing the mean squared
error (MSE), i.e., the values of (c1, c2, c3) ∈ R3 are given by

(c1, c2, c3) = argmin
(c1,c2,c3)∈R3

1

|M |
∑

(t,y)∈M

(ζ(t)− y)2. (10)

For both experiments, Experiment A and Experiment E, we use the regression function, given by Equation (9), to model the
size fractions of the primary particles, and to model the size fractions of the raspberry-like agglomerates over time. Thus
in these four cases, the set M consist of pairs (t, y) of a time steps t ∈ T and the respective area-weighted size fractions
of primary particles (or raspberry-like agglomerates) at time t at all respective experiments. In order to ensure that the
size fractions, modeled by means of the resulting regression functions, are fractions, the evolution of the size fraction of the
chain-like agglomerate class is modeled by 1 − g1 − g2, where g1, g2 are the respective regression functions of the primary
particles and raspberry-like agglomerates. Although there exist values of (c1, c2, c3) ∈ R3 for which g1(t), g2(t) /∈ [0, 1] for
t ∈ [10, 120], this does not occur in the application, see Section 3.3.1. The choice of modeling the size fraction of the chain-like
agglomerates as the complement of the other two classes is intuitive, since chain-like agglomerates appear as an intermediate
class between non-agglomerated primary particles and the desired final product, the raspberry-like agglomerates. In Section 3
the results of the regressions for both considered experiments and all classes of objects are shown.

2.5.2 Parametric copula-based modeling

To gain a more comprehensive understanding of the agglomeration process, the bivariate probability distributions of area-
equivalent diameter d and solidity s within the three classes are modeled parametrically for each time step. This parametric
modeling facilitates the time-dependent regression of probability densities by performing the regression in a lower dimensional
space instead, namely, on the set of model parameters. Consequently, it enables the regression of particle descriptor distri-
butions and thus allows for predicting these distributions for time steps which were not directly measured. In this manner a
temporal model for the bivariate probability distribution of descriptor vectors can be obtained. This modeling approach is
deployed for each class and observed in Experiments A and E individually, see Section 3. However, to facilitate the notation
the methodology is introduced in general for one and two-dimensional vector data in this section. Therefore, unless stated
otherwise, we consider a single class of objects observed in a single experiment in the remainder of Section 2.5.2.

Univariate densities. First, we want to determine the univariate densities fd, fs : R → [0,∞) and the corresponding
cumulative distribution functions Fd, Fs : R → [0, 1] of d and s for an individual time step. Therefore, we use the parametric
families G = {normal, log-normal, gamma}, which are further specified in Table 3 and in [35]. However, note that the solidity
takes values in [0, 1] and the area-equivalent diameter takes values in (0,∞). Thus, for parametric families with different
support we consider truncated versions to ensure a correct support. To determine suitable parameter values and the best
family, maximum likelihood estimation is used [36]. In this manner, we obtain for each family Gd, Gs ∈ G parametric

probability densities f
Gd,ωt,d

d , f
Gs,ωt,s
s : R → [0,∞) of d and s at the considered time step t as well as their corresponding

distribution functions F
Gd,ωt,d

d , F
Gs,ωt,s
s : R → [0, 1]. Note that ΩGd

,ΩGs
denotes the parameter space of family Gd and Gs.

The used parameter vector for d and s are denoted by ωt,d ∈ ΩGd
and ωt,s ∈ ΩGs

denotes.

More details on fitting these parameters vector and determining the overall best family for all time steps is given in subsequent
paragraphs.

Table 3: Parametric univariate distributions. Parametric families of univariate distributions with corresponding density,
support and parameter space Ω, where Γ denotes the gamma function [35].

parametric family probability density support ω ∈ Ω

normal 1√
2πσ2

e−(x−µ)2/(2σ2) (−∞,∞) (µ, σ) ∈ R× (0,∞)

log-normal 1

x
√
2πσ2

e−(log2(x)−log2(µ))/(2σ2) (0,∞) (µ, σ) ∈ (0,∞)× (0,∞)

gamma 1
βαx

α−1e
1
β x 1

Γ(α) [0,∞) (α, β) ∈ (0,∞)× (0,∞)
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Bivariate copula-based densities. To describe the structure of objects at an individual time step, the interdependence
between the size and shape descriptors can be modeled. To do so, the bivariate distribution of solidity and area-equivalent
diameter is modeled using copulas, which provide a flexible approach by decoupling the marginal distributions from their
dependence structure. More precisely, a function C : [0, 1]2 → [0, 1] is called a bivariate copula if C is the cumulative
distribution function of a two-dimensional random vector with standard uniformly distributed marginals. Then, according
to Sklar’s representation formula (see [21]), for the joint cumulative distribution function Fd,s : R2 → [0, 1] of d and s, there
exists a copula C such that

Fd,s(xd, xs) = C(Fd(xd), Fs(xs)), (11)

for xd ∈ [0,∞) and xs ∈ [0, 1] denoting the particle descriptor values.

Note that, assuming that Fs,d and C are differentiable, it follows from Equation (11) that the joint probability density
fd,s : R2 → [0,∞) of d and s is given by

fd,s(xd, xs) = c(Fd(xd), Fs(xs))fd(xd) fs(xs), (12)

where c : [0, 1]2 → [0,∞) is the probability density of C. Thus, in this case, the differential version of Sklar’s representation
formula given in Equation (12) can be used to construct bivariate densities by fitting the univariate margins (see the preceding
paragraph) and then a bivariate copula.

For modeling bivariate distributions, so-called Archimedean copulas are used in the present paper. The definition of these
copulas is based on Archimedean generators φ : [0, 1] → [0,∞), which are continuous, strictly decreasing functions such that
φ(1) = 0. Moreover, let φ[−1] : [0,∞) → [0, 1] be the pseudo inverse of φ, i.e., φ[−1](x) = φ−1(x) if 0 ≤ x ≤ φ(0) and
φ(x) = 0 if x ≥ φ(0), where φ−1 denotes the inverse of φ. An Archimedean copula is then given by

C(u1, u2) = φ[−1](φ(u1) + φ(u2)), (13)

for any u1, u2 ∈ [0, 1], see e.g. [21]. To model bivariate densities, various parametric families {φθ : θ ∈ Θ} of Archimedean
generators are considered, see Table 4. The space of admissible parameters is denoted by Θ ⊂ R. Each family of Archimedean
generators leads to a parametric family of copula densities {cθ : θ ∈ Θ} given by

cθ(u1, u2) =
∂2

∂u1∂u2
φ
[−1]
θ (φ(u1) + φ(u2)) (14)

for any u1, u2 ∈ [0, 1] and θ ∈ Θ.

Even further families of copula densities can be constructed, by considering rotating copula densities within a given family
by multiples of 90◦. More precisely, cθ can be rotated around the midpoint (0.5, 0.5) by 90◦, 180◦ or 270◦ to obtain copula
families. To determine the optimal copula family and density parameter, maximum likelihood estimation is used as in the
case of fitting the univariate distributions.

For the parametric case with Archimedean copulas we adapt Equation (12) in the following. Therefore, we consider a set
Z = {Frank, Joe, Clayton, Gumbel, Ali-Mikhail-Haq} of copula types, each of which induces a parametric family of copula

densities. The bivariate density with previously fitted marginal distributions and the copula density cZ,θt
d,s : [0, 1]2 → R of

family Z with parameter θt ∈ ΘZ ⊂ R, where ΘZ is the parameter space of the copula family Z defined in Table 4, is then
given by

fZ,θt
d,s (xd, xs) = cZ,θt

d,s (F
Gd,ωt,d

d (xd), F
Gs,ωt,s
s (xs))f

Gd,ωt,d

d (xd)f
Gs,ωt,s
s (xs), (15)

for any xd ∈ [0,∞) and xs ∈ [0, 1].

Table 4: Archimedean generators. Parametric families {ϕθ : θ ∈ Θ} of Archimedean generators, together with their set
of parameters Θ ⊂ R.

copula Frank Joe Clayton Gumbel Ali-Mikhail-Haq

φθ(u) − ln exp(−θu)−1
exp(−θ)−1

− ln(1−(1−u)θ) 1
θ (u

−θ − 1) (− lnu)θ ln 1−θ(1−u)
u

Θ R \ {0} [1,∞) (0,∞) [1,∞) [−1, 1)

Time-dependent regression of distribution parameters. For our purpose of a time-dependent regression, it has to be
ensured that the same parametric family of probability densities is deployed to model the distribution of a descriptor (vector)
within a class for all time steps T = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120} minutes of an experiment. Recall that, we
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explain the procedure for a single class of objects observed in one single experiment to simplify the notation. For example, we
can consider raspberry-like agglomerates in Experiment A. In all other cases the procedure is analog. We consider first the
set G = {norm, lognorm, gamma} of distribution types, i.e., each type in G has an associated parametric family of univariate
probability densities. In order to identify a parametric family of probability densities that can adequately model the the
probability density of d for all time steps, we identify the optimal distribution type Ĝd ∈ G that maximizes the overall
likelihood, i.e., the distribution type is given by

Ĝd = argmax
G∈G

∑
t∈T

 max
ωt,d∈ΩG

∑
x∈Dt,d

log(f
G,ωt,d

d (x)),

 , (16)

where Dt,d denotes the set of descriptors d observed at time step t. The parametric family of univariate probability densities

of the chosen distribution type Ĝd is then fitted to the data Dt,d for each time step by means of maximum likelihood
estimation. Thus, we obtain a sequence of fitted parameters ω̂t,d ∈ ΩĜd

for each time step t ∈ T . In other words, for each

t ∈ T we obtain a sequence of univariate probability densities f
Ĝd,ω̂t,d

d of d that all stem from the same parametric family.

Analogously, univariate probability densities f
Ĝs,ω̂t,s
s can be determined for modeling the distribution of the solidity for each

time step t ∈ T with the same parametric family.

After fitting the univariate distributions of both descriptors, we determine the best parametric family of copula densities by
using Equation (15). More precisley, to chose the best-fitting copula family, the maximized likelihood values for the copula
with previously fitted marginal distributions are summed up as above to identify the best-fitting family. More precisely, the
best copula is provided by

Ẑ = arg max
Z∈Z

∑
t∈T

 max
θt∈ΘZ

∑
(xd,xs)∈Dt,(d,s)

log(fZ,θt
d,s (xd, xs))

 , (17)

where Dt,(d, s) is the set of two-dimensional descriptor vectors (pairs of area-equivalent diameter and the solidity) measured at

time t ∈ T . Moreover, we obtain a sequence of fitted parameters θ̂t ∈ ΘẐ for each time step t ∈ T , i.e., we obtain a sequence

of copulas cẐ,θ̂t
d,s , which together with the univariate distributions define the bivariate density f Ẑ,θ̂t

d,s , see Equation (15).

After this procedure we have identified a suitable low-parametric model for describing the temporally resolved bivariate
distribution of area-equivalent diameters and solidity and the parameters, i.e., the vector τt = (ω̂t,d, ω̂t,s, θ̂t) ∈ ΩĜd

×ΩĜs
×ΘẐ ,

which is fitted to the set of two-dimensional descriptor vectors for each particle class, experiment and time step t.

At this point we are able to describe the bivariate distribution of area-equivalent diameter and the solidity for all particle
classes and experiments at t ∈ T = {10, 20, . . . , 120}. However, it is of interest to predict these distributions for all t ∈ [10, 120].
For this purpose, a regression of the parameters of the copula model is utilized. More precisely, the regression function of
Equation (9) is utilized to predict the vector τt for all t ∈ [10, 120]. Note that, for each time step a different number of
observed agglomerates is available. In order to always weight each available data point equally, the regression curve is fitted
by minimizing the weighted MSE. Thus, Equation (10) is adjusted as follows

(c1, c2, c3) = argmin
(c1,c2,c3)∈R3

∑
t∈T

((τ it − ζ(t))|Dt|)2, (18)

where τ it is the i-th entry of τt and |Dt| is the amount of measured data at time step t . By utilizing a regression of the
five parameter values over time by the described procedure, statements can be made about the distributions of unobserved
points in time. Moreover, fitting functions to the parameter course over time allow to make predictive statements on the
parametric distributions. Note that the described method is applied for Experiments A and E as well as for each particle
class, i.e., primary particle, chain-like agglomerates and raspberry-like agglomerates. The results are presented in Section 3.3
below.

2.6 Sensitivity analysis of fitting procedure of bivariate distributions

The present study is based on a large data set of descriptors computed from experimentally measured image data. However,
the question arises, how sensitive the presented procedure is to the amount of available data, and consequently, how many
measurements are necessary in order to achieve a reasonable quality of fit. To answer these questions, a bootstrap sampling-
based sensitivity analysis of the presented modeling approach is deployed [37]. This involves the quantitative analysis of
model fits that are achieved on a data set containing only a fraction of the measured data, allowing for the analysis of the
added value of an increasing amount of available data.

To analyze the sensitivity of the fit of the probability density fd,s that is based on some data Y (e.g., Y = Dt,(d, s) for some

t ∈ T ), first, a bootstrap sample Ỹ of size nb ∈ N is constructed by drawing nb > 0 data points uniformly at random from the
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set Y. Then, a second probability density f̃d,s is fitted with the data in Ỹ. In this manner, we can investigate the discrepancy

(see below for further details) of fd,s to a fit f̃d,s that has been achieved with fewer data.

In the present paper, the discrepancy between three probability densities f̃d,s and fd,s is quantified in two ways. First, the
absolute percentage errors APEd and APEs of the expected values of the marginal distributions are considered this is given
by

APEd(fd,s, f̃d,s) =
|
∫∞
0
x(f̃d(x)− fd(x)) dx|
|
∫∞
0
xfd(x) dx|

, (19)

APEs(fd,s, f̃d,s) =
|
∫∞
0
x(f̃s(x)− fs(x)) dx|
|
∫∞
0
xfs(x) dx|

, (20)

where fd, fs : R → [0,∞) and f̃d, f̃s : R → [0,∞) are the marginal probability densities of fd,s and f̃d,s, respectively. In order
to quantify not only the discrepancy of the marginal distributions, but also the discrepancy of the dependency structures of
the marginal distributions, a second measure L(fd,s, f̃d,s) ∈ [0, 2], is utilized. This measure compares the copula densities

c, c̃ : [0, 1]2 → [0,∞), of fd,s, f̃d,s by means of the L1-norm and is given by

L(fd,s, f̃d,s) =

1∫
0

1∫
0

|c(x, y)− c̃(x, y)| dx dy. (21)

A value of L(fd,s, f̃d,s) close to zero, corresponds to a high similarity, whereas a value close to two, corresponds to extreme
dissimilarity.

By means of the outlined bootstrapping approach, we can investigate the goodness of fit in dependence of the number nb of
sampled data points. In other words, this approach enables us to assess the number of objects and, consequently, the number
of measurements necessary to achieve the desired precision in our model fits; see Section 3.4.

3 Results and discussion

3.1 Segmentation

To evaluate the quality of the segmentation procedure described in Section 2.2, a combination of visual and quantitative
analyses was performed. To do so, for five of the Camsizer images, a ground truth phase-wise segmentation p∗ : X → {0, 1, 2}
was generated by using a much slower state-of-the-art segmentation modelfrom the field of machine learning [38] . However,
this method is not feasible for inline segmentation due to its computational complexity in memory and time. The difference
of this ground truth segmentation p∗, and the segmentation achieved with the method described in Section 2.2 is visualized
in Figure 4. It can be observed that all objects are detected correctly, and differences in segmentations are due to small
variations of the objects’ outlines.

Furthermore, for a quantitative evaluation of the segmentation quality, the segmentations p from Section 2.2 are compared
with p∗ by means of the intersection over union (IoU) metric [39]. The IoU is defined as

IoU(p, p∗) =
|{x ∈ X : p(x) = 1 and p∗(x) = 1}|
|{x ∈ X : p(x) = 1 or p∗(x) = 1}|

. (22)

The segmentation method described in Section 2.2 achieves an average IoU score of 0.93 compared to the reference ground
truth segmentation, indicating a high degree of agreement.

3.2 Classification

For object type classification, a random forest is trained as described in Section 2.4 on basis of 1854 descriptor vectors
and corresponding hand labeled object classes. Note that this training data consists of descriptor vectors computed from
image data derived from both Experiment A and Experiment E as well as all time steps in T . The grid-search to tune the
hyperparameters leads to a random forest with 100 decision trees each of which have a maximal depth of 5. Moreover, |J | = 5
randomly chosen descriptors are considered per tree. The prediction quality of the random forest classifier that achieved
the best results, is evaluated based on a second set of hand-labeled particle descriptors, again containing descriptors from
all experiments and time steps, but not used in the training of the random forest. Specifically, the prediction quality of the
classifier was evaluated based on descriptor vectors of 276 primary particles 133 chain-like agglomerates and 148 raspberry-like
agglomerates. The corresponding confusion matrix is shown in Table 5 (left).
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Figure 4: Segmentation quality. The difference between the reference ground truth segmentation p∗ obtained using
SAM [38] and the method described in Section 2.2 is shown. Pixels segmented by the proposed method but not by SAM are
highlighted in red, while those segmented by SAM but not by the proposed method are shown in blue.

To assess the added value of utilizing a larger number of particle descriptors in the random forest classification compared to
using only a few, a second, more interpretable classification approach based on only two particle descriptors was implemented.
Specifically, the diameter d and eccentricity e were selected for this classification, as the diameter is a straight-forward
descriptor to distinguish between primary particles and agglomerates. Furthermore, chain-like agglomerates tend to be much
more elongated than raspberry-like agglomerates, thus, typically showing higher values of e. Based on the data used for the
training of the random forest classifier, an optimal threshold for the area-equivalent diameter d was computed to distinguish
primary particles from agglomerates. Note that it is enough to restrict the search for such a threshold to the observed
values of d in the training data, ensuring both efficiency and straightforward computation. Subsequently, a second optimal
threshold for the eccentricity descriptor e was determined to classify non-primary particles into chain-like and raspberry-like
agglomerates. The resulting confusion matrix for this reference classifier, computed on the validation data, is shown in
Table 5 (right). The random forest classification, operating on all 22 descriptors considered in the present paper, achieves a
much better precision among all classes than the reference classifier which only considers the diameter d and eccentricity e.
This justifies the use of a more complex, and thus, more time-consuming, classification procedure.

The influence of individual descriptors on the classification of particles/agglomerates can be measured by so-called Shapley
values [40, 41, 42]. It turns out that for classifying primary particles, the most influential descriptor is roundness ψ, followed
by the length of the major axis v1 and the ratio of the radii of the inscribed and enclosing spheres r. For identifying chain-like
agglomerates, roundness ψ remains the most influential descriptor, followed by the lengths of the minor axis v2 and major axis
v1. Finally, for classifying raspberry-like agglomerates, the minor axis length v2 is the most influential descriptor, followed
by roundness ψ and again the major axis length v1

Table 5: Confusion matrices. The confusion matrix for the random forest classifier (left) and of the corresponding reference
classifier that is based on the diameter d and eccentricity e is shown. The term GT refers to the particle classes assigned by
hand labeling.

random forest
primary chain berry

G
T

primary 275 0 0
chain 0 123 10
berry 0 11 137

reference classifier
primary chain berry

G
T

primary 265 0 11
chain 13 96 24
berry 0 37 111

3.3 Particle descriptor prediction

3.3.1 Temporal evolution of class sizes

In the following the agglomeration process in both Experiments A and E is modeled in terms of the size fractions of the
three object classes over time. More specifically, for each experiment and each measured time step, the fraction of segmented
foreground pixels belonging to the respective classes is first computed. Then, as described in Section 2.5.1, the regression
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function from Equation (9) is fitted to model the evolution of class size fractions over time for each experiment individually.
The resulting fitted regression functions are shown in Figure 5.

Focusing on primary particles in Experiments A and E, their number is decreasing as more and more primary particles being
agglomerated, see Figure 5 (blue lines). Nevertheless, the fraction of primary particles does not vanish completely, due to two
effects: 1) continuous feed of primary particles into the process, 2) intermediate breakage of formed agglomerates. Volume
fractions of chain-like and raspberry-like agglomerates also attain steady values, although with different dynamics. Initially,
a large number of chain-like agglomerates are formed (only few agglomeration events required) which are then integrated into
larger, raspberry-like structures. In total, a slight prevalence of raspberry-like agglomerates over chain-like agglomerates is
observed in Experiment A, that can be attributed to the higher mechanical stability of raspberry-like agglomerates (larger
number of solid bridges with surrounding particles). Although the general trends are the same for Experiment E, it differs in
its kinetics, i.e., agglomerate formation is slower in Experiment E than in Experiment A. This can be related to the operation
conditions: Experiment E is operated at a higher gas inlet temperature and with a higher binder content. Consequently, the
sprayed droplets will dry faster and form individual particles (called overspray) that do not contribute to the agglomeration,
as these pre-dried droplets will not deposit on the primary particles or agglomerates.

Figure 5: Temporal evolution of classes sizes. The temporal evolution of the area-weighted size fraction for different
particle/agglomerate classes in Experiment A (left) and Experiment E (right) is shown. Circles represent the area-weighted
fraction of particles/agglomerates observed in the image data. The fitted regression function (Equation (9)), derived in
Section 3.3.1, is shown as curves in the corresponding colors.

3.3.2 Fitted univariate distributions over time

To analyze and model not only the volume fraction of these classes, but also the probability distributions of size and shape
descriptors, Section 2.5.2 introduced a parametric modeling procedure for the univariate distributions of object size d and
solidity s. We apply the described procedure to the data of each class and of Experiment A and E, to obtain the univariate

fits f
Ĝd,ω̂t,d

d andf
Ĝs,ω̂t,s
s for each t ∈ T . The resulting best-fitting family and the corresponding parameters of the marginal

distributions for each experiment, class and time step are presented in Table 6.

For the primary particles, no trend can be seen in the evolution of distribution parameters over time for both experiments.
This indicates that the size and shape of these particles remain unchanged over time, which is expected for primary particles.
Consequently, fitting a regression line provides no additional value as we assume that the univariate distributions are constant
over time.

The time-dependent regression function given in Equation (9) is fitted to the distribution parameters given in Table 6, i.e.,
to distribution parameters of each experiment, each agglomerate type and each descriptor, by minimizing Equation (18).
The resulting regression functions fitted to the distribution parameters in Table 6 for raspberry-like agglomerates are shown
on the right side of Figure 6. The upper row shows the results corresponding to the area-equivalent diameter d, whereas
the lower row shows the results corresponding to the solidity s. All parameters reach saturation after 30 minutes, with the
exception of the parameters that describe the area-equivalent diameter of raspberry-like agglomerates in Experiment E. The
fitted regression functions can be used to predict marginal distributions for unmeasured time steps.

Figures 6 a), b), e) and f) visualize the resulting marginal distributions of raspberry-like agglomerates for experiments A
and E at the time steps 30 min and 120 min. Note that the parameters of the visualized probability densities (lines)
have been obtained by using the prediction of the associated regression functions at these time steps. As can be observed,
the distributions correspond well with the available data. Moreover, the regression functions have been used to predict
distribution parameters for the probability distribution of d and s at the time step 75 min, i.e., for a time step for which no
data is available. The corresponding probability densities are visualized in gray in Figure 6. Interestingly, the distributions
obtained from the regression curves remain unchanged between these time steps, except for the area-equivalent diameter d
of agglomerates in Experiment E. However, in Experiment E, the size of the agglomerates continues to increase after 30 min,
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while their shape, i.e., their solidity s, remains constant. This behavior is to be expected based on the regression functions
for the distribution parameters.

Table 6: Fitted parametric univariate distributions. Parametric families of univariate distributions that have been
identified as suitable for modeling the univeriate probability densities of d and s for each class in Experiments A and E
across all time steps, along with the fitted parameters for each time step (desc. = descriptor, dist. = distribution, para. =
parameter).

desc. dist. par.
time step t /min

10 20 30 40 50 60 70 80 90 100 110 120

Experiment A; primary particle

d normal
µ = 215.3 224.89 222.79 221.18 221.24 221.3 222.46 223.22 226.97 223.83 226.57 221.81
σ = 29.01 28.53 29.6 29.58 27.9 27.77 27.82 27.24 29.6 30.34 29.08 29.05

s normal
µ = 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
σ = 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Experiment A; chain

d gamma
α = 33.53 33.57 42.44 24.78 25.99 25.63 26.08 21.5 30.3 25.01 32.85 25.83
β = 8.45 8.9 7.36 12.2 11.73 11.79 11.39 14.84 10.3 12.43 9.09 11.88

s normal
µ = 0.91 0.91 0.91 0.9 0.9 0.9 0.91 0.89 0.9 0.9 0.91 0.91
σ = 0.04 0.04 0.06 0.05 0.05 0.06 0.06 0.07 0.05 0.06 0.06 0.06

Experiment A; raspberry

d log-normal
µ = 0.11 0.2 0.21 0.2 0.22 0.22 0.19 0.19 0.21 0.21 0.17 0.18
σ = 417.45 468.71 479.03 464.03 473.36 474.12 469.77 453.2 478.91 455.65 459.8 465.19

s normal
µ = 0.89 0.87 0.86 0.88 0.87 0.86 0.87 0.87 0.86 0.87 0.87 0.87
σ = 0.04 0.07 0.07 0.06 0.07 0.08 0.06 0.05 0.06 0.08 0.06 0.06

Experiment E; primary particle

d normal
µ = 208.44 213.41 217.9 219.66 217.17 219.35 216.03 217.14 217.75 217.13 215.05 213.89
σ = 31.73 28.96 28.5 29.66 31.07 27.61 29.96 27.58 27.51 31.68 31.77 30.52

s normal
µ = 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
σ = 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02

Experiment E; chain

d log-normal
µ = 0.18 0.2 0.19 0.2 0.2 0.21 0.21 0.18 0.21 0.22 0.19 0.23
σ = 256.34 280.19 293.77 303.7 304.58 310.27 300.08 306.56 292.69 307.77 305.23 295.43

s normal
µ = 0.91 0.91 0.9 0.9 0.9 0.89 0.9 0.9 0.9 0.89 0.89 0.9
σ = 0.04 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.06

Experiment E; raspberry

d log-normal
µ = 0.1 0.19 0.18 0.18 0.19 0.19 0.19 0.21 0.18 0.21 0.21 0.21
σ = 369.2 467.29 463.34 473.1 449.76 449.77 464.17 481.65 473.71 497.88 482.48 478.38

s normal
µ = 0.91 0.85 0.87 0.86 0.87 0.87 0.87 0.86 0.87 0.86 0.86 0.85
σ = 0.01 0.06 0.06 0.05 0.08 0.06 0.06 0.06 0.07 0.05 0.07 0.06

We obtain similar results for chain-like agglomerates. For the solidity s, the distribution parameters remain almost unchanged
after 30 min for both experiments, see Table 6. The same applies for the area-equivalent diameter d and Experiment A.
However, similar to the raspberry-like agglomerates, the area-equivalent diameter in Experiment E continues to increase
beyond 30 minutes, as indicated by the rising value of σ in Table 6. Nevertheless, this increase is less pronounced than in
the raspberry-like agglomerates and nearly reaches saturation after 60 minutes.

The general preservation of shape (solidity) with respect to the operation conditions is not surprising: Due to fluidization,
agglomerates and recently attached primary particles undergo constant collisions with other agglomerates and the apparatus
walls. The mechanical stress is sufficient to overcome the cohesive forces required to break single bridges. This favors
agglomerate structures with low surface areas and large numbers of contact points between primary particles, i.e., the observed
raspberry-like shape. Although the shape is mostly unchanged, the dynamics of agglomerate formation, agglomerate size and
the intermediate volume fraction differ significantly, compare Figure 5.

3.3.3 Fitted bivariate distributions over time

So far, only univariate distributions of d and s have been considered, but these do not model the dependency of the two
descriptors. Thus, we want first to investigate the dependency of area-equivalent dimeter and solidity for all three classes
observed in Experiments A and E. A non-parametric measure for dependence is empirical Kendall’s tau, see [22], which
takes values in the interval [−1, 1], where a value close to zero indicates that there is no clear positive or negative correlation
between the area-equivalent diameter and solidity.
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Figure 6: Temporal evolution of marginal distributions. Parametric modeling of marginal distributions. The marginal
distributions of the area-equivalent diameter d (upper row) and solidity s (lower row) for both, Experiment A (column 1)
and Experiment E (column 2) are shown for the time steps 30 min, 75 min and 120 min. The distributions of all time steps
are obtained by parameter regression. The parameters of the marginal distributions and a fitted regression line are shown
(column 3-4) for both experiments. The regression makes it possible to make statements about unobserved time steps, e.g.
for 75 minutes for which no data is available.

The empirical Kendall’s tau values between d and s for primary particles, averaged over all time steps, is 0.10 across both
experiments. For chain-like agglomerates, the corresponding average value of empirical Kendall’s tau over all time steps are
−0.35 and −0.38 for Experiments A and E, respectively. Analogously, we determined the averages of −0.47 and −0.40 for
raspberry-like agglomerates for Experiments A and E over all time steps, respectively. Due to the average Kendall’s tau
being close to 0, we assume independence of d and s for primary particles.

Recall that copulas can be used to model the dependencies between two descriptors. Section 2.5.2 outlined how the marginal
distributions and an Archimedean copula can be used to model the bivariate distribution of d and s. However, since we
assume independence for the two descriptors in the case of primary particles, we solely employ copulas to model the bivariate
distributions of d and s for agglomerates.

To determine the best-fitting copula family and the corresponding parameter for each time step of the agglomerates, we apply
the methods from Section 2.5.2 to the data of chain-like and raspberry-like agglomerates for Experiment A and Experiment

E to obtain a sequence of parametric copulas cẐ,θ̂t
d,s , see Table 7.

Table 7: Fitted parametric copula functions. Archimedean copulas that have been identified as suitable for modeling
the bivariate probability of d and s for raspberry-like and chain -like agglomerates in Experiment A and Experiment E across
all time steps, along with the fitted parameters for each time step (rot. = rotation, exp. =experiment, par. = parameter,
ali. = Ali-Mikhail-Haq).

exp. type copula rot. par.
time step t /min

10 20 30 40 50 60 70 80 90 100 110 120

A chain ali 90 θ = 0.87 0.87 0.98 1.0 0.98 0.99 0.99 0.99 1.0 1.0 0.99 0.96
A raspberry clayton 270 θ = 0.78 1.88 1.72 1.55 1.83 1.79 1.53 1.97 2.2 1.92 1.53 1.8
E chain ali 90 θ = 0.79 0.96 0.98 1.0 0.99 0.99 0.98 0.97 0.96 0.99 0.96 0.98
E raspberry clayton 270 θ = 0.16 1.22 1.5 1.4 1.77 1.81 1.6 1.17 1.58 1.55 1.84 1.81

Figure 7 visualizes exemplarily chosen bivariate probability densities of d and s for primary particles, chain-like agglomerates
and raspberry-like agglomerates. A visual inspection of the densities for each class shows that a linear combination of the
three densities represents the distribution of all scatter points shown in Figure 7 (first column) well.
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Figure 7: Bivariate distribution of descriptors. Bivariate distribution of area-equivalent diameter and solidity for
particles/agglomerates observed in Experiments A (upper row) and E (lower row). The bivariate distributions of all measured
particles is represented using iso-lines of the probability density obtained by means of a kernel density estimation (column
1) at time step 120 min. Furthermore, a decomposition of this distribution into the parametric distributions of the classes of
primary particles, chain-like agglomerates, and raspberry-like agglomerates is shown (columns 2-4).

As for the distribution parameters of the marginal distributions of d and s, temporal changes of copula parameters can be
analyzed for agglomerates. Therefore, time-dependent regression functions as given in Equation (9) are fitted to the values
of distribution parameter by minimizing Equation (18). The resulting regression functions fitted to the copula parameters in
Table 7 for raspberry-like agglomerates observed in Experiments A and E are shown in Figures 8d) and h). The parameters
of Experiment A reach saturation after 20 min, while the parameters of Experiment E reach saturation after 40 min. In
addition, the bivariate probability densities of d and s for raspberry-like agglomerates after 30 and 120 min is shown in the
first and third column, where the copula parameters of the distributions have been determined by means of regression. Once
again, no significant changes can be observed in the distributions for Experiment A. However, in Experiment E, an even more
pronounced shift in the distributions can be seen, which is mainly caused by the parameter evolution of the area-equivalent
diameter, see Section 3.3.2.

area equivalent diameter /µm

so
li
d
it
y

(a)
area equivalent diameter /µm

so
li
d
it
y

(b)

50 100

1.0

1.5

2.0

time t /min

θ t

(d)
area equivalent diameter /µm

so
li
d
it
y

(c)

area equivalent diameter /µm

so
li
d
it
y

(e)

area equivalent diameter /µm

so
li
d
it
y

(f)

50 100

0.5

1.0

1.5

time t /min

θ t

(h)
area equivalent diameter /µm

so
li
d
it
y

(g)

Figure 8: Temporal evolution of marginal distributions. Evolution of bivariate probability density of area-equivalent
diameter and solidity in time for Experiment A (upper row) and E (lower row). The bivariate probability density for
raspberry-like agglomerates is shown for the time steps of 30 min (column 1) and 120 min (column 3). Furthermore, the
predicted bivariate probability density for raspberry-like agglomerates is shown for the time step of 75 min (column 2) for
which no measured data is available.
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Similarly to the univariate case, the fitted regression functions can be used to estimate copula parameters and consequently
bivariate distributions of descriptor vectors for unmeasured time steps. The predicted bivariate distributions for raspberry-like
agglomerates are shown in Figures 8b) and f) for Experiment A and Experiment E at 75 min, respectively.

For chain-like agglomerates, the parameters in both experiments reach saturation after 30 min. Results therefore indicate
that with respect to structure formation, dynamic equilibrium between agglomeration of primary particles into chain-like
agglomerates, transition from chains-like agglomerates to raspberry-like agglomerates and the breakage of too large raspberry-
like agglomerates is reached. This timescale is also in line with results on average agglomerate size presented in [25]. The
previously presented results on modeling the evolution of particle and agglomerate structure distributions over time provide
valuable insights into the process.

3.4 Sensitivity of fitting procedure of copula-based bivariate distributions

As the previous results were obtained using a large amount of data that is not available in an online or real-time measurement
situation, the question arises how sensitive these results are with respect to the number of evaluated objects. Or: How many
objects must be evaluated before a reliable and robust estimate of the multi-dimensional structure of agglomerates is obtained?

In order to investigate the sensitivity of the model fitting procedure described in Section 3.3, we deployed the sensitivity
analysis procedure described in Section 2.6 to the particle descriptors measured in Experiment E at time 120 min. More
precisely, for each object class we conducted the sensitivity analysis described in Section 2.6 by setting Y as the set of all
descriptor vectors (d, s) ∈ [0,∞)× [0, 1] of particles/agglomerates of the respective class, measured in Experiment E at time

120 min. Then, for each nb ∈ {5, 20, 35, . . . , 140} a total of 1 000 bootstrap samples Ỹ of size nb are independently generated

from Y and the corresponding models f̃d,s are fitted. Note that since we assume that the parametric families for the marginal
distributions and for the copula do not change for different time steps within one experiment and object class, the parametric
families associated with f̃d,s are chosen in accordance with Table 3 and Table 7. More precisely, when fitting f̃d,s to Ỹ, we
skip the search for optimal parametric families for both the marginal distributions and the copula, as we take the families
from fd,s given in Table 3 and Table 7. We then optimize only their parameters, ωd, ωs ∈ R2 and θ ∈ Θ with respect to Ỹ,
using maximum likelihood estimation [36].

The results of this analysis are presented in Figure 9. On the left side and in the middle, the similarity of fd,s and f̃d,s are
shown by means of the APEd and APEs introduced in Equation (19) and Equation (20). It can be observed that accurate
modeling of primary particles requires only a few observations. In contrast, modeling chain-like agglomerates necessitates a
larger number of observations, while the modeling of raspberry-like agglomerates requires the most observations. This aligns
with the observation that raspberry-like structures are much more complex than primary particles or chain-like agglomerates.
On the right side of Figure 9, we show the sensitivity of the procedure to fit the dependency structure of the probability
density in dependence of the amount of available data. Since the dependency structure of d and s for primary particles
is assumed to be independent, they are excluded from this analysis. As before, the dependency structure of d and s for
raspberry-like agglomerates is more sensitive than that of chain-like agglomerates.

Figure 9: Bootstrap sampling-based sensitivity. For all particle types, the similarity of fd,s computed by means of

all data descriptor vectors measured in Experiment E at time step 120 min and f̃d,s computed by means of a subset of nb
descriptor vectors is shown. On the left and in the middle, the absolute percentage loss (see Equation (19) and Equation (19))

is shown for different sizes nb. On the right-hand side, the similarity of fd,s and f̃d,s is shown by means of the integral over
the absolute difference of the respective copula functions, see Equation (21). All experiments are conducted, 1 000 times, the
solid lines show the arithmetic mean, while the shaded area shows the standard deviation.
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As raspberry-like agglomerates have the most complex structure and appear less frequently in our data, estimates on the
required number of identified objects are expressed with respect to this agglomerate class. Given a desired expected error,
in terms of APEd and APEs, the minimum number of detected agglomerates can be predicted. Figure 9 (Experiment E)
shows that approximately 70 raspberry-like agglomerates need to be measured in order to achieve in expectation an APEd

and APEs of less than 2 %.

For Experiment E with an average count of about 3.5 raspberry-like agglomerates per image, this corresponds to about 20
images. Given typical acquisition rates (frame rates) of about 60 images per second, this means that after approximately a
third of a second of measurement time the quantity of information necessary for such a precision can be acquired.

These results are exceptionally important for implementing online measurement of agglomerate structure formation and online
model-learning and process adaptation, e.g., closed-loop (feedback) control of fluidized bed spray agglomeration processes for
defined agglomerate structures. In particular, it enables almost immediate action to steer synthesized agglomerate structures
into preferable directions; furthermore, deviations and disturbances can be quickly identified and severe malfunctions (e.g.,
break-down of fluidization due to excessive agglomeration) can be prevented.

4 Conclusion

In this paper, the agglomeration process of glass beads in a SFB agglomeration over time is quantitatively investigated
and modeled. In particular, the structure formation is investigated by analyzing inline images sequences followed by time-
dependent multivariate stochastic modeling of size and shape descriptors of particles/agglomerates.

Particles and agglomerates are automatically segmented from image data, from which various geometrical and textural de-
scriptors are computed. These descriptors are used to classify segmented objects as primary particles, chain-like agglomerates
and raspberry-like agglomerates. For this task, a fast and robust random forest classifier is successfully applied. Subsequently,
parametric bivariate distributions are fitted for each class and time step. This allows the regression of model parameters,
which enables us to make statements about the distribution of descriptor vectors at unobserved time steps and predict the
time-dependent multivariate descriptor distribution of these particle classes. In addition, the volume fraction of each class
over time is investigated. The results show that no further agglomeration can be observed after 30 minutes with a small
amount of binder. With a higher amount of binder, however, further agglomeration is observed after 30 minutes.

In addition, a sensitivity analysis is performed to quantify the amount of data required in order to adequately model the
bivariate distributions that characterize the state of agglomeration. It is shown that a higher amount of data is required for
raspberry-like agglomerates due to their more complex shape and less-frequent occurrence than chain-like agglomerates and
primary particles. The results of the sensitivity analysis show the minimum data required for online tracking of agglomerate
formation dynamics. This opens the door to online monitoring of structure formation and feedback control of SFB agglomer-
ation with respect to disturbance identification and rejection. As a result, stable operation can be maintained while ensuring
predefined product properties such as the re-hydration capacity and kinetics of the agglomerated material.
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