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Abstract

A novel, realistic 3D model is developed describing the microstructure of non-
woven GDL in PEMFC which consists of strongly curved and non-overlapping
fibers. The model is constructed by a two-stage procedure. First we introduce a
system of random fibers, where the locations of their midpoints are modeled by
a 3D Poisson point process and the fibers themselves by random 3D polygonal
tracks which represent single fibers in terms of multivariate time series. Sec-
ondly, we transform the random fiber system into a system of non-overlapping
fibers using an iterative method leaned on the so-called force-biased algorithm.
The model is validated by comparing transport-relevant characteristics com-
puted for experimental 3D synchrotron data, and for realizations sampled from
the stochastic microstructure model. Finally, we suggest a model for the spatial
distribution of PTFE, a wet-proofing agent often used in non-woven GDL, and
combine this PTFE model with our new microstructure model for non-woven
GDL.

Keywords: fiber-based material, stochastic modeling, vectorial autoregression,
non-woven, PTFE, synchrotron tomography

1. Introduction

Proton exchange membrane fuel cells (PEMFC) are a seminal technology for
the generation of electrical power from hydrogen being efficient and eco-friendly.
A key component of PEMFC is the gas-diffusion layer (GDL), whose main
functions are the gas supply of the electrodes, the regulation of water storage,
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and evacuation within the GDL. The microstructure of non-woven GDL consists
of highly curved fibers. Their morphology strongly determines the efficiency of
the fuel cell as well as its stability [11, 14, 17]. Thus, the optimization of the
GDL’s microstructure is of utmost importance.

However, even for a known 3D microstructure of GDL material, it remains a
challenging task to quantitatively predict its physical properties. In practice, a
suitable microstructure for the GDL is usually determined by experiments based
on trial-and-error. A more sophisticated way for the design of GDL microstruc-
tures is to generate synthetic ones using validated stochastic models. Then, by
means of model-based computer experiments, microstructures can be detected
such that the physical processes are improved. More precisely, by varying the
values of the model parameters in a systematic manner, a large variety of dif-
ferent microstructures can be simulated. Subsequently, the goodness of these
microstructures can be evaluated by numerical (transport) processes computed
on the synthetic microstructures. Thereby, 3D microstructures with enhanced
transport properties can be identified.

In this paper, we present a novel, realistic 3D model describing the mi-
crostructure of non-woven GDL in PEMFC which consist of strongly curved
and non-overlapping fibers. There exist several stochastic models of fiber-based
materials in literature, where in [2, 4, 5, 6, 13, 20, 22, 23, 24] models are consid-
ered which are designed for fiber-based materials consisting of straight fibers.
In contrast to these approaches, in [1, 10, 19] stochastic models are proposed
which describe materials consisting of curved fibers.

The modeling approach introduced in [1] is based on simulating a chain of
spheres where the sphere midpoints follow a random walk. Thereby, each sphere
chain is assigned a main direction according to a beta-orientation distribution.
Given the preceding and the main direction of the sphere chain, the next di-
rection is drawn from a multivariate von-Mises-Fisher distribution. In this way,
curved fibers can be simulated using a small number of parameters. Moreover,
this modeling approach offers a nice control of the directional distribution of the
fibers. In particular, the main direction of a single fiber can be adjusted. How-
ever, when it comes to modeling fibers which exhibit extremely large curvature
as loops, for example, other modeling approaches appear more suitable. In [10],
a multi-layer model for curved, but horizontally orientated, overlapping fibers
is introduced, where 2D random polygonal tracks representing planar fibers are
simulated according to multivariate time series. Thereby, for instance, it is pos-
sible to simulate fibers exhibiting repeating loops, see also Figure 1, by adjusting
the parameters of the time series adequately. The benefit of the times-series ap-
proach is that the correlation of consecutive line segments can be taken into
account. This is a great advantage for modeling the local course of fibers. Note,
however, that the assumption of solely horizontally orientated fibers, is rather
restrictive and not fulfilled for many fiber-based GDL materials.

In [19], another multi-layer model for systems of non-overlapping fibers is
introduced. This modeling approach seems to be suitable to describe the struc-
ture of woven fiber materials. Note, however, that in the example of application
considered in the present paper, we aim to describe non-woven GDL, which
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Figure 1: Planar fiber generated by the random polygonal track model based on multivariate
time series

exhibit strongly curved fibers.
In the present paper, we introduce a novel model that describes non-overlapping

fibers with strong curvatures and apply this model to a non-woven GDL ma-
terial consisting of carbon fibers. Thereby, a fiber model is used which is an
alternative to the model proposed in [1]. In particular, the fibers drawn from
our model can exhibit arbitrarily large curvatures (e.g. loops) in contrast to
those obtained by the model introduced in [1]. But, on the other hand, the
directional distribution of fibers obtained by our model can not be controlled in
such an efficient way as in [1]. The fiber model considered in the present paper is
a generalization of the multi-layer approach given in [10]. More precisely, fibers
are now directly modeled in 3D (i.e., not by a multi-layer approach) using a sin-
gle 3D time series. Furthermore, in the microstructure model proposed in the
present paper, an avoidance algorithm is incorporated which prevents the fibers
from mutual penetrations. Thus, the proposed model can describe fiber-based
materials more realistically than the model considered in [10].

In addition, our model allows the consideration of super-structures, e.g. clus-
ters of fibers, which are observed in real non-woven GDL materials. Finally,
since non-woven GDL are often treated with polytetrafluoroethylene (PTFE)
(to increase hydrophobicity and to reduce blocked pathways caused by water
holdups), we incorporate a wet-proofing agent (PTFE) into the model.

The stochastic microstructure model proposed in the present paper is con-
structed by means of methods from stochastic geometry and multivariate time
series analysis (see e.g. [12, 18, 21] and [7, 16], respectively). In particular, a
two-stage approach is used, where we first consider a germ-grain model to gen-
erate a system of overlapping fibers. The germs form a homogeneous Poisson
point process in 3D and the grains are random 3D polygons described by a suit-
able multivariate time series, which are spherically dilated in 3D. Subsequently,
the germ-grain model is transformed in the following way: First the fibers are
translated such that they are evenly spread in space. Secondly, like in [1], an
iterative avoidance algorithm is applied to the translated fiber system to elimi-
nate overlaps between the fibers. This model is then used to suitably describe
the microstructure of non-woven GDL in PEMFC. More precisely, the parame-
ters of the non-woven GDL model are fitted to 3D image data of experimental
non-woven GDL, where the image data is gained by synchrotron tomography.
To adequately fit the model parameters, we extract a system of single fibers
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from experimental image data of non-woven GDL using an algorithm described
in [9]. From the extracted fiber system, important properties like curvature
measures or directional distributions of the fibers can be incorporated into the
model. Finally, for model validation, transport-relevant characteristics com-
puted for experimental data of non-woven GDL and those computed for virtual
non-woven GDL drawn from the fitted model are compared to each other, where
a good agreement is found.

The paper is organized as follows. Section 2 briefly describes an algorithm
for the detection of single fibers in 3D synchrotron images. In Section 3, the
stochastic model for 3D polygonal tracks is introduced. Section 4 establishes
the 3D model for non-woven GDL. In Section 5 it is shown how PTFE can be
included into the model as a further material component. Section 6 concludes
the obtained results.

2. Automated detection of fiber courses

In this section, we briefly describe an algorithm to automatically extract
systems of single fibers from 3D tomographic data of fiber-based materials. This
algorithm combines tools from image processing and stochastic optimization. It
is described in detail in [9] and thus we only mention the basic idea.

In a first processing step the 3D image is binarized (by global thresholding).
Then we focus on the extraction of center lines of single fibers from the bina-
rized image. Due to irregularities like noise or binarization artefacts it is only
possible to extract relatively short fragments of the center lines. Subsequently a
stochastic algorithm is considered which accurately connects these parts of the
center lines to each other, in order to reconstruct the complete fibers such that
the curvature properties of the fibers are represented correctly.

Exemplarily, we apply this algorithm to 3D image data of non-woven GDL,
gained by synchrotron tomography. In Figure 2 the result which has been
obtained by our detection algorithm is displayed. The experimental data and
the system of fibers extracted from it are in good optical accordance. In [9], it is
shown more formally that the algorithm extracts fibers accurately with respect
to curvature characteristics. In particular, for a representative test volume of
fiber-based material, the algorithm reproduced 91% of connections correctly.
The extracted system of single fibers is the data basis for the parameter fitting
of the single-fiber model introduced in Section 3 below. Note that the extracted
fibers are represented by polygonal tracks.

3. Modeling of single fibers and fiber bundles

We introduce a stochastic model, which extends the modeling approach con-
sidered in [10]. It describes the typical course of those fibers that have been
extracted from 3D synchrotron data using the extraction algorithm described
in Section 2. Note that the extracted fibers are available as polygonal tracks.
Thus, our suggestion for modeling the course of strongly curved fibers is a ran-
dom polygonal track which is based on multivariate time series.
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Figure 2: Experimental data gained by synchrotron tomography (left) and extracted fibers
(right)

3.1. Incremental representation of polygonal tracks

The following incremental representation of polygonal tracks is useful. In-
stead of describing a polygonal track p = (p0, p1, . . . , pn) by the endpoints
pi, pi+1 ∈ R3 of its line segments (pi, pi+1) we consider an angle-length rep-
resentation, where we regard the first line segment (p0, p1), separately. The
further segments of the polygonal track p can then be described by the lengths
`1, `2, . . . of the consecutive line segments and the angles α1, α2, . . . and
β1, β2, . . ., where αi (βi) denotes the change of direction from the i-th to the
(i + 1)-th segment with respect to the azimuthal (polar) angle. Thus, under
the condition that the first line segment is given, a polygonal track is uniquely
described by the sequence of vectors (α1, β1, l1)>, (α2, β2, l2)>, . . ., see Figure 3.

Figure 3: Planar fiber (red) represented by a 2D polygonal track
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3.2. Model description

Based on the incremental representation of polygonal tracks given in Sec-
tion 3.1 we first introduce the single-fiber model. The main idea for stochastic
modeling of single fibers is to describe polygonal tracks (representing the fibers)
by a three-dimensional time series {Fi, i ≥ 1}. The geometric interpretation
of {Fi, i ≥ 1} is that the first (second) components of the random vectors
Fi = (Fi1, Fi2, Fi3) form a sequence of random angles whose realizations are
denoted by α1, α2, . . . (β1, β2, . . .), where αi (βi) is the change of direction from
the i-th to the (i + 1)-th line segment with respect to the azimuthal (polar)
angle. The third components Fi3 specify the random lengths of the consecu-
tive line segments of a random polygonal track whose realizations are denoted
by `1, `2, . . . . By the usage of multivariate time series we are in a position to
include cross-correlations of angles and lengths of line segments which are close
together into the model. This is essential in order to properly reflect the geo-
metrical properties of the extracted fibers by our model. In particular, we are
able to describe fibers with arbitrarily strong curvatures.

Thus, we consider the following modeling components F0, {Fi, i ≥ 1} to
build the stochastic single-fiber model which represents a random polygonal
track with initial line segment given by F0 = (F01, F02, F03) and total length
of all line segments equal to `, where each line segment is dilated by a 3D
sphere b(o, r) with center at the origin and radius r. Note that the parameter
r represents the radius of the fibers. In other words, the single-fiber model
X = {X0, . . . , XN} with N = min{k : F0 +

∑k
i=1 Fi3 > `} is considered, where

its dilated line segments Xi are given by

Xi =

{
(o, L1)⊕ b(o, r) , if i = 0 ,
(Li, Li+1)⊕ b(o, r) , else ,

(1)

with L1 = T (F0), Li+1 = Li + T
(∑i

j=0 Fj1,
∑i
j=0 Fj2, Fi3

)
for i ≥ 1 and

T (φ, θ, s) = (s sin(θ) cos(φ), s sin(θ) sin(φ), s cos(θ))> being the transformation
from spherical to Euclidean coordinates.

We assume that the time series {Fi, i ≥ 1} is stationary, i.e., the mean and
covariance of the time series do not change over time. Thus, it can be extended
to a stationary time series {Fi, i ∈ Z}, where Z = {. . . ,−1, 0, 1, . . .} denotes
the set of all integers. Then, for the modeling of random polygonal tracks, we
represent {Fi, i ∈ Z} by a stationary autoregressive process {Yi, i ∈ Z} such
that

Fi = Ψ(Yi) for each i ∈ Z, (2)

where the function Ψ : R3 → [−π, π)2 × R is given by

Ψ(r, s, t) = (r − 2k1π, s− 2k2π,max{0, t})

if (2k1 − 1)π ≤ r < (2k1 + 1)π and (2k2 − 1)π ≤ s < (2k2 + 1)π for some
k1, k2 ∈ Z. The definition of Ψ assures some natural regularity properties, i.e.,
the changes of directions of consecutive line segments have to be in the interval
[−π, π) and the lengths of line segments have to be non-negative.
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Thus, an important modeling component for random polygonal tracks (single-
fiber model) are stationary autoregressive processes {Yi, i ∈ Z} of some order
q ≥ 0, where

Yi = η +A1 Yi−1 + . . .+Aq Yi−q + εi for each i ∈ Z. (3)

The ‘errors’ {εi , i ∈ Z} form a sequence of 3D random vectors which are in-
dependent and Gaussian with mean vector E εi = o and some (non-singular)
covariance matrix Σ = E (εiε

>
i ), see e.g. [7, 16]. Note that the autoregressive

model is uniquely determined by the parameters q > 0, η ∈ R3, the coefficient
matrices A1, . . . , Aq ∈ R3×3 and the covariance matrix Σ.

The single-fiber model X = {X0, . . . , XN} described above is the basis for
the fiber-bundle model, where a fiber-bundle B consists of a set of parallel single
fibers. It is defined by

B =

M⋃
k=0

(X + δk) , (4)

where M indicates the random number of parallel fibers with respect to X which
is assumed to have a Poisson distribution with some parameter κ. Furthermore,
we assume that δ0 = (0, 0, 0)> and that the distribution of the random vec-
tor (δ1, . . . , δM ) is constructed by considering independent and uniformly dis-
tributed random vectors δ1, δ2, . . . on the boundary of the disc with midpoint o
and radius 2r under the condition that

min {δi − δj : i, j ∈ {1, . . . ,M}, i 6= j} ≥ 2r , (5)

where the disc is orthogonally orientated with respect to the first line segmentX0

of the single fiber X. Note that the condition considered in (5) can be fulfilled
with high probability provided that κ is small. It ensures that fibers within
bundles do not overlap. If it is not possible to sample δj for any j ∈ {1, . . . ,M}
such that there occurs no overlapping within the fiber bundle, the radius of the
disc is iteratively increased until all M fibers can be placed without overlapping.

3.3. Model fitting

We now shortly explain how the parameters of the autoregressive process
{Yi, i ∈ Z} (being the main modeling component for random polygonal tracks),
which has been introduced in (3), can be fitted to the extracted polygonal tracks
of the experimental non-woven GDL data, see Section 2. Therefore, we first
transform the polygonal tracks to the incremental representation, see Section
3.1. Then, the parameters of {Yi, i ∈ Z} are estimated by the maximum-
likelihood technique, introduced in [10] and further analyzed in [8]. Following
the AIC criterion, which is widely applied to estimate the order q of autoregres-
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sive processes, see also [8], we obtain q = 2 which yields

η =

 0.003
0.0008
23.5

 , A1 =

 0.214 0.061 −0.0002
−0.00004 −0.091 0.00002
−0.53 1.569 0.114

 ,

A2 =

 0.106 0.039 0.0002
−0.001 −0.11 −0.00005
−0.321 3.846 0.025

 and Σ =

 0.08 0.00007 −0.02
0.00007 0.0018 −0.016
−0.02 −0.016 207

 .

Note that the significant degree of cross-correlations expressed by the non-
diagonal entries of A1, A2 and Σ justifies the necessity to use multivariate (i.e.,
multi-dimensional) time series instead of univariate (i.e., one-dimensional) ones.
We also remark that the diagonal entries in the matrices A1 and A2 describe the
dependency between the individual components (length, azimuth angle, polar
angle) and the corresponding components of the previous two line segments,
whereas the non-diagonal entries indicate dependencies between the individual
components of the current line segment and other components of previous line
segments, e.g. A1(1, 2) describes the dependency between the azimuthal angle
of the current line segment and the polar angle of the previous line segment.

Moreover, the fitted values of {Yi, i ∈ Z} are given with respect to the voxel
size of the experimental 3D synchrotron data which is equal to 0.83 µm. A
transformation of this voxel size can be easily obtained by multiplying all Yi3
with x

0.83 , where x is the desired new voxel size. The remaining components
F0, r and ` of the single-fiber model are determined in the following way. From
the production process of the non-woven GDL considered in this paper it is
known that r = 4.75 µm and ` = 50, 000 µm. The initial line segment given by
F0 is chosen such that the resulting directional distribution considering all line
segments matches its experimental counterpart, see Section 4.4.3. This yields a
deterministic initial line segment (o, L1) = (o, T (F0)), where L1 = (0, 1, 0)

>
.

Moreover, recall that the random variable M , representing the number of
parallel fibers, is modeled by a Poisson distribution with parameter κ. In order
to estimate κ we first introduce the notion of parallel fibers within a fiber-bundle
for the extracted fibers considered in Section 2. Two fibers f1, f2 are said to be
parallel, i.e., f1 ∼ f2 if it holds that f1 ∈ f2 ⊕ b(o, 3r) and f2 ∈ f1 ⊕ b(o, 3r).
A set of parallel fibers {f1, . . . , fk} is called a fiber-bundle if for any i, j ∈
{1, . . . , k} it holds that there exists a path {i1, . . . , il} ⊂ {1, . . . , k} such that
fi ∼ fi1 , fi1 ∼ fi2 , . . . , fil ∼ fj . Then, we just count the number of parallel
fibers per fiber-bundle within the extracted polygonal tracks and get κ = 2 by
means of the usual maximum likelihood estimator. Thus, the mean number of
fibers in a bundle is given by κ+ 1 = 3.

3.4. Model Validation

In the next step the goodness-of-fit of the fiber-bundle model introduced in
Equation (4) is investigated.

More precisely, we first define three measures characterizing the curvature
of polygonal tracks. Subsequently, these measures are computed for the single

8



fibers extracted from the experimental 3D image data of non-woven GDL (given
as polygonal tracks) and for the polygonal tracks sampled from the single-fiber
model introduced in Section 3.2. Thus, we analyze how adequately the curva-
tures of extracted and simulated fibers coincide. Note that the simulation of
the single fibers is organized as described in [10]. The first curvature measure
is defined as follows. Let p = (p0, . . . , pn) be a polygonal track given by the
starting and end points of its line segments and let v0(p) = v(p)/d2(p0, pn),
where v(p) gives – roughly speaking – the ‘area’ circumscribed by the polygonal
track p and d(p0, pn) is the length of the line segment (p0, pn). More precisely,
v(p) is given by v(p) =

∫
p
d (x,O ((x, ((p0, pn))) dx is the orthogonal projection

of the point x located on the polygonal track p to the line segment (p0, pn).
Moreover, two further curvature characteristics are considered. Namely, the

sample variance S2
z (p) of the z-component of the set of voxel belonging to the

discretized polygonal track p, representing the movement in z-direction of p,
and some kind of tortuosity τ(p) of the polygonal track p defined by τ(p) =∑n−1

i=0 d(pi,pi+1)

d(p0,pn) .

To compare the curvature of single-fibers, these three curvature measures
are computed for the extracted and simulated fibers which are drawn from the
fitted bundle model. The resulting histograms are displayed in Figure 4, where
a very good agreement can be found. This is also indicated by the mean values
and standard deviations of these curvature measures listed in Table 1.

Figure 4: Histograms of v0(p), S2
z (p), τ(p) for extracted (top) and simulated (bottom) tracks

9



Table 1: Mean values (standard deviations) of curvature measures v0(p), S2
z (p), τ(p) com-

puted for extracted (top) and simulated (bottom) tracks

v0(p) S2
z (p) τ(p)

extracted fibers 0.063 (0.035) 11.3 (10.6) 1.324 (1.51)
simulated fibers 0.069 (0.037) 10.5 (9.7) 1.374 (1.24)

4. Stochastic model for non-woven GDL

Based on the bundle model introduced in Equation (4), we now develop a
stochastic microstructure model of non-woven GDL. First, we consider a system
of overlapping fibers generated by a germ-grain model, where the germs form
a homogeneous Poisson point process in 3D and the grains are given by the
bundle model. Since it is physically impossible that fibers in non-woven GDL
overlap mutually, we transform the system of overlapping fibers into a system
of spatially regularly distributed, non-overlapping fibers. More precisely, we
reduce the size of regions containing no fibers by translating neighboring fibers
iteratively towards those regions. Then, this translated system of overlapping
fibers is further transformed to a non-overlapping fiber system using an iterative
avoidance algorithm. In Section 4.2.2, we show that the changes of curvature of
the fibers caused by these transformations are negligible. This iterative avoid-
ance algorithm, based on a force-biased packing approach, was introduced in
[1]. It turns out that the model adequately describes the 3D microstructure of
the non-woven GDL considered in this paper, both in terms of structural and
physical characteristics. In addition the model has the potential to adequately
reproduce the 3D microstructure of other fiber-based materials as well.

4.1. Germ-grain model for systems of overlapping fibers

The construction of the 3D microstructure model for non-woven GDL is mo-
tivated by the two-phase superstructure of the experimental GDL data, which
is shown in Figure 5. Regarding the cut-out of 3D synchrotron data (Figure
5, left) we can clearly see that there is a superlattice of horizontally oriented
fibers running parallel to the x-axis in periodic distances. Thus, we subdivide
the microstructure in fiber-channels with some width h where the fibers pro-
ceed randomly, and in fiber-bars with some width b where the fibers are mainly
running parallel to the x-axis. This heterogeneity originates from a production
step of the GDL in which fibers are entangled by water jets in order to improve
the mechanic stability of the tissue. Thereby, the fiber-bars are not in contact
with the water jets which leads to the given superlattice of the GDL. The basic
modeling idea is to first consider a uniformly distributed random variable U on
the interval [0, b+h] indicating the location of the starting point of the periodic
sequence of fiber-channels and fiber-bars. Then, a homogeneous Poisson process
{Pi, i ≥ 1} is generated in 3D describing the locations of fibers. Subsequently,
each point Pi is marked either with a bundle of fibers drawn from the bundle
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Figure 5: Cut-out of 3D synchrotron data (left), basic idea of bar-channel modeling (right)

model introduced in (4) if Pi is located in a fiber-channel, or with line segments
parallel to the x-axis if Pi is located in a fiber-bar. Note that this is an approx-
imation of the experimental fiber morphology within the fiber-bars. However,
as can be seen in Section 4.4, the complete model describes the important mor-
phological and physical characteristics sufficiently well. In our approach, the
intensity of the homogeneous Poisson process describing the locations of fibers
is the same for both the fiber-bar and fiber-channel. If necessary, one could
generalize this approach using different intensities within the two regions.

More precisely, the system of overlapping fibers featured with a superlattice
is described by a germ-grain model which is given by the set union

Ξ =

∞⋃
i=1

(
X(i) + Pi

)
, (6)

where the germs Pi = (Pi1, Pi2, Pi3) form a Poisson point process {Pi} in R3

with some intensity λ > 0. The grains X(i) are given by

X(i) =

 C(i) , if Pi2 ∈
⋃
j∈Z[U + j(b+ h)− h, U + j(b+ h)) ,

B(i) , else ,

where the C(i) are independent copies drawn from the bundle model B intro-
duced in (4). Furthermore, we define B(i) by

B(i) =

M(i)⋃
j=0

(
B + Pi + δ

(i)
j

)
,

where B is the line segment B = [−(l/2, 0, 0)>, (l/2, 0, 0)] and M (i) as well as

δ
(i)
k are defined like M and δk in (4).

Thus, besides the parameters of the bundle model considered in Section 3.2,
the model for the system of overlapping fibers has three further parameters λ,
b and h which are specified in Section 4.3.
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4.2. Iterative avoidance algorithm

In this section the transformation of the system of overlapping fibers Ξ intro-
duced in (6) to a system of non-overlapping fibers is discussed. Since the fibers
of non-woven GDL are extremely regularly distributed in space, i.e., there do not
exist large volumes without fibers, we first have to improve the spatial formation
of the fibers in Ξ to reduce the amount of vacant volumes in Ξ.

4.2.1. Filling of large ”pores”

We apply an iterative method which translates the fibers hitting the sampling
window W towards large ’pores’, i.e., towards regions in W with a large distance
to the nearest fiber. The basic idea is that the centers of pores attract neighbor-
ing fibers. But first of all we introduce the so-called distance transformation DΞ

of Ξ∩W which assigns each point x /∈ Ξ∩W the shortest Euclidean distance to
the nearest fiber. As centers of pores we define all local maxima of DΞ. Let for a

given iteration step c be p
(c)
1 , . . . , p

(c)

n(c) the centers of pores and let X
(c)
i1
, . . . , X

(c)
ik

be the random fibers (dilated polygonal tracks) which are not completely located
in a fiber-bar and intersect the sampling window W ⊂ R3. For each pair of pore

centers and fibers {(p(c)
j , X

(c)
(il)

) : j ∈ {1, . . . , n(c)} , l ∈ {1, . . . , k}}, we calculate

a translation vector t
p
(c)
j ,X

(c)

(il)

which is given by

t
p
(c)
j ,X

(c)

(il)

= 1I{d(p
(c)
j ,O

(c)
j,il

)< 3max(c)

2 }

d(p
(c)
j , O

(c)
j,il

)

smax(c)
(O

(c)
j,il
− p(c)

j ) , (7)

where d(x, y) is the Euclidean distance of x, y ∈ R3 and O
(c)
j,il

denotes the point

located on the surface of the fiber X
(c)
(il)

with the shortest Euclidean distance

to the pore center p
(c)
j . Moreover, s indicates that X

(c)
(il)

is the fiber with the

s-th shortest distance to p
(c)
j and max(c) = maxj,l d(p

(c)
j , O

(c)
j,il

). The translation
vectors given in (7) regulate the attraction of fibers towards pore centers where
the attraction is stronger the closer the fiber is located to the pore center and
the larger the pore volume is. Based on the translation vectors t

p
(c)
j ,X

(c)

(il)

, we

compute a global translation vector T
X

(c)

(il)

per fiber by

T
X

(c)

(il)

=

n(c)∑
j=1

t
p
(c)
j ,X

(c)

(il)

.

In each iteration step, we update the current fiber system replacing X
(c)
(il)

by

X
(c+1)
(il)

= X
(c)
(il)

+ min{Tmax, |TX(c)

(il)

|}
T
X

(c)

(il)

|T
X

(c)

(il)

|
,

where Tmax is set to 5 in this paper. After updating the current fiber system, the
centers of pores are recalculated and the same translation procedure is repeated.

12



Table 2: Mean values (standard deviations) of curvature measures v0(p), S2
z (p), τ(p) com-

puted for simulated fibers before (top) and after (bottom) application of avoidance algorithm

v0(p) S2
z (p) τ(p)

before translation 0.069 (0.037) 10.5 (9.7) 1.374 (1.24)
after translation 0.071 (0.041) 10.8 (9.8) 1.41 (1.35)

The algorithm stops if
∑k
l=1 |TX(c)

(il)

| < 0.002 3
√
ν3(W ), where ν3(W ) denotes the

volume of W . In order to analyze the influence of the pore filling algorithm on
the pore size distribution, we computed the mean spherical contact distance for
the fiber systems before and after application of the pore filling algorithm. The
mean spherical contact distance describes the average distance from a randomly
chosen point located in the pore phase to the closest point located in the fiber
phase. It turned out that the mean spherical contact distance before applying
the pore filling algorithm is equal to 14.6 and after the application of this algo-
rithm it is equal to 6.39. This clearly indicates a large decrease in terms of pore
sizes.

4.2.2. Transformation into systems of non-overlapping fibers

The fiber system, which is obtained by applying the translation algorithm in-
troduced in Section 4.2.1, is further transformed to a system of non-overlapping
fibers. Therefore, we apply the iterative avoidance algorithm introduced in [1].
The principle idea is to first represent each fiber by a chain of spheres where the
spheres have radius r and their midpoints are located equidistantly (with small
distances from each other) on the center lines of the fibers. Then we apply two
different kinds of translations to those spheres: The first translation separates
overlapping spheres which belong to different chains of spheres, and the second
translation controls the structure of the spheres belonging to the same chain of
spheres (and thus the curvature of the fibers). The algorithm terminates when
the sum of the norms of all translations falls below a certain threshold. The
parameters of the algorithm are chosen as proposed in [1]. The set union Ξ̃
of the final system of non-overlapping fibers within the sampling window W is
denoted by Ξ̃ ∩W .

To show that the changes of fiber structure after applying the avoidance algo-
rithm are minor, we again computed the curvature measures v0(p), S2

z (p), τ(p)
for the simulated and subsequently translated fibers. In Table 2, the means and
standard deviations of these measures are listed, where we can clearly see that
the values are not significantly different.

4.3. Estimation of model parameters

It is known from the manufacturer that the width of the fiber-channels is
given by h = 500µm, and the width of the fiber-bars by b = 70µm for the
non-woven GDL material considered in this paper. Furthermore, it is known
that the volume fraction of the fiber system is equal to 0.235. We choose the

13



intensity λ of the 3D Poisson point process representing the locations of fiber-
bundles such that the volume fraction of the fiber system Ξ̃∩W coincides with
the known volume fraction of 0.235. Therefore, the minimum-contrast method
is used in order to estimate the intensity λ of fiber-bundles, i.e.,

λ = argminλ

∣∣∣∣∣ν(Ξ̃ ∩W )

ν3(W )
− 0.235

∣∣∣∣∣ ,
where we get that λ = 1.65e−7.

4.4. Validation of the fitted GDL model

In Section 4.4.1, we discuss the visual accordance of experimental and sim-
ulated data drawn from the GDL model. Subsequently, in Sections 4.4.2-4.4.5,
we check more formally if the stochastic 3D model describes the microstructure
of the non-woven GDL adequately. In particular, the question arises if this
relatively complex model, combining all modeling components, yields a good
agreement with the experimental 3D image. Thus, we validate the stochastic
microstructure model by comparing physically motivated (transport-relevant)
characteristics computed for the experimental non-woven GDL data, and for
realizations of the non-woven GDL model. We aim to show that these charac-
teristics which have not been used for model fitting are reflected sufficiently well
by our model.

4.4.1. Visual comparison of experimental and simulated images

In Figure 6 (right) a realization of the fitted GDL model is shown. The
synchroton data in Figure 6 (left) shows clews of fibers in horizontal direction.
They are represented in the stochastic model by horizontal fiber bundles as
shown in Figure 6 (right). Although, the fiber-bars modeled by straight fiber
bundles are a simplification of the microstructure of non-woven GDL, the visual
agreement between the simulated and experimental images is quite nice given
the complexity of the fiber system.

4.4.2. Volume fractions within fiber-bar and fiber-channel

In the following, we analyze the volume fractions of fibers within the fiber-
bars and the fiber-channels for both experimental fiber systems and fiber systems
drawn from the fitted stochastic model. The results given in Table 3 show that
the model accurately describes the distribution of fiber volumes.

4.4.3. Directional distribution of line segments

In addition to the comparison of experimental and simulated images dis-
cussed in Sections 4.4.1-4.4.2, we examine the directional distributions of line
segments computed for the extracted polygonal tracks and for the simulated
polygonal tracks representing the GDL model introduced in Sections 4.1-4.3. It
turns out that both distributions are in an almost perfect accordance to each
other, see Figure 7.
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Figure 6: 3D synchrotron data (left) and simulated non-woven GDL (right)

Table 3: Volume fractions computed for fiber-bar and fiber-channel

fiber-bar fiber-channel

experimental data 0.221 0.274
simulated data 0.218 0.276

relative error 0.014 0.007

Figure 7: Directional distributions of line segments computed for extracted (left) and simu-
lated (right) polygonal tracks
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4.4.4. Spherical contact distribution function

In this section, the spherical contact distribution function H : [0,∞] →
[0, 1] is computed for experimental and simulated data where H(t) denotes the
probability that the minimum distance from a randomly chosen location of the
pore phase to the fiber phase Ξ̃ is not larger than t. The results of these

Figure 8: Distribution functions of spherical contact distances for experimental data (black)
and simulated data (red) drawn from the fitted GDL model.

calculations are given in Figure 8, where we clearly see that there is a nice
accordance between the results obtained for experimental and simulated data.
In other words, we see that our model adequately represents this structural
characteristic.

4.4.5. Effective tortuosity

As another example of a transport-relevant characteristic, we consider the
tortuosity of the GDL which describes the lengths of percolating pathways
through the pore phase of a porous material, see Figure 9. First recall that
the main task of the GDL besides storage and evacuation of water is the gas
supply of electrodes. Thus, the geometry of percolating pathways through the
pore phase is in a close connection with transportation of gases through the
GDL. Note that there exist several definitions of tortuosity. In this paper we
define the notion of tortuosity by the ratio of the mean value of flow path lengths
through a porous material divided by the thickness of the material.

However, we do not restrict ourselves to the mean value of flow path lengths
but consider the histogram of flow path lengths which are calculated based on
randomly chosen starting points located at one material’s end. This histogram
contains much more information about the tortuosity than just a single mean
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Figure 9: Flow path lines through real (left) and simulated (right) GDL

value.
The computation of flow path lengths can be accomplished via Lattice-

Boltzman (LB) simulation, see [3, 15]. Notice that the LB-method provides
a numerical tool in order to model the transport of fluids under realistic con-
ditions within a given microstructure. Moreover, the LB-method works on 3D
binary images with cubic voxel size which are the output of the stochastic model
for fiber-based materials introduced in the present paper. Thus, LB-simulations
on virtual fiber-based materials generated by stochastic microstructure models
can be easily interfaced. For more information about the LB method and the
computation of flow path lengths the reader is referred to [3, 15].

Figure 10: Histograms of flow path lengths for real (left) and simulated data (right)
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Table 4: Means and standard deviations of effective tortuosity computed for experimental and
simulated non-woven GDL

mean values standard deviations

experimental data 1.19 0.0054
simulated data 1.15 0.0028

relative error 0.03 0.48

The results of these calculations are given in Figure 10, see also Table 4.
We clearly see that the results obtained for experimental and simulated data
coincide quite nicely since the shapes of the histograms are similar and the two
mean values are within the same range, see Table 4. Thus, altogether, our
stochastic GDL model provides an adequate fit to the experimentally measured
3D image of the GDL.

5. Modeling of PTFE

GDL are often treated with PTFE to increase hydrophobicity and to reduce
blocking of pathways caused by water holdups. Thus, the 3D morphology of
PTFE within the GDL has an essential influence on gas transport and water
storage, representing important functions for effective operation of PEMFC.
The PTFE distribution inside the GDL depends on the preparation procedure
as shown in the literature see e.g. [17]. This section deals with the inclusion of
PTFE into the non-woven GDL model introduced in Section 4. Unfortunately,
3D image acquisition is still an unsolved challenge, i.e., it is extremely difficult
to gain 3D information about the spatial distribution of PTFE. Up to now, 2D
microscopic images are the only way to make PTFE visible within the GDL.
In Figure 11, two 2D SEM images of non-woven GDL are shown, containing
different amounts of PTFE (measured in weight percentage), where the PTFE
accumulates in areas between neighboring fibers. Moreover, by means of nor-
malized X-ray signals gained by BEC-images from cross-sections of non-woven
GDL, it is possible to approximate the volume fraction of PTFE in thin slices
of the GDL, where three different total amounts (10%, 20% and 40 %) of PTFE
have been considered. This is done by separating the PTFE, fibers and pores
in the 2D cross-section images and subsequently analyzing the volume fractions
in dependency of the location within the GDL.

It turned out that in all three cases the PTFE is not uniformly distributed
within the GDL. More precisely, the PTFE concentrates in the deeper and upper
zones of the GDL, whereas in the middle part there is hardly any PTFE, see
Figure 12.

Since we are interested in the volume fractions of PTFE in thin slices for
any percentage-value y of PTFE, say for all y ∈ [0, 50], we fit a function s :
[0, 200] × [0, 50] → [0, 1] to the three available functions of volume fraction in
thin slices using non-linear regression, see Figure 13. The resulting volume
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Figure 11: 2D SEM images of non-woven GDL containing 10% (left) and 20% (right) PTFE.

Figure 12: Volume fractions of PTFE in thin slices of GDL (black lines) and the corresponding
approximations by the function s(·, ·) (red lines).

fractions s(x, y) of PTFE can then be given in a parametrized form, where

s(x, y) =
(

0.04 log (y + 1) + 0.025 log (y + 1)
2
)

· exp

−(x+ 1.96y − 7.74 log (y + 1)
2

7.77 log (y + 1)

)2


+
(
0.0046y + 0.0002y2

)
· exp

−(200− x+ 2.83y − 9.62 log (y + 1)
2

5.76 log (y + 1)

)2
 .

In this formula, x denotes the distance to the first slice of the GDL and y denotes
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Figure 13: Volume fractions of PTFE in thin slices for total amounts of PTFE (measured in
weight percentage) between 0 and 50.

the weight percentage of PTFE, i.e., s(x, y) is the volume fraction of PTFE in
the x-th slice of the GDL while altogether y weight percentage of PTFE is
included. Thus, we are now able to forecast the volume fractions of PTFE in
thin slices for all (total) weight percentages of PTFE between 0 and 50.

Our approach to including PTFE into the GDL model Ξ̃ of non-overlapping
fibers, introduced in Section 4, is to take into account that the PTFE accumu-
lates in areas between neighboring fibers and that the volume fraction s(x, y) of
PTFE in thin slices depends on the distance x to the surface of the GDL and
on the total amount y of PTFE. Therefore, we define a function DΞ̃ : R3 → R
where DΞ̃(v) is the sum of the shortest distances d1(v) and d2(v) from location

v ∈ R3\Ξ̃ to its two nearest fibers , i.e., we put

DΞ̃(v) =

 ∞ , if v ∈ Ξ̃,

d1(v) + d2(v) , else.

Then, for each slice x ∈ [0, 200] and for each PTFE weight percentage y ∈ [0, 50],
we allocate those voxel to PTFE for which the value of DΞ̃ is smaller than a
certain threshold txy, where the threshold txy is chosen such that the resulting
volume fraction of PTFE in the x-th slice fits the predicted volume fraction
s(x, y), see Figure 14. Note that each slice has a thickness of 1 µm.

6. Conclusions

A novel, realistic stochastic 3D model has been introduced which describes
the microstructure of non-woven GDL consisting of strongly curved, non-over-
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Figure 14: 2D SEM images of non-woven GDL (top) and simulated non-woven GDL (bottom)
containing 10% (left) and 20% (right) PTFE.

lapping fibers. The model is constructed in a two-stage approach: In the first
stage, a system of random fibers is generated by random 3D polygonal tracks
using multivariate time series. In the second stage, this system of fibers is
transformed into a system of non-overlapping fibers. The parameters of this
model have been fitted to 3D image data of non-woven GDL. Subsequently,
the model has been validated by comparing transport-relevant characteristics
computed for experimental and virtually generated non-woven GDL data. A
good agreement was found. Moreover, we included PTFE into our GDL model,
whose 3D morphology is of great importance in order to study the correlation
between the structure of a GDL and its functionality.
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