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Abstract. Biogeochemical soil processes are closely linked to the structure of soil. In particu-
lar, nutrient transport depends on diffusivity and permeability within the soil’s pore network.
A deeper understanding of the relationship between microscopic soil structure and such ef-
fective macroscopic properties can be obtained by tomographic imaging combined with a
quantitative analysis of soil morphology and numerical simulations of effective macroscopic10

properties. In a previous work it has been shown that different parametric regression formulas
can be used to predict these relations for finely sieved soils of loam and sand. In the present
paper, we validate these formulas and further extend their applicability to structured soils. In
particular, 3D CT data of a total of six samples, consisting of three loam and three sand sam-
ples, are used as the basis for an extensive structural analysis. As expected, the performance15

of most regression formulas can be improved by specifically adjusting their parameters for the
considered soil structures. However, it turns out that some regression formulas based on, e.g.,
tortuosity which were fitted for finely sieved soils still reliably predict diffusion for structured
soils without adjusting their parameters. For additional validation and improvement of the
considered regression formulas, artificially generated soil structures can be utilized. There-20

fore, a method for the generation of such structures via samples drawn from a parametric
stochastic 3D microstructure model is outlined which may serve as a basis for further work.
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1 Introduction

The three-dimensional microstructure of many natural and technical materials plays a decisive role with
regard to effective macroscopic properties [1, 2, 3]. One example of an effective macroscopic property
is the effective diffusivity, which is of major importance for a wide spectrum of technical applications
ranging from lithium-ion batteries to solid-oxide fuel cells [4, 5, 6, 7]. However, diffusion processes are not30

only of great importance in technical materials, but also in natural materials such as soils. In particular,
it is well known that the 3D microstructure of the pore space has a profound impact on the transport of
gas and water in soils [8, 9]. While many well-established relations formulate a dependence of the scalar
diffusion coefficient only on the porous medium’s porosity (see [10] for a review of different approaches),
more precise structure-property for soil gas diffusion have been recently investigated based on 3D CT35

data of finely sieved soils [11]. More precisely, the parameters of analytical regression formulas, which
link geometrical descriptors of 3D microstructure such as tortuosity or chord length distribution and
diffusive properties computed via numerical simulations, have been calibrated in [11] to 3D image data of
finely sieved loam and sand, as well as compared to structure-property relationships from the literature.
The focus of the present paper is to use 3D image data of structured soils (again considering loam and40

sand as representatives of two different soil textures), where we first investigate to which extent the 3D
morphology of structured soil differs from that of finely sieved soil. Moreover, the structure-property
relationships derived in [11] are applied to and evaluated for structured soils. In doing so, we investigate
to which extent these microstructure-property relationships hold for the present data of more realistic
soil structures. This allows for a deeper, quantitative understanding of soil gas diffusion, which has a45

significant impact on nutrient supply and plant growth [8].

To develop even more general and robust quantitative structure-property relationships that generalize for
various soil textures, stochastic 3D models can be used in order to create more comprehensive data sets
for model calibration and validation than this is possible by tomographic image data. Thus, to illustrate
this approach, the present paper also covers the development of a parametric stochastic 3D microstructure50

model, which is calibrated to 3D image data of structured sand. More precisely, excursion sets of random
fields are used to model the 3D microstructure of the soil. Similar modeling ideas have been applied
to generate digital twins of the 3D microstructure of lithium-ion batteries [12, 13], solid-oxide fuel cells
[14, 15, 16], and gas-diffusion electrodes [17]. Model validation is carried out by comparing geometrical
descriptors of simulated 3D structures and experimental image data, which have not been used for model55

calibration. This lays ground for generating virtual but realistic 3D soil structures just at the cost of
computer simulations by systematic variation of the model parameters.

The outline of the present paper is as follows. First, the acquisition of six structured soil samples is
described in Section 2.1, which are then imaged via 3D CT, see Section 2.2. Next, a brief description
of the computation of diffusive properties (Section 2.3) and various geometrical descriptors (Section 2.4)60

is given. The results of a statistical analysis of the 3D pore space morphology of structured soils, in
comparison to finely sieved soils, are provided in Section 3.1. Subsequently, quantitative structure-
property relationships are investigated in Section 3.2, where once again a comparison with the results
obtained in [11] is carried out. The calibration and validation of a parametric stochastic 3D microstructure
model based on excursion sets of random fields is described in Section 4. A summary of the main results65

achieved in the present paper and an outlook to future research activities are given in Section 5.
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2 Materials and methods

This section is focusing on the explanation of the acquisition of six structured soil samples (Section 2.1),
their imaging via 3D CT (Section 2.2), the numerical calculation of diffusive properties of the underlying
pore space (Section 2.3), and various geometrical descriptors of 3D microstructures (Section 2.4).70

2.1 Sample acquisition

The six soil samples considered in the present paper are part of a previously published dataset on
rhizosphere soil structure and its interplay with soil textures (i.e., loam versus sand) [18]. In short, the
samples were taken in 2019 at the experimental station of the UFZ (Umweltforschungszentrum) in Bad
Lauchstädt, Germany (51◦22′0′′ N, 11◦49′60′′ E ). The structured soil has been sieved with a mesh size of75

20 mm before filling into 75 cm deep excavation pits and subsequent compaction with a vibrating plate
[19], followed by six months of natural soil settling. Aluminum rings of 5 cm in height and diameter
were extracted at 6 and 16 cm depths with a set-up that allows to preserve the intact soil structure of
the samples. Directly after sampling, the samples were brought to the laboratory and kept at 4° before
X-ray CT scanning. Note that the finely sieved soil considered in [11] has been sieved with a mesh size of80

1 mm. For more information on the experimental set-up and design, the reader is referred to [18, 19].

2.2 X-ray computed tomography scanning and binarization

X-ray CT scanning was performed with an industrial µ-CT scanner (X-TEK XTH 225, Nikon Metrol-
ogy) having an Elmer-Perkin 1620 detector panel (1750 × 2000 pixels). The obtained images were
reconstructed into an 8-bit grayscale 3D tomogram having a voxel size of 25 µm. The reconstruction was85

performed with a filtered back projection algorithm with the CT Pro 3D software (Nikon metrology). The
conversion to 8-bit allowed saving considerable space without losing considerable information. During
the 8-bit conversion, the grayscale range was normalized with a percentile stretching method. Further
details regarding the number of projections, energy and current settings of the X-ray CT scanner are
thoroughly given in [18].90

The segmentation into pore space, where diffusion occurs, and the soil matrix, where no diffusion can
take place, was performed by a global thresholding method, see Figure 1. For the choice of appropriate
threshold values, the fuzzy c-means clustering method [20] implemented in Quantim v.4 was used. After
the phase-based segmentation, the images were cropped in cuboids with a side length of 1000 voxels
in order to exclude zones of the samples which could have potentially been disturbed during sampling.95

The binarized 3D image data of each of the six samples was then partitioned into 446 non-overlapping
cutouts such that the pore space is completely connected in x-direction, y−direction and z−direction,
respectively. Thus, a total of 2676 cutouts was considered. The latter condition was required to ensure
the convergence of the numerical simulations conducted in Section 2.3.

Compared to the data investigated in [11], the present 3D CT images differ with regard to their voxel100

size. While this may impede the quantitative comparison between finely sieved soil considered in [11]
and structured soil, both datasets form a suitable basis for the development and assessment of regression
formulas for the prediction of diffusion from geometrical descriptors. In particular, we will see in Section 3
that despite pronounced structural differences, caused by the different kinds of soil and the different voxel
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sizes, quite accurate structure-property relationships can be obtained by directly applying the regression105

formulas derived in [11] to the present data of structured soil.

Figure 1: Three-dimensional renderings of selected loam (top row) and sand (bottom row) subsamples
(1.28 µm × 1.28 µm × 1.28 µm), where the solid phase is depicted in gray. Left: finely sieved soil as
considered in [11] Right: structured soil considered in the present paper.

2.3 Computation of diffusive properties

For each of the cutouts described in Section 2.2, effective diffusive properties are computed by the
method of periodic homogenization [21]. Further details regarding these computations are described in
[11, 10]. As a result, we obtain a 3× 3 diffusion tensor D = (Di,j)i,j=1,2,3 for each cutout. A normalized110

characteristic that quantifies diffusive properties is the so-called M-factor, denoted by M , which is defined
as the ratio of effective diffusivity and intrinsic diffusivity Dm [22]. Since all soils have been sieved
prior to the field experiments [18, 19] there are no pronounced anisotropy effects in the present image
data. The effective diffusivity is thus calculated by averaging the diagonal entries of D, which leads to
M = 1

3Dm
(D11 + D22 + D33).115

2.4 Geometrical descriptors of pore space

The geometrical descriptors that are used in the present paper for quantifying the 3D pore space mor-
phology and for establishing structure-property relationships are summarized in Table 1.
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Geometrical descriptor Symbol Range Unit

Volume fraction ε [0,1] -
Specific surface area S [0,∞) µm−1

Mean chord length µ(C) [0,∞) µm
Characteristic bottleneck radius rmin [0,∞) µm
Characteristic pore size radius rmax [0,∞) µm
Constrictivity β [0,1] -
Mean spherical contact distance µ(H) [0,∞) µm
Mean geodesic tortuosity µ(τ) [1,∞) -
Standard deviation of geodesic tortuosity σ(τ) [0,∞) -

Table 1: Overview of geometrical descriptors of pore space.

Further details on geometrical descriptors of the pore space in soils, including additional references, as
well as details regarding the computation of these descriptors from voxelized 3D image data can be found120

in [11]. Note that the mean and standard deviation of the geometric tortuosity, which is based on the
skeleton of the pore space, has been considered in [11], but turned out to be not as useful as the concept of
geodesic tortuosity with regard to the derivation of structure-property relationships. Thus, the geometric
tortuosity of pore space is no longer considered in the present paper.

3 Correlating pore space morphology with soil gas diffusion125

In this section, we present the results of a statistical analysis of the 3D pore space morphology of
structured soils, comparing them to those obtained for finely sieved soils (Section 3.1), and we derive
quantitative structure-property relationships for structured soils, where once again a comparison with
corresponding relationships obtained in [11] is carried out (Section 3.2).

3.1 Statistical analysis of 3D pore space morphology130

The 3D morphology of structured soil samples is investigated by means of the geometrical descriptors
discussed in Section 2.4. The obtained results are compared to those achieved in [11] for finely sieved
soils, see Figure 2. However, note that the voxel size of tomographic image data considered in [11] is
equal to 10 µm, whereas the image data considered in the present paper have a coarser resolution with
a voxel size of 25 µm, i.e., the image data now examined for structured soils contains significantly fewer135

structural details than the higher-resolution image data for finely sieved soils considered in [11]. This
fact has to be taken into account when comparing the results for the two sets of image data.

3.1.1 Univariate distributions of single descriptors

It turns out that the local porosities, i.e., the volume fractions ε of pore space computed from structured
sand samples are significantly larger compared to the porosity values of structured loam, while this140

difference is much less pronounced for finely sieved soils, see Figure 2a. In case of the specific surface area
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S of the pore space, significant differences between loam and sand are apparent. The values obtained
for structured sand samples are significantly larger compared to those for structured loam, where the
opposite is true in case of finely sieved soil, see Figure 2b. The latter effect might be attributed to the
different spatial resolutions of both types of data sets. The coarser resolution of image data considered145

in the present paper is also likely the reason for a significantly larger mean chord length µ(C) of the pore
space (for both structured loam and sand) compared to the values obtained in [11], since two or more
chords within the pore space can now be detected as one single chord if the intermediate soil structure
is too fine to be resolved with the coarser resolution. Interestingly, the pore space of the loam samples
exhibits shorter mean chord lengths for finely sieved soil, whereas the opposite trend is observed with150

regard to structured soil, see Figure 2c.
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Figure 2: Histograms of geometrical and functional descriptors of pore space: Volume fraction (a), specific
surface area (b), mean chord length (c), characteristic bottleneck radius (d), characteristic pore radius
(e), constrictivity (f), mean and standard deviation of geodesic tortuosity (g,h), mean distance to solid
phase (i), and the M-factor (j) computed from tomographic image data for the 2·3·446 = 2676 subsamples
of loam (blue) and sand (orange), respectively. Solid lines represent structured soils while dashed lines
correspond to finely sieved soils.

The coarsening effect due to a larger voxel size is also observed with regard to both characteristic radii
rmin and rmax, see Figures 2d and 2e. With regard to constrictivity β, finely sieved soils showed rather
similar distributions for both loam and sand, which is no longer true for structured soils. In particular,
in the latter case there are pronounced differences regarding both the mean values and variances of155
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constrictivity within each sample, see Figure 2f. With regard to the mean geodesic tortuosity µ(τ), both
types of finely sieved soils exhibited very similar distributions with a mean around 1.1, see Figure 2g.
This is still true for structured sand, but not for structured loam, which exhibits a broad distribution of
mean geodesic tortuosities. The latter distribution might arise due to the coarser resolution that is not
able to resolve narrow throats within the pore phase such that the shortest paths within the pore space160

now consist of significantly more detours. This would also explain the plots in Figure 2h showing the
local distributions of σ(τ), where again the structured loam behaves differently compared to structured
sand as well as both finely sieved soil types. In case of the mean distance µ(H) to the solid phase, the
behavior is similar to the mean chord length µ(C), see Figure 2i, which is intuitively clear since both
geometrical descriptors quantify some kind of typical pore size.165

The distributions of the local M-factor of structured soils show pronounced differences compared to those
of finely sieved soils, see Figure 2j. More precisely, both types of structured soil show broader distributions
of the local M-factor. Moreover, the distribution of the M-factor corresponding to loam is now skewed
to the left with a majority of values below 0.05, indicating severe limitations for soil gas diffusion within
the pore space. This is likely to be caused by the significant shift of the distribution of the (local) mean170

geodesic tortuosity µ(τ) to the right compared to finely sieved loam.

Overall, these investigations highlight the diversity in the descriptors depending on soil type and prepa-
ration. This observed diversity is beneficial for the development of generalized prediction formulas.

3.1.2 Bivariate distributions of descriptor pairs

Besides the univariate distributions discussed so far, we also consider bivariate distributions of selected175

pairs of geometrical and functional descriptors, see Figure 3.
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Figure 3: Bivariate probability densities for pairs of geometrical and functional descriptors, visualized as
contour plots based on kernel density estimation, which have been obtained for the 2676 cubic subsamples
of either structured loam (blue) or structured sand (orange). Furthermore, the values of Pearson’s
correlation coefficient ρ are given for each descriptor pair, separately computed for loam and sand.
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It turns out that there is nearly no correlation between the specific surface area of the pore space S
on the one hand, and µ(H), µ(C) and rmax on the other hand, see Figures 3d - 3f. Note that in case
of sand, this is similar to finely sieved soil, but the pronounced positive correlation between S and the
other three geometrical descriptors mentioned above that has been observed in [11] for finely sieved180

loam is no longer observed for the present data. Moreover, there is a pronounced positive correlation
between µ(τ) and σ(τ), which is similar for loam and sand, see Figure 3a. Note that there is also a
pronounced positive correlation between µ(C) and µ(H), where this correlation is larger for structured
loam compared to structured sand, see Figure 3b. However, in case of finely sieved soils, this correlation
has been even more pronounced for both loam and sand [11]. The most pronounced correlations can185

be observed between the porosity ε and the mean geodesic tortuosity µ(τ) as well as between ε and the
M-factor M , see Figures 3c and 3g. In both cases, the strongest correlation is observed for structured
sand with correlation coefficients of -0.96 and 0.977, respectively. In particular, the correlation coefficient
between ε and M for structured sand, which is close to one, indicates that analytical formulas for the
prediction of M from geometrical descriptors that only use the porosity ε as input are likely to lead to190

decent prediction accuracy. However, as will be shown in later in Section 3.2, combining the porosity
with further more sophisticated geometrical descriptors allows for an even more accurate prediction of
the M-factor.

3.2 Regression formulas for the quantification of structure-property relationships

We now investigate the question how well do the prediction formulas for the M-factor derived in [11] for195

finely sieved soil behave when they are directly applied to structured soil. Furthermore, we show how do
the regression coefficients change compared to finely sieved soil when they are newly calibrated to the
present tomographic image data measured for structured soil. An overview of the analytical prediction
formulas for the M-factor considered in the following is given in Table 2.

Formula Eq. number Constraints Values derived in [11]

M̂1 = εc1 (1) c1 ≥ 1 1.71

M̂2 = c1ε
c2 (2) c1, c2 > 0 (1.92, 2.29)

M̂3 = c1e
c2ε (3) - (0.02, 6.88)

M̂4 = εc1βc2µ(τ)c3 (4) c1 >, c2 ≥ 0, c3 ≤ 0 (1.06, -0.04, -7.28)

M̂5 = εc1+c2βµ(τ)c3 (5) c1 + c2 ≥ 0, c3 ≤ 0 (1.17, -0.18, -7)

M̂6 = c1µ(τ)
c2σ(τ)c3εc4 (6) - (2.19, -6.07, 0.07, 1.63)

M̂7 = εc1Sc2rc3max (7) - (2.6, -0.61, -0.45)

M̂8 = εc1
(
µ(C)

µ(H)

)c2

(8) - (2.23, 0.16)

Table 2: Overview of the considered analytical prediction formulas for the M-factor, including the con-
straints on the coefficients as well as the numerical values for the coefficients, which have been derived
in [11] for finely sieved soil.
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To obtain a first impression regarding the influence of geometrical descriptors of the pore space on the200

M-factor for structured soil, the scatter plots shown in Figure 4 illustrate the dependence of the M-factor
on various pairs of geometrical descriptors.

Moreover, we consider several empirically derived regression formulas which will be used for the quan-
tification of structure-property relationships and, in particular, for predicting the M-factor from the
knowledge of an appropriately chosen vector of geometrical descriptors of the 3D pore space morphology.205

A detailed evaluation of the performance of the regression formulas and their parameters when fitted to
the data of structures soils can be found in the Appendix. For an overview, we refer to Figure 5. In
summary, the formula given in Eq. (6), which was the best-performing regression formula in [11], as well
as the formulas given in Eqs. (4) and (5) generalize (using the parameters originally derived in [11]) to
tomographic image data of structured soils, see Figure 12 in the Appendix. The fit of these formulas210

can be further increased by adjusting their parameters specifically for structured soils, see Figure 11 in
the Appendix. In both cases, the formula given in Eq. (6) is still the best-performing or close to the
best-performing formula. In particular, the prediction accuracy of rather simple prediction formulas,
which only include the porosity as geometrical descriptor (i.e. the formulas in Eqs. (1), (2) and (3)) can
be increased by incorporating the mean and standard deviation of geodesic tortuosity. Furthermore, the215

formulas that are solely based on porosity are less robust in a sense that using that different data sets
(either finely sieved soil instead of structured soil or loam instead of sand) can not be described by those
equations without re-calibrating the coefficients, see Figures 11 and 12. Interestingly, Eq. (7) is not the
best-performing prediction formula despite a correlation coefficient of 0.94 between the specific surface
area and the M-factor. Moreover, Eqs. (4) and (5), which both are based on the porosity, mean geodesic220

tortuosity and the constrictivity, are also performing well, even when using the coefficients obtained for
finely sieved soil and applying them to structured soil, see Figure 12.
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Figure 4: Scatter plots visualizing the dependence of the M-factor on various pairs of geometrical descrip-
tors. The (brighter or darker) colors of the data points indicate whether the value of the corresponding
M-factor is high or low. Note that in this figure we do not distinguish between the two soil textures
which can be seen in Figure 3. For clarity of presentation, only randomly selected 10% of the 2676 cubic
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9



0.00 0.05 0.10 0.15 0.20 0.25

M

0.00

0.05

0.10

0.15

0.20

0.25

M̂
1

MAPE = 99.2 %
R2 = 0.94

a

0.00 0.05 0.10 0.15 0.20 0.25

M

0.00

0.05

0.10

0.15

0.20

0.25

M̂
2

MAPE = 45.1 %
R2 = 0.98

b

0.00 0.05 0.10 0.15 0.20 0.25

M

0.00

0.05

0.10

0.15

0.20

0.25

M̂
3

MAPE = 101.7 %
R2 = 0.94

c

0.00 0.05 0.10 0.15 0.20 0.25

M

0.00

0.05

0.10

0.15

0.20

0.25

M̂
4

MAPE = 19.5 %
R2 = 0.99

d

0.00 0.05 0.10 0.15 0.20 0.25

M

0.00

0.05

0.10

0.15

0.20

0.25

M̂
5

MAPE = 16.2 %
R2 = 0.99

e

0.00 0.05 0.10 0.15 0.20 0.25

M

0.00

0.05

0.10

0.15

0.20

0.25

M̂
6

MAPE = 16.7 %
R2 = 0.99

f

0.00 0.05 0.10 0.15 0.20 0.25

M

0.00

0.05

0.10

0.15

0.20

0.25

M̂
7

MAPE = 51.6 %
R2 = 0.97

g

0.00 0.05 0.10 0.15 0.20 0.25

M

0.00

0.05

0.10

0.15

0.20

0.25

M̂
8

MAPE = 42.0 %
R2 = 0.98

h

Figure 5: Scatter plots visualizing the values obtained for the M-factor M by numerical simulations
versus those of the predicted M-factors M̂i, i = 1, . . . , 8, obtained for the test data of either structured
loam (blue) or structured sand (orange). The parameters appearing in the prediction formulas given
in Eqs. ((1))−((8)) have been fitted to the entire training data for loam and sand, see Table 4 in the
Appendix.

4 Stochastic 3D microstructure modeling

As measured CT images are time and cost-intensive, they can only provide a limited amount of data
– both in terms of a rather small number of measurements as well as a comparatively small structural225

variety. Thus, prediction formulas which are developed solely based on measured image data may have
limited explanatory power for other soil textures. In the following, we present a stochastic 3D model for
the microstructure of soils which may be used to generate a large variety of realistic soil structures to
overcome the limitations of measured image data. More precisely, a parametric 3D model is calibrated
to tomographic image data of structured sand. By a quantitative comparison of geometrical descriptors230

computed on measured as well as simulated soil structures, it is shown that the complex 3D morphology
of structured sand can be characterized by a surprisingly small number of interpretable model parameters.
Thus, the stochastic 3D model proposed in this section lays ground for future investigations, including
virtual scenario analyzes by systematic variation of model parameters.

4.1 Model description235

The modeling approach described in this section is motivated by the observation that the 3D image data
of structured sand mainly shows two different classes of particles, namely a few large and many small
ones. The stochastic microstructure model can be decomposed into three steps. First, we consider two
independent Gaussian random fields X1 = {X1(t), t ∈ R3} and X2 = {X2(t), t ∈ R3}, where both random
fields are assumed to be stationary and isotropic such that their distributions are uniquely characterized240

by two mean values µ1, µ2 ∈ R and two covariance functions C1, C2 : [0,∞) → R. Furthermore, we assume
that the random fields X1 and X2 are normalized, i.e., it holds that µ1 = µ2 = 0 and C1(0) = C2(0) = 1,
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and that their covariance functions are given by

Ci(r) =
21−νi

Γ(νi)

(√
2νi

r

ρi

)νi

Kνi

(√
2νi

r

ρi

)
,

for each r ≥ 0, where νi > 0 and ρi > 0 are some parameters for i ∈ {1, 2}. Here, Γ and Kνi denote the
Gamma function and the modified Bessel function of the second kind, respectively [23].245

Next, for i ∈ {1, 2}, we consider the random sets Ξi = {t ∈ R3 : Xi(t) ≥ ai} as level sets (also called
excursion sets) of the random fields X1 and X2, where a1, a2 ∈ R. Due to the Gaussian nature of the
random fields X1 and X2, the following analytical relationship between the volume fraction εi = P(o ∈ Ξi)
of Ξi, where o ∈ R3 denotes the origin, and the threshold ai is true for i ∈ {1, 2}. Namely, it holds that
εi = 1 − Φ(ai) for i ∈ {1, 2}, where Φ : R → [0, 1] denotes the cumulative distribution function of the250

univariate standard normal distribution [24].

Finally, we model the solid phase of structured soils as union Ξ = Ξ1 ∪ Ξ2 of the level sets Ξ1 and Ξ2.
Note that the independence of X1 and X2 implies that the random fields Ξ1 and Ξ2 are also independent.
Thus, the volume fraction ε = P(o ∈ Ξ) of Ξ is given by ε = ε1 + ε2 − ε1ε2.

4.2 Model calibration255

To fit the model described in Section 4.1 to measured 3D image data, note that the volume fraction ε
of the solid phase can be easily estimated by voxel counting [24]. Thus, ε is known and can be used to
exploit the relationship ε2 = ε−ε1

1−ε1
, which allows us to express ε2 in dependence of ε1. Furthermore, this

equation can be transformed to obtain the following relationship between the thresholds a1 and a2:

a2 = Φ−1

(
1− ε

Φ(a1)

)
. (9)

This means that model calibration can be performed by means of the reduced parameter vector θ =260

(a1, ν1, ρ1, ν2, ρ2), since a2 is obtained from a1 via Eq. (9), where the parameter vector θ is chosen such
that simulated 3D data drawn from the calibrated stochastic model are statistically similar to the observed
sand structures. More precisely, the parameter vector θ is fitted such that the chord length distributions
within the solid phase as well as within the pore space match between measured and simulated data, as
shown in Figure 6.265
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0.08
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data

0 10 20 30 40 50
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0.01
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simu
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Figure 6: Left: Chord length distribution of pore space. Right: Chord length distribution of solid phase.
In both graphs, image data of structured sand is considered, where orange corresponds to measured data
and blue to a model realization.
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Note that the underlying optimization procedure uses a cost function which is given by the sum of the
quadratic distances between the probability densities of chord lengths of the solid phase and the pore
space of measured and simulated structured sand, respectively. This cost function is chosen such that
both pore and solid phase are taken into account equally. The cost function is numerically minimized
via simulated annealing [25], leading to the model parameter θ∗ = (0.04, 44.6, 70.1, 82.1, 2.86). For model270

fitting and the generation of artificial soil structures, the Gaussian random fields X1 and X2 introduced
in Section 4.1 are simulated via the Fourier-based method described in [26].

4.3 Model validation

For a structural validation of the stochastic 3D model introduced in Section 4.1, we used the following
approach. First, we have fitted the model in Section 4.2 to the complete tomographic image data (i.e.,275

not the small cutouts, which have been used for establishing structure-property relationships) of one of
the two datasets of structured sand described in Section 2.1. Then, we simulated 3D structures of the
same size using the fitted model described in Section 4.1. A visual comparison between tomographic
image data and model realizations for structured sand is shown in Figure 7. Finally, we computed some
of the geometric descriptors stated in Section 2.4, with the exception of mean chord lengths which were280

used for model calibration. As can be seen from Table 3, the simulated structures resemble the measured
data quite well in terms of the considered geometric descriptors. This indicates the feasibility of further
investigations of microstructure-property relationships by means of artificially generated soil structures.

Figure 7: 2D cross-sections of tomographic data of sand (left) and simulated data (right).

Descriptor Measured Simulated

Volume fraction ε 0.586 0.583
Specific surface area S 0.215 0.212
Mean geodesic tortuosity µ(τ) 1.090 1.098
Standard deviation of geodesic tortuosity σ(τ) 0.0067 0.0096
Constrictivity β 0.514 0.452

Table 3: Overview of the geometrical descriptors computed for the pore space of measured and simulated
data of structured sand.
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5 Conclusion

In the present paper, 3D image data of structured soils, obtained by X-ray computed tomography, is used285

for establishing quantitative structure-property relationships as well as for calibrating a simple stochastic
3D model for structured sand, which is based on excursion sets of Gaussian random fields.

First, tomographic image data of the 3D morphology of structured soils, which consists of three loam
and three sand samples, is investigated quantitatively by means of univariate and bivariate probability
distributions of geometrical and functional descriptors. These distributions are compared to those of the290

3D structure of finely sieved soils, which have been considered in [11]. Similar to the situation observed
for finely sieved soils, significant differences between loam and sand are apparent within the structured
soils. Moreover, differences between finely sieved and structured soils are found which can be partially
attributed to a different resolution of the tomographic image data. Especially for the computed M-factors,
the difference between loam and sand is increased in structured soils compared to finely sieved soils.295

In a second step, quantitative structure-property relationships are established via analytical regression
formulas using a total of 2676 non-overlapping cutouts. For this purpose, the method of periodic homog-
enization is used to obtain diffusive transport properties. The regression formulas which were already
established in [11] are used to predict the M-factor of pore space from geometric descriptors. It turns out
that the previously best-performing parametric regression formula outperforms other regression formulas300

also when fitted on the novel image data of structured soils. Although huge differences were observed
between the values of geometrical descriptors and M-factors computed from image data of structured
soils compared to those obtained for finely sieved soils, this formula reliably predicts the M-factor for
data of structured soils, even when used with the parameters previously derived in [11] for finely sieved
soils. This suggests a universal applicability of this type of regression formula to various different types305

of structures without the need for adjustment of parameters.

To validate the applicability of the regression formulas considered in the present paper for further types
of soils, stochastic 3D models may be used to generate digital twins of real soils, i.e., artificial soils
may be created in silico. In the present paper, a first step in this direction is taken by a stochastic
3D model which is calibrated to image data of structured sand, where the solid phase is modeled as310

the union of excursion sets of two independent Gaussian random fields. While being a relatively simple
model, validation of the model with respect to various geometric descriptors of structured sand yields
promising results. This encourages continued development of stochastic 3D models for more complex soil
morphologies, like those of structured loam. In particular, structured loam does not exhibit two clear
length scales, which can be modeled via excursion sets of two independent Gaussian random fields.315
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Figure 8: Correlation coefficients between all pairs of geometrical descriptors (as well as the M-factor)
considered in the present paper, computed for the set of all 2 · 3 · 446 = 2676 subsamples (left) and for
loam and sand individually (right). In the latter case, the upper right part of the matrix (blue frame)
shows the values obtained for loam, the bottom left part (orange frame) those for sand.

Formula R2 MAPE[%]

M̂1 = ε1.87 0.94 99.22

M̂2 = 1.95ε2.53 0.98 45.14

M̂3 = 0.01e7.41ε 0.94 101.71

M̂4 = ε1.26β0.11µ(τg)
−8.27 0.99 15.41

M̂5 = ε1.22−0.02βµ(τg)
−9.23 0.99 16.21

M̂6 = 1.07µ(τ)−8.15σ(τ)−0.04ε1.22 0.99 16.72

M̂7 = ε3.32S−1.06r−0.88
max 0.97 51.63

M̂8 = ε2.39(µ(C)/µ(H))−0.31 0.97 57.52

Table 4: Parameter values of regression functions fitted on the entire training data; validation scores R2

and MAPE obtained for the validation data considered in the present paper.
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Figure 9: M-factor obtained by numerical simulations versus the predicted M-factor M̂i, i = 1, . . . , 4,
obtained for the validation data, where different regression formulas (given by Eqs. ((1)), ((2)), ((3))
and ((4)); from top to bottom) have been used. The colors of data points represent loam (blue) and
sand (orange), respectively. The parameter values of regression formulas have been fitted on the entire
training data (left), loam (center) and sand (right), respectively.
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Figure 10: M-factor obtained by numerical simulations versus the predicted M-factor M̂i, i = 5, . . . , 8,
obtained for the validation data, where different regression formulas (given by Eqs. ((5)), ((6)), ((7)),
((8)); from top to bottom) have been used. In particular, Eq. ((6)) is used twice, once for geodesic
tortuosity and once for geometric tortuosity. The colors of data points represent loam (blue) and sand
(orange), respectively. The parameter values of regression formulas have been fitted on the entire training
data (left), loam (center) and sand (right), respectively.
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Figure 11: Validation scores R2 and MAPE obtained for the regression formulas considered in the present
paper including the values for the corresponding regression parameters, where different data sets have
been used for training/fitting and validation.
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Figure 12: Validation scores R2 and MAPE obtained for the regression formulas considered in the present
paper including the values for the corresponding regression parameters. The data set of finely sieved soil
described in [11] is used for training/fitting, whereas validation is carried out on image data for structured
soil.
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