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Probabilistic analysis of solar power supply using
D-vine copulas based on meteorological variables
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Abstract Solar power generation at solar plants is a strongly fluctuating non-
deterministic variable depending on many influencing factors. In general, it is not
clear which and how certain variables influence solar power supply at feed-in points
in a distribution network. Therefore, analyzing the dependence structure of mea-
sured solar power supply and other variables is very informative and can be helpful
in designing probabilistic prediction models.
In this paper multivariate D-vine copulas are fitted to investigate the relationship
between solar power supply and certain meteorological variables in the current time
period of one hour length as well as solar power supply in previous time periods. The
meteorological variables considered in this analysis are global horizontal irradiation,
temperature, wind speed, humidity, precipitation and pressure. By applying paramet-
ric D-vine copulas useful insight is gained into the dependence structure of solar
power supply and the considered meteorological variables. The main goal lies in
determining suitable explanatory variables for the design of probabilistic prediction
models for solar power supply at single feed-in points and analyzing their impact on
the validation of conditional level-crossing probabilities.

Key words: D-vine copula, dependence structure, solar power supply, meteorolog-
ical variable, conditional level-crossing probability

1.1 Introduction

In recent years global warming was acknowledged as a serious problem becoming a
topic of public concern. To reduce carbon dioxide emissions and limit further global
warming, alternative energy sources such as renewable energy are required. For that
reason, the renewable energy sector has the support of the governments in many
countries and is growing rapidly [4]. Especially the solar energy sector has been
reporting record growth for many years [24].
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However, higher solar power penetration might lead to new problems for distri-
bution network operators. Since solar power generation strongly depends on weather
conditions, the prospective solar power supply of the distribution network cannot
be easily taken into account. Thus, it might be difficult to predict excessive power
flow in the grid and to prevent voltage violations and overloading of power lines and
transformers which destabilize the electricity supply and cause economic damages
[14]. To regulate fluctuations in power and load of distribution networks, automated
and more economic applications for smart technologies are needed [5]. Smart grid
management can use solar power forecasting with hourly forecasting horizons for
power system operation such as economic dispatch and unit commitment [26].

To compute probabilistic predictions regarding the generation of solar power
supply at certain feed-in points, several high-dimensional stochastic models are
considered in the literature. In [2] a non-parametric quantile regression forest is
used to predict solar power supply based on several meteorological variables such
as temperature, wind speed, humidity, sea level pressure and cloud cover at different
levels. The prediction model proposed in [12] takes solar radiation, temperature,
cloud ice water content and wind speed as input parameters to compute prediction
intervals based on :-nearest neighbor regression. In [3] wind and solar power are
computed by applying a combination of the gradient boosting tree algorithm and
feature engineering techniques, where the authors of [3] concluded that information
about the forecast grid further improves the prediction results. In [28] Gaussian
conditional random fields are used to model the spatial-temporal dependence at
neighboring feed-in points. However, the papers mentioned above give little insight
into the dependence structure of solar power supply and meteorological variables.
In particular, it is not clear which explanatory variables are suitable for probabilistic
prediction of solar power supply.

An alternative approach can be given by multivariate copulas which are applied
to compute the joint distribution of interdependent random variables [20]. In the lit-
erature of renewable energy modeling copulas are mostly used to account for spatial,
temporal or spatio-temporal dependence at neighboring wind parks or feed-in points
of solar power. In [18] and [21] Gaussian copulas and R-vine copulas are applied to
model the spatial dependence of the wind power supply generated at many different
wind parks. In [6] and [10] Gaussian and D-vine copulas are utilized to model the
temporal and spatio-temporal dependence of these characteristics. Furthermore, in
[8] and [9] Gaussian and R-vine copulas are applied to model the spatial dependence
of solar power supply at neighboring feed-in points. However, multivariate copulas
are not only helpful to analyze and model the spatial or temporal dependence of wind
or solar power supply at neighboring feed-in points, but also the relationship between
power supply and other influencing factors, such as meteorological variables.

In the present paper, we determine suitable explanatory variables for the design
of probabilistic prediction models for solar power supply at single feed-in points,
extending the methodology which has recently been used in [17]. For that purpose,
multivariate D-vine copulas are applied to analyze the dependence structure of the
considered meteorological variables and the solar power supply in the current time
period of one hour length as well as in previous hourly periods. The stepwise fitting
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of D-vine copulas helps us in analyzing the interdependence of the considered
variables in detail. Moreover, conditional level-crossing probabilities are computed
and validated with prediction scores to determine suitable explanatory variables for
the design of prediction models which compute probabilities for critical amounts of
solar power supply. Last but not least the effect of the considered month and time of
day on the probabilistic prediction of solar power supply is investigated.

The rest of the paper is organized as follows. In Section 1.2 the data is described
and analyzed empirically. Section 1.3 introduces the mathematical methodology ap-
plied in this paper. In Section 1.4 the results are presented and discussed. Section 1.5
concludes.

1.2 Data

The measurements of solar power supply and reverse power utilized in this paper
were collected in cooperationwith the local distribution network operator Stadtwerke
Ulm/Neu-Ulm Netze GmbH (SWUN). Additional meteorological information con-
cerning global horizontal irradiation (GHI) was gathered by satellites where temper-
ature, wind speed, humidity, precipitation and pressure were computed by reanalysis
and published as an open source, see [7, 19] respectively. The datasets of both sources
are described in Section 1.2.1 and empirically analyzed in Section 1.2.2.

1.2.1 Data description

Solar power supply of a community near the city of Ulm, called Hittistetten, is
measured for the years 2016-2018. The location is a test site defined on the website
of SWUN [25]. The powermeasurements are taken by smart meters at 14 PV systems
in Hittistetten. Afterwards they are summed over all PV systems in the community
to get the representative solar power supply of the community which is considered in
the following. Furthermore, power measurements at the local area transformers are
evaluated and daily accumulated reverse energy is estimated. Note that there exist
some gaps in the collected data, because of some possible errors in the smart meter
infrastructure.

The hourly measurements of solar power supply, the hourly meteorological data
and the daily accumulated reverse energy measurements are rescaled to the unit
interval using a linear transformation. All time stamps are converted to Central
European Time (CET). The min-max-rescaled measurements of hourly aggregated
solar power supply and data concerning meteorological variables are interpreted as
realizations of random variables, see [17] for details. In Table 1.1, the mathematical
symbols %C and"8 are introduced for the random variables considered in the present
paper. Furthermore, rescaled power exceeding 70 percent of the highest recorded
amount of solar power supply is seen as a critical amount of solar power supply.
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Table 1.1 Considered variables and their physical meaning.
variable physical meaning

%C
solar power supply in the period C hours before
the current time period of one hour length

"1 GHI at ground level in the current period

"2
temperature at 2 meters above
ground in the current period

"3 precipitation at ground level in the current period

"4
relative humidity at 2 meters above

ground in the current period

"5
wind speed at 10 meters above
ground in the current period

"6 pressure at ground level in the current period

Therefore, in the following the value of 0.7 is considered as an exemplary high
threshold of rescaled power supply.
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Fig. 1.1 Daily accumulated reverse energy for each month.

1.2.2 Empirical data analysis

In Figure 1.1, the daily accumulated reverse energy is visualized. The box plots in-
dicate that during the winter months of January, February, November and December
the amounts of reverse power are very low in comparison to the remaining months.
In particular, there are no critical overloading events for the distribution network
happening within these months. Therefore, since these months are not interesting for
the distribution network operators, they are excluded in the present study. Further-
more, in Figure 1.2 the means of hourly aggregated solar power supply are plotted
for each time of day. For all months considered in Figure 1.2 the means of the hourly
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aggregated solar power supply are always below the threshold of 0.7 for the time
periods of 6-9 CET and 16-18 CET. Hence, our analysis is limited to the months
from March to August and the time of day from 9-16 CET.
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Fig. 1.2 Ratio of considered days with solar power supply above the threshold of 0.7 for each time
of day.

For the solar power supply %0 in the current time period and the meteorological
variables"1, . . . , "6, the panels in Figure 1.3 show pairwise scatter plots, Kendall’s
rank correlation coefficients and histograms of these variables. In particular, in the
panels below the diagonal the pairwise scatter plots provide detailed information
about the kind of pairwise dependence between the considered variables, which is
further quantified by pairwise Kendall’s rank correlation coefficients in the panels
above the diagonal. Note that the Kendall’s rank correlation coefficient measures
the rank adjusted correlation between two random variables - and . and can be
estimated by

ĝ =
2

3 (3 − 1)
∑
8< 9

sgn(G8 − G 9 ) sgn(H8 − H 9 ) (1.1)

for given realizations (G1, . . . , G3) and (H1, . . . , H3) of - and . , respectively.
Figure 1.3 shows that themeteorological variables temperature ("2), precipitation

("3), and humidity ("4) are stronger correlated with solar power supply than wind
speed ("5) and pressure ("6). Furthermore, the histograms in the panels on the
diagonal give a rough idea about the shape of the density of the corresponding
variables. Solar power supply (%0), GHI ("1) and temperature ("2) might have a
bimodal distribution, whereas the distributions of precipitation ("3), humidity ("4),
wind speed ("5) and pressure ("6) appear to be unimodal.

In Figure 1.4, the Kendall’s rank correlation coefficients of the measurements of
solar power supply in the current period of one hour length and in certain previous
hourly periods are plotted. As expected the correlation gets weaker the larger the
time difference is between both measurements.
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Fig. 1.3 Pairwise scatterplots, histograms and Kendall’s rank correlation coefficients for solar
power supply and meteorological variables in the current time period.
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Fig. 1.4 Kendall’s rank correlation coefficients for solar power supply in the current time period
of one hour length and solar power supply in previous hourly periods.

In the following analysis our focus is put on variableswhich have a rank correlation
coefficient larger than 0.25 to solar power supply in the current period. The remaining
variables are tooweakly correlated to have sufficientlymuch influence on solar power
supply. Based on the correlation plots of Figures 1.3 and 1.4 only the variables
"1,"2,"3,"4, %1, %2, and %3 fulfill the requirement mentioned above.
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1.3 Methodology

If several explanatory variables are considered, high pairwise correlation does not
necessarily mean that all of them are good explanatory variables. In the worst case
it might happen that all helpful information within an explanatory variable is part of
other explanatory variables. To analyze the dependence structure of interdependent
random variables in-depth, our modeling approach is based on D-vine copulas which
will be explained in this section.

1.3.1 Modeling approach

The main goal of the present paper is to determine those components of the random
vector � = ("1, "2, "3, "4, %1, %2, %3) which are useful explanatory variables for
the design of probabilistic prediction models for solar power supply. In particular,
their impact on the probabilistic prediction of critical amounts of solar power supply
is investigated. That impact is quantified by computing conditional level-crossing
probabilities of solar power supply %0 given that � = 4 for some realization 4 ∈ R7

of the random vector � . In particular, for the exemplary threshold 0.7 we get that

%(%0 ≥ 0.7 | � = 4) =
∫ 1

0.7
5%0 |�=4 (G) 3G =

∫ 1

0.7

5%0 ,� (G, 4)
5� (4)

3G

=

∫ 1

0.7

5%0 ,� (G, 4)∫ 1
0 5%0 ,� (H, 4) 3H

3G =

∫ 1
0.7 5%0 ,� (G, 4) 3G∫ 1
0 5%0 ,� (H, 4) 3H

.

To determine the joint probability density 5%0 ,� of the random vector (%0, �) the
marginal densities of %0, "1, "2, "3, "4, %1, %2 and %3 are estimated in a first step
and D-vine copulas are applied in a second step. Note that our approach based on
D-vine copulas gives us in-depth insight into the dependence structure of solar power
supply and the considered meteorological variables.

1.3.2 D-vine copulas

A function � : [0, 1]3 −→ [0, 1] with 3 ≥ 2 is called a d-dimensional copula if
� is the joint cumulative distribution function (CDF) of a 3-dimensional random
vector with uniformly distributed marginals in [0, 1]. Copulas are a powerful tool to
parametrically model multivariate CDFs with non-Gaussian marginals. The reason
for this is the following fundamental theorem of Sklar, see [13, 20].

Let � : [0, 1]3 → [0, 1] be an arbitrary multivariate CDF of a random vector
(-1, ..., -3). Then, for the marginal CDFs �8 (G) = %(-8 ≤ G) with 8 ∈ {1, .., 3}
there exists a 3-dimensional copula � such that � can be expressed as
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� (G1, .., G3) = � (�1 (G1), ..., �3 (G3)) for each (G1, . . . , G3) ∈ R3 . (1.2)

Thus, the CDF � of an arbitrary random vector - = (-1, . . . , -3) can be repre-
sented as superposition of the correspondingmarginal CDFs �1, . . . , �3 and a certain
copula� whichmodels the dependence structure of the components -1, . . . , -3 . The
parameters of marginal distributions and copula can be estimated separately from
data which reduces the number of parameters fitted simultaneously, see [13, 20] for
further details.

In the present paper a special class of 3-dimensional copulas, so-called D-vine
copulas, is used which are a popular type of multivariate copulas, see e.g. [6, 10].
We assume that the CDF � has a 3-dimensional density 51,...,3 and denote the 1-
dimensional densities of the correspondingmarginal CDFs �1, . . . , �3 by 51, . . . , 53 ,
respectively. To obtain the D-vine structure the 3-dimensional density 51,...,3 is
decomposed into conditional densities by

51,...,3 = 53 |1:3−1 . . . 52 |1:1 51, (1.3)

where 58 |1:8−1 is the conditional density given by 58 |1:8−1 = 51,...,8/ 51,...,8−1 for 8 =
2, . . . , 3. In the next step, Sklar’s theorem is applied to the conditional density
58, 9 |8+1: 9−1 of the random vector (-8 , - 9 ) with 8+1 < 9 given that -8+1: 9−1 = G8+1: 9−1,
where -8+1: 9−1 = (-8+1, . . . , - 9−1) and G8+1: 9−1 = (G8+1, . . . , G 9−1). Considering
probability densities instead of distribution functions on both sides of Equation 1.2
we get that

58, 9 |8+1: 9−1 = 28, 9 |8+1: 9−1 (�8 |8+1: 9−1, �9 |8+1: 9−1) 58 |8+1: 9−1 5 9 |8+1: 9−1, (1.4)

where 28, 9 |8+1: 9−1 is some bivariate copula density, �8 |8+1: 9−1 and �9 |8+1: 9−1 denote
the conditional CDFs of -8 and - 9 , respectively, given that -8+1: 9−1 = G8+1: 9−1, and
58 |8+1: 9−1 and 5 9 |8+1: 9−1 are the corresponding conditional marginal densities. This
results in

5 9 |8: 9−1 =
58, 9 |8+1: 9−1

58 |8+1: 9−1
= 28, 9 |8+1: 9−1 (�8 |8+1: 9−1, �9 |8+1: 9−1) 5 9 |8+1: 9−1. (1.5)

Note that for 9 = 8 + 1 Sklar’s theorem is used for the (unconditional) bivariate
density of the random vector (-8 , - 9 ) and 8 + 1 : 9 − 1 is the empty set. Finally,
Equation 1.5 is repeatedly applied to the conditional densities on the right-hand side
of Equation 1.3 which leads to

51,...,3 =

3−1∏
:=1

3−:∏
8=1

28,8+: |8+1:8+:−1 (�8 |8+1:8+:−1, �8+: |8+1:8+:−1)
3∏
;=1

5; . (1.6)

To estimate the copula densities 28,8+: |8+1:8+:−1 in Equation 1.6 we assume that they
do not depend on specific values of G8+1:8+:−1. Further mathematical details regarding
copula theory and, in particular, D-vine copulas can be found e.g. in [13].
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1.3.3 Fitting procedure

To select parametric families of (marginal) distributions for the components
-1, . . . , -3 of the random vector - = (-1, . . . , -3) considered in Section 1.3.2, his-
tograms are computed for visual inspection based on all available data (G1, . . . , G3).
Thus, the dimension 3 and the random variables -1, . . . , -3 have to be specified, see
Table 2. Their histograms give us a rough idea of the shapes of the densities to be
fitted and, in particular, exhibit distributional properties such as multimodality. This
information is helpful in determining distribution types which might give a good fit
to the data considered in this paper. Once candidates for the distribution types are
selected, we compute the Bayesian information criterion (BIC) defined as

BIC = : ln 3 − 2 ln ! (1.7)

for each distribution type with : parameters, where ! is the maximized value of the
likelihood function. The distribution type with the smallest BIC value is a reason-
able choice, see [15]. In the next step the parameters of unimodal distributions are
estimated by maximizing the likelihood and the parameters of bimodal distributions
are fitted by applying the expectation-maximization algorithm, see [11, 16].

Finally, to fit a multivariate D-vine copula two further steps have to be carried
out:

1) Select parametric families of copula densities for the bivariate copula densities
28,8+: |8+1:8+:−1 considered in Equation 1.6.

2) Estimate the parameter(s) for each copula density 28,8+: |8+1:8+:−1 in the D-vine
structure.

According to the fitting procedure described above, we first specify the input
variables -1, . . . , -3 , before selecting the types of marginal distributions and fitting
their parameters. We put 3 = 8 and consider %0 and "1, see Table 1.1, which are the
most important input variables. Secondly, the meteorological input variables"2, "3
and "4 are taken into account. To complete the specification of input variables, the
solar power inputs %1, %2 and %3 at previous periods of time are added to the
other variables according to their temporal ordering. The chosen specification of all
considered variables is summarized in Table 1.2.

Table 1.2 Specification of input variables in the D-vine copula structure
general notation -1 -2 -3 -4 -5 -6 -7 -8
specification %0 "1 "2 "3 "4 %1 %2 %3

Finally, the conditional bivariate copula densities considered in Equation 1.6
are determined sequentially, see [13] for details. In particular, for each bivariate
copula the copula type and its parameter(s) are determined by maximizing the
corresponding likelihood. As candidates the Archimedean copula types Joe, Frank,
Clayton and Gumbel are considered, which guarantee a large variety of possible tail
dependencies. A detailed description of the fitting procedure of bivariate copulas
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can be found e.g. in [17]. The results are obtained using the VineCopula package in
R, see [22].

1.4 Results and discussion

In this section we apply the D-vine copula model, which has been described in Sec-
tion 1.3, to a sample of 8-dimensional data vectors, in order to get deeper insight into
the dependence structure of solar power supply and the considered meteorological
variables.

1.4.1 Model fitting and validation

The parametric families of beta, mixed beta, log-normal, Weibull and gamma distri-
butions are chosen as candidates for the marginal distributions of the random vector
(%0, "1, "2, "3, "4, %1, %2, %3), based on the histograms visualized in Figure 1.3.
To determine the most suitable distribution type, the BIC score given in Equation 1.7
is computed for each of the 7 considered hours of day separately. In Figure 1.5, the
obtained BIC scores are visualized by means of box-plots. Most of the BIC scores of
the mixed beta distribution are clearly smaller than those of other distribution types,
in particular, for solar power supply, GHI and precipitation. However, for humidity
and temperature most distribution types have similar BIC scores. For all input vari-
ables the distribution type with the smallest average BIC is chosen, where averaging
is taken over the 7 considered hours of day. As a result,Weibull distributions are fitted
for humidity and mixed beta distributions for solar power supply, GHI, precipitation
and temperature.

In Figure 1.6 the fitted marginal densities and the underlying histograms are
visualized for solar power supply, GHI, humidity, precipitation and temperature
regarding the exemplary hour of day from 14-15 CET. Moreover, to compare the
quality of the fits for each input variable the parametric density with the second best
average BIC is visualized as well.

Figure 1.7 shows the D-vine copula structure fitted to the input variables speci-
fied in Table 1.2. Each panel entitled with 8, 9 |8 + 1, . . . , 9 − 1 visualizes the fitted
conditional copula density 28, 9 |8+1: 9−1, see Section 1.3.2 for 9 = : + 8. The bivari-
ate copulas with symmetric tail-dependence, see Figure 1.7, are modelled using the
Frank copula, see e.g. the copula entitled with 4,5, whereas the bivariate copulas with
asymmetric tail-dependence are modelled using Joe, Clayton or Gumbel copulas,
see e.g. the copula entitled with 1,2.

In Table 1.3 pairwise Kendall’s rank correlation coefficients are presented which
have been computed based on original data and 5000 simulated realizations drawn
from the D-vine copula for the input variables on the diagonal of the corresponding
rows/columns, using the algorithm explained in [13, 1] and its implementation in R,
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Fig. 1.5 BIC scores for beta, mixed beta, log-normal, Weibull and gamma distributions.

Table 1.3 Pairwise Kendall’s rank correlation coefficients of original data (below the diagonal)
and of realizations drawn from the fitted D-vine copula model (above the diagonal) computed for
the input variables on the diagonal of the corresponding rows/columns.

%0 0.54 0.25 -0.38 -0.38 0.50 0.43 0.43
0.57 "1 0.34 -0.39 -0.38 0.54 0.47 0.43
0.29 0.36 "2 -0.11 -0.09 0.26 0.28 0.23
-0.42 -0.38 -0.10 "3 0.67 -0.46 -0.48 -0.48
-0.41 -0.35 -0.07 0.63 "4 -0.47 -0.47 -0.44
0.59 0.54 0.31 -0.43 -0.44 %1 0.64 0.51
0.52 0.48 0.33 -0.47 -0.45 0.64 %2 0.65
0.49 0.45 0.30 -0.48 -0.44 0.54 0.67 %3

see the VineCopula package in [22]. By comparing the Kendall’s rank correlation
coefficients it becomes apparent that the coefficients of the original data are very
similar to the coefficients based on the simulations of the fitted D-vine copula
model. Therefore, the D-vine copula represents the dependence structure of the
measurements of solar power supply and meteorological data sufficiently well with
respect to Kendall’s rank correlation coefficient.
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Fig. 1.6 Fitted marginal densities at the exemplary hour of day 14-15 CET. Solid lines correspond
to the best average BIC, whereas dashed lines correspond to the second best average BIC.

1.4.2 Conditional means of solar power supply

In this section we further analyze the dependence structure of solar power supply in
the current time period and various other input variables. For this purpose, 250000
realizations were drawn from the D-vine copula shown in Figure 1.7, using the
algorithm explained in [13, 1] and its implementation in R, see the VineCopula
package in [22]. The conditional empiricalmeans of solar power supply are computed
in dependence of GHI, for given lower, middle and upper values of further input
variables, see Figure 1.8. To plot the graphs shown in Figure 1.8, a partition of the
unit interval into 40 parts is used.

Figure 1.8 visualizes how strongly the conditional means of solar power supply
depend on further input variables for given values of GHI in the exemplary time
period between 14 and 15 CET. The larger the discrepancy is between the red
and blue lines the stronger is the conditional correlation, see [23]. If the red line
is above the corresponding blue line in Figure 1.8 the conditional correlation is
positive and otherwise negative. Figure 1.8 indicates that the conditional means of
solar power input are independent of temperature, whereas solar power supply in the
previous hourly period and in the hourly period before the previous hourly period
are positively correlated with the conditional means of solar power supply. On the
other hand, precipitation and humidity are negatively correlated to the conditional
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Fig. 1.7 The D-vine structure fitted to the variables specified in Table 1.2 for the exemplary hour
of day 14-15 CET.

means of solar power supply for given values of GHI. Thus, our analysis shows that
temperature does not provide additional information to GHI for the probabilistic
prediction of solar power supply in the considered time period.
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Fig. 1.8 Conditional empirical means of solar power supply in the current period of one hour
length (%0) depending on global horizontal irradiation ("1) given that the value of a further input
variable (specified in the title of the panel) is in the highest 25 percent (red), the middle 50 percent
(green), the lowest 25 percent (blue).

1.4.3 Validation scores for conditional level-crossing probabilities

To quantify the impact of the considered explanatory variables on the probabilistic
prediction of solar power supply conditional level-crossing probabilities are com-
puted by means of the fitted D-vine copula model and compared to corresponding
quantities obtained from the measurements of solar power supply using various
validation scores. For example, the bias, Brier score (BS), Brier skill score (BSS),
empirical correlation coefficient (Corr), reliability (Rel), resolution (Res) and uncer-
tainty (Unc) are considered. Clearly, the bias should be near zero, BS and Rel as low
as possible, and BSS and Res as high as possible. Note that BS shows the accuracy
of the computed level-crossing probabilities and its information can be decomposed
into Rel, Res and Unc. Furthermore, Unc does not depend on the selected model but
shows the variability of the measurements. In addition, the considered BSS is used
to compare the BS of the D-vine copula model with the BS of the climatological
mean. For definitions and further details we refer to [17, 27].



1 Probabilistic analysis of solar power supply using D-vine copulas 15

1.4.3.1 Analysis of the goodness-of-fit for different time frames

In this section the goodness of model fit is investigated for different time frames,
which are described in Table 1.4. By comparing different hourly time periods the
impact of the solar elevation angle on solar power supply can be determined. In
addition, the comparison of the results obtained for different monthly time periods
shows the impact of seasonal changes.

Table 1.4 Time frames for model fitting.
Time frame Description

1 Each hour of day and month separately
2 Each hour of day separately, whereas combining all months
3 Each month separately, whereas combining all hours of day
4 Two consecutive hourly time periods and months
5 Three consecutive hourly time periods and months

The D-vine copula model fitted for time frame No. 2 in Table 1.4 leads to the best
average scores for bias, BS, BSS, Corr and Rel, whereas time frame No. 5 leads to a
slightly better Res than time frame No. 2. Based on the results shown in Table 1.5, it
becomes apparent that fitting the model for each hour of day separately improves the
conditional level-crossing probabilities of solar power supply. On the other hand, no
further improvement is obtained if each month is considered separately. Thus, the
information regarding the solar elevation angle seems to be more important than the
information regarding seasonal changes.

Table 1.5 Validation scores for conditional level-crossing probabilities of the fitted multivariate
D-vine model for different time frames.

Time frame BS BSS Corr Bias Rel Res Unc
1 0.120 0.495 0.712 0.027 0.004 0.122 0.238
2 0.101 0.575 0.760 0.021 0.003 0.140 0.238
3 0.121 0.493 0.719 0.075 0.011 0.128 0.238
4 0.106 0.553 0.746 0.028 0.003 0.135 0.238
5 0.104 0.564 0.759 0.053 0.007 0.142 0.238

1.4.3.2 Analysis of the goodness-of-fit for different copula models

In this section, the validation scores bias, BS, Brier BSS, Corr, Rel, Res and Unc
of the conditional level-crossing probabilities obtained from the multivariate D-
vine copula model fitted in Section 1.4.1 are compared with those obtained from a
bivariate Frank copula, which merely models the dependence between solar power
supply and GHI. Note that a Frank copula was proposed as prediction model for solar
power supply in [17]. By comparing the scores computed based on both models the
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impact of further input variables on the probabilistic prediction of solar power supply
can be quantified.

Table 1.6 Validation scores for conditional level-crossing probabilities of the fitted bivariate Frank
copula model.

Period of time BS BSS Corr Bias Rel Res Unc
09-10 0.083 -0.146 0.353 0.072 0.031 0.021 0.072
10-11 0.140 0.436 0.673 0.029 0.038 0.148 0.249
11-12 0.111 0.554 0.748 -0.022 0.012 0.151 0.248
12-13 0.104 0.580 0.762 -0.001 0.015 0.158 0.248
13-14 0.109 0.562 0.755 0.028 0.030 0.171 0.249
14-15 0.135 0.452 0.682 0.057 0.017 0.127 0.247
15-16 0.113 -0.012 0.310 0.036 0.028 0.025 0.112
09-16 0.114 0.523 0.726 0.028 0.006 0.131 0.238

In Tables 1.6 and 1.7 the validation scores for conditional level-crossing probabil-
ities are computed for each hourly time period separately and, on the other hand, for
the entire time period from 9-16 CET. Note that the scores for the entire time period
are usually not the averages over all scores obtained for the hourly time periods.
The validation scores show that the multivariate D-vine copula model leads to a
considerable improvement compared to the bivariate Frank copula model. Thus, the
impact of the additionally considered input variables on the probabilistic prediction
of solar power supply is important.

Table 1.7 Validation scores for conditional level-crossing probabilities of the fitted multivariate
D-vine model.

Period of time BS BSS Corr Bias Rel Res Unc
09-10 0.075 -0.047 0.401 0.056 0.021 0.019 0.072
10-11 0.108 0.566 0.757 0.041 0.010 0.151 0.249
11-12 0.114 0.540 0.735 0.002 0.009 0.145 0.248
12-13 0.101 0.593 0.773 0.007 0.013 0.160 0.248
13-14 0.103 0.585 0.772 0.016 0.017 0.162 0.249
14-15 0.114 0.539 0.742 0.022 0.013 0.146 0.247
15-16 0.093 0.172 0.421 0.006 0.010 0.027 0.112
09-16 0.101 0.575 0.760 0.021 0.003 0.140 0.238

1.5 Conclusion

Using the D-vine copula model considered in this paper, we determined suitable
explanatory variables for the design of probabilistic prediction models for solar
power supply at single feed-in points. This knowledge is very important because
most probabilistic prediction models considered in the literature have limitations
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regarding the selection of input variables which can be modelled in a reasonable
way. For that purpose, the dependence structure of meteorological input variables,
solar power supply measured in previous hourly periods and solar power supply
measured for the exemplary time period between 14 and 15 CET was analyzed in
detail.

Based on our analysis it turned out that temperature is indeed correlated with solar
power supply, but has no additional impact on the probabilistic prediction of solar
power supply if considered in combination with GHI. Humidity and precipitation
were determined as conditionally negatively correlated to solar power supply in the
exemplary time period between 14 and 15 CET for given values of GHI, whereas
solar power supply in previous hourly periods seemed to be conditionally positively
correlated for given values of GHI. Thus, humidity, precipitation, and solar power
supply in the previous hourly period indicate a clear impact on the probabilistic
prediction of solar power supply in the current time period.

Moreover, the goodness of model fit was investigated for different time frames and
for different copula models. For that purpose, conditional level-crossing probabilities
were computed for the exemplary high threshold of 0.7 where various scores were
used to validate them. Our analysis showed that the goodness of model fit improves
if hours of day are considered separately, whereas considering months separately
gives no further improvement. Furthermore, it turned out that considering other
input variables, besides GHI, clearly has a positive effect on the accuracy of the
computed conditional level-crossing probabilities.
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