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Abstract

Electron backscatter diffraction (EBSD) images of extruded pure aluminum were statistically
analyzed to investigate creep-induced subgrain structures after applying two different levels of
creep stress, corresponding to the power law (PL) and power law breakdown (PLB) regimes. Ker-
nel average misorientation analysis of EBSD measurements revealed 2D morphologies, which
were subdivided by a multi-step segmentation procedure into subgranular arrangements. Various
descriptors were employed to characterize the ’subgrains’ quantitatively, including their size,
shape, spatial arrangement and crystallographic orientation. In particular, the analysis of the
orientations of subgrains was conducted by neglecting rotations around the loading axis. This
approach facilitated the individual investigation of the {001} and {111} subgrain families with re-
spect to the loading axis for the three investigated stress levels. For the PL regime, the statistical
analysis of subgrain descriptors computed from segmented image data revealed a similar degree
of strain accumulation for {111} and {001} subgrains. In contrast, for the PLB regime, the ana-
lyzed descriptors indicate that {111} subgrains tend to accumulate significantly more strain than
{001} ones. These observations suggest that the mechanisms leading to PLB may be associated
with strain localization dependent on intergranular stress, hindering the recovery process within
{111} grains.

Keywords: Dislocation-climb-controlled creep, pure aluminum, electron backscatter diffraction
(EBSD), kernel average misorientation (KAM), segmentation, subgrain, geometric descriptor,
crystallographic descriptor, quantification, statistical image analysis

1. Introduction

For about a century, scientists have been investigating creep phenomena. Although count-
less articles with interesting insights to this topic have been published, see e.g. Andrade (1910);
Garofalo (1965); Sherby and Burke (1968); Kassner (1984); Wilshire and Evans (1985); Ashby
(1970); Arzt and Rösler (1988); Fernández et al. (2016, 2018); Prager (2000); Takeuchi et al.
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(1978); Kassner (2015); Evans and Harrison (1979), creep processes are to date not fully under-
stood,in particular due to a lack of quantitative statistical analysis based on high-quality image
data describing these processes. The aim of the present paper is to improve this unsatisfactory
situation.

Over the years, several models describing the steady-state strain rate dε/dt in dependency
of the applied stress σ were introduced. Among others, models described by a power-law de-
pendence of the strain rate on applied stress are popular and widely accepted (Sherby and Burke,
1968). The power-law creep equation is supported by experimental data, but fails describing
dislocation-climb-controlled creep occurring at high stress levels, known as the power law break-
down (PLB) regime (Kassner and Ermagan, 2019). At such stress levels the stress exponent is
no longer constant, but increases with increasing stress. Despite the lack of a general consensus
on the mechanism inducing the PLB, it is well accepted that the spatial distribution, size, and
amount of stored dislocations are key parameters to the further elucidation of mechanisms gov-
erning creep resistance in metals.

The influence of intragranular stresses (type III) on the macroscopic creep response is extens-
ively documented in the literature, see e.g. Caillard and Martin (1982); Hasegawa et al. (1972);
Cadek (1987). Intragranular stresses result from the formation of different regions within a grain.
Such regions contain different dislocation densities resulting from pile-ups at the subgrain walls,
whereas the subgrain interior remains relatively free of dislocations. On the other hand, the influ-
ence of intergranular stress (type II) on creep resistance has just recently started to be addressed
(see e.g., Chen et al. (2014); Mamun et al. (2021); Serrano-Munoz et al. (2022); Fernández et al.
(2023)). The elastic and plastic deformation of a single grain is controlled by its crystallographic
orientation, as well as by the orientation and deformation state of grains located in its vicinity, be-
cause of continuum compatibility. Intergranular interactions become even more significant when
the material has been subjected to plastic pre-straining, as is the case of mechanical processing
such as extrusion. Using different levels of pre-straining prior to creep tests has been reported to
influence the rates of creep strain accumulation (Wilshire and Willis, 2004).

To analyze accumulated strain in materials, a suitable method is the so-called kernel average
misorientation (KAM) applied on electron backscatter diffraction (EBSD) data, as outlined in
several studies (Wright et al., 2011; Schwartz et al., 2009; Muránsky et al., 2019; Subedi et al.,
2015; Wright et al., 2015). The segmentation of such KAM data is typically performed by
experts, which is a time consuming and subjective task. On the other hand, there are segmentation
approaches utilizing machine leaning approaches to automatically segment specific structures in
KAM data, yielding impressive results, see Martinez Ostormujof et al. (2022). However, such
supervised segmentation methods require a manually labeled data set for training. An alternative
approach is to utilize classical image processing techniques, such as a watershed algorithm, to
segment granular structures from EBSD data (see e.g., McAuliffe et al. (2020); Jangid et al.
(2022)). The present paper adapts such unsupervised methods into a multi-step image processing
algorithm to effectively segment intragranular dislocation structures observed through EBSD and
KAM computations.

Following the steps set forward in Serrano-Munoz et al. (2022), the resulting segmented
structures, referred to as subgrains, are subjected to a comprehensive statistical analysis en-
compassing size, shape, spatial arrangement and crystal orientation descriptors of subgrains.
Notably, an innovative methodology was developed to analyze crystallographic orientations by
disregarding rotations around the loading axis of the creep experiment. This approach enables
the representation of orientations in a manner consistent with their representation in an orient-
ation mapping with respect to the loading axis. By employing this approach, subgrains closely
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aligned with {001} and {111} orientations (with respect to the loading axis) were identified. Stat-
istical data analysis was then conducted to assess their quantitative differences across the three
investigated stress levels. The findings derived from this analysis provide further insights into the
mechanisms behind the formation of creep-induced subgrain structures, contributing to a deeper
understanding of these phenomena.

2. Materials, creep experiment and acquisition of image data

2.1. Materials

The specimens considered in the present work were produced out of a pure 99.8% aluminum
bar with a diameter of 7 mm. They were manufactured at a pressure of 400 MPa and an extrusion
temperature of 800 K. The yield stress corresponding to the material at room temperature is at
48 MPa.

2.2. Creep testing

The raw material was machined into cylindrical samples with a length of 10 mm, a diameter
of 3 mm and were provided threaded heads, where the tensile axis was aligned parallel to the
extrusion direction of the raw material. During the creep testing, we ensured a constant stress
by using an Andrade cam, which compensates the decreasing sample section while the creep
tensile deformation progresses. The elongation of the specimen during the creep experiment was
reported as a function of time, by two digital strain gauges (SOLARTRON model DP/5/S) with
a sensitivity of 0.2 µm. The sample clamping system, as well as the strain gauges suppressed
the contribution of the machine and the grips from the sample creep strain. The creep experi-
ments were conducted by applying stress levels of 21 MPa (corresponding to the region where
dislocation-climb-controlled power-law creep is dominant) and 29 MPa (corresponding to the
power-law breakdown regime) at a temperature of 573 K. The samples were heated at a constant
heating rate of 100 K/h from room temperature to 573 K, soaked for 1 h and strained up to 0.025.
To investigate the dislocation structures at each stress level, the specimens were cooled down
rapidly by using an air jet. During the approximately 3 min of cooling, the samples were still
exposed to the stress. The cooling corresponds to an effective cooling rate of around 6000 K/h.
Even if diffusion still occurs during and after the cooling process, we assume dislocation struc-
tures, which are justifiable similar to the ones during creep deformation (Caillard and Martin,
1987; Yavari et al., 1981).

2.3. EBSD sample preparation and measurements

The samples were embedded in resin before being ground down to a diameter of approx-
imately 1.5 mm. Afterwards, the surfaces were ground with SiC paper, polished with diamond
slurries to 3 µm and polished finally with 0.02 µm colloidal silica suspension for 10 min, to re-
move possible residual deformations caused by the prior preparation steps.

The EBSD measurements were conducted with a field-emission gun scanning electron mi-
croscope (LEO 1530VP, Zeiss, Germany) running with an acceleration voltage of 20 kV and a
probe current of 7 − 8 nA in high-pressure mode, at a working distance of 16 − 17 mm and us-
ing an objective aperture of 120 µm. Two conditions were established for the processing of the
EBSD data: (i) the misorientation between neighbouring grains had to be greater than 5◦, and (ii)
each grain had to contain at least 2 data points. Note that the orientation raw data were denoised

3



using a total-variation-based filter implemented with image analysis routines. For further details
on the EBSD pattern acquisition and evaluation, we refer to Serrano-Munoz et al. (2022).

To identify regions containing grains whose crystal orientation is in the vicinity of {001},
{011} and {111} directions relative to the loading direction (Y-axis), an EBSD map was first ac-
quired at ×250 magnification with a step size of 2.37 µm. Regions containing at least one {001}
grain neighbouring a {111} grain were then selected for further analysis. Such analysis was car-
ried out at ×1000 magnification with a step size of 0.29 µm, resulting in a measured area of
152× 114 µm. Besides the EBSD maps corresponding to the gauge region of the specimen, ana-
lyses were also conducted in its grip area. It is assumed that the grip did not undergo creep, but
only the annealing heat treatment at 573 K. Therefore, the microstructural evolution at the grips
should be the same for the samples crept at 21 MPa and 29 MPa. Hereafter, the results corres-
ponding to the grip region of the sample crept at 21 MPa are referred to as the extruded+annealed
condition (E+A).

For gauge regions of both, 21 MPa and 29 MPa, five cutouts where measured each, while
six cutouts were considered for the grip. In the statistical analysis considered in Section 5, all
cutouts corresponding to one stress condition were considered as one population.

2.4. Processing of image data

From image data1, acquired by EBSD measurements we derived pixelwise information about
the local crystallographic orientations of the samples considered (which possess a cubic crystal
symmetry). In the following we represent an orientation O ∈ SO3 as a pair of axis and angle, i.e.,

O = (r, ω), (1)

where SO3 denotes the group of all rotations in R3, r ∈ R3 is a unit vector of length 1, called the
axis of rotation and ω ∈ [0, π), the angle of rotation. For the conversion of different representa-
tions of rotations into each other, we refer to Rowenhorst et al. (2015).

Without loss of generality, we assume that all orientations are transformed into a fundamental
zone, i.e., all orientations that are equivalent under the crystal symmetry are identified with one
unique orientation. Furthermore, in the present paper we assume that after applying an arbitrary
operation the resulting orientation is still located in the fundamental zone.

To quantify the difference between two orientations O1,O2 ∈ SO3 we define the so-called
misorientation between O1 and O2 as the rotation M(O1,O2) = O2 ◦O−1

1 ∈ SO3, where ◦ denotes
the composition of rotations. Using the axis-angle representation of rotations given in Eq. (1),
we obtain

M(O1,O2) = (r1,2, ω1,2) (2)

for some unit vector r1,2 ∈ R3 and some angle ω1,2 ∈ [0, π), where ω1,2 is called the misorienta-
tion angle. Thus, in order to investigate the discrepancy between two orientations O1,O2 ∈ SO3,
we consider in the following just their misorientation angle ω1,2.

For detailed information about deriving misorientations from EBSD orientation maps, the
reader is referred to Randle and Engler (2000).

1In this paper, EBSD orientation maps are referred to as image data. This wording is motivated by utilizing classical
image processing methods, which can be applied to a wide range of similar problems, not just those based on EBSD
measurements.
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3. Segmentation of subgrains structures

The aim of this section is to describe the procedure we used to detect areas in the EBSD data
that are homogeneous with respect to their crystallographic orientation. To achieve this goal, we
first segmented the pixel grid W = {1, . . . ,w} × {1, . . . , h} of the EBSD data with width w and
height h into a certain number of grains. Such grains were computed with the software MTEX
5.8.0 (Bachmann et al., 2011) in MATLAB R2021a, i.e., we determined subsets G1, . . . ,Gn ⊂ W
of the pixel grid W such that

⋃n
i=1 Gi = W, where Gi ∩G j = ∅ for all i, j ∈ {1, . . . , n} with i , j,

and the misorientation angles between the crystallographic orientation of each pixel x ∈ Gi and
those of its neighbors in Gi do not exceed 5◦ for all i ∈ {1, . . . , n} . Further we ensured that
each grain G consists of at least 5 pixels and denoised the EBSD data after the segmentation
by applying a so-called halfquadratic filter, which is based on total variation and is provided by
MTEX.

3.1. Kernel average misorientation
In a second step we determined dislocation substructures within the grains. For this, we con-

sidered the kernel average misorientation (KAM) (Hielscher et al., 2019), i.e., using the MTEX
software we computed the mean misorientation angle between the crystallographic orientation
of each pixel x ∈ W and those of its neighbors in the set N(x) ⊂ W, where N(x) denotes the
4-neighborhood of x within its grain. Thus, pixels that are not assigned to the same grain as x
are not considered in the computation of its KAM value κ(x), formally defined by

κ(x) =
1
|N(x)|

∑
y∈N(x)

ωx,y,

where | · | denotes the cardinality and ωx,y is the misorientation angle between the crystallographic
orientations of x and y.

The KAM values of an exemplary sample cutout are visualized in Fig. 1a as a grayscale image
with values between 0 and 255. A visualization of rescaled KAM values of the same cutout,
together with grain boundaries (red lines) directly deduced from EBSD data, is given in Fig. 1b,
see Section 3.2 below for details. Intuitively, one can think of the image of KAM values as
gradient image, where large values (bright lines) indicate an abrupt change in the crystallographic
orientation. On the other hand, dark areas in Fig. 1b correspond to regions that are relatively
homogeneous in their crystallographic orientation. These homogeneous areas will be called
subgrains in the following.

3.2. Processing of KAM image data
To determine the subgrains with methods of image processing, we first enhanced the contrast

of the KAM image by removing the outlier KAM values in the grayscale image. For this, we set
KAM values smaller than the 5%-quantile to 0 and values greater than the 95%-quantile to 255.
KAM values between the 5%− and 95%-quantile were then rescaled linearly to integers between
0 and 255, see Fig. 1b.

The remaining steps of image processing were conducted in python 3.7 and, if not stated
otherwise, with scikit-image 0.18.3, see Van der Walt et al. (2014). First, to achieve a more
homogeneous contrast between bright and dark pixels, from the rescaled KAM image a Gaussian
blurred copy of it was subtracted, see Fig. 1c. For the Gaussian blurring a standard deviation
σ = 1.5 turned out to be a reasonable choice. Finally, we binarized the grayscale image obtained
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Figure 1: Workflow of image processing steps, visualized for an exemplary sample cutout which was exposed to a stress
level of 21 MPa. Figs. 1a and b show the raw and rescaled KAM values. Note, that the red lines in Fig. 1b indicate the
boundaries of the grains. Fig. 1c presents the KAM values subtracted by a blurred copy. The final segmentation (Fig. 1f)
is obtained after binarization (Fig. 1d) and morphological reconstruction (Fig. 1e). For visualization purposes random
colors are applied in Fig. 1f.

in this way using an Otsu rank filter, which is a local version of Otsu’s method (Otsu, 1979;
Gonzalez and Woods, 2008) providing a local threshold for each pixel x ∈ W. For this, we
took a 25 × 25 neighborhood of x within the sampling window W into account. The binarized
KAM image I = {I(x), x ∈ W} was obtained by setting the values of those pixels to 1, where
the grayscale values (after subtracting the blurred copy) were at least equal to the local Otsu
threshold. These pixels are referred to as foreground pixels, while the values of the remaining
pixels were set to 0, representing the background pixels, see Fig. 1d.

3.3. Segmentation of grains into subgrains

Note that, by definition, the maximum of misorientation angles between the crystallographic
orientation of a pixel belonging to a grain boundary and those of its neighbors on the pixel
grid W is larger than 5◦. This indicates a rapid change in the crystallographic orientation at
grain boundaries. In the following we explain how a variant of the famous watershed algorithm
(Beucher and Meyer, 1993) can be applied in order to further decompose each of the grains
G1, . . . ,Gn ⊂ W into subgrains, using the information about their inner grain structure provided
by the binarized KAM image derived in Section 3.2.

First, for each grain G ⊂ W, we computed the Euclidean distance transformation DG =

{D(x), x ∈ G} of the part IG = {I(x), x ∈ G} of the binarized KAM image I that corresponds
to G (using SciPy 1.7.3. (Virtanen et al., 2020)). To each background pixel x ∈ G of the bin-
ary image IG its distance to the closest foreground pixel in IG was assigned. Then, the usual
roadmap to segment a binary image would be to take the local maxima of its Euclidean distance
transformation as markers for a marker-based watershed transformation (Gonzalez and Woods,
2008; Beucher and Meyer, 1993). However, in the present application this would have lead to
an oversegmentation, i.e., too many and too small subgrains would have been obtained. There-
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fore, we considered a so-called morphological reconstruction (Vincent, 1993; Zheng and Hryciw,
2016), which is a method to reduce the set of local maxima used for the marker-based watershed
transformation. Roughly speaking, the morphological reconstruction “merges” the locations of
two neighboring local maxima d1 ≥ d2 > 0 of DG if w

d2
≥ 1 − c for some c ∈ (0, 1), where w

denotes the value of DG at the watershed ridge between d1 and d2. In our application, it turned
out that c = 0.3 led to suitable results, see Fig. 1e. For further details regarding this kind of
morphological reconstruction, we refer to Zheng and Hryciw (2016).

The decomposition of grains into subgrains described above, needed some post-processing.
Namely, for some threshold amin > 0, regions consisting of less than amin pixels were removed
and their pixels were assigned to neighboring regions. For this, we considered a second wa-
tershed transformation with the remaining regions as markers and the minimum distances from
deleted pixels to a remaining one. Putting amin = 10, we obtained the final segmentation of
grains into subgrains, see Fig. 1f. In the following, this final segmentation will be considered as
a mapping S : W → {1, . . . ,N}, where N ≥ 1 denotes the total number of subgrains. Here, each
pixel x ∈ W is mapped to an integer S (x) with 1 ≤ S (x) ≤ N, which indicates the label of the
subgrain, x is assigned to. Furthermore, by S n = {x ∈ W : S (x) = n} we denote the subgrain with
label n for all n = 1, . . . ,N.

4. Statistical analysis of segmented data

We now recall the definition of several geometric and crystallographic descriptors, which will
be used in order to analyze the (irregularly shaped) subgrains derived in Section 3. The obtained
results will be discussed in Section 5 with regard to the different stress conditions the specimen
was exposed to. Because of the two-dimensional nature of the EBSD data, only cross-sections
of the 3D (sub-)grains can be considered. This has to be taken into account when interpreting
the results presented in Section 5.

4.1. Geometric descriptors of subgrains

A fundamental descriptor of a subgrain S ⊂ W is its area a(S ), which is given by the number
of pixels assigned to S , i.e., a(S ) = |S |.

The elongation e(S ) of a subgrain S = {x1, . . . , xm} ⊂ W is given by the ratio of the (major and
minor) axes lengths of the best fitting ellipse, which is determined by means of principle com-
ponent analysis (PCA), see e.g. Hastie et al. (2009). For this, we consider the pixels x1, . . . , xm

belonging to S as a point cloud x1 = (x1, y1), . . . , xm = (xm, ym) in R2. In order to perform the
PCA we compute the centroid (x, y) ∈ R2 of this point cloud, and the covariance matrix

K(S ) =


1
m

m∑
i=1

(xi − x)2 1
m

m∑
i=1

(xi − x)(yi − y)

1
m

m∑
i=1

(xi − x)(yi − y)
1
m

m∑
i=1

(yi − y)2

 ,
together with its eigenvalues λ1, λ2 > 0, where λ1 ≥ λ2, and the corresponding eigenvectors
a1 = (a11, a12), a2 = (a21, a22) ∈ R2. Note that the vectors a1 and a2 point in the direction of
the major and minor axes of the fitted ellipse, respectively, where the lengths ℓ1(S ) and ℓ2(S ) of
these axes are given by ℓi(S ) = 4

√
λi for i = 1, 2. Thus, the elongation e(S ) ∈ [0, 1] of a subgrain

S , also called the aspect ratio of S , is given by
7



Figure 2: Schematic visualization of the geometric descriptors of a subgrain S with fitted ellipse E.

e(S ) =
ℓ2(S )
ℓ1(S )

=

√
λ2

λ1
,

where e(S ) ≈ 1 indicates that the shape of S is not elongated and decreasing values of e(S )
correspond to more and more elongated subgrains.

Finally, we analyze the (spatial) orientation of subgrains, investigating the alignment δ(S ) ∈
[0, 1] of a subgrain S with respect to the Y-axis of the coordinate system. More precisely, we
consider the alignment of the eigenvector a1 = (a11, a12) with respect to the Y-axis, which is
given by

δ(S ) = |⟨a1, e2⟩| = |a12| ,

where e2 = (0, 1)⊤ and ⟨·,·⟩ denotes the scalar product in R2. Note that the Y-axis is the loading
axis of the creep experiment described in Section 2.2. Thus, for a (non-circular) subgrain S an
alignment of δ(S ) = 1 corresponds to an elongation of S parallel to the loading axis, whereas
δ(S ) = 0 means that S is oriented along the X-axis. The geometric descriptors considered above
are visualized in Fig. 2.

To further analyze the shapes of subgrains we considered two additional descriptors. First,
the circularity factor s(S ) ∈ [0, 1] of a subgrain S is considered, which is given by

s(S ) =
2
√
πa(S )

p(S )
.

Here p(S ) denotes the perimeter of S , which we determined by means of Croftons formula,
implemented in scikit-image 0.18.3 (Van der Walt et al., 2014). Note that 2

√
πa(S ) indicates the

perimeter of a area-equivalent circle of S . A circularity factor s(S ) = 1 indicates a perfect circle,
where decreasing values of s(S ) stand for less spherical shapes. Due to discretization effects it
can happen that s(S ) > 1 for some S , which we set equal to 1.

Furthermore, we consider is the so-called convexity c(S ) ∈ [0, 1], which is given by
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Figure 3: Cutout of a scaled KAM image (Fig. 3a) and its segmentation, before (Fig. 3b) and after erosion (Fig. 3c) with
a 3 × 3 box. Note that small subgrains may vanish (red mark).

c(S ) =
a(S )

a(q(S ))
,

where q(S ) denotes the discrete convex hull of S on the pixel grid W. Here, the value of c(S ) = 1
corresponds to convex subgrains. For visualizations of circularity factor s(S ) and convexity c(S )
we refer to Fig. 6 of Furat et al. (2021).

4.2. Crystallographic descriptors of subgrains
We recall the segmentation procedure of scaled KAM images described in Section 3, see

also Fig. 1. Subgrains are defined as homogeneous dark regions, surrounded by bright lines
which indicate larger changes in the crystallographic orientation. These lines, having a width
of at least one pixel, are used to determine the boundaries of subgrains. However, each pixel in
the final segmentation (see Fig. 1f) is assigned to a subgrain and, consequently, the boundary has
zero width. Determining descriptors of subgrains depending on their crystallographic orientation
leads to the problem that the orientations of some boundary pixels can differ drastically from the
ones of interior pixels. To exclude such effects we eroded each subgrain S by a 3 × 3 pixel box,
see Fig. 3c. The eroded subgrain corresponding to S is denoted by S ′ in the following. For more
details regarding the erosion of regions in digital images, we refer e.g. to Gonzalez and Woods
(2008). Note that through the erosion approximately 1% of small subgrains vanished.

We also consider the so-called maximum intragranular misorientation angle ωmax(S ) for each
subgrain S ⊂ W, as well as its counterpart ω′max(S ) of the eroded subgrain S ′ ⊂ S . Formally,
they are defined as

ωmax(S ) = max
x∈S
ωx and ω′max(S ) = max

x∈S ′
ω′x , (3)

where ωx and ω′x denote the misorientation angles between the crystallographic orientation of
x and the mean crystallographic orientations of S and S ′, respectively. Fig. 4 shows kernel
density estimates of the probability distribution of the maximum intragranular misorientation
angles ωmax(S ), ω′max(S ), based on data computed for all (eroded and non-eroded) subgrains of
the three samples (E+A, 21 MPa, 29 MPa) considered in the present paper.

By intuition it is clear that the maximum intragranular misorientation angle decreases by
considering the eroded subgrain S ′ instead of the non-eroded one S . In fact, the inequality
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Figure 4: Probability densities of maximum intragranular misorientation angles for the three conditions (ex-
truded+annealed, 21 MPa, 29 MPa). Green lines show the distribution of ωmax(S ) for non-eroded subgrains, whereas
purple lines visualize the distribution of ω′max(S ) for eroded subgrains.

ω′max(S ) ≤ ωmax(S ) holds, because S ′ ⊂ S . In Fig. 4, one can observe a drastic decrease of
the maximum intragranular misorientation angle within the subgrains by considering S ′ instead
of S . This indicates a rapid change in the crystallographic orientation between the outer and
the second outer layer of pixels of subgrains. Considering the corresponding mean values of
the three stress conditions they nearly half when passing from non-eroded to eroded subgrains.
Namely, the mean values decrease from from 2.00◦ to 1.19◦ for extruded+annealed, from 1.95◦

to 0.99◦ for 21 MPa, and from 2.49◦ to 1.28◦ for 29 MPa. Consequently we consider in the
following the eroded subgrains S ′ for determining the crystallographic descriptors.

Besides investigating the influence of creep on the maximum intragranular misorientation
angle ω′max(S ) introduced in Eq. (3), we also consider the intragranular mean µ and variance σ2

of misorientation angles of eroded subgrain S ′. These characteristics are given by

µ(S ) =
1
|S ′|

∑
x∈S ′
ω′x and σ2(S ) =

1
|S ′| − 1

∑
x∈S ′

(ω′x − µ(S ))2, (4)

where ω′x denotes the pixelwise misorientation angle introduced in Eq. (3). The two descriptors
µ(S ) and σ2(S ) can be interpreted as the mean strain-accumulation and the strain-accumulation
variance in the subgrain ensemble, respectively. Moreover, it is noteworthy that the crystallo-
graphic descriptors µ(S ) and σ2(S ) of eroded subgrains given in Eq. (4) play a similar role as the
texture descriptors of segmented grayscale images considered in Furat et al. (2023).

In a previous paper, see Serrano-Munoz et al. (2022), the influence of creep on {111} and
{001} families of grains was investigated. The difference between these two types of grains is
their degree of alignment relative to the Y-axis and is motivated by EBSD orientation mapping
with respect to the Y-axis (OM-Y). In Serrano-Munoz et al. (2022), as well as in the present pa-
per, the Y-axis has been chosen because it coincides with the loading axis of the creep experiment
described in Section 2.2. Mathematically speaking, an OM-Y is a mapping of a crystallographic
orientation onto a certain spatial direction. More precisely, an orientation O ∈ SO3 is mapped
to the direction in the correspondingly rotated coordinate system (in other words, the direction
in the crystal), which corresponds to the Y-axis in the (global) reference system. Thus, rotations
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of O around the global Y-axis have no influence on its representation in the OM-Y. Note that
the definition of {111} and {001} grains via the EBSD orientation coloring is a natural choice,
because rotating the specimen around the loading axis in the experimental setup, changes the
orientations with respect to the reference system, but has no influence on the results of the ex-
periment. For the upcoming sections, let O111 and O001 denote the crystallographic orientation
of elastically stiffer {111} and softer {001} grains, respectively.

A quantity describing the difference between the mean crystallographic orientation O′ of
an eroded subgrain S ′ and the reference orientations O111 or O001 is needed. Such a quantity
should not depend on rotations around the loading axis. For this, we define [O] = {Õ ∈ SO3 :
Õ has the same OM-Y representation as O}, the equivalence class of the rotation O with respect
to an OM-Y. Since rotations around the Y-axis do not affect the OM-Y of a rotation, [O] can be
expressed as the set of rotations obtained by rotating O by any arbitrary angle around the Y-axis.
More formally, this means that

[O] = {Õ ∈ SO3 : Õ = O ◦ Oy , Oy ∈ SO3,y}, (5)

where SO3,y ⊂ SO3 denotes the family of rotations around the Y-axis.
A suitable quantity to describe the difference between O′ and Oref, which is either O111 or

O001, is the minimum misorientation angle between Oref and the equivalence class of O′, defined
by

ω∗ref(S ) = min
O∈[O′]

fω(M(O,Oref)) = min
O∈[O′]

ω, (6)

where fω : SO3 → [0, π) maps an crystallographic orientation O = (r, ω) onto the angle ω of
its axis-angle representation. For sake of simplification, the descriptor ω∗ref(S ) will be called the
misorientation angle with respect to Oref. By plugging Equation (5) into Equation (6), we get the
minimization problem

ω∗ref(S ) = min
O′∈SO3,y

fω(M(O ◦ O′,Oref)) = min
O′∈SO3,y

ω,

which we solved with an interior point method (Byrd et al., 2000) implemented in MATLAB.

5. Results and discussion

Fig. 5 shows representative results of the EBSD orientation maps, KAM computation, and the
segmentation of subgrains for each of the considered conditions. As reported in Serrano-Munoz
et al. (2022), the qualitative evaluation of the KAM and segmentation maps allows us to state that
the extrusion and annealing process induces the smallest subgrains. For the two creep conditions
(21 MPa and 29 MPa), the {001} grains appear contain larger subgrain structures, whereas the
{111} grains tend to accumulate larger amounts of strain. Furthermore, it turned out that the
29 MPa stress level induces higher spatial in-homogeneity of strain accumulation.

To bring further insight into how creep mechanisms are influencing the formation of sub-
grains, the geometric and crystallographic descriptors outlined in Section 4 were computed. It
is noteworthy that all cutouts corresponding to a single stress condition were considered as one
population.

To compare the effects of creep on {111} and {001} subgrains, we define the set S ref, which
contains all subgrains where the misorientation angle ω∗ref with respect to Ore f is less than or
equal to π/9 (= 20◦). Furthermore, for ease of understanding, we refer to
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Figure 5: Comparison of representative EBSD grain orientation maps (top), the rescaled KAM values (middle), and
the results of subgrain segmentation (bottom). To achieve optimal contrast between the segmented subgrains, they are
mapped with false colors.

S 111 = {S : ω∗111(S ) ≤ π/9} and S 001 = {S : ω∗001(S ) ≤ π/9}

as {111} and {001} subgrains, respectively. Fig. 6 provides a visualization of the definition of
S 001 and S 111. For a qualitative comparison of S 001 and S 111 with respect to the different stress
conditions, probability densities were determined for each descriptor, using (truncated) kernel
density estimation2.

Fig. 7 shows the probability densities corresponding to the size descriptors, namely the area
a(S ) as well as the lengths of the major and minor axes ℓ1(S ) and ℓ2(S ). All three plots indic-
ate that differences in size depending on the stress condition, as well as the crystal orientation.
The visual impression is confirmed by the mean values of descriptors, shown in Table 1. Extru-
sion+annealing does not yield any significant differences in size between {111} and {001} grains.
Given that the extrusion process causes the development of a {001}+{111} fiber texture, and that
{111} grains are elastically stiffer than {001} ones, one could expect the extrusion process to bring

2To set the bandwidth of the kernel density estimators, we used Silverman’s rule of thumb (Silverman, 1986) .
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Figure 6: Figs. 6a and 6b show kernel density estimations of the misorientation angel with respect to ω∗001(S ) and
ω∗111(S ), respectively. The shaded grey regions show the misorientation angles which are smaller than or equal to 20◦

and indicates S 001 and S 111, respectively. Fig. 6c shows the orientations, which are considered as {001} (red) and {111}
(blue) grains, visualized using an inverse pole figure color key.

E+A 21 MPa 29 MPa
{001} {111} {001} {111} {001} {111}

Area a(s) 7.637 7.19 12.101 9.825 11.536 8.896
Length of major axis ℓ1(S ) 4.032 4.006 4.914 4.586 4.831 4.444
Length of minor axis ℓ2(S ) 2.443 2.365 2.926 2.692 2.86 2.545
Elongation e(S ) 0.430 0.417 0.418 0.420 0.421 0.407
Circularity factor s(S ) 0.846 0.849 0.857 0.854 0.851 0.847
Convexity c(S ) 0.862 0.865 0.880 0.874 0.873 0.87
Alignment with Y-axis δ(S ) 0.715 0.724 0.697 0.671 0.704 0.701
Mean misorientation angle µ(S ) 0.484 0.552 0.371 0.361 0.439 0.539
Intragranular variance σ2(S ) 0.082 0.103 0.067 0.056 0.102 0.121

Table 1: Mean values of geometric and crystallographic descriptors.

some size difference as a function of crystal orientation. It could be that the annealing during
the creep testing has a homogenizing effect, bringing the size of the subgrain structures in these
two types of grains to similar values. However, a detailed investigation of subgrain formation as
induced by the extrusion process is beyond the scope of this work.

It is important to emphasize that different pre-strain levels in these two grain families induced
by the extrusion process influence the strain accumulation during creep. Moreover, it is well
known that the size of the creep-induced subgrain structures is strongly correlated with the creep
stress level: the higher the creep stress, the finer the subgrain size (Sherby and Burke, 1968).
Thus, the larger subgrain structures identified in {001} grains for both creep conditions are related
to a higher stress associated with a load transference effect, due to the intergranular stress state.
Such stress is of lower magnitudes in {001} grains than in {111} grains. This corroborates our
interpretation made in Serrano-Munoz et al. (2022).

Figs. 8a-c show the probability densities corresponding to the shape descriptors (elongation
e(s), circularity factor s(S ) and convexity c(S )). No significant differences are observed between
the three conditions or the two grain families. Also the mean values, standard deviations and
skewnesses of these three descriptors are similar, see Table 1 as well as Tables A10 and A11 of
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Figure 7: Probability densities of area a(S ) and the lengths of the major and minor axes ℓ1(S ), ℓ2(S ) of an ellipse fitted
to {001} and {111} subgrains for the three conditions (extruded+annealed, 21 MPa, 29 MPa).

the Appendix. It has been proposed in Cadek (1987) that the intragranular stress measured in
steady state creep of pure metals represents a level of internal backward stress acting in the soft
regions (subgrain interior), whereas in the hard regions (subgrain walls) large, forward internal
stresses act. These internal stresses would, therefore, lead to the same roundish morphology (the
circularity mean is about 0.9). The only difference is induced by the stress magnitude on the
spacing between the subgrain walls (i.e. the subgrain size).

Interestingly, the alignment of the subgrains major axis with the Y-axis δ(S ), see Fig. 7c,
indicates differences between the extruded+annealed condition and the two creep conditions, but
not between the grain families. It is important to recall that the Y-axis is both the extrusion and
the creep-loading direction. In fact, the alignment to the Y-axis is reduced after creep, most likely
due to the recovery occurring during creep, which would tend to attenuate the directionality of
the creep hardening process (i.e., the development of the subgrain structures). This concept has
already been introduced in Serrano-Munoz et al. (2022), but at a speculative level. In the present
paper it is better circumstantiated.

Fig. 9a shows the probability densities corresponding to the intragranular mean misorienta-
tion µ(S ), i.e. the descriptor of strain-accumulation. In this case, there are differences between
the three conditions, as well as between the {111} and {001} grains. {111} grains exhibit a slightly
higher accumulation of strain in the extruded+annealed condition when compared to the {001}.
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Figure 8: Probability densities of elongation e(S ), circularity factor s(S ), convexity c(S ) and alignment with Y-axis δ(S )
of {001} and {111} subgrains for the three conditions (extruded+annealed, 21 MPa, 29 MPa).

As mentioned above, it is uncertain whether the recovery induced by the annealing process re-
duces the differences in strain accumulation between these two families. In any case, it is im-
portant to notice that the extruded+annealed condition exhibits the highest levels of strain accu-
mulation. This is due to the fact that, during creep, the steady-state flow is a balance between the
hardening process and dynamic recovery inducing annihilation of dislocations.

For the 21 MPa condition, the intragranular strain accumulation is similar for {111} and {001}
grains. As expected, the strain accumulation is higher at 29 MPa comapred to 21 MPa. Notably,
{111} grains exhibited a considerably higher strain accumulation than {001} grains at 29 MPa.
This strain accumulation dependence on crystal orientations as a function of stress is considered
to correlate with the power law breakdown. In other words, at high stress creep range (29 MPa),
as opposed to intermediate creep stress range (21 MPa), there is a localization of strain accumu-
lation as a function of crystal orientation. Note that, as aforementioned, this crystal-orientation-
based localization is originally driven by the extrusion-inherited intergranular stress state.

The evaluation of the intragranular variance σ2(S ) (strain accumulation variance), shown
in Fig. 9b, leads to a similar conclusions: the inhomogeneity of strain accumulation is greater
at 29 MPa than at 21 MPa, especially within {111} grains. This could be indicative that the
annihilation rate of climbing dislocations is lower in the power law breakdown regime.

By visual inspection, it is evident that the probability densities shown in Fig. 6 to 9 exhibit
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Figure 9: Probability densities of crystallographic descriptors of eroded {001} and {111} subgrains for the three conditions
(extruded+annealed, 21 MPa, 29 MPa).

in the most cases clearly visible differences. To confirm this impression the reader is referred
to Tables A1 to A9 of the Appendix. These tables present the p-values resulting from statistical
tests, examining whether the descriptors follow different distributions for various stress levels
and subgrain types.

6. Conclusions

In the present work, creep-induced subgrain structures formed in pure aluminum were quant-
itatively investigated by a statistical analysis based on segmented EBSD-KAM images. The
segmentation procedure was designed to subdivide the granular structure of the crept material
into subgrains by using various methods of image processing. To perform a comprehensive
evaluation of the influence of thermo-mechanical history (e.g., extrusion+annealing and creep
at 21 MPa, power law regime, and at 29 MPa, power law breakdown regime), several geometric
and crystallographic descriptors, which characterize size, shape and strain accumulation, were
determined for each subgrain.

Regarding creep mechanisms, it is observed that the intergranular stress state inherited from
the extrusion process leads to larger subgrain sizes in {001} grains upon exposure to creep. Also,
the alignment of the major axis of subgrains is slightly reduced after creep, most likely due to
a relaxing effect induced by the creep recovery process. More importantly, it is observed that
{111} grains tend to accumulate more strain than {001} grains at high stress creep (29 MPa),
when compared to the intermediate creep stress range (21 MPa). Such variations in subgrain
sizes are considered as indicators of increased strain inhomogeneity, occurring within the power
law breakdown regime. This inference is drawn from the correlation between subgrain size and
applied creep stress, a relationship supported by the research conducted by Sherby and Burke
(1968). It is postulated that this inhomogeneity may be attributed to a hampered recovery process
occurring within {111} grains.
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Appendix

The Appendix includes supplementary material that quantifies the data extracted from EBSD
images. In particular, it encompasses the assessment of statistical tests to check whether the
descriptors, introduced in Section 4, follow different probability distributions for various stress
levels and subgrain types. Additionally, the Appendix provides insights into higher moments of
the descriptors, specifically standard deviation and skewness.

Statistical tests

To thoroughly validate the visual impression, grained from Fig. 6 to 9 in Section 5, indicat-
ing that the descriptors for different subgrain types and stress levels follow distinct distributions,
Kolmogorov-Smirnov tests were performed to rigorously assess the statistical differences. These
tests aimed to compare different stress levels within a single subgrain type as well as both sub-
grain types for a specific stress level.

Formally, we check the null hypothesis H0 if the probability distribution functions FA and
FB of specific descriptors A and B are equal, e.g. FA = FB. The statistical tests were conducted
with a significance level of α = 0.05, i.e., if the p-value of the Kolmogorov-Smirnov test is
strictly greater than α, H0 cannot be rejected. Conversely, if the p-value is less than or equal to
0.05, it suggests that FA and FB are (probably) not the same distribution. The p-values of these
statistical examinations are presented in Tables A1 to A9, where values are set in bold if the
corresponding test failed to reject the null hypothesis. It is noteworthy, that in Tables A1 to A9,
red colored cells indicate {001} subgrains, and blue colored cells {111} subgrains. This color code
corresponds to Fig. 6 to 9, showcased in Section 5. For instance, in Table A1, a red-colored cell
in the column ‘E+A’ and in row ‘29 MPa’ represents the p-value of the Kolmogorov-Smirnov
test between {001} subgrains subjected to extrusion+annealing and 29 MPa stress. Similarly, a
cell at the intersection of ‘21 MPa’ rows and ‘21 MPa’ columns is colored both blue and red,
indicating the test between {111} and {001} grains at a stress level of 21 MPa.
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E+A 21 MPa 29 MPa

E+A 0.0503 0.0 0.0
21 MPa 0.0 0.0 0.0
29 MPa 0.0 0.128 0.0

Table A1: Area a(S )

E+A 21 MPa 29 MPa

E+A 0.0003 0.0 0.0
21 MPa 0.0 0.0 0.0
29 MPa 0.0 0.2166 0.0

Table A2: Length of minor axis ℓ2(S )

E+A 21 MPa 29 MPa

E+A 0.0037 0.0002 0.5821
21 MPa 0.0 0.0323 0.0231
29 MPa 0.0004 0.0419 0.088

Table A3: Circularity factor s(S )

E+A 21 MPa 29 MPa

E+A 0.0043 0.0 0.0
21 MPa 0.0057 0.0027 0.0
29 MPa 0.032 0.6152 0.0017

Table A4: Alignment with Y-axis δ(S )

E+A 21 MPa 29 MPa

E+A 0.5597 0.0 0.0
21 MPa 0.0 0.0 0.005
29 MPa 0.0 0.1628 0.0

Table A5: Length of major axis ℓ1(S )

E+A 21 MPa 29 MPa

E+A 0.0101 0.0731 0.0004
21 MPa 0.1069 0.3083 0.0024
29 MPa 0.0736 0.5058 0.0124

Table A6: Elongation e(S )

E+A 21 MPa 29 MPa

E+A 0.002 0.0 0.0
21 MPa 0.0 0.0072 0.0264
29 MPa 0.0 0.0001 0.0889

Table A7: Convexity c(S)

E+A 21 MPa 29 MPa

E+A 0.0 0.0 0.0
21 MPa 0.0 0.2952 0.0
29 MPa 0.0 0.0 0.0

Table A8: Intragranular mean misorientation

E+A 21 MPa 29 MPa

E+A 0.0 0.0 0.0031
21 MPa 0.0 0.0151 0.0
29 MPa 0.0 0.0 0.0

Table A9: Intragranular variance σ2(S )

Higher moments

To offer a deeper understanding of the descriptors introduced in Section 4 and elaborated
upon in Section 5, additional insights were gained by computing higher moments, namely stand-
ard deviation and skewness. The outcomes of these computations are outlined in Tables A10
and A11.
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E+A 21 MPa 29 MPa
{001} {111} {001} {111} {001} {111}

Area a(S) 6.032 4.91 12.338 8.495 11.597 7.518
Length of major axis ℓ1(S ) 1.709 1.641 2.458 2.153 2.486 2.106
Length of minor axis ℓ2(S ) 0.889 0.787 1.358 1.052 1.281 0.999
Elongation e(S ) 0.195 0.197 0.196 0.202 0.201 0.206
Circularity factor s(S) 0.079 0.081 0.072 0.078 0.076 0.083
Convexity c(S) 0.062 0.064 0.056 0.059 0.057 0.063
Alignment with Y-axis δ(S ) 0.289 0.275 0.29 0.294 0.289 0.276
Mean misorientation angle µ(S ) 0.268 0.296 0.251 0.229 0.327 0.33
Intragranular variance σ2(S ) 0.127 0.135 0.126 0.091 0.261 0.208

Table A10: Standard deviations of geometric and crystallographic descriptors.

E+A 21 MPa 29 MPa
{001} {111} {001} {111} {001} {111}

Area a(S) 2.875 2.28 2.888 3.311 2.951 2.907
Length of major axis ℓ1(S ) 1.524 1.398 1.637 1.637 1.75 1.53
Length of minor axis ℓ2(S ) 1.43 1.243 1.666 1.551 1.501 1.503
Elongation e(S ) 0.423 0.443 0.475 0.373 0.448 0.432
Circularity factor s(S) -0.525 -0.633 -0.721 -0.72 -0.615 -0.74
Convexity c(S) -0.612 -0.732 -1.02 -0.784 -0.76 -0.866
Alignment with Y-axis δ(S ) -0.937 -1.03 -0.879 -0.725 -0.903 -0.911
Mean misorientation angle µ(S ) 2.001 1.277 2.063 1.934 2.447 1.377
Intragranular variance σ2(S ) 11.983 3.835 7.072 6.082 13.865 10.281

Table A11: Skewnesses of geometric and crystallographic descriptors.
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