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Abstract

The 3D microstructure of porous media, such as electrodes in lithium-ion batteries and solid-oxide fuel cells or
fiber-based materials, significantly impacts the resulting macroscopic properties, including effective diffusivity or
permeability. Consequently, quantitative structure-property relationships, which link structural descriptors of 3D
microstructures such as porosity, specific surface area, or geodesic tortuosity to effective transport properties,
are crucial for further optimizing the performance of porous media. To overcome the limitations of 3D imaging,
which is time-consuming and costly, parametric stochastic 3D microstructure modeling, which uses tools from
stochastic geometry, is a powerful tool to generate many virtual but realistic structures at the cost of computer
simulations. The present paper uses 90,000 virtually generated 3D microstructures, consisting of a solid phase
and the pore space, derived from literature by systematically varying parameters of stochastic 3D microstructure
models. Previously, this data set has been used to establish quantitative microstructure-property relationships
utilizing analytical regression equations, artificial neural networks, and convolution neural networks. The present
paper extends these findings by applying a hybrid AI framework to this data set. More precisely, symbolic re-
gression, powered by deep neural networks, genetic algorithms, and graph attention networks, is used to derive
precise and robust analytical equations. These equations model the relationships between structural descriptors
and effective transport properties without requiring manual specification of the underlying functional relation-
ship. By integrating AI with traditional computational methods, the hybrid AI framework not only generates
predictive equations but also enhances conventional modeling approaches by capturing relationships influenced
by specific microstructural features traditionally underrepresented. Thus, this paper significantly advances the
predictive modeling capabilities in materials science and process engineering, offering vital insights for designing
and optimizing new materials with tailored transport properties.

Keywords: Porous material, Mass transport, Microstructure analysis, Stochastic 3D model, Predictive modeling,
Hybrid AI integration, Deep learning, Convolutional attention network

1 Introduction

The 3D microstructure of various porous functional materials such as solar cells and electrodes in lithium-ion batteries
or fuel cells significantly influences the resulting macroscopic properties such as effective diffusivity and permeability.
This relationship is essential for optimizing the performance of porous media [1, 2]. Thus, a quantitative under-
standing of the interplay between the complex 3D microstructure, characterized via microstructural descriptors
such as porosity, specific surface area or constrictivity, and effective macroscopic properties is required for further
progress in various research fields, including battery technology and pharmaceutical systems [3, 4]. Historically, tra-
ditional methods for establishing these relationships have involved extensive experimental efforts, often supported by
high-resolution 3D imaging techniques like X-ray tomography and focused ion beam scanning electron microscopy.
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However, these methods are limited by high costs and time demands, prompting a shift towards virtual materi-
als testing [5, 6]. This approach utilizes parametric stochastic 3D microstructure modeling, employing tools from
stochastic geometry, to generate a vast dataset of virtual but realistic 3D microstructures at a fraction of the cost
and time of experimental methods [7, 8].

In this context, this study employs a comprehensive dataset of 90,000 virtual microstructures derived from systematic
variations in the parameters of nine different types of stochastic 3D microstructure models [9]. This dataset has
facilitated a deeper understanding of microstructure-property relationships through traditional analytical methods
and the emerging use of computational techniques such as artificial neural networks (ANNs) and convolutional neural
networks (CNNs) [9]. These advanced methods, including high-dimensional regression and machine learning (ML),
have captured the complex effects of microstructures on material properties, marking significant advances in the
automation and refinement of prediction processes [10, 11]. Despite these technological advances, challenges remain,
especially in applying computational methods to large, heterogeneous datasets essential for robust generalizations
across different material types and conditions. To bridge this gap, this study introduces a hybrid AI framework that
combines the strengths of symbolic regression (SR), powered by deep neural networks (DNNs), genetic algorithms
(GAs), and graph attention networks (GATs) to derive robust and accurate analytical microstructure-property
relationships. This framework not only adapts to but also learns from the complexity of microstructural data, thus
providing transformative insights into the design and optimization of materials [12, 13]. Specifically, this framework
incorporates a novel dual implementation of GATs within the SR process. The first implementation uses GATs to
focus on data augmentation through graph-based learning to enrich the training dataset. The second implementation
uses GATs to analyze feature interactions, where ”features” refer to the microstructural descriptors that are critical
to understanding effective material properties. By integrating these GAT-based approaches with SR techniques, our
framework can both expand the available training data and capture complex interactions between microstructural
descriptors, leading to more accurate and physically interpretable microstructure-property relationships.

Our approach refines prediction equations by using AI to uncover quantitative relationships between the complex
3D microstructure of materials and their resulting effective macroscopic properties that are critical but have been
underrepresented in traditional models. By integrating AI into traditional computational methods, our framework
improves the accuracy and robustness of predictive equations. This integration represents a critical advance in
materials science, providing new insights that are essential for designing and optimizing next-generation materials
with tailored effective macroscopic properties. These materials are in increasing demand due to their critical role
in various innovative applications, from energy storage in lithium-ion batteries to filtration systems in biomedical
devices.

Furthermore, the rapid development of porous media technology underscores the need for advanced predictive models
that can adapt to complex conditions. Recent advances in material science and engineering have expanded the range
of porous media applications and require a more sophisticated understanding of their microstructural influences on
macroscopic properties. This complexity requires a multidimensional approach that predicts material behavior under
controlled conditions and explores potential responses within defined parameters. Our framework addresses this need
by incorporating multi-faceted data analysis and using computational advances to bridge the gap between theoretical
models and real-world applications. These advances are crucial as they enable the development of more efficient,
durable, and economically viable materials that are better able to meet the challenges of modern technological
applications and environmental conditions.

The rest of the present study is structured to first revisit the methodology used to generate and analyze the original
dataset of 3D microstructures. Subsequent sections will discuss the implementation of the hybrid AI framework,
present the results obtained from this analytical approach, and compare these results with those of the initial study
to highlight improvements and new findings. Finally, we will explore the implications of these results for future
research and the development of novel material designs.

2 Materials and methods

2.1 Data overview

In this study, we use the comprehensive dataset of 90,000 3D microstructures previously generated and characterized
in [9], representing a wide array of microstructures of porous media generated by means of various spatial stochastic
models. In particular, nine types of stochastic 3D models have been used in the original study, each of which has been
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deployed to generate 10,000 unique microstructures. This extensive dataset was designed to uniformly cover porosity
values ε between 0.3 and 0.95, while also spanning a wide range of other transport-relevant structural descriptors as
well as macroscopic properties like effective diffusivity.

It is important to highlight that the parameters of the stochastic 3D models have been varied systematically, such
that the virtual 3D microstructures exhibit numerous different structural scenarios that roughly ensure uniformity
of the values of effective diffusivity (called M -factor in the following). Note that the virtual 3D microstructures have
been generated on a discrete cuboidal sampling window consisting of 1923 voxels with periodic boundary conditions,
which standardizes the analysis and comparison of different stochastic 3D models. Moreover, the stochastic 3D
models encompass a variety of structures, including random fiber systems [14], random channel systems arising by
considering the complement of fiber systems, spatial stochastic graphs [15], level sets of Gaussian random fields [7, 8],
level sets of spinodal decompositions by numerically solving the Cahn-Hilliard equation [16], and several types of
random ellipsoid configurations including ellipsoids smoothed with a Gaussian filter [17–19], see Figure 1.

(i) (ii) (iii)

(iv) (v) (vi)

(vii) (viii) (ix)

Figure 1: 3D renderings of simulated structures, where transport takes place in the transparent pore space. The
structures correspond to the nine different types of stochastic microstructure models, namely fiber system (I), channel
system (II), spatial graph (III), level set of a Gaussian random field (IV), level set of a spinodal decomposition (V),
as well as systems of hard ellipsoids (VI), smoothed hard ellipsoids, (VII), soft ellipsoids (VIII), and smoothed soft
ellipsoids (IX). The figure is reproduced from [9].

More precisely, we utilize the dataset described in [9] consisting of several structural descriptors as well as two effective
macroscopic properties (namely effective diffusivity and permeability), which have been computed for 90, 000 virtually
generated porous microstructures. Specifically, the dataset is represented as follows:

A = ((εi, Si,m(τgeo)i, σ(τgeo)i, βi,Mi))i=1,...,n , (1)
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where n = 90, 000 is the number of entries. The structural descriptors of the porous microstructures include porosity
ε, specific surface area S, mean value m(τgeo) and standard deviation σ(τgeo) of geodesic tortuosity as well as
constrictivity β of the pore space. Further details regarding the formal definition of these microstructural descriptors
and their estimation from voxelized 3D image data can be found in [9]. Furthermore, the entries in the dataset
A comprise an effective macroscopic property, namely, the M -factor, which is defined as the ratio of effective and
intrinsic diffusivity. Various studies have shown, that the considered structural descriptors influence the M -factor
and postulated various empirically derived equations [9, 15, 20].

The diversity of the dataset A facilitates a detailed exploration of the intrinsic relationships between microstructure
characteristics and material properties, providing a robust foundation for the application of our hybrid AI frame-
work in the current study. This framework, described in the subsequent section, aims to derive precise and inter-
pretable equations that model the quantitative relationships between structural descriptors and effective macroscopic
properties. Using this framework, we enhance our ability to predict material properties based on microstructural
characteristics, significantly advancing predictive modeling capabilities in materials science.

2.2 Hybrid AI framework implementation

A custom-developed hybrid AI framework is employed to investigate the structure-property relationship, linking
structural descriptors of 3D microstructures—such as porosity, specific surface area, and geodesic tortuosity—to their
effective transport property. This framework integrates various computational and data processing modules including
dimensional analysis (DA), symbolic regression (SR), transformation techniques (TTs), and deep learning networks.
Collectively, these modules enhance the framework’s efficiency through systematic pre-processing, optimization, and
execution phases, ultimately enabling the derivation of robust and interpretable analytical equations.

Overview of the hybrid AI framework. This section provides a general overview of our hybrid AI framework,
which integrates multiple analytical modules to model structure-property relationships within varied datasets.[12]
Initially, we outline the general workflow of the framework and provide a brief overview of all integrated modules
and their role in improving our modeling capabilities. Following this overview, we delve specifically into one of
the modules of our framework, the graph attention network (GAT), which was particularly instrumental in this
case study. We detail the applications of GAT and the enhancements made to optimize its performance within our
framework.

Data acquisition and processing. Within this framework, the workflow begins by entering the data into the
DA module [21]. The input data comprises structural descriptors of 3D microstructures, which include features
such as porosity, specific surface area or mean geodesic tortuosity. These are crucial for modeling the physical
characteristics of the structures. The output data, represented as the transport property, include properties such as
diffusivity or permeability, depending on the specific transport phenomena being studied. These data are processed
with their corresponding SI units to determine ”dimensionless groups” that ensure the physical validity of the derived
equations. These dimensionless groups are sets of related features — where ”features” refer to the microstructural
descriptors — that combine through specific mathematical operations to form dimensionless quantities, reflecting
intrinsic properties of the system that are invariant across different scales. The original dataset is updated by
incorporating these dimensionless groups into the dataset, which improves the ability of the dataset to represent
physical relationships more comprehensively. Specifically, the update process involves adjusting the dataset by
adding new columns for each discovered dimensionless group, allowing the framework to utilize these groups in
subsequent modules to refine input data and improve the accuracy of the final derived equation. This updated data
set then progresses through the framework, where further analyses are performed to deepen the understanding of
structure-property relationships.

Symbolic regression (SR) and deep neural networks (DNN). After the DA module processes the data, the
workflow transitions to the SR module, which includes several internal modules to develop precise mathematical
equations describing input-output relationships. These internal modules use open-source software libraries such as
PySR [22] and Gplearn [23] alongside our in-house developed techniques. These techniques include the fragment
selection technique (FST) [12, 13] and constant selection techniques (CST) [12, 13], as well as the GAT for advanced
data analysis.

The SR module systematically works through the dataset to derive equations that effectively capture the relationship
between inputs and output. If the initial results from the SR module do not meet our expectations, the workflow
progresses to our in-house developed DNN [12] module. This DNN is specifically tailored to evaluate and refine
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physical equations provided by the user. It achieves this by predicting outputs and assessing their alignment with
existing equations. The DNN performs this by generating new features from its predictions, which are then compared
against the physical equations. If the comparison shows a close match, we make necessary adjustments to the
equations, enhancing their accuracy and relevance. This iterative process involves breaking down complex equations,
solving each component separately, and integrating them to build a comprehensive and accurate material model
equation [12].

The iterative process within the framework is characterized by a continuous refinement cycle. This cycle, powered
by a feedback loop, rigorously evaluates the equations’ effectiveness. If an equation does not meet our criteria for
accuracy and utility, the data is reprocessed with newly updated features and parameters for another iteration. This
cycle repeats until an equation that best fits both the empirical data and theoretical understanding is identified and
chosen as the final output for the framework. It is important to note that the detailed descriptions of these modules
and their specific configurations are thoroughly explained in [12, 13], ensuring that the focus here remains on the
general workflow and new components, such as the GAT, rather than repeating intricate technical details of the
entire framework with the different previously developed modeling modules.

Integrating the graph attention network (GAT) to enhance our framework’s capabilities. In our hybrid
AI framework, various modules are evaluated to determine which one delivers the best equation for the structure-
property relationships in specific case studies. We discovered that the GAT module was particularly effective for this
dataset due to its capability to manage complex data relationships. Consequently, our efforts in this study focused not
only on advancing the GAT module as a method for data augmentation—as previously detailed in [13]—but also on
investigating the interactions between input features. Furthermore, we refined the GAT workflow by incorporating
pre-processing methods such as “feature selection” with recursive feature elimination (RFE) [24, 25], correlation
analysis, and feature engineering [26]. Given the extensive utilization and enhancement of the GAT within this
study, we provide a detailed description here. Readers interested in exploring other modules utilized within our
framework can refer to references [12, 13] for additional insights. As shown in Figure 2, the GAT module comprises
four interconnected sub-modules. These include: (i) Data pre-processing sub-module: Optimizes the initial data
setup, (ii) Graph attention network sub-module: Focuses on identifying and analyzing combinations of features and
enhances data augmentation, (iii) Dataset preparation sub-module: Handles the integration and organization of data,
and (iv) Symbolic regression sub-module: Responsible for generating the final mathematical equations.
Each sub-module is designed to address specific regression challenges, and their collaborative operation ensures
efficient and seamless data processing throughout the workflow. Data transitions between the sub-modules in a
structured manner, allowing for systematic handling and transformation of information according to defined protocols.
In the following sections, each sub-module will be discussed in detail to provide a comprehensive understanding of
their functions and contributions to the overall process.

(i) Data pre-processing sub-module. The workflow of the GAT module begins with the ”Data Pre-processing”
sub-module, which initially addresses raw data by handling missing values. Here, we employ the mean padding
approach, which replaces missing values (NaNs) with the mean of the available data for each feature. This
approach is computationally efficient, helps prevent the introduction of extreme outliers, and preserves the
overall statistical distribution of the dataset—critical factors for successful SR tasks [27].

Following the initial data cleaning, this sub-module introduces a dual feature selection mechanism that combines
recursive feature elimination (RFE) and correlation analysis to identify and retain the most representative
features from the original dataset, termed “Selected original features.” The dual mechanism works by first using
RFE, where a model, such as a RandomForestRegressor, iteratively removes the least important features based
on their impact on model accuracy. Simultaneously, correlation analysis assesses the strength and direction of
the linear and nonlinear relationships between each feature and the target variable. Throughout this process,
each feature is assigned an importance score that quantifies its effectiveness in predicting the target variable.
This scoring ensures that only those features that demonstrate significant relevance and strong correlation are
retained. This dual selection mechanism aims to refine the feature set by systematically removing the least
important features and effectively filtering the dataset to include only the most relevant features strongly linked
to the target variable.

Following this selection, the workflow moves into the feature engineering method, where input features are
enriched and refined. This method generates new features by combining existing ones through basic opera-
tions such as addition, subtraction, multiplication, and division. Additionally, more advanced transformations
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Figure 2: Graph attention network (GAT) Workflow in the hybrid AI framework, showing the four sub-modules:
Data pre-processing, Graph attention network, Dataset preparation, and Symbolic regression, which collectively
enhance data analysis and model predictions.

inspired by physical laws are applied. These transformations are methodically organized into four levels: basic
binary operations (e.g., addition and multiplication); interactions among three features (e.g., combinations
like multiplication or ratios of three features); power transformations (e.g., squares, cubes, and inverses); and
polynomial feature generation using libraries like sklearn’s PolynomialFeatures. These methods are strategi-
cally designed to capture both simple and complex relationships between features while ensuring the physical
significance of the features is preserved.

After feature engineering, the entire feature set — including both newly engineered and original features
— undergoes the same rigorous dual selection mechanism introduced earlier. The features that successfully
pass through this dual selection mechanism are termed ”Selected engineered features,” distinguished by their
relevance and non-redundancy in representing the underlying data patterns. This mechanism ensures that only
the most relevant features are retained, effectively balancing computational efficiency with data quality.

The ”selected original features” and ”selected engineered features” are then merged to form a comprehensive
dataset, referred to as ”Featured data.” This Featured data is subsequently passed to the “Dataset preparation”
and the “Graph attention network” Sub-module for further analysis, ensuring that the data is thoroughly
prepared for the subsequent stages of the workflow.

(ii) Graph attention network sub-module. The ”Graph attention network” sub-module employs the GATv2
model [28] for two specific and distinct purposes: advanced data augmentation and enhanced feature interaction
analysis. The selection of GATv2 over the original GAT model [29] is based on its superior capability in handling
dynamic attention, allowing for attention weights to adapt flexibly across different nodes. This characteristic is
crucial for effectively capturing complex feature interactions, which is central to both data augmentation and
in-depth feature analysis.

First use: Advanced data augmentation. Initially, the GATv2 model is utilized for data augmentation,
as elaborated in our prior publication [13]. This involves constructing a dense graph where each data point
is represented as an interconnected node. The model is trained on this graph, dividing the data into an 80%
training set and a 20% testing set to enhance predictive accuracy and generalizability. An early stopping mech-
anism during training halts the process if model performance declines below a set threshold, with subsequent
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retraining efforts to restore performance levels. Additionally, we implement a filtering step based on mean
absolute error to refine both the training and testing sets by removing highly erroneous predictions. Once
training is complete, the model generates new data points by applying learned complex relationships, which
are then merged with the original dataset to create ”Augmented data.” This enriched dataset enhances the
subsequent symbolic regression analysis, improving both accuracy and generalizability.

Second use: Enhanced feature interaction analysis. Expanding on the concepts detailed in [13], we
further utilize the GATv2 model to deepen our understanding of underlying data patterns and refine our
data augmentation processes. The framework constructs a sophisticated graph structure, representing each
data sample as a node. Relationships between nodes are defined using cosine similarity, which effectively
captures directional similarities between feature vectors—preferred over euclidean distance to better handle the
complexities of high-dimensional spaces [30]. In this graph, nodes represent the values of all selected features,
normalized to ensure numerical stability and expedite model convergence. For the data augmentation method,
nodes encompass the entire feature set, and edges are fully connected to maximize information flow. In contrast,
for enhanced feature interaction analysis, the graph construction is more nuanced. Nodes are standardized by
feature values, and edges are selectively established based on cosine similarity. Edge attributes, derived from
similarity scores, provide a detailed structure for analyzing feature interactions.

The GATv2 model employs a multi-head attention mechanism, where each layer dynamically adjusts the
number of heads to explore feature interactions at various levels. This mechanism enables nodes to focus on
neighboring nodes with calculated attention scores, enhanced by a shared linear transformation, LeakyReLU
activation, and softmax normalization [31]. Attention weights are dynamically updated during the message-
passing phase, improving the model’s ability to analyze feature relationships from multiple perspectives and
perform regression tasks effectively. The results from this feature interaction analysis, including important
binary and ternary feature combinations, are referred to as ’GAT features’ within the framework. These “GAT
features” are then integrated with “selected original” and “engineered features”, forming enriched datasets for
advanced analytical techniques. This robust integration sets a solid foundation for the dataset preparation
module, enhancing the accuracy and generalizability of the symbolic regression results.

(iii) Dataset preparation sub-module. The “Dataset preparation” sub-module combines data from multiple
sources: “Selected original features”, “Featured data”, and “Augmented data”. This integration prepares four
types of datasets:

• Extended original dataset: Created by duplicating and randomly rearranging the ”Selected original
features.” This process is initiated by setting the “extend time” parameter, ensuring that the statistical
properties of the data are maintained to enhance the dataset’s representativeness and improve the model’s
ability to generalize across different scenarios.

• Featured dataset: Comprising both original, engineered, and GAT features, this dataset is refined
through methods like feature engineering and the GAT module. It also undergoes a filtering mechanism
using RFE and correlation analysis to ensure only the most impactful features are included. The dataset
is further assessed to maintain mathematical correctness, preventing computational errors such as division
by zero or incorrect power calculations.

• Extended featured dataset: This dataset includes more extensive versions of the “Featured dataset”.
It is produced by extending the dataset when the “extend time” parameter is set above a threshold, which
serves to increase the sample size and enhance the robustness and stability of the dataset for a more
reliable modeling outcome.

• Augmented dataset: This dataset incorporates new data points generated by the GATv2 model, en-
riching the dataset with augmented samples. This integration not only adds diversity to the data but
also enhances the dataset’s complexity, allowing for more nuanced analysis and modeling in the symbolic
regression phase.

Mechanisms are implemented to handle potential computational issues, such as verifying divisors and checking
power operation ranges to maintain numerical stability during feature combination evaluation. This ensures
that the feature combinations remain valid and usable for downstream tasks. The expanded datasets are
formatted and saved as CSV files for traceability and smooth integration into subsequent SR modules. By
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employing dataset extension strategies and systematically combining data sources, the module ensures the
availability of high-quality training datasets. This process effectively addresses challenges such as insufficient
data and data sparsity while preserving the integrity and diversity of the original distribution.

(iv) Symbolic regression sub-module. The “Symbolic regression” sub-module is the concluding step of our
framework. SR a machine learning method, attempts to find mathematical equations that effectively capture
the relationships between input features and output targets. In this study, we incorporate the open-source PySR
library [22] as our tool for SR. It employs genetic programming principles to evolve potential mathematical
expressions through a structured, iterative process. This implementation begins by generating a diverse initial
population of expressions and managing their complexity to foster a balanced search space. The library evalu-
ates each expression’s performance based on prediction accuracy and structural simplicity, employing metrics
like mean squared error (MSE) and the Bayesian information criterion (BIC). The latter helps in selecting ex-
pressions that are both precise and predictive, avoiding overfitting. Key operations within this process include
crossover and mutation—techniques that respectively recombine and alter expressions to explore new solutions.
The output of the SR module is the optimal mathematical expression that best represents the relationships in
the data.

Comprehensive validation mechanisms are applied to ensure data consistency throughout the workflow. For example,
feature-engineered datasets are validated before graph construction, and outputs from the GATv2 module are checked
for completeness and accuracy before entering SR. Additionally, a logging system tracks data flow, intermediate
results, and key parameters at every stage, facilitating traceability, debugging, and optimization. These mechanisms
ensure the framework’s reliability, efficiency, and seamless integration across all modules, culminating in high-quality
SR results. The performance of the framework and the fit of the predicted models to the original data are evaluated
using the mean absolute error (MAE), mean squared error (MSE), and the coefficient of determination (R2), shown
by the equations below:

MAE =
1

n

n∑
i=1

|ypred,i − yMPM,i| (2)

MSE =
1

n

n∑
i=1

(ypred,i − yMPM,i)
2

(3)

R2 = 1 −
∑n

i=1(ypred,i − yMPM,i)
2∑n

i=1

(
ypred,i − 1

n

∑n
j=1 yMPM,j

)2 (4)

Here, ypred,i, yMPM,i denote the predicted and MPM (Model Predictive Maintenance) values of the output, respec-
tively.

2.3 Construction of synthetic datasets for framework validation

Building upon the methodologies described in Section 2.2, this section outlines how we validate the robustness of our
hybrid AI framework. Specifically, we demonstrate the capabilities of the framework through its derived equation,
which links the structural descriptors of dataset A to the M -factor. This validation is crucial for ensuring the
practical applicability of the predictive equations, especially under real-world conditions where data may not be
ideal. Through this approach, we not only deepen our understanding of the microstructure-property relationships
but also enhance the robustness of our predictive equations. The core of our validation process involves Eq. (10) of
[9], which is as follows:

M(ε, S,m(τgeo), σ(τgeo), β) =
ε

m(τgeo)α
, (5)

with α = 8.483. Note that this type of equation has been originally considered in [32] and later reconsidered in
[33]. Although the derivation and implications of this equation are discussed in detail in Section 3.3, it is integral
to the methodology described here as it forms the basis for our simulation studies. To quantitatively assess the
reliability of the framework’s result described in Section 3.3, we utilize the structural descriptors within dataset
A together with the formula given in Eq. (5), to generate new datasets with varying noise levels for the output
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variable M -factor. More precisely, we perform a simulation study for which we assume that Eq. (5) relates structural
descriptors (εi, Si,m(τgeo)i, σ(τgeo)i, βi) with the M -factor. Therefore, we want to assign to each descriptor vector
xi = (εi, Si,m(τgeo)i, σ(τgeo)i, βi) a randomly generated value for the M -factor, where the generation upholds the
following conditions:

(i) The sampled M -factor values are on average M(xi), i.e., conditioned on xi the mean value of the M -factor
distribution follows Eq. (5).

(ii) The sampled M -factor values have a standard deviation of σnoise.

(iii) The sampled M -factor values lie within the interval [0, εi], as the M -factor is non-negative and bounded by
the porosity [1].

Therefore, to uphold (iii), we utilize a truncated normal distribution, the probability density of which is given by

fµG,σG,εi(z) =

{
1

Φ((εi−µG)/σG)−Φ(−µG/σG)
1√
2πσ2

G

exp
(
− (z−µG)2

2σ2
G

)
, if 0 ≤ z ≤ εi,

0, else,
(6)

where Φ : R → [0, 1] denotes the cumulative distribution function of the standard normal distribution and µG ∈ R
and σG > 0 are the mean value and standard deviation of the underlying untruncated normal distribution, which
do not necessarily coincide with the actual mean value and standard deviation of the truncated distribution. Thus,
µG and σG have to be calibrated such that the conditions (i) and (ii) are satisfied, i.e., such that the mean value
and standard deviation of fµG,σG,εi are given by M(xi) and σnoise for a given structural descriptor xi. Therefore, we
solve the optimization problem

(µG,i, σG,i) = arg min
(µG,σG)∈(0,∞)2

(∣∣∣∣Mi −
∫ εi

0

zfµG,σG,εi(z) dz

∣∣∣∣
+

∣∣∣∣σnoise −

√∫ εi

0

(
z −

∫ ε

0

z′fµG,σG,εi(z
′) dz′

)2
fµG,σG,εi(z) dz

∣∣∣∣
)
,

(7)

where µG,i, σG,i are the optimal choices for the parameters of fµG,σG,εi for a given structural descriptor xi. Finally,
for each structural descriptor xi, we simulate a random number Msim,i according to its corresponding probability
density fµG,i,σG,i,εi . Then, we construct a dataset Aσnoise of structural descriptors with known noise level of σnoise by

Aσnoise
=
(
(xi,Msim,i)

)
i=1,...,n

. (8)

To investigate the influence of increasing noise on interpretable equations determined by our AI hybrid framework,
we repeated the construction of the generated datasets Aσnoise

for noise levels σnoise ∈ {0.01, 0.02, . . . , 0.16}. To
emphasize the key distinction between the noisy dataset Aσnoise

and the original dataset A, we highlight that in
the case of Aσnoise , the underlying functional relationship between the structural descriptors and the M -factor is
explicitly known through Eq. (5). In contrast, for the dataset A the exact form of the relationship is inferred from
experimental or simulated data. Therefore, the controlled construction of Aσnoise

allows us to quantitatively analyze
how increasing noise levels impact the ability of the hybrid AI framework to recover interpretable equations and
validate its robustness in extracting meaningful structure-property relationships.

3 Results and discussion

3.1 Data pre-processing and feature importance analysis

In the initial phase of our study, a comprehensive data pre-processing and feature importance analysis was conducted
to determine the most influential factors affecting the transport property, M -factor. This step is critical as it sets
the groundwork for applying our hybrid AI framework, ensuring that only the most relevant descriptors are carried
forward to model development. We began by computing Pearson and Spearman correlation coefficients to analyze
and identify linear and non-linear relationships between structural descriptors and the M -factor. Furthermore, during
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our analysis, additional engineered features such as ε−m(τgeo) and ε/m(τgeo) were found and emerged into the data
through our feature engineering method. They were derived from the existing data to better capture the complex
interactions and dependencies between descriptors that directly influence the value of M .

The insights gained from these analyses were crucial in directing the next phase of our study—developing a predic-
tive equation for M -factor. By reducing the dataset to the most influential features (descriptors) through feature
engineering and selection processes, we enhanced both the robustness and interpretability of our equation. Under-
standing these relationships enabled us to apply our hybrid AI framework effectively, leading to the derivation of a
precise and interpretable equation for M -factor, which we introduce in the following section. This work ensured that
the transition from raw data analysis to refined predictive modeling was seamless and justified, providing a solid
foundation for the high accuracy and robustness of the resulting equation.

3.2 Development and validation of predictive equations

Building on the insights from the pre-processing analysis, the predictive equation for the M -factor identified by
our hybrid AI framework is presented in Table 1, alongside its corresponding performance metrics, including mean
absolute error (MAE), mean squared error (MSE) and R2.

Table 1: Identified equation for M-factor and the corresponding MAE, MSE, and R2 metrics.

Identified equation MAE MSE R2 Dataset

M =
ε

m(τgeo)8.483
0.0154 3.7 · 10−4 0.992 Train dataset
0.0167 3.8 · 10−4 0.993 Test dataset

This equation reaffirms the critical roles of porosity ε and mean geodesic tortuosity m(τgeo) in determining the M -
factor. By incorporating these key variables, the equation provides a comprehensive understanding of the descriptors
influencing mass transport property in porous materials. The exponent 8.483, fine-tuned through SR modules,
reflects the nonlinear and nuanced impact of m(τgeo). The identified equation not only captures the most influential
descriptors detected during our data pre-processing analysis (Figure 3) but also delivers an excellent fit to the data.

Figure 3: Correlation coefficients (left) and importance scores (right) of the features affecting M -factor, emphasizing
the significant roles of porosity (ε) and geodesic tortuosity (m(τgeo)).

To ensure the robustness and generalizability of the model, its performance was validated using both train and
validation samples. Figure 4 illustrates the accuracy and reliability of the model across these datasets. In the left
plot, the predicted values align closely with the actual values for M -factor, with data points from both training
(80%, in blue) and validation (20%, in red) sets clustering along the diagonal line. This alignment, coupled with
minimal residual scatter, demonstrates the model’s high accuracy and generalization capability. The evaluation
metrics further underscores the equation’s strong performance listed in Table 1.

The right plot further confirms the equation’s consistency by visualizing predicted and actual values across all data
points, separated into train and validation samples. The clustering of predicted values (training in dark blue and
validation in dark red) around their respective actual values (lighter shades) highlights the equation’s reliability
across different datasets. The absence of systematic deviation across these points reaffirms the robustness of the
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equation and its ability to generalize effectively. These results validate the success of our structured methodology,
which began with a comprehensive exploratory analysis, followed by feature selection method like RFE and scatter
plot evaluations. This process identified ε and m(τgeo) as the most critical predictors. By leveraging our AI hybrid
framework, we captured the complex nonlinear relationship between these descriptors and M -factor, ultimately
yielding a simple yet powerful equation. The high R2 scores and low error metrics across both main and validation
samples confirm the equation’s accuracy and interpretability.

Figure 4: Actual M -factor vs. predicted M -factor (left) and a more detailed visualization (right) including the main
samples (blue) and (right) validation samples (red). The corresponding performance metrics are given in Table 1.

3.3 Statistical analysis

In this section the performance of the hybrid AI framework is analyzed through a simulation study on the datasets
introduced in Section 2.3. For this purpose, the M -factor of selected microstructures is determined using the equation:
M = ε/m(τgeo)α, where ε > 0 denotes the volume fraction, m(τgeo) represents the mean geodesic tortuosity, and
α = 8.483 is a constant. The calculated M -factor is then perturbed with truncated Gaussian noise characterized by
a standard deviation σnoise. The hybrid AI framework is applied n times to the perturbed data, with increasing noise
levels σnoise ∈ {0.01, 0.02, . . . , 0.16}. For each run i = 1, . . . , nrun the hybrid AI framework identifies the three best
equations that yield the highest regression performance based on the R2-score, as defined in Eq. (4). Here, we have
chosen nrun = 60 to balance the number of data points with computational effort. The top three equations from
each run i ∈ {1, . . . , nrun} of the hybrid AI framework are denoted as Mi,j , j = 1, 2, 3. The framework prepares four
datasets from the original dataset to enhance our model’s analysis capabilities, as detailed in the data pre-processing
sub-module described in Section 2.2. However, since this study had sufficient data (90,000 data points), no dataset
extension methods were applied, and the datasets were not expanded. Instead, the analysis was conducted on two
dataset types: the ”Augmented data” and the ”Featured data”, explained in section 2.2 (i) and (ii). Consequently,
for each run, the hybrid AI framework generated the three most effective equations for these two dataset types.

Several performance metrics are determined to quantify the hybrid AI framework’s performance. These metrics are
calculated separately for each data type and each noise level σnoise. The first metric, the relative frequency fM ,
represents the likelihood that the correct equation type Mpred = ε/m(τgeo)αpred is identified among the top three
regression equations. It is important to note that the hybrid AI framework also estimates αpred ∈ [0,∞), which does
not influence whether the equation Mi,j determined by the hybrid AI framework is categorized as being from the
correct or incorrect equation type. Mathematically, the relative frequency fM is expressed as:
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fMpred
=

1

n

∣∣{i = 1, . . . , n : Mi,j is the correct equation type , for some j ∈ {1, 2, 3}}
∣∣ ∈ [0, 1] ,

where |·| denotes cardinality. Alongside the correct equation type Mpred, only the alternative equation M ′
pred = εα

′
pred

is predicted in a significant frequency. All other equation types are not considered in this analysis. The dependence
of these relative frequencies fM ′

pred
of fMpred

on the noise level σnoise is illustrated in Figure 5 (left). Since the true

equation for M and the correct predicted equation type for Mpred differ only by α and αpred, boxplots indicating the
distributions of |α − αpred| are presented in Figure 5 (right). In Figure 6 (left), the mean R2-scores, as defined in
Eq. (4), of all predicted equation conditioned on Mi,j = Mpred and Mi,j = M ′

pred are presented. Additionally, Figure 6

(right) shows boxplots indicating the distribution of R2-score conditioned on the true equation M = ε/m(τgeo)8.483.
Moreover, the (weighted) L1-error is defined as

L1(M,Mpred) =

∫
R2

+

∣∣M(x) −Mpred(x)
∣∣ p(x) dx,

where p(·) denotes the probability density corresponding to the distribution of x = (ε,m(τgeo)). Note, that although
M(·) and Mpred(·) symbolize both the correct equation, they generally differ in their constants α and αpred, respec-
tively. The L1-error is approximated by for the 90,000 virtually generated porous microstructures, introduced in [9]
by:

L̂1(M,Mpred) =
1

k

k∑
i=1

|M(xi) −Mpred(xi)| with xi = (εi,m(τgeo)i).

Figure 7 (left) shows the mean L1-error conditioned on Mpred and M ′
pred, while Figure 7 (right) presents boxplots of

L1-error distributions for Mpred.

Figure 5: Relative frequency (left) and coefficient error (right) of the true and alternative equations across noise
levels for ”GAT data” (blue) and ”Featured data” (orange).

The results presented in Figure 5 (left) demonstrate the frequency of occurrence of two distinct equations derived using
our framework under varying noise levels σnoise. The true equation type, Mpred = ε/m(τgeo)αpred and a competing

alternative equation, M ′
pred = εα

′
pred are analyzed across two datasets: ”Augmented data” and ”Featured data”. The

key observation is that the true equation type consistently exhibits the highest frequency for the ”Featured data”
(orange dashed line) across all noise levels. This indicates the robustness of our framework in identifying the true
equation, even as noise is increased. The solid orange line, which represents the alternative equation, consistently
has a lower frequency, further emphasizing the reliability of the ”Featured data” in yielding the true equation.
For the ”Augmented data” (blue dashed line), the frequency of the true equation is higher than that of the alternative
equation up to a noise level of approximately σnoise=0.08. Beyond this threshold, the alternative equation (blue solid
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line) becomes more dominant. This decline in the frequency of the true equation at higher noise levels can be
attributed to the method employed in ”Augmented data”. In this approach, the GAT network generates augmented
data by learning the patterns of the original dataset and applying meaningful noise. However, when additional
noise is introduced manually, the cumulative effect of both sources of noise may exceed the framework’s capacity to
accurately identify the true equation. As a result, the SR process tends to favor the alternative equation under these
conditions. Figure 5 (right) illustrates the coefficient error, which measures the deviation of the derived α value from
its true value in the equations, as a function of increasing noise levels (σnoise). The ”Augmented” (blue boxes) and
”Featured data” (orange boxes) are compared across the same noise levels as in the first plot.
The ”Featured data” (orange boxes) demonstrates consistently lower coefficient error and variance across all noise
levels, underscoring its robustness in preserving parameter accuracy. Conversely, the ”Augmented data” (blue boxes)
exhibits increasing coefficient error and variability as noise levels rise, especially beyond σnoise=0.08. This trend
aligns with the frequency results from Figure 5 (left), where the true equation’s frequency decreases at higher noise
levels for the ”Augmented data”. Note that at high noise levels σnoise ≥ 0.11 within the augmented data set, the
GAT framework is not able to predict the correct equation frequently, resulting in no or no meaningful boxplots.
Overall, the ”Featured data” approach outperforms the ”Augmented data” in both identifying the true equation
and maintaining parameter accuracy across a range of noise levels. While the ”Augmented data” is effective at low
to moderate noise levels, its performance deteriorates under higher noise due to compounded noise effects. These
findings demonstrate the importance of feature engineering and dataset preparation in enhancing the robustness and
accuracy of equation discovery within the proposed framework.

Figure 6: (left) Mean R2-score and (right) R2-score distributions for the true (Mpred = ε/m(τgeo)αpred , dashed

lines/boxplots) and alternative (M ′
pred = εα

′
pred , solid lines) equations across noise levels, comparing ”Augmented

data” (blue) and ”Featured data” (orange).

The results presented in Figures 6 (left) and 6 (right) further analyze the robustness and accuracy of our framework
by focusing on the R2-score of the predicted equations under varying noise levels σnoise. Specifically, these plots
consider two equation types: the true equation Mpred = ε/m(τgeo)αpred (dashed lines) and the alternative equation

M ′
pred = εα

′
pred (solid lines), across two datasets: ”Augmented data” (blue) and ”Featured data” (orange).

Figure 6 (left) illustrates the mean R2-score for these equations as a function of noise. As expected, the R2-
score decreases with increasing noise levels for all cases, reflecting the challenge of maintaining accuracy as data
becomes noisier. Interestingly, when the true equation Mpred is identified, the ”Augmented data” (blue dashed line)
consistently achieves higher R2-score than the ”Featured data” (orange dashed line). This can be attributed to the
meaningful noise added by the GAT framework, which enhances the diversity and generalization of the dataset.
Consequently, if the GAT framework identifies the correct equation, it is more likely to accurately predict the α
values while minimizing the risk of overfitting. However, as noise levels increase, the compounded noise effects make
it harder for the GAT network to frequently identify the true equation, as observed in Figure 5. On the other hand, the
alternative equation M ′

pred exhibits consistently lower R2-score for both datasets, with the ”Featured data” (orange
solid line) outperforming the ”Augmented data” (blue solid line). This trend aligns with earlier observations, where
the ”Featured data” approach demonstrates superior robustness and reliability under increasing noise. Figure 6
(right) complements this analysis by showing boxplots of the R2-score distribution when the true equation M ′

pred is
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predicted. The boxplots highlight that the R2-score for the ”Augmented data” (blue) are generally higher and less
variable compared to the ”Featured data” (orange), especially at lower noise levels. However, as noise increases, the
gap narrows, and the ”Featured data” maintains better consistency across the noise spectrum. Recall that for noise
level σnoise ≥ 0.11 the GAT framework is not able to predict the correct equation frequently for the ”Augmented
data”, resulting in no meaningful boxplots.

The results in Figure 7 analyze the L1-error, measuring the deviation between predicted and actual outputs under
varying noise levels (σnoise), and provide further insights into the robustness of the framework. In Figure 7 (left),
the mean L1-error for the true equation Mpred = ε/m(τgeo)αpred is consistently lower for the ”Featured data” (orange
dashed line) compared to the ”Augmented data” (blue dashed line), indicating superior accuracy and robustness

of the ”Featured data” approach across all noise levels. The alternative equation M ′
pred = εα

′
pred exhibits higher

L1-error for both datasets, further confirming its lower reliability. Figure 7 (right) complements this by showing the
distribution of L1-error, where the ”Featured data” exhibits smaller variances and consistently lower errors compared
to the ”Augmented data”. As noise increases, the ”Augmented data” shows higher L1-error and wider distributions,
consistent with the trends observed in earlier figures. These results reinforce the conclusions from Figures 5-7, where
the ”Featured data” demonstrates greater reliability in identifying the true equation and maintaining accuracy, while
the ”Augmented data” approach, though occasionally more accurate when it predicts the true equation, is less
consistent at higher noise levels.

Figure 7: (left) Mean L1-error and (right) L1-error distributions for the true (Mpred = ε/m(τgeo)αpred , dashed

lines/boxplots) and alternative (M ′
pred = εα

′
pred , solid lines) equations across noise levels, comparing Augmented data

(blue) and Featured data (orange).

Building on these findings, Figure 5 highlights a trade-off between frequency and accuracy. While the ”Featured
data” approach excels in identifying the true equation more frequently (Figure 5 (left)) and maintaining lower
coefficient error (Figure 5 (right)), the ”Augmented data” provides a slightly higher R2-score when the true equation
is identified, particularly at lower noise levels (Figure 6 (left)). This underscores the complementary strengths
of both methods: the ”Featured data” for robustness and frequency, and the ”Augmented data” for accuracy in
parameter prediction. Together, these insights emphasize the importance of balancing noise augmentation and
feature engineering to optimize both the discovery and accuracy of SR equations within the framework.

4 Future extensions

A future vision or our framework involves the integration of SR with Large Language Models (LLM) or transformer
models, specifically the latest generation of so-called ”reasoning” models, integrating an internal chain-of-thought
process to discuss a matter from different perspectives before generating a final response. This integration enables
iterative, domain-informed discussion and refinement of candidate equations. Transformer models are a novel type of
AI capable of contextual interpretation allowing for internal questioning and open-ended hypothesis formation. These
models furthermore can access domain knowledge in a dynamic manner (e.g. via retrieval augmented generation,
model fine-tuning, or a mixture of expert approaches), propose modifications to equations, and verify consistency
using natural language or code-oriented tools (e.g., Wolfram Alpha or Python libraries). Figure 8 (right panel), shows
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the envisioned LLM extension. Outputs of the existing SR pipeline, which are candidate equations describing the
phenomena to be modeled, are passed to a transformer model agent. This agent can have access to tools such as an
internal correlation analysis, real-time references (via online literature searches or local documentation), and a suite
of external tools such as mathematics packages. Upon receiving a set of candidate equations, the LLM can inspect key
properties, via task-specific promptings, such as dimensional consistency, or boundary conditions specifications. Most
importantly, the agent, pre-trained on large corpora of text including physics and other literature and potentially
fine-tuned on domain knowledge (e.g. process engineering textbooks) can discuss the equations context-specifically,
relying both on its internal training model, external databases for cross-referencing as well as a case definition
provided by the user along the data. Based on that discussion counter equations would be provided back to SR.
Equations are thus further optimized via oscillation between SR and the transformer agent.

Figure 8: Proposed extension of the framework, attaching iterative mechanistic discussion and modification of SR-
based equations in a transformer agent.

5 Conclusions

This study has successfully demonstrated the effectiveness of a hybrid AI framework in improving the prediction
accuracy of quantitative structure-property relationships for porous media. The application of this hybrid approach
allowed us to derive robust, predictive equations that accurately reflect the complex interplay of microstructural
descriptors and their effects on the M -factor, which plays a crucial role for materials such as lithium-ion batteries,
fuel cells, and fiber-based materials. Our results underscore the ability of the hybrid AI framework to process a huge
dataset of 90,000 virtual 3D microstructures, effectively capturing and modeling the essential features that determine
material behavior. Through systematic variation of noise levels and the use of rigorous validation techniques, we
have ensured that our equations are not only statistically sound, but also practically relevant. Furthermore, the
study highlighted the critical role of feature engineering and data enrichment in refining the predictive accuracy
of our equations. The use of GATs to improve data quality and feature interaction analysis proved particularly
valuable, as it enabled the identification of previously underrepresented but significant microstructural descriptors.
Looking ahead, the integration of the hybrid AI framework with emerging technologies such as LLM and transformer-
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based reasoning systems represents a promising avenue for further improving the applicability of predictive models
in materials science. These advances are expected to facilitate the development of next-generation materials with
optimized properties tailored for specific applications.
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