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ABSTRACT
The influence of sea surface temperature on the locations of the genesis and of landfall
of tropical cyclones in the North Atlantic is analyzed. For that purpose, these locations
are calculated from HURDAT and split into two disjoint subsets according to whether
sea surface temperature in the North Atlantic was above or below average in the year
the corresponding storms occurred. Landfalls are investigated separately for the groups
of cyclones categorized as tropical storms, minor hurricanes, or major hurricanes at the
moment of landfall. The locations are considered realizations of inhomogeneous Poisson
point processes, and the corresponding density functions are estimated with kernel
estimation methods. In this way, any spatial structure inherent in the data is taken
into account. These density functions are then compared with Monte Carlo methods
from spatial statistics, which allows the detection of areas of statistically significant
differences in the two sets with high and low SST, respectively. Results show many such
areas, which is of relevance for the insurance industry and mathematical modelling of
cyclones, as well as for decision support during the preparation for natural disasters.

1 Introduction

There is a strong connection between cyclone activity
and sea surface temperature (SST) in the North Atlantic
and other ocean basins, see, for example, Mann and Emanuel
(2006), Holland and Webster (2007), and Saunders and Lea
(2008). Gray (1979) also pointed out the necessity of a water
temperature of 26.5◦C to a depth of approximately 50m for
the formation of a tropical cyclone. For more details, see also
Chan et al. (2001) and the references therein.

In recent years a vivid discussion has emerged on phases of
low and high hurricane activity in the North Atlantic which
is connected to a multidecadal swing of Atlantic SST. This
multidecadal swing is thought to be basically an element of
natural climate variability and called Atlantic Multidecadal
Oscillation (AMO), see, for example, Goldenberg et al. (2001),
Vellinga and Wu (2004), Knight et al. (2005), and Zhang and
Delworth (2006). Recent research suggested that the AMO
may influence hurricane activity through areal changes in
the so-called Atlantic Warm Pool (AWP) which comprises
warm surface waters of the Gulf of Mexico, the Caribbean
Sea and the western tropical North Atlantic, see Wang et al.
(2008). The reduction of the vertical wind shear in the Main
Development Region (MDR) and the local enhancement of
thermodynamic convective instability – both of which are
preconditions of tropical cyclone formation and development
– are coupled with a large AWP.
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While it is already of scientific interest to investigate how
the numbers of tropical cyclones vary with SST, there is also
the question of variation in locations of cyclone genesis and
cyclone landfall. More specifically, one can ask if changes in
SST are accompanied by significant changes in the spatial
distributions of the locations where cyclones form or those
where they make landfall – regardless of the actual absolute
numbers. In this report, we investigate which regions are
subject to this kind of higher or lower relative frequencies
of cyclone genesis or cyclone landfall due to SSTs which are
above or below the long-term average.

While the aim of the investigation of Dailey et al. (2009) is
similar to ours, we take a different approach at the problem:
In a similar way as Dailey et al. (2009), we split the data
into two disjoint subsets from a ‘warm phase’ and a ‘cold
phase’. Instead of then comparing the counts of points in
certain subregions (a method similarly also suggested by
Hall and Jewson (2008)), we estimate density functions for
a point process model in the whole region of interest, i.e.
the main development region of tropical cyclones and the
complete (western) coastline of the North Atlantic. These
density functions reflect the spatial structure inherent in the
patterns formed by points of cyclone genesis or landfall points,
respectively. Furthermore, they are standardized, and thus
independent of the actual number of cyclones involved. Then,
the standardized density functions are compared statistically
with the help of Monte Carlo methods from spatial statistics
to obtain regions of significant differences between the warm
phase and the cold phase.
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Obvious applications of such an investigation include
refined hazard and risk assessment in the insurance industry
as well as implications for strategies in the preparation for
and mitigation of natural disasters in the areas affected by
tropical cyclones. Furthermore, mathematical and physical
models of tropical cylone tracks, such as those suggested in
Emanuel et al. (2006), Hall and Jewson (2007), and Rumpf
et al. (2007; 2009), could be adjusted to better represent
current SST conditions. In fact, the techniques we use for
the estimation of the density functions are very similar to
those that the aforementioned track simulation models use
to estimate rates of cyclone genesis. Thus, the procedures
we suggest for the comparison of subsets of historical data,
should also be easily applicable to the comparison of these
model outputs with the historical data or of the models with
each other.

This paper is structured as follows: In Section 2, the data
used for this study is discussed and definitions for the terms
‘point of cyclone genesis’ and ‘point of landfall’, as well as
‘warm phase’ and ‘cold phase’, which are used throughout the
paper are given. The first part of Section 3 is dedicated to the
explanation of the methods that are used to estimate density
functions of the various point patterns under investigation,
while Section 3.2 discusses the Monte Carlo methods for the
comparison of these density functions. The results are all
presented and interpreted in Section 4. A short summary
and outlook in Section 5 conclude the paper.

2 Data

All cyclone track data used in this study is taken from
the HURDAT best track data, see Jarvinen et al. (1984). For
each tropical cyclone that occurred in the North Atlantic
ocean basin between 1851 and 2007, this database contains
(among other information not relevant for this study) the
geographical position of the center of the cyclone and its wind
speed, measured in intervals of 6 hours. The first registered
position of a cyclone will be considered its ‘point of genesis’
for the purpose of this investigation. Note that there are
some points of cyclone genesis in the data with a position
over land, a situation that makes no meteorological sense,
but is tolerated for lack of better data.

While each cyclone track in HURDAT by definition has
exactly one point of genesis, it can have 0, 1 or multiple
points of landfall. For our investigation, a landfall occurs,
when a point of measurement located over the ocean is
followed by at least one point of measurement located over
land. The location of the ‘point of landfall’ is then calculated
as the midpoint of the line connecting these two points of
measurement. While in reality, a landfall location is the exact
point where a cyclone track crosses the coastline onto land,
this interpolation technique will cause the points to lie slightly
off the coastline, either on land or the ocean. However, the
fact that the investigated points are not concentrated solely
on the coast line makes them suitable for the mathematical
investigation as a two-dimensional point pattern, see Section
3.1. Additionally, Figure 1 also shows that the imprecisions
caused by this interpolation of the landfall points are fairly
small.

The SST data used as the basis for the investigation was
obtained from the Hadley Centre’s sea ice and sea surface
temperature data set HadISST1, see Rayner et al. (2003).
Here, we use the SST anomalies from the months June
through October of the years 1903-2005 relative to the mean
in a region of the North Atlantic which is limited by 10◦N,
20◦N, 80◦W, and 0◦E; this region roughly coincides with the
MDR of North Atlantic tropical cyclones. Figure 2 shows
this data in the form of the yearly deviations from the mean
over the whole period; the solid line indicates a smoothed
mean of the deviations. This smoothed mean clearly divides
the observed period into four parts, two with an almost
entirely positive smoothed mean, i.e. warmer than average
temperatures, and two with cooler than average temperatures.
The years with higher temperatures, running from 1926 to
1970 and from 1995 to 2005, will be referred to as the ‘warm
phase’ throughout this paper; they are marked in black in
Figure 2. Marked in white are the years 1903–1925 and
1971–1994, which will be referred to as the ‘cold phase’.

The use of the year 1903 as a starting point for our inves-
tigation is motivated by the fact that there is an apparent
phase change in SST around the turn of the century in a
detrended version of the time series. While it is difficult to
determine the precise moment of this phase change, we feel
that the slight uncertainty about this starting point does not
influence our findings significantly. It is also worth noting
that the reliability of HURDAT storm track data from earlier
years is doubtful, especially with respect to the points of
cyclone genesis. Equally, there is some measure of uncertainty
involved with the HadISST1 SST data in the early years.

For those parts of our investigation that deal with landfall
points, cyclones were categorized into three groups according
to their intensity: In accordance with the Saffir-Simpson
hurricane scale, cyclones with wind speeds of 63–118km/h
are called ‘tropical storms’, those falling into Saffir-Simpson
categories 1 and 2 (i.e. exhibiting wind speeds between 118
and 177km/h) will be referred to as ‘minor hurricanes’, and
all cyclones with wind speeds of more than 177km/h (i. e.
Saffir-Simpson categories 3 - 5) are categorized as ‘major
hurricanes’ for our investigation. Table 1 lists the numbers of
landfall points from the investigated period where cyclones
have made landfall while being categorized into one of the
three mentioned groups. In brackets, the total numbers of
cyclones are given whose highest wind speed over its life span
fell into the corresponding group.

3 Methodology

3.1 Density Estimation

All point patterns considered in this paper are assumed
to be realisations of inhomogeneous Poisson processes. This
simple model for spatial point patterns assumes that the
points of a pattern are placed independently of each other,
an assumption that is justified by the nature of the investi-
gated data: there is no indication that either starting points
or points of landfall of tropical cyclones ‘interact’ in any
way, especially not in data that was aggregated over mul-
tiple decades. For details on Poisson processes and their
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VARIATION IN CYCLONE LANDFALL LOCATIONS 3

characteristics, see for example Diggle (2003), or Illian et al.
(2008).

An inhomogeneous Poisson process is characterized by
its so-called intensity function. To avoid confusion with ‘hur-
ricane intensity’, we will refer to all intensity functions of
Poisson processes as (standardized) density functions, since
the concept of a Poisson intensity function is closely related
to that of a (probability) density function.

Heuristically speaking, the value of the density function of
a Poisson process at a certain location indicates the frequency
of points occurring at that location. If the true density func-
tion is unknown – as is the case in all ‘real’ data – it has
to be estimated from the data. Due to the limited flexibil-
ity of parametric models, which usually only allow a small
number of parameters to be fitted to the data, we found
non-parametric techniques, particularly variations of kernel
density estimators, to be more suitable for our investigations.
Kernel-based approaches – some of which bear similarities
to the methods we employed – have already been used to
estimate probability density functions of genesis locations
of tropical cyclones, for example by Emanuel et al. (2006),
Hall and Jewson (2007), and Rumpf et al. (2007; 2009). The
specifics of these techniques will be discussed in the following.

The kernel estimator λ̂(x) of a density function λ(x) at a
location x is defined as

λ̂(x) =
1

h2

nX
i=1

K (d(x,Xi), h) , (1)

where Xi denotes the location of the i-th data point, d(., .)
is the (spherical) Euclidean distance, K the so-called kernel
function, and h > 0 the bandwidth. The kernel function can
be interpreted as the basic shape of the probability mass
that is assigned to each location where a data point occurred,
while the bandwidth indicates the scale over which this mass
is ‘spread out’. Usually, kernel functions are chosen to be
non-negative, symmetrical density functions. Frequently used
kernel functions are the Epanechnikov kernel (see Epanech-
nikov (1969)), which in two-dimensional space is defined
as
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There appears to be consensus in the literature that the
choice of bandwidth is much more relevant to the quality
of the kernel estimator than the choice of kernel, see Diggle
(2003), p.118, Illian et al. (2008), p.482, and Møller and
Waagepetersen (2003), p.37. Due to the importance of finding
a ‘good’ bandwidth, methods for objectively determining a
bandwidth have been discussed in the literature. For example,
the method of likelihood cross validation (LCV) determines
the quality of a bandwidth by calculating log-likelihoods of
each point of data from a density estimator that has been
determined by leaving the respective point out. To be precise,
the likelihood cross validation optimal bandwidth is given

by the h that maximises the function

LCV (h) =
1

n

nX
i=1

log(λ̂−i(Xi)) , (4)

where λ̂−i is the kernel estimator determined as in (1), with
the sole change of leaving out the i−th summand. Alterna-
tively, the least squares cross validation (LSCV) approach is
to find the h that minimizes an approximation to the inte-
grated squared difference between the density estimate and
the true density. For details on these methods, see Silverman
(1986).

Although it has an intuitive appeal, the kernel estimator
has some disadvantages. For example, even when an auto-
mated method such as LCV is employed, the use of a single,
fixed bandwidth in the whole observation window can lead
to serious defects in the estimate: a large bandwidth that
adequately smoothes the estimators in regions of low point
density can easily wipe out most or all of the detail in re-
gions with a higher density. Also, when using a kernel with
bounded support (such as the Epanechnikov kernel), LCV
will result in a bandwidth that is no less than the largest
distance between a point and its closest neighbour in the
considered data. This can lead to severe oversmoothing in
data with outliers.

As a partial remedy for these problems, the generalized
nearest neighbour (GNN) estimator λ̃ is defined in a similar
way as the kernel estimator, but with a bandwidth that is
location-dependent:

λ̃(x) =
1

rk(x)2

nX
i=1

K (d(x,Xi), rk(x)) , (5)

where rk(x) is the distance of the location x from the k−th
nearest data point and 0 < k < n. Through its variable
bandwidth, the GNN estimator smoothes less in regions of
high point density and more in regions of fewer points. The
definition of rk(x) can, in the case of outliers, lead to very
large bandwidths. Still, it respects regional variations in point
density better, since large bandwidths do not only include
points far away from x into the estimate at x, but at the same
time they shrink the estimate at x by ‘stretching out the
kernel’ for all observations regarded at x. Details on the GNN
estimator can be found in the book by Silverman (1986), who
also suggests the choice of k = [

√
n]. While in principle, an

optimal k could also be found by likelihood cross validation,
an actual optimization of this parameter is computationally
too expensive for many practical applications. A comparison
of the likelihood scores (calculated as in (4) with k as the

variable instead of h) for k = n
1
3 and k = n

2
3 has shown only

small differences with a slight advantage for k = [
√
n] = n

1
2 .

3.2 Monte Carlo Tests

The main goal of this investigation is the statistical
comparison of two point patterns - one from the warm phase
and one from the cold phase. The pairs of hypotheses to be
tested are of the form

H0 : λ = µ vs. H1 : λ 6= µ , (6)
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where λ and µ are the two density functions underlying the
two sets of data, which are considered realizations of inhomo-
geneous Poisson processes on some observation window W ,
compare Section 3.1. Additionally, when instead of the global
hypotheses of (6), the equality of the two density functions
at a specific location x0 is of interest, the hypotheses

H0 : λ(x0) = µ(x0) vs. H1 : λ(x0) 6= µ(x0) (7)

are tested. Since the statistical distributions involved in
testing these hypotheses are not analytically known, and
no distributional assumptions (such as normality or simi-
lar standard assumptions) are obvious, we use the Monte
Carlo methods suggested by Kelsall and Diggle (1995): Let
x1, . . . , xn1 and y1, . . . , yn2 denote the two sets of data points
and λ and µ their underlying density functions, respectively.
To test the global hypotheses (6), the following method can
be employed:

1. Calculate estimates λ̂ and µ̂ from x1, . . . , xn1 and
y1, . . . , yn2 .

2. Calculate the log-ratio of these estimates r̂0 = log λ̂
µ̂

.
3. Randomly reassign x1, . . . , xn1 and y1, . . . , yn2 into two

groups of sizes n1 and n2.

4. Calculate new estimates r̂i = log λ̂i
µ̂i

from the data reas-
signed in step 3.

5. Repeat steps 3 and 4 for i = 1, . . . ,m, with m sufficiently
large.

6. Calculate the integrals si =
R
W

r̂2i (x)dx for i = 0, . . . ,m.

7. The p-value of the test is then p = k+1
m+1

, where k =
#{j : sj > s0}.

The testing procedure described above relies on two basic
facts: Firstly, note that H0 in this case can be rephrased as
“the separation of the data in two groups is random”. Thus,
one can easily see that the estimates r̂i and consequently also
the integrals si have been obtained under the assumption
of H0. Furthermore, it is clear that under H0, the log-ratio
r = log λ

µ
is equal to zero. Thus, a large value of s0 indicates

a large deviation from H0. The question what ‘large’ means
in this context is then answered in step 7 by comparing s0
with si, i = 1, . . . ,m, which represent a sample from the
distribution underlying the si under H0. Besides the si, vari-
ous other statistics, such as the Kullback-Leibler divergence,
could be employed to measure the deviations between λ and
µ. For reasons of conciseness, we restrict ourselves here to
the above definition of the si.

Note that the density estimates calculated in step 4
above are heavily influenced by the group sizes n1 and n2, so
group sizes that differ strongly will always result in H0 being
rejected, even if the structures of the two density estimates
are very similar. To avoid this and to compare the conditional
densities of the two data sets, one can standardize the density
estimates from step 4 by dividing them by the sizes of the
respective data set. This is done for all data considered in
this paper, since the data sets from the cold and the warm
phase both differ greatly in size, as can be seen from Table
1.

To test the hypotheses of (7), a procedure analogous to
the one described above can be used:

1. Calculate r̂0(x0), r̂1(x0), . . . , r̂m(x0) as described above.

2. Calculate p(x0) =
#{j : r̂j(x0)<r̂0(x0)}

m+1
.

3. If p(x0) < α/2 or p(x0) > 1− α/2, then λ(x0) is consid-
ered significantly different from µ(x0) at a level of significance
α, i. e. H0 is rejected.

This procedure for the local hypotheses simply applies the
same ideas used to test the global hypotheses, it just replaces
the integrals si, which aggregate the values of r̂i over the
whole observation window, by the value of r̂i at a particular
location of interest x0.

For more details on the Monte Carlo testing procedures
described in this section, see Kelsall and Diggle (1995) and
the references therein. Also, in Illian et al. (2008), p.455ff,
Monte Carlo tests are described more extensively in a point
process context.

4 Results

In this section, the results of the comparison between
data sets from the two different temperature phases are
presented. Recall that, for the purpose of these comparisons,
the investigated point patterns are assumed to be realizations
of inhomogeneous Poisson processes, the density functions
of which are estimated with a generalized nearest neighbour
estimator as well as with a kernel estimator of type (1). For
the kernel estimators, the standard normal kernel is used
with a bandwidth determined by likelihood-cross-validation,
while for the generalized nearest neighbour method, the
Epanechnikov kernel is used and the parameter k is chosen
to be k = [

√
n] (see Section 3.1). The optimal bandwidths for

the kernel estimators of type (1) are given in Table 2. In all
figures discussed in this section, red colours mark the highest
values, intermediate values are marked green, and deep blue
indicates the lowest values of the illustrated characteristic.

Note that for all investigations described in this section,
the data is split into two disjoint subsets: one from the
warm phase and one from the cold phase. The purpose of
this is to detect potentially significant differences in the
structures of the data sets between these two temperature
phases. Additionally, one could also investigate structural
differences between the complete data from both temperature
phases and a subset of it, e.g. the data from the warm phase.
However, the problem with this kind of investigation is that
since the warm phase data is a subset of the complete data,
there is a strong influence of the warm phase data on the
estimated density function of the complete data. In other
words: the structure of the estimated density function of the
complete data is predictably much more similar to that of the
warm phase data than to that of the cold phase data, simply
because there is more data from the warm phase. Thus, not
much insight would be gained in comparing the complete
data with a subset of it and we restrict our investigations to
the comparison of cold phase and warm phase data.

4.1 Points of Cyclone Genesis

The first pair of point patterns to be compared are the
points of cyclone genesis from the warm phase and the cold
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phase, as they have been defined in Section 2. Figures 3 and
4 show the density estimates resulting from the GNN method
together with the corresponding points of cyclone genesis
from the warm phase and the cold phase, respectively. In
Figure 5, the log-ratio of the two estimates is shown. The
analogous results obtained with a kernel estimate of type (1)
look very similar and are thus not depicted separately.

The black points in Figures 3 and 4 mark the locations of
the 592 and 363 historical points of cyclone genesis contained
in the warm phase data and the cold phase data, respectively
(cf. also Table 1). These numbers can easily be considered
large enough for stable density estimates. However, if one
were interested in smaller subsets of the data, say, from
certain shorter time periods, the issue of data sparsity would
have to be looked at more closely. If the resulting density
estimates then were considered too unstable for a meaningful
interpretation, one might think of departing from estimating
density functions from the historical data completely and
looking at genesis potential indices (GPI). This type of index,
discussed for example in Emanuel and Nolan (2004) and
Camargo et al. (2007), uses information about environmental
factors such as low-level vorticity or vertical wind shear to
calculate probabilities of cyclone genesis in regions of interest.
While this would resolve the issue of the amount of cyclone
genesis points available, at the same time it would raise
the issue of the reliability of the data needed for the GPI.
Consequently, we feel that for statistical analyses of point
patterns, it is ultimately better to rely on the actual point
patterns, as long as they are reasonably large.

Note that all estimators in Section 4 have been stan-
dardized by the number of points in the respective data
set, because otherwise all structural differences would be
obscured by the fact that there are over 60% more points
in the warm phase data than in the cold phase data. Thus,
areas marked red in Figure 5 are not caused by a larger abso-
lute number of points occurring in that area during a warm
phase. Rather, large values of the log-ratio are indicative
of the conditional probability that a point occurs in that
area, under the condition that a point actually does occur,
being higher during the warm phase than during the cold
phase. An analogous explanation holds for low values of the
log-ratio.

In a next step it is of interest which values of the log-ratio
of standardized density estimates are actually significant,
i.e. where a significant difference between warm phase and
cold phase occurs. To answer this question, the pair of local
hypotheses (7) was tested at a level of significance α = 0.05
with the procedure described in Section 3.2 for all pixels
located over sea in Figure 5. Areas of significantly large
values have been overlaid with a black grid, and areas of
significantly low values are marked by a white grid. Again,
the results obtained using kernel estimation of type (1) are
not depicted in a separate image, since they are visually
almost indistinguishable from those obtained using the GNN
estimator. Table 3 lists the percentages of the observation
area where the null hypothesis (7) of equal density values is
rejected. Additionally, the results of the Monte Carlo tests of
the global hypotheses (6) of overall equal density functions
are shown in Table 4. All tests were performed with m = 999.

In Figures 3 through 5, some structural differences between
the warm phase and the cold phase data are clearly visible.
First and foremost, the two significant maxima of the log-
ratio of standardized density functions around the Yucatan
peninsula indicate that these two areas appear to be much
more prone to the formation of tropical cyclones during
the warm phase than during the cold phase – relatively
speaking, i. e. as opposed to other regions of the observation
window. A similar observation can be made for areas east
and southeast of Puerto Rico, and again, to a lesser extent,
around 40◦W and 20◦N, and off the west African coast (cf.
Figure 5). Additionally, the areas with a significantly higher
density during the cold phase appear to be concentrated on
the northern and southern edges of the observation window.
However, one has to be careful when interpreting these areas,
since some of them cover areas which contain virtually no
points in either of the two data sets. This suggests that some
of those differences might be caused by the fact that the
bandwidth for the estimators (see Section 3.1) tends to be
higher for the cold phase data due to the smaller number of
points in that set of data (compare Tables 1 and 2). Still,
this is certainly not the case for a large area northeast of the
Bahamas, where the standardized density of cyclone genesis
is clearly much higher during the cold than during the warm
phase, again in contrast to other parts of the observation
window.

When interpreting these results meteorologically, it is
important to remember that the results described above are
obtained with standardized density functions, i. e. they do
not depend on the absolut number of cyclones occurring in
each phase, but rather on relative probabilities of cyclones
occurring in a certain area during a certain phase. It is also
worth restating that the choice of estimation method does
not appear to make a large difference with respect to these
results, since the areas of significant differences between
warm phase and cold phase appear to have the same size
and structure when employing GNN estimation or kernel
estimation of type (1).

The comparatively lesser density of genesis points east
and northeast of Florida and the Bahamas during warm
phase years might be – among other factors – due to an
enhanced vertical wind shear during warm phase years in
this region. Enhanced vertical wind shear tends to suppress
tropical cyclone activity. The increased vertical wind shear
in the region east and northeast of Florida and the Bahamas
during the AMO warm phase has been demonstrated on the
basis of reanalysis data, see Figure 11a of Wang et al. (2008).

Kossin and Vimont (2007) provide further data that helps
to interpret our results. They describe the so-called Atlantic
Meridional Mode (AMM), which represents the leading mode
of basin-wide coupled ocean-atmosphere interaction between
SST and low-level winds. According to these authors, the
AMO is an important mechanism to excite the AMM. The
composite figure that they provide for the 5 strongest AMM
years (Figure 3 of Kossin and Vimont (2007)), which also
represent warm phase years according to the AMO, show
a pattern where the bulk of genesis points is concentrated
in the MDR east of the Caribbean islands. This pattern is
due to anomalously warm waters and anomalously reduced
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vertical wind shear in this area as opposed to areas farther
north. In those years, we also have anomalously warm waters
in the western Gulf of Mexico and farther south along the
eastern coast of Central America, together with reduced
vertical shear in this area (see Figure 3 of Kossin and Vimont
(2007)). This might explain that we also find a significantly
higher (relative) genesis density during the warm phase in
this region (see Figure 5). In addition, the composite for
the 5 weakest AMM years (Figure 3 of Kossin and Vimont
(2007)), which coincide with AMO negative years (i. e. cold
phase years), shows enhanced wind shear over the MDR
extending far to the west and also cool SST anomalies in
particular in the central and easten parts of the MDR. This
can be associated with a significantly reduced density of
genesis locations in this area during the cold phase, which
can be found in Figure 5. Furthermore, the relatively more
favourable genesis conditions in the subtropics west and east
of Florida and the south eastern US coastline seem to be
fostered by the reduced vertical wind shear and almost no
anomalous reduction in SST which Kossin and Vimont (2007)
find in that area.

4.2 Points of Cyclone Landfall

In this section, the points of cyclone landfall, as they
were defined in Section 2, are investigated. As mentioned,
the landfall points are split into three different classes ac-
cording to the wind speed at the point of landfall; i. e., in
addition to the complete set of landfall points, we investigate
cyclones that are tropical storms, minor hurricanes, or major
hurricanes at landfall separately. Apart from this, the investi-
gations are completely analogous to those of Section 4.1. The
observation window for the landfall points consists of the
coastline of the North Atlantic, dilated by 8 pixels into all
directions, and limited by 8.5◦N, 50◦N, 100◦W, and 50◦W.
The very small number of landfall points not contained in
this strip along the coast are considered artefacts of the
approximation method used to obtain the landfall points (cf.
Section 2) and are thus ignored for this investigation. Note
again that for the reasons given in Section 4.1, all density
estimators have been standardized by the number of points
in the respective data sets, i. e. the number of landfalls in the
respective phases. As in Section 4.1, all tests were performed
with m = 999.

For obvious reasons, the number of points in the different
investigated subsets of landfall points is smaller than in the
set of genesis points, cf. Table 1. This makes the density esti-
mates somewhat less reliable. However, since the observation
window also is much smaller, the estimates and their com-
parisons still have meaningful interpretations, as can be seen
from the results of a simulation study assessing the mean inte-
grated squared error (MISE) of the density estimation on the
observation window W used for the points of cyclone landfall.
In this simulation study, we simulated 1000 realizations of
an inhomogeneous Poisson process with k expected points
(for k between 10 and 600) in W with the density f̂ that had
been estimated from the 66 points of major hurricane land-
fall. From these simulated point patterns, we re-calculated
(standardized) density estimates ĝ

(k)
i , i = 1, . . . , 1000 using

the GNN estimator and then calculated an approximation to
the mean integrated squared error, i. e. the following index of

deviation between the “true” and the re-estimated density:

∆(k) =
1

1000

1000X
i=1

∆
(k)
i =

1

1000

1000X
i=1

Z
W

“
ĝ
(k)
i (x)− f̂(x)

”2

dx

(8)
The MISE is one of the most commonly used measures of
error in kernel density estimation, see, for example Wand
and Jones (1995), p.94ff., and Silverman (1986), p.35f. The
resulting values of ∆(k) are given as a function of k in Figure
12. This figure shows that while the values clearly decline
monotonously with an increasing number of expected points,
the MISE – and therefore the density estimate – can be
considered stable from around 40 points. Thus, while the
MISE for 66 points (the size of the smallest point pattern)
is approx. twice as large as for 518 points (the size of the
largest point pattern), we can consider all our estimates stable
enough with respect to MISE. Furthermore, when considering
the influence of the amount of data on the results of this
study, note that less points in the original point patterns
also means less points in the randomly reassigned “simulated
point patterns” (see Section 3.2). Thus, any lower reliability
in densities estimated from smaller point patterns is reflected
in the densities estimated from the corresponding “simulated
point patterns”. Consequently, potential data sparseness
does not directly influence significance results of the Monte
Carlo tests, and therefore can be considered of secondary
importance to the results presented in this manuscript.

If the data were even more sparse, one might consider
simulating cyclone tracks with models such as those from
Emanuel et al. (2006), Hall and Jewson (2007), and Rumpf et
al. (2007; 2009). In this way, one could create large amounts
of data and from this, a larger number of landfall points than
in the original data. However, this would raise the question
of how well any simulation models are able to reproduce
the distributions of the landfall statistics – or any other
aspect of the historical data. All of these models are at
least in part stochastic and certainly quite complex, which
makes model checking an important and non-trivial issue
that, to our knowledge, has not yet been resolved, see also
e. g. Hall and Jewson (2008). Therefore, as long as there is
no clear result that a simulation model correctly reproduces
the desired landfall distributions, we feel that to investigate
characteristics of historical data, it is best to rely simply on
the historical data itself, if possible, and not on simulations
that introduce new uncertainties.

Figure 6 shows the log-ratio of the standardized estimated
density fields of points of landfall of all categories, obtained
with a GNN estimator. In Figures 7, 8, and 9, the correspond-
ing values are plotted for the subsets of points of landfall
of cyclones categorized as tropical storms, minor hurricanes,
and major hurricanes, respectively. As explained in Section
4.1, areas overlaid with a white grid are those where the value
of the standardized density estimate is significantly larger
during the cold phase than during the warm phase, and the
black grid points indicate areas where the same is the case
for the warm phase. In Tables 5 and 6, the percentages of
the observation area where the null hypothesis of equal stan-
dardized density values (see (7)) is rejected are given for the
use of the GNN estimator and the kernel estimator of type
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(1), respectively. Finally, the results of the Monte Carlo tests
of the global hypotheses (6) of overall equal standardized
density functions are shown in Table 7.

Figures 6 through 9 show many areas with significant
differences in the estimated density functions (using GNN
estimation) of landfall points between the cold and the warm
phase. The results obtained with the GNN estimator and
the kernel estimator of type (1) are not quite as consistent
as they were for the points of cyclone genesis (cf. Section
4.1), but still similar. The increased variability can largely
be attributed to the smaller observation window and the
fact that the different classes contain a much smaller num-
ber of points (cf. Table 1). Still, the common threads are
dominant, and thus, the results of the kernel estimation of
type (1) are not depicted separately. For tropical storms, the
standardized landfall density around southern Florida, along
the US east coast between Maryland and Massachusetts,
and from eastern Cuba to Haiti is significantly lower during
the warm phase than during the cold phase. The opposite
is the case around New Orleans and the Mexican state of
Veracruz. When considering only minor hurricanes, a sig-
nificantly higher standardized landfall density during the
warm phase is detected for most of Florida, while around
New Orleans the standardized landfall density is again higher
during the cold phase. There are large areas with significant
differences in the estimated standardized density functions
for the points of landfall of major hurricanes. However, the
different estimators show some inconsistencies, but they agree
on the fact that in southeastern Florida, the standardized
density appears to be significantly higher during the warm
phase. Finally, Table 7 shows that the global hypothesis of
equal standardized density functions can not be rejected in
most cases, although the percentages of areas with signifi-
cant differences tend to be higher than in the investigation
of genesis points (cf. Tables 3, 5, and 6). This indicates that
the differences between the warm phase and the cold phase
are not very large and rather localized in nature.

Regarding a meteorological explanation for relatively
enhanced landfall frequencies of minor and major hurricanes
around southern Florida and – in the case of major hurricanes
– at even lower latitudes in Cuba (compared with other parts
of the observation window; see Figures 8 and 9), one has
to start from the following findings: During warm phase
years, the bulk of genesis locations is shifted equatorward,
and in particular a substantial number of storms form in
the central part of the tropical Atlantic (see Section 4.1 and
Figure 5). Combined with typical subtropical steering flow
in this region, the corridor which such southern storms have
to pass through is very conducive to intensification, at least
in the Caribbean Sea. This combination of typical steering
flow and conditions prone to intensification is consistent with
a positive signal of hurricanes hitting Florida and in the
case of major hurricanes hitting areas even further to the
south. The argument of Kossin and Vimont (2007) that the
equator-ward amd eastward shift in genesis region causes
storms to reach higher intensities at landfall also fits in well
with this observation.

5 Summary and Outlook

In this paper, we investigated the statistical effects of
SST on the structures of the areas of cyclone genesis and
cyclone landfall. For this purpose we used two kernel estima-
tion techniques to estimate the density functions of various
point patterns obtained from subsets of HURDAT and then
compared these density functions using Monte Carlo meth-
ods. These techniques account for the spatial structure of the
investigated point patterns. In this way, we detected areas
of significant differences in relative densities of genesis and
landfall points, independently of the absolute numbers of
cyclone genesis or cyclone landfall. For the points of cyclone
genesis, the main results did not depend on the estimation
method used, while for the landfall points, there were some
differences. These were mainly due to the smaller observation
window and smaller number of points in the investigation of
landfall points.

The main focus of our investigation was the detection
of structural differences in the various density estimates
that were independent of the actual number of points con-
tained in the respective data sets. It is of course valid to
ask what the results would be if they were calculated from
non-standardized density functions, i. e. if they considered
the ‘first-order effect’ of (warmer) SST: improved conditions
for (increased) TC activity. Recalculating all results without
standardizing the density estimates by the number of points
in the respective point patterns – but accounting for the
fact that there are more years in the warm phase (56) than
in the cold phase (47) – we get the expected results which
are displayed in Figures 10 and 11: Almost all structural
information is obscured by the fact that points are more
frequent overall during the warm phase than during the cold
phase (see Table 1). Figure 10 shows the non-standardized
GNN density estimator for points of tropical cyclone genesis
during the cold phase with a colour scale identical to that of
Figure 3. Comparing Figures 3 and 10, one can easily see that
the density is higher during the warm phase than during the
cold phase almost everywhere. Anlogous results are obtained
for the points of cyclone landfall. For the GNN estimator,
the areas where this effect is statistically significant take up
between 76.9% and 89.0% of the observation window (kernel
estimator of type (1): 52.2% to 66.6%) for the various point
patterns, and there are no areas at all with a significantly
higher density during the cold phase in any of the point
patterns investigated; compare with Tables 3, 5, and 6. The
regions where the hypothesis of equal values of the estimated
non-standardized densities can not be rejected are basically
those that are marked in turqoise and deeper blues in Figures
5 through 9. This is exemplified for the points of cyclone
genesis in the comparison of Figure 5 (standardized densities)
with Figure 11 (non-standardized densities). Moreover, the
hypothesis of overall equal intensity fields is rejected for all
non-standardized point patterns with p-values of no more
than 0.02; compare with Tables 4 and 7.

It is clear that Atlantic SST alone is not the only factor
determining cyclone activity in the North Atlantic. Recent
research has shown that, for example, the difference between
Atlantic SST and Indo-Pacific SST influences vertical wind
shear over the MDR, which in turn has an effect on tropical
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cyclones, see Latif et al. (2007) and Swanson (2008). Also,
as mentioned in Section 1, thermodynamic convective insta-
bility is another important precondition for the development
of tropical cyclones. Consequently, it might be of interest to
investigate subsets of HURDAT obtained according to more
sophisticated criteria: instead of using simply the smoothed
yearly deviations of Atlantic SST from the mean, one could
base the separation of the data on information about verti-
cal wind shear, the difference in SST between the tropical
Atlantic and the Indo-Pacific tropical domain, ENSO, or any
combination of other climatological criteria. Note that when
doing so, one carefully has to consider the actual intended
application when choosing which criteria to use. Some of
these climatological phenomena can only be forecast a few
months in advance, which would probably not be very help-
ful for the assessment of insurance risks. Still, the Monte
Carlo methods used in our investigation would in any case
be applicable to any such subsets, since they are only based
on point patterns.

From a different perspective, one could also use these
methods to compare the output of simulation models for
tropical cyclone tracks (see Emanuel et al. (2006), Hall and
Jewson (2007), and Rumpf et al. (2007; 2009)) with the
historical data. This comparison could then serve as a tool
for model evaluation.

Furthermore, other methods for density estimation than
those used here (see Section 3.1) can also be employed, see
for example Silverman (1986), or Scott (1992). Finally, for
large enough sets of data, one could also abandon Monte
Carlo methods and instead apply limit theorems for kernel
estimators (see, for example, Cacoullous (1966)) to obtain
asymptotic tests of the hypothesis of equal densities.
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Figure legends

Figure 1. Investigated points of tropical cyclone landfall
along the North Atlantic ocean basin

Figure 2. North Atlantic SST data; columns: devia-
tions from the mean (in degree Celsius); solid line: smoothed
mean of deviations; years marked white: cold phase; years
marked black: warm phase

Figure 3. Standardized GNN density estimator for
points of cyclone genesis from the warm phase. Historical
cyclone genesis sites are marked by black points.

Figure 4. Standardized GNN density estimator for
points of cyclone genesis from the cold phase. Historical
cyclone genesis sites are marked by black points.

Figure 5. Log-ratio of standardized GNN density es-
timators for points of cyclone genesis from the warm phase
and the cold phase and areas of statistically significant
differences at level of significance α = 0.05. Areas overlaid
with a black grid have a significantly higher standardized
density during the warm phase, areas overlaid with a white
grid have a significantly higher standardized density during
the cold phase.

Figure 6. Log-ratio of standardized GNN density es-
timators for points of cyclone landfall (all categories) from
the warm phase and the cold phase and areas of statistically
significant differences at level of significance α = 0.05.
Meaning of black and white grids as in Figure 5.

Figure 7. Log-ratio of standardized GNN density es-
timators for points of cyclone landfall (tropical storms) from
the warm phase and the cold phase and areas of statistically
significant differences at level of significance α = 0.05.
Meaning of black and white grids as in Figure 5.

Figure 8. Log-ratio of standardized GNN density es-
timators for points of cyclone landfall (minor hurricanes)
from the warm phase and the cold phase and areas of
statistically significant differences at level of significance
α = 0.05. Meaning of black and white grids as in Figure 5.

Figure 9. Log-ratio of standardized GNN density es-
timators for points of cyclone landfall (major hurricanes)
from the warm phase and the cold phase and areas of
statistically significant differences at level of significance
α = 0.05. Meaning of black and white grids as in Figure 5.

Figure 10. Non-standardized GNN density estimator
for points of cyclone genesis from the cold phase. Historical
cyclone genesis sites are marked by black points. Colour
scale identical to that of Figure 3.

Figure 11. Log-ratio of non-standardized GNN den-
sity estimators for points of cyclone genesis from the
warm phase and the cold phase and areas of statistically
significant differences at level of significance α = 0.05.
Areas overlaid with a black grid have a significantly higher
non-standardized density during the warm phase. Note

that the colours are the same as in Figure 5, although
the numerical values are different, since the values de-
picted in Figure 5 can be obtained from those of this
figure by multiplication with a constant scaling factor, i. e.
the ratio of the standardization constants of the two densities.

Figure 12. Results of a simulation study assessing
the mean integrated squared error (MISE) of a density
estimate on the observation window W used for the points
of cyclone landfall. Horizontal axis: expected number of
points in the point pattern; vertical axis: (approximate)
MISE of the kernel density estimate.
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Table 1. Numbers of landfalls (cyclones) in the different groups
and phases

category 1903-2005 warm phase cold phase

tropical storms 375 (212) 247 (133) 128 (79)

minor hurricanes 246 (317) 152 (185) 94 (132)

major hurricanes 185 (426) 119 (274) 66 (152)

all categories 835 (955) 518 (592) 288 (363)

Table 2. Optimal bandwidths in km for the kernel estimators for

different point patterns, determined by likelihood cross validation.
Point patterns: genesis - points of cyclone genesis, TS - landfall

points of tropical storms, minor - landfall points of minor hurri-

canes, major - landfall points of major hurricanes, all - landfall
points of tropical cyclones of all categories combined

point pattern 1903-2005 warm phase cold phase

genesis 165 197 254

TS 40 48 72

minor 42 58 63

major 39 44 49

all 31 37 42

Table 3. Percentages of areas with significant differences (α =
0.05) in the standardized estimated density underlying the points

of cyclone genesis in the warm and the cold phase

higher density higher density total significant

estimator in cold phase in warm phase differences

GNN 30.2% 7.5% 37.7%

kernel 35.7% 7.3% 42.9%

Table 4. Results of the Monte Carlo tests of the hypotheses (6)

of overall equal density fields underlying the points of cyclone
genesis during the warm and the cold phase

H0 rejected

estimator p-value at level α = 0.05

GNN 0.004 yes

kernel 0.010 yes

Table 5. Percentages of areas with significant differences (α =
0.05) in the standardized estimated density underlying the points

of cyclone landfall in the warm and the cold phase; GNN estimator.

Categories: TS - tropical storms, minor - minor hurricanes, major
- major hurricanes, all - all categories combined

higher density higher density total significant

category in cold phase in warm phase differences

TS 34.2% 21.4% 55.6%

minor 18.2% 5.3% 23.5%

major 26.2% 3.7% 29.9%

all 35.1% 16.5% 51.6%

Table 6. Percentages of areas with significant differences (α =
0.05) in the standardized estimated density underlying the points
of cyclone landfall in the warm and the cold phase; kernel estima-

tor of type (1). Categories: TS - tropical storms, minor - minor
hurricanes, major - major hurricanes, all - all categories combined

higher density higher density total significant

category in cold phase in warm phase differences

TS 22.4% 12.2% 34.6%

minor 15.7% 34.5% 50.1%

major 12.7% 49.5% 62.2%

all 16.9% 22.5% 48.3%

Table 7. Results of the Monte Carlo tests of the hypotheses (6)
of overall equal density fields underlying the points of cyclone

landfall during the warm and the cold phase. Categories at landfall:
TS - tropical storms, minor - minor hurricanes, major - major
hurricanes, all - all categories combined

category at H0 rejected

landfall estimator p-value at level α = 0.05

TS GNN 0.095 no

TS kernel 0.488 no

minor GNN 0.170 no

minor kernel 0.477 no

major GNN 0.395 no

major kernel 0.014 yes

all GNN 0.524 no

all kernel 0.532 no
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Figure 2. North Atlantic SST data; columns: deviations from the mean (in degree Celsius); solid line: smoothed mean of deviations;
years marked white: cold phase; years marked black: warm phase

Figure 1. Investigated points of tropical cyclone landfall along

the North Atlantic ocean basin
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Figure 3. Standardized GNN density estimator for points of cyclone genesis from the warm phase. Historical cyclone genesis sites are
marked by black points.

Figure 4. Standardized GNN density estimator for points of cyclone genesis from the cold phase. Historical cyclone genesis sites are
marked by black points.

Figure 5. Log-ratio of standardized GNN density estimators for points of cyclone genesis from the warm phase and the cold phase and
areas of statistically significant differences at level of significance α = 0.05. Areas overlaid with a black grid have a significantly higher
standardized density during the warm phase, areas overlaid with a white grid have a significantly higher standardized density during the
cold phase.
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Figure 6. Log-ratio of standardized GNN density estimators for points of cyclone landfall (all categories) from the warm phase and the

cold phase and areas of statistically significant differences at level of significance α = 0.05. Meaning of black and white grids as in Figure 5.

Figure 7. Log-ratio of standardized GNN density estimators for points of cyclone landfall (tropical storms) from the warm phase and the

cold phase and areas of statistically significant differences at level of significance α = 0.05. Meaning of black and white grids as in Figure 5.
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Figure 8. Log-ratio of standardized GNN density estimators for points of cyclone landfall (minor hurricanes) from the warm phase and

the cold phase and areas of statistically significant differences at level of significance α = 0.05. Meaning of black and white grids as in
Figure 5.

Figure 9. Log-ratio of standardized GNN density estimators for points of cyclone landfall (major hurricanes) from the warm phase and

the cold phase and areas of statistically significant differences at level of significance α = 0.05. Meaning of black and white grids as in
Figure 5.
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Figure 10. Non-standardized GNN density estimator for points of cyclone genesis from the cold phase. Historical cyclone genesis sites
are marked by black points. Colour scale identical to that of Figure 3.

Figure 11. Log-ratio of non-standardized GNN density estimators for points of cyclone genesis from the warm phase and the cold phase
and areas of statistically significant differences at level of significance α = 0.05. Areas overlaid with a black grid have a significantly higher
non-standardized density during the warm phase. Note that the colours are the same as in Figure 5, although the numerical values are

different, since the values depicted in Figure 5 can be obtained from those of this figure by multiplication with a constant scaling factor,
i. e. the ratio of the standardization constants of the two densities.
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Figure 12. Results of a simulation study assessing the mean integrated squared error (MISE) of a density estimate on the observation
window W used for the points of cyclone landfall. Horizontal axis: expected number of points in the point pattern; vertical axis:

(approximate) MISE of the kernel density estimate.

c© 0000 Tellus, 000, 000–000


