
PROBABILITY
AND

MATHEMATICAL STATISTICS

Vol. 0, Fasc. 0 (0000), pp. 000–000

A POINT PROCESS APPROACH FOR SPATIAL STOCHASTIC MODELING
OF THUNDERSTORM CELLS

BY

BJOERN KRIESCHE, REINHOLD HESS AND VOLKER SCHMIDT

Abstract. In this paper we consider two different approaches for spatial
stochastic modeling of thunderstorms. Thunderstorm cells are represented
using germ-grain models from stochastic geometry, which are based on Cox
or doubly-stochastic cluster processes. We present methods for the opera-
tional fitting of model parameters based on available point probabilities and
thunderstorm records of past periods. Furthermore, we derive formulas for
the computation of point and area probabilities according to the proposed
germ-grain models. We also introduce a conditional simulation algorithm
in order to increase the model’s ability to precisely predict thunderstorm
events. A systematic comparison of area probabilities, which are estimated
from the proposed models, and thunderstorm records concludes the paper.
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1. INTRODUCTION

1.1. Motivation. One of the major responsibilities of meteorological services
such as Deutscher Wetterdienst (DWD) is the issuing of reliable weather forecasts
for potentially harmful weather events. Classically, deterministic weather forecasts
are derived from numerical models describing the atmosphere, which is referred to
as numerical weather prediction (NWP) in literature, see e.g. [10]. Although nu-
merical models still provide the basis of almost all operational weather forecasts,
the application of a wide range of probabilistic postprocessing methods has be-
come of growing interest during the last decades to improve forecast quality, see
e.g. [22]. Calibrated probabilistic forecasts are related to single geographical loca-
tions (i.e., points, in mathematical terms). This includes, e.g., the probability for
the occurrence of a weather event at some point (which is denoted as a point prob-
ability) or the expected value of a random variable describing the weather at some
fixed location. Another approach is to consider probabilistic weather forecasts that
are related to geographical regions (or areas, in mathematical terms). An example
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is given using so-called area probabilities, which describe the chance of a weather
event occurring somewhere in an area (rather than at a fixed point). Area probabili-
ties can be of particular interest for the generation of automated warning guidances.
While the computation of precise and reliable point forecasts is very well devel-
oped, there are hardly any methods available for the analytical derivation of further
operationally applicable probabilistic forecasts (as, e.g., area probabilities). In [15]
approaches for the computation of area probabilities based on point probabilities
are proposed. However, the formulas derived in [15] are only valid under some
restrictive assumptions, which make them inappropriate for the use in operational
weather predictions on a non-local scale (e.g., the territory of Germany). A promis-
ing alternative is given by the development of spatial (or spatio-temporal) stochas-
tic models for the considered weather events, which allow us to derive probabilistic
forecasts based on repeated Monte-Carlo simulation.

1.2. Previous development. In the present paper we focus on the weather
event ‘occurrence of thunderstorms’. Unfortunately, stochastic models for thun-
derstorms can rarely be found in literature. In [17] a model for wind loads in
thunderstorms is proposed at single sites but no approaches for spatially contin-
uous modeling of thunderstorm cells seem to be available. However, there exist
a variety of spatial, temporal and spatio-temporal stochastic models for precipita-
tion that have been used for applications in various fields of hydrology, see, e.g.,
[3]. A frequently used approach is to represent precipitation cells as circular or
elliptical discs whose centers are modeled using spatial (or spatio-temporal) Pois-
son or cluster processes. Brief overviews of existing point-process-based models
can be found, e.g., in [18] or [19]. Unfortunately, certain limitations prevent the
use of these models in operational weather prediction. Most approaches assume
temporal and spatial stationarity and model fitting procedures (mostly for large
parameter sets) always rely on observed precipitation patterns derived from radar
data. In operational weather forecasting, however, it is crucial to account for the
(permanently changing) weather conditions in the current period and future fore-
cast periods rather than for weekly, monthly or yearly averages, which contradicts
the assumption of temporal stationarity. Model fitting based on radar observations
is not suitable, either. On the one hand, radar observations from periods prior to
the forecast period become inaccurate already after one hour. On the other hand,
radar data for the (future) forecast period are not available at the time the forecast is
made. Finally, forecasters are typically interested in stochastic models to be applied
on a non-local scale, which does not allow for spatial stationarity assumptions due
to different meteorological (areas of low or high pressure, changing over time) and
geographical (plains or mountainous regions, not changing over time) conditions.
Although not directly applicable in operational weather prediction, the mentioned
papers still provide some valuable ideas for the approaches presented in this paper.

1.3. Outline. To overcome the limitations mentioned above, a new spatial
stochastic model for precipitation cells has been developed recently, see [13] and
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[14], which better fulfills the requirements of operational weather prediction. In
that approach, precipitation cells occurring in a one-hour forecast period are rep-
resented by a germ-grain model with circular grains, which is based on a non-
stationary Cox point process. In Sect. 2 we first want to find out if this kind of
germ-grain model can also be applied for the modeling of thunderstorm cells. We
introduce model construction, describe model fitting and give a validation using
thunderstorm observations, where it turns out that the Cox germ-grain model is
not suitable for thunderstorm cells. Therefore, in Sect. 3 we propose a more gen-
eral and sophisticated germ-grain model for thunderstorm cells based on clustered
point processes. We again introduce model construction, provide procedures for
model fitting and describe a conditional simulation algorithm that provides a seam-
less transition from nowcasting based on observations to forecasting. A validation
shows that this kind of approach is able to provide point and area probabilities that
are much more reliable than those from previous methods.

2. MODELING THUNDERSTORM CELLS BASED ON COX PROCESSES

2.1. Underlying probability space. Before we describe a first approach for the
spatial modeling of thunderstorm cells, a suitable mathematical framework needs
to be specified. In the following, we always consider a fixed one-hour forecast pe-
riod T that can be interpreted as some subinterval of the real line with a length
of 60 minutes. With T − d for some d  0 we denote the one-hour time period
that starts (and ends) d minutes earlier than T . In order to adequately describe
an underlying probability space, we first need to briefly sketch the mechanics of
commonly used weather forecast models. At DWD, e.g., a first probabilistic fore-
cast is provided by the ensemble COSMO-DE-EPS1. Such forecasts, however, are
subject to both random and systematic errors, which result from uncertainties and
inaccuracies in model specifications and boundary values due to discretization and
parametrization. In order to eliminate systematic errors, a post-processing method,
e.g., Model Output Statistics (MOS), can be applied, which provides statistically
unbiased probabilistic forecasts, see [12] and [22]. These forecasts, however, are
still subject to random errors and can thus be interpreted as estimators of the un-
known future weather activity. To account for this, we introduce the probability
space (Ω,F , P ), where Ω is an abstract space, which describes all possible weather
scenarios and the corresponding forecasts provided by the weather forecast models
of DWD, F denotes a suitable σ-algebra of subsets of Ω and P is some probabil-
ity measure on (Ω,F). As mentioned above, probabilistic forecasts are subject to

1Probabilistic forecasts are provided using an ensemble of 20 numerical forecasts of the
COSMO-DE, see [2]. For the ensemble, the numerical model COSMO-DE is computed with a vari-
ation of model parameters and initial and boundary values, see [8]. From the distribution of the
resulting forecasts various probabilistic characteristics as, e.g., event probabilities can be estimated.
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a random error, which is modeled by the random variable E : Ω → S in the fol-
lowing, with S being the (abstract) measurable space of all such possible errors.
Heuristically speaking, conditioning on {E = e} for some realization e ∈ S of E
indicates that a specific forecast provided by the models of DWD (with error e) is
given, which is always the case in applications.

2.2. Modeling of point probabilities. As indicated in Sect. 1.1 and 2.1, re-
liable, unbiased point forecasts including point probabilities for the occurrence of
thunderstorms are derived by DWD using numerical models and statistical postpro-
cessing. Since these forecasts are interpreted as estimators, we model point prob-
abilities as random variables in the following. Let {Pt, t ∈ W} be a random field
in a bounded and convex observation window W ⊂ R2, where Pt : Ω → [0, 1]
denotes the random point probability for the occurrence of a thunderstorm at loca-
tion t ∈ W within the considered forecast period T . For each t ∈ W , we assume
the random variable Pt to be σ(E)-measurable, where σ(E) ⊂ F is the sub-σ-
algebra of events generated by E. Accordingly, if conditioned on {E = e} for
any realization e of E, the value of Pt is non-random and only depends on e.
In this case any realization of Pt can be identified by the conditional expectation
f(e) = E(Pt |E = e). In general, point probabilities can be estimated by DWD
for any location t inside the observation window W . In practice, however, this
is only done for a finite number of sites (e.g., a network of weather stations or
a regularly spaced lattice). For this purpose, we suppose that there is a sequence
s1, . . . , sn ∈ W of geographically distinct locations at which point probabilities
ps1 = E(Ps1 |E = e), . . . , psn = E(Psn |E = e) for a particular realization e of
E are available. A fundamental assumption in the modeling of probabilities for
the occurrence of thunderstorms is that there is a thunderstorm at some location
t ∈ W if and only if t is covered by at least one thunderstorm cell. Consequently,
for a random set M ⊂ W , which can be considered a model for the union of
all thunderstorm cells in W , the random point probability Pt is represented as
Pt = P (t ∈ M |E) for each t ∈ W . In order to give a more precise representa-
tion of point probabilities (and also further probabilistic characteristics such as,
e.g., area probabilities) the random union set M of thunderstorm cells needs to be
specified.

2.3. Modeling of thunderstorm cells. In a first attempt, we propose a model
for thunderstorm cells based on spatial Cox processes. A similar approach has been
applied successfully to the modeling of precipitation cells, see [13] and [14]. One
major requirement for the application in operational weather prediction is spatial
non-stationarity to account for geographical differences as well as locally vary-
ing weather conditions in the considered forecast period T . For this purpose, we
suppose that thunderstorm cells, or more precisely their cell centers, occur in W
according to a random intensity function {Λt, t ∈ W}, where Λt : Ω → [0,∞)
is a non-negative random variable modeling the intensity for the occurrence of a
thunderstorm at location t ∈ W . Analogous to the random point probabilities, Λt
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is assumed to be σ(E)-measurable for each t ∈W . In order to find a closed repre-
sentation of {Λt, t ∈ W}, which is crucial for model fitting and simulation, some
simplification is necessary. Since it is assumed that estimated point probabilities
are only available at the sites s1, . . . , sn, see Sect. 2.2, we suppose that, condi-
tioned on {E = e} for each e ∈ S, the intensity function {Λt, t ∈W} is piecewise
constant in certain neighborhoods of s1, . . . , sn. The most intuitive choice of such a
neighborhood is the Voronoi tessellation {V (s1), . . . , V (sn)} of s1, . . . , sn, where
V (si) is the Voronoi cell of si being defined as

V (si) = {x ∈W : ‖x− si‖ < ‖x− sj‖ for all j = 1, . . . , n with j 6= i}

for i = 1, . . . , n. With ‖x − s‖ we denote the Euclidean distance of two loca-
tions x, s ∈W . This implies the following representation of the intensity function
{Λt, t ∈W}:

Λt =
n∑

j=1

Aj 1V (sj)(t) for all t ∈
n⋃

i=1

V (si),

where 1V : W → {0, 1} denotes the indicator function of the set V ⊂ W and
A1, . . . , An : Ω→ [0,∞) are some non-negative, σ(E)-measurable random vari-
ables that can be interpreted as random local intensities for the occurrence of a
thunderstorm. If t ∈W is not located within any of the Voronoi cells, we set Λt to
the minimum intensity of all adjacent Voronoi cells. Having specified the intensity
of thunderstorm occurrence, a model for the centers of thunderstorm cells can be
given. For the approach considered in this section we use a spatial Cox point pro-
cess {Xi, i = 1, . . . , ZX} in W with random intensity function {Λt, t ∈ W}, see
[4], where ZX : Ω→ {0, 1, . . .} denotes the total number of thunderstorm cells in
W . In particular, the random variable ZX is almost surely finite. Clearly, the Cox
process {Xi, i = 1, . . . , ZX} cannot be assumed to be σ(E)-measurable because
even given a specific realization of the weather forecast, the weather activity in the
(future) forecast period T (which includes the occurrence of thunderstorms) is still
considered to be random.

While there are well developed methods for the detection and identification of
thunderstorm cell centers, see, e.g., [16], the determination of cell shapes and sizes
is hardly possible. Thus, it is unclear how the shape of thunderstorm cells should
be represented realistically. A reasonable simplifying approach is to model thun-
derstorm cells by circular discs with a common random radius R : Ω → (0,∞),
which is assumed to be σ(E)-measurable. This is equivalent to the assumption that
there is a thunderstorm at some location t ∈W if t has a distance of not more than
R km to at least one thunderstorm cell center. Accordingly, the random set M of
thunderstorms, which was introduced in Sect. 2.2, is represented as a germ-grain
model (see e.g. [1]), i.e.,

M =
ZX⋃
i=1

b(Xi, R),
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with b(x, r) = {y ∈ R2 : ‖y − x‖ ¬ r} denoting the two-dimensional (closed)
ball with center x ∈ R2 and radius r > 0. Note that the approach of modeling
thunderstorm cells as circular discs is also used by DWD, see NowCastMIX data
described in Sect. 2.5. Furthermore, circular or elliptical discs are often considered
for the modeling of precipitation cells, see e.g. [18], [19] or Sect. 1.2. Analogous
to the Cox process {Xi, i = 1, . . . , ZX} of cell centers, the germ-grain model M
cannot be assumed to be σ(E)-measurable.

2.4. Model fitting. Given {E = e} for some e ∈ S, the distribution of the
germ-grain model M for the union of thunderstorm cells is completely character-
ized by the corresponding realizations of the random local intensities A1, . . . , An

for the occurrence of thunderstorms and the random cell radius R. We propose
fitting methods to determine these model characteristics based on the available
point probabilities Ps1 , . . . , Psn . In applications, fitting as well as simulation of the
model is always performed in dependence of a particular realization of the weather
forecast models of DWD. Thus, in the following we consider a fixed realization
e ∈ S of the random errorE and the corresponding realizations ps1 = E(Ps1 |E =
e), . . . , psn = E(Psn |E = e), a1 = E(A1 |E = e), . . . , an = E(An |E = e) and
r = E(R |E = e). Note that conditioned on {E = e} the point process {Xi, i =
1, . . . , ZX} is a Poisson process with deterministic intensity function {λt, t ∈W},
where λt = E(Λt |E = e) for t ∈ W , and the germ-grain model M is a Boolean
model, see [1] and [9]. At DWD, observed thunderstorm cells are modeled as cir-
cular discs with a constant radius of 10 km. In order to provide consistence with
those observations in applications as performed in Sect. 2.5, we also set r = 10
km in the following2. Thus, only the intensities a1, . . . , an need to be estimated.
For that purpose, we first derive a representation formula for area probabilities ac-
cording to the proposed model. Let B(W ) denote the Borel σ-algebra on W . For
any B ∈ B(W ), the area probability π(B) for the occurrence of thunderstorms in
B given {E = e} is modeled as π(B) = P (B ∩M 6= ∅ |E = e). Using the dis-
tributional properties of Poisson processes, see [9], the following representation
formula can be derived:

π(B) = P (B ∩M 6= ∅ |E = e)

= 1− P (#{i : Xi ∈ B ⊕ b(o,R)} = 0 |E = e)

= 1− exp

{
−

∫
B⊕b(o,r)

n∑
i=1

ai1V (si)(t) dt

}

= 1− exp

{
−

n∑
i=1

ai
∫
R2

1(B⊕b(o,r))∩V (si)(t) dt

}

2In [13] a statistical method has been presented to estimate the radius r based on the correlation
structure of the available point probabilities ps1 , . . . , psn . This method has been applied successfully
to the modeling and simulation of precipitation cells.
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= 1− exp

{
−

n∑
i=1

ai ν2 ((B ⊕ b(o, r)) ∩ V (si))

}
,

where o ∈ R2 denotes the origin, ν2(·) is the two-dimensional Lebesgue mea-
sure, #C describes the cardinality of a countable set C and A⊕B = {x+ y, x ∈
A, y ∈ B} denotes the Minkowski sum of two sets A and B. By setting B = {sj}
for j = 1, . . . , n we immediately get the following representation formula of the
corresponding point probability psj for the occurrence of thunderstorms at site sj :

psj = 1− exp

{
−

n∑
i=1

ai ν2 (b(sj , r) ∩ V (si))

}
for all j = 1, . . . , n.

These equations can easily be rearranged to

log

(
1

1− psj

)
=

n∑
i=1

ai ν2 (b(sj , r) ∩ V (si)) for all j = 1, . . . , n,

which describes a system of n linear equations with the unknowns a1, . . . , an.
However, under the constraint that a1, . . . , an  0, this system of equations, in
general, cannot be solved exactly. Therefore, a1, . . . , an are computed by solving
this system of equations in a non-negative least squares sense, i.e.,

(a1, . . . , an) = argmin
a′1,...,a

′
n0

 n∑
j=1

(
log

(
1

1− psj

)
−

n∑
i=1

a′i ν2(b(sj , r) ∩ V (si))

)2
 .

2.5. Application and model validation. To conclude this chapter, a validation
of the proposed Cox germ-grain model for thunderstorm cells is performed. We
consider a convex observation window W containing the boundaries of Germany,
and a regularly spaced lattice consisting of 1,575 locations s1, . . . , s1575 ∈ W to-
gether with point probabilities for the occurrence of thunderstorms at these loca-
tions for a sequence of 2,205 one-hour forecast periods covering the months May,
June and July 2016 with forecast lead times of 1 to 3 hours ahead. The observation
window W , the locations s1, . . . , s1575 and the point probabilities ps1 , . . . , ps1575
for the forecast period July 11, 2016, 15-16 UTC (Universal Time, Coordinated)
are illustrated in Fig. 1 (top left), where the Voronoi cell V (si) of each location
si ∈ {s1, . . . , s1575} is colored according to the point probability psi . A typical
realization of the fitted germ-grain model for the same period is also shown in
Fig. 1 (bottom left). In order to analyze the quality of the developed model, we
use it for the computation of area probabilities. A reasonable choice for test areas
would be some partition of the observation window W . The Voronoi tessellation
{V (s1), . . . , V (s1575)}, however, is not appropriate since most Voronoi cells ap-
pear to be of same size and shape. To obtain test areas with varying shapes, sizes
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and orientations, we generate a realization of a homogeneous Poisson point pro-
cess in W , whose intensity is chosen such that the expected number of points
in W is equal to 1,000. We obtained a realization with 999 points and use the
cells of the corresponding Voronoi tessellation, denoted as B1 . . . , B999 in the
following, as test areas. For each available forecast period the area probabilities
π(B1), . . . , π(B999) are computed3 according to the formula stated in Sect. 2.4.
In Fig. 1 (top right) the test areas B1, . . . B999 are shown, where each area Bi is
colored according to the corresponding area probability π(Bi) for the forecast pe-
riod July 11, 2016, 15-16 UTC. Computed area probabilities correspond well with
the underlying data showing higher values in regions with higher point probabil-
ities and vice versa. Probabilities are not computed for some areas close to the
boundary of the observation window to avoid edge effects.

In order to perform a systematic model validation, we use NowCastMIX data,
which are based on radar and lightning4 observations. In NowCastMIX, centers of
thunderstorms are first recorded and thunderstorm cells are then modeled as discs
with a fixed radius of 10 km (which is the reason for choosing the same cell radius
in Sect. 2.4). Additional thunderstorm characteristics such as movement speed,
movement direction and hail flag (an indicator for thunderstorm strength taking
the values 0, 1 or 2) are derived from radar reflectivities using several radar pro-
cessing methods and are included in NowCastMIX data, see [11]. An example
is shown in Fig. 1 (bottom right), where cells are colored according to an inter-
nal classification of DWD and additionally some warning cones are illustrated
that show the possible movements of cells during the following hour. For each
test area B ∈ {B1, . . . , B999}, we consider the sequence π1(B), . . . , π2205(B)
of area probabilities (for the 2,205 available forecast periods) and a sequence
I1(B), . . . , I2205(B) of thunderstorm indicators, which are 1 if there is a thun-
derstorm within B in the corresponding forecast period with respect to NowCast-
MIX data and 0 otherwise. In order to compare area probabilities and thunderstorm
indicators, we analyze three score functions: the bias, the logarithmic skill score
and the empirical correlation coefficient. Another common score for probabilistic
weather forecasts is the Brier skill score, which is, however, less suitable for rare
events such as the occurrence of thunderstorms. The definition of the bias (differ-
ence of mean area probability and mean thunderstorm indicator from NowCast-
MIX) and the correlation coefficient should be clear but the logarithmic skill score
requires some more explanation, see also [22]. For each j ∈ {1, . . . , 2205} the ig-
norance ij of πj(B) is put to − log(πj(B)) if Ij(B) = 1 and to − log(1− πj(B))
if Ij(B) = 0. Then, the logarithmic score ls is defined as the mean of i1, . . . , i2205,

3Area probabilities can also be estimated based on repeated Monte Carlo simulation of the Cox
germ-grain model, which turns out to be more efficient than direct computation in most cases.

4Lightning data is LINET provided by Nowcast GmbH.
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Figure 1. Examples of data and simulation results for July 11, 2016, 15-16 UTC: point
probabilities at s1, . . . , s1575 (top left), area probabilities for B1, . . . , B999 computed
using the Cox germ-grain model (top right), typical realization of the Cox germ-grain

model (bottom left), thunderstorm observations from NowCastMIX (bottom right).

i.e., ls = 1
2205

∑2205
j=1 ij . Since the logarithmic score is difficult to compare for dif-

ferent forecast periods, it is related to the logarithmic score l̃s of a reference pre-
diction, where usually π̃i(B) = 1

2205

∑2205
j=1 Ij(B) for all i = 1, . . . , 2205 is used.

Then, the logarithmic skill score lss is defined as lss = 1− ls/l̃s. Of course, loga-
rithmic scores of analyzed area probabilities should not be bigger than those of the
(naive) reference prediction, which is why the logarithmic skill score is requested
to be clearly positive. The three scores are computed and illustrated for all test
areas that are not too close to the boundaries of W , see Fig. 2-4 (right), where
each area is colored according to the value of the corresponding score function.
Since the quality of computed area probabilities is expected to strongly depend on
the precision of the underlying point probabilities, the same score functions are
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also computed for the available data, see Fig. 2-4 (left), where each Voronoi cell
V (si) is colored according to the value of the score function at the correspond-
ing location si. At some locations in the Northwest of the observation window no
thunderstorms occurred during the entire period, which is why the corresponding
Voronoi cells are left white.We find that available point probabilities do not seem to

Figure 2. Biases of point probabilities from available data (left) and area probabil-
ities computed using the Cox germ-grain model (right) against NowCastMIX data.

contain any systematic bias (mean bias is -0.2 %, single values ranging between -2
% and 1 %) but only moderate logarithmic skill scores (mean value of 0.24, most
single values between 0 and 0.35) and correlation coefficients (mean value of 0.27,
most single values ranging from 0 to 0.4) are obtained. The results for the area
probabilities are different. We get reasonably high correlation coefficients (signifi-
cantly higher than for point probabilities with values between 0.1 and 0.6 for most
areas), which shows that the proposed model indeed produces higher probabilities
in periods and areas where thunderstorms occur than in those where thunderstorms
do not occur. However, the biases show that area probabilities are systematically
too high (the mean bias is 3 %, single values reaching up to 7 %), which makes
the Cox germ-grain model inappropriate for applications to spatial stochastic mod-
eling of thunderstorm cells. Logarithmic skill scores show slightly smaller values
than for point probabilities (mean value of 0.2), with even having negative values
for a few test areas.

3. MODELING THUNDERSTORM CELLS BASED ON CLUSTER PROCESSES

3.1. Model description. As shown in Sect. 2.5, the modeling of thunderstorm
cells based on Cox processes is not appropriate. A probable reason for the model’s
failure to provide reliable area probabilities is that it generates thunderstorm cells
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Figure 3. Logarithmic skill scores of point probabilities from available data (left) and area
probabilities computed using the Cox germ-grain model (right) against NowCastMIX data.

independently of each other. Observed thunderstorms, however, seem to occur in
clusters, see Fig. 1 (bottom right). Therefore, a different approach for the spa-
tial modeling of thunderstorm cells is proposed in this section. In the following,
we again consider a fixed one-hour forecast period T as well as the probabil-
ity space (Ω,F , P ) and the random error E of the weather forecast models of
DWD introduced in Sect. 2.1. Furthermore, s1, . . . , sn ∈ W describe a sequence
of locations in the observation window W at which realizations of the random
σ(E)-measurable point probabilities Ps1 , . . . , Psn for the occurrence of thunder-
storms are available, see Sect. 2.2. Finally, {V (s1), . . . , V (sn)} again denotes
the Voronoi tessellation of s1, . . . , sn in W as introduced in Sect. 2.3. We start
with the modeling of cluster centers. For that purpose, consider a spatial Cox
process {Yi, i = 1, . . . , ZY } defined on (Ω,F , P ) with random intensity function
{Λ(0)

t , t ∈W} defined by

Λ
(0)
t =

n∑
j=1

A
(0)
j 1V (sj)(t) for all t ∈

n⋃
i=1

V (si).

The σ(E)-measurable random variables A(0)
1 , . . . , A

(0)
n : Ω → [0,∞) can be in-

terpreted as local random intensities for the formation of a thunderstorm clus-
ter. If t ∈ W is located on the boundaries of one or more Voronoi cells (i.e.,
t /∈
⋃n

i=1 V (si)), then Λ
(0)
t is set to the minimum intensity of all adjacent Voronoi

cells (like in the definition of {Λt, t ∈ W} in Sect. 2.3). For the modeling of the
clusters themselves some simplification is necessary again since the shapes of
observed thunderstorm clusters vary significantly across space and time and can
therefore hardly be determined. We suggest modeling these clusters as circular
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Figure 4. Empirical correlation coefficients of point probabilities from available data (left) and
area probabilities computed using the Cox germ-grain model (right) against NowCastMIX data.

discs around the points of the Cox process {Yi, i = 1, . . . , ZY } as follows. The
centers of thunderstorms occurring in each cluster are also described using Cox
processes, where we assume that in different clusters they are (conditionally) in-
dependent of each other, given {E = e}. In order to specify this mathematically,
we consider a sequence {X(1)

i , i = 1, . . . , ZX(1)}, {X(2)
i , i = 1, . . . , ZX(2)}, . . .

of identically distributed spatial Cox processes in W , which are (conditionally)
independent of each other and of the point process {Yi, i = 1, . . . , ZY } of cluster
centers given that {E = e}, and have a random intensity function {Λ(1)

t , t ∈ W}
defined as

Λ
(1)
t = A(1)1b(o,R(1))(t) for all t ∈W.

Here, the σ(E)-measurable random variable A(1) : Ω→ [0,∞) can be interpreted
as random cluster intensity and the σ(E)-measurable random variable R(1) : Ω→
(0,∞) describes the cluster radius. In order to give a proper representation of the
process of all thunderstorm centers, we also consider the random counting mea-
sures {N (1)

B , B ∈ B(W )}, {N (2)
B , B ∈ B(W )}, . . . that correspond to the Cox pro-

cesses {X(1)
i , i = 1, . . . , ZX(1)}, {X(2)

i , i = 1, . . . , ZX(2)}, . . ., i.e., N (j)
B : Ω →

{0, 1, . . .} with N (j)
B = #{i : X

(j)
i ∈ B} for all B ∈ B(W )} and j ∈ {1, 2, . . .}.

Based on this, we introduce the random counting measure {NB, B ∈ B(W )} de-
fined as

NB =
ZY∑
i=1

N
(i)
(B−Yi)∩W for all B ∈ B(W ).

Then, there is a uniquely defined point process {Xi, i = 1, . . . , ZX} that satisfies
NB = #{i : Xi ∈ B} for allB ∈ B(W ), see Lemma 9.1.XIII in [6], which is used
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as a model for the centers of thunderstorm cells in W within the forecast period
T . In literature, this kind of process is referred to as a (doubly-stochastic) cluster
process, see, e.g., Chap. 6.3 in [5]. Due to the Cox process {Yi, i = 1, . . . , ZY }
of cluster centers being non-stationary, the process {Xi, i = 1, . . . , ZX} of thun-
derstorm cell centers also has this property. Finally, the random closed set M that
models the union set of thunderstorm cells is represented as a germ-grain model
based on the cluster process {Xi, i = 1, . . . , ZX}, i.e.,

M =
ZX⋃
i=1

b(Xi, R),

where the σ(E)-measurable random variable R : Ω → (0,∞) describes the ran-
dom radius of thunderstorm cells.

3.2. Model fitting: intensities of cluster centers. Since the germ-grain model
M for the union of thunderstorm cells specified in Sect. 3.1 is based on a more
complex point process model than that one considered in Sect. 2, there are also
more model parameters that need to be determined. In our approach proposed
in Sect. 3.1 for spatial stochastic modeling of thunderstorm cells, the conditional
distribution of M given {E = e} is completely characterized by the correspond-
ing realizations of the random local intensities A(0)

1 , . . . , A
(0)
n for the formation

of thunderstorm clusters, the random cluster intensity A(1), the random cluster
radius R(1) and the random cell radius R. Analogous to the model fitting de-
scribed in Sect. 2.4, we consider in the following a fixed realization e ∈ S of
the random error E occurring in the weather forecast models of DWD and the
point probabilities ps1 = E(Ps1 |E = e), . . . , psn = E(Psn |E = e) for the occur-
rence of thunderstorms at sites s1, . . . , sn. Furthermore, with a(0)1 = E(A

(0)
1 |E =

e), . . . , a
(0)
n = E(A

(0)
n |E = e), a(1) = E(A(1) |E = e), r(1) = E(R(1) |E = e)

and r = E(R |E = e) the corresponding realizations of the model characteristics
describing M are denoted. Conditioned on {E = e}, the point process {Xi, i =
1, . . . , ZX} of thunderstorm cell centers is a Neyman-Scott process, see, e.g., [4]
and [20], with random intensity function {Λt, t ∈W} defined by

Λt = a(1)
ZY∑
i=1

1b(Yi,r(1))
(t) for all t ∈W.

Furthermore, given {E = e}, the point process {Yi, i = 1, . . . , ZY } is a Poisson
process with intensity function {λ(0)t , t ∈ W} defined by λ(0)t = E(Λ

(0)
t |E = e).

In order to provide comparability of simulated thunderstorm cells with observed
ones in applications as performed in Sect. 3.5, we set r = 10 km in the follow-
ing. For the estimation of the intensity parameters a(0)1 , . . . , a

(0)
n we use a simi-

lar approach as in Sect. 2.4. At first, we derive a representation formula for area
probabilities according to the proposed cluster model. Due to the properties of
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{Xi, i = 1, . . . , ZX} being a Cox process and {Yi, i = 1, . . . , ZY } being a Pois-
son process conditioned on {E = e}, the area probability π(B) for the occurrence
of thunderstorms in B ∈ B(W ) can be computed by

π(B) = P (B ∩M 6= ∅ |E = e)

= 1− P (#{i : Xi ∈ B ⊕ b(o,R)} = 0 |E = e)

= 1− E

(
exp

{
−

∫
B⊕b(o,r)

a(1)
ZY∑
i=1

1b(Yi,r(1))
(t)dt

})

= 1− E

(
ZY∏
i=1

exp
{
−a(1)ν2

(
(B ⊕ b(o, r)) ∩ b(Yi, r(1))

)})

= 1− exp

{∫
R2

(
exp

{
−a(1)ν2

(
(B ⊕ b(o, r)) ∩ b(t, r(1))

)}
− 1
)
λ(0)(t)dt

}

= 1− exp

{
−

n∑
i=1

a
(0)
i

∫
V (si)

(
1− exp

{
−a(1)ν2

(
(B ⊕ b(o, r)) ∩ b(t, r(1))

)})
dt

}
,

where in the third equality we use the distributional properties of Cox processes,
see [5], Sect. 6.2, and in the fifth equality a representation formula for the gener-
ating functional of Poisson processes is applied, which can be found in [20], The-
orem 3.2.4. In particular, this implies a representation formula for point probabil-
ities by setting B = {t} for any t ∈W . Accordingly, the intensities a(0)1 , . . . , a

(0)
n

should satisfy

psj = 1− exp

{
−

n∑
i=1

a
(0)
i I(si, sj)

}
for j = 1, . . . , n

and for fixed a(1), r(1) and r, where

I(si, sj) =
∫

V (si)

(
1− exp

{
−a(1)ν2

(
b(sj , r) ∩ b(t, r(1))

)})
dt for i, j = 1, . . . , n.

By rearranging the latter equation appropriately we obtain that

log

(
1

1− psj

)
=

n∑
i=1

a
(0)
i I(si, sj) for j = 1, . . . , n,

which describes a system of n linear equations with unknowns a(0)1 , . . . , a
(0)
n  0.

Due to this constraint, there is no exact solution of this system of equations in
general, which is why we compute a(0)1 , . . . , a

(0)
n in a non-negative least squares

sense according to

(a
(0)
1 , . . . , a(0)n ) = argmin

a′1,...,a
′
n0

 n∑
j=1

(
log

(
1

1− psj

)
−

n∑
i=1

a′iI(si, sj)

)2
 .
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3.3. Model fitting: cluster intensity and cluster radius. It remains to deter-
mine the cluster intensity a(1) and the cluster radius r(1). Unfortunately, it does
not seem that these parameters can also be estimated based on the available point
probabilities. Thus, we suggest using the thunderstorm observations from Now-
CastMIX, see Sect. 2.5, for this purpose. In the presented fitting approach, clusters
of thunderstorm cells are first identified using an established cluster algorithm and
are then used to determine a(1) and r(1) according to the sizes and intensities of
obtained clusters. Of course, when making a forecast for the one-hour forecast pe-
riod T , the thunderstorm records for that period are not yet available. Thus, we
consider the latest one-hour period prior to T for which records of NowCastMIX
are available and which can be represented as T − d with some d  60 minutes.
The best case (d = 60) is given when the forecast is made directly at the beginning
of period T . While the total number and the positions of thunderstorm cells can
change quickly over time, we observe that typical sizes of thunderstorm clusters
and the number of storms per cluster only change gradually. Thus, we suppose
that both a(1) and r(1) (for period T ) can be estimated based on NowCastMIX
records of period T − d. At first, a cluster analysis is performed to identify clusters
of thunderstorm cell centers. For this purpose, we implemented the density-based
spatial clustering of applications with noise (DBSCAN) algorithm, see [7]. This
algorithm seems to be particularly suitable since it can recognize clusters of arbi-
trary shapes, it is possible to account for outliers (which are interpreted as noise)
and the number of clusters to be found does not need to be known a priori (as re-
quired, e.g., in the k-means clustering algorithm). DBSCAN has two parameters:
the maximum neighborhood radius ε and the minimum number minPts that is
required to form a cluster. Comparisons of results for different parameter config-
urations have shown that when applied to thunderstorm observations, ε = 20 km
and minPts = 3 seem to be reasonable choices. An example for the NowCast-
MIX observations from July 11, 2016, 15-16 UTC is illustrated in Fig. 5, where all
thunderstorm cells of a given cluster have the same color, compare also with Fig. 1
(bottom right). Let c1, . . . , cm denote the clusters detected by the DBSCAN al-
gorithm. Next, in order to find cluster sizes, we determine for each cluster ci the
radius rmax

i > 0 of the smallest circle that contains all corresponding thunderstorm
cell centers. For modeling clusters with an approximately circular shape, e.g., the
cluster colored in light blue in Fig. 5, a disc with radius rmax

i seems suitable. For
more elongated clusters, as, e.g., the green one in southern Germany, however, it
is unlikely that the cluster can be represented by a disc with radius rmax

i . It seems
more realistic that this cluster can be modeled by several circular discs with smaller
radii that are located directly next to each other. To account for this, we determine
for each cluster ci the convex hull hi of the set of all cell centers that belong to
ci and determine the radius rmin

i > 0 of the biggest circle that is completely con-
tained in hi as also illustrated in Fig. 5. Then, to each cluster ci a radius ri > 0 is
assigned in dependence of the ratio of rmin

i and rmax
i according to the following

algorithm.
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Figure 5. Results of the clustering algorithm for
July 11, 2016, 15-16 UTC showing 8 identified clusters.

1. The minimum cluster radius is supposed to be equal to 10 km. This implies
that if rmax

i ¬ 10 km, then ri = 10 km.
2. If 10 km < rmax

i ¬ 20 km, then we always put ri = rmax
i .

3. If 20 km < rmax
i ¬ 35 km, then the following applies. If rmin

i < 0.4 rmax
i ,

we put ri = rmin
i , otherwise ri = rmax

i .
4. If 35 km < rmax

i ¬ 50 km, then the following applies. If rmin
i < 0.55 rmax

i ,
we put ri = rmin

i , otherwise ri = rmax
i .

5. If 50 km < rmax
i , then the following applies. If rmin

i < 0.65 rmax
i , we put

ri = rmin
i , otherwise ri = rmax

i .
6. The maximum cluster radius is assumed to be equal to 70 km. This implies

that if ri > 70 km, then ri is reduced to 70 km.
Finally, in order to find the typical cluster radius r(1), we compute the mean

value of the individual cluster radii r1, . . . , rm, i.e., r(1) = 1
m

∑m
i=1 ri.

To conclude model fitting, the cluster intensity a(1) has to be estimated. Let
k denote the total number of thunderstorms contained in all clusters c1, . . . , cm.
For all i = 1, . . . ,m we determine the minimal number li of discs with radius r(1)

that is needed to cover all thunderstorm cell centers in cluster ci. The sum l =
l1 + . . . + lm can then be interpreted as the total number of circular clusters with
radius r(1) and the ratio k/l denotes the mean number of thunderstorm cells per
cluster. Accordingly, the intensity a(1) can be computed as a(1) = k/(l π(r(1))2).
In periods with very weak or no thunderstorm activity it may happen that no thun-
derstorms are observed or that no clusters are detected by the DBSCAN algorithm
(i.e., all thunderstorm cells are considered to be noise) in period T − d. In these
cases, we recommend to put a(1) = 4/(π(r(1))2) and r(1) = 11 km. These are the
mean values of a(1) and r(1) from all one-hour periods with no detected thunder-
storm cluster in the previous period according to the dataset considered in Sect. 3.5.
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3.4. Conditional simulation of thunderstorm cells. In this section we sug-
gest realizing the cluster-based germ-grain model of thunderstorm cells condition-
ally with respect to previously detected thunderstorm cells from the NowCastMIX
data. Using this additional data can further increase forecast quality. In order to
do so, area probabilities of thunderstorms are estimated based on repeated (condi-
tional) Monte Carlo simulation of the underlying germ-grain model M instead of
being computed according to the formula derived in Sect. 3.2. Let T again denote
the one-hour time period for which the forecast is made and T − d with d  60
minutes is the latest one-hour period for which thunderstorm observations from
NowCastMIX are available. With x1, . . . , xp ∈ W we denote the centers of all
thunderstorm cells recorded by NowCastMIX for period T − d. If d is small, then
there is a chance that some of these cells still exist (with changed positions) dur-
ing period T . For that purpose, the distribution of lifetimes of thunderstorm cells
has been estimated, which depends on the thunderstorm’s hail flag given in the
NowCastMIX data, see Fig. 6 and [21]. At first, the total lifetime of each cell

Figure 6. Distribution of the lifetimes of thunderstorm cells for different hail flags.

xi is generated based on the estimated distributions (in dependence of the storms
hail flag). Then, the remaining lifetime of xi (from the time it was observed un-
til its death) is simulated by multiplying the total lifetime with a realization of a
standard uniformly distributed random variable. Knowing the exact time when xi
was observed, we can now easily determine whether xi still exists during period
T or not. Let {x̃1, . . . , x̃q} ⊂ {x1, . . . , xp} with q ¬ p denote all thunderstorm
cell centers from period T − d that still exist in period T . As x̃1, . . . , x̃q represent
their positions in the interval T − d, the random movements of these cells have
to be simulated next. Since NowCastMIX also provides the movement speed and
the movement direction at the time of observation, we can determine the area of
all possible positions x̃i can have between the beginning of period T and its death
(similar to the warning cones in Fig. 1, bottom right). This area is computed using
a propagation angle of 7.5◦ in NowCastMIX, making it a triangle or a trapezoid,
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within which we uniformly generate the new location yi ∈W of the i-th surviving
cell. Thus, {y1, . . . , yq} can be interpreted as a possible set of thunderstorm cell
centers that were observed in period T − d (at different locations) and still exist in
the forecast period T .

We propose the following algorithm to generate a realization of the germ-grain
model M given the surviving cell centers y1, . . . , yq.

1. Let U =
⋃q

i=1 b(yi, r
(1)). Compute the expected numbers λin =

∫
U
λ
(0)
t dt

and λout =
∫
W\U λ

(0)
t dt of cluster centers inside and outside of U , respectively.

2. Generate two realizations xin and xout of two Poisson distributed random
variables with parameters λin and λout, respectively.

3. If possible, simulate xin cluster centers inside U independently according
to the intensity function {λ(0)t , t ∈ U} under the condition that each of the discs
b(y1, r

(1)), . . . , b(yq, r
(1)) contains at least one cluster center. If this is not possible

(i.e., if xin is too small), generate more than xin cluster centers (as many as neces-
sary) but reduce xout accordingly by the additional number of simulated centers5.

4. Simulate xout cluster centers outside U independently according to the
intensity function {λ(0)t , t ∈ W \ U}. If xout ¬ 0 due to a possible reduction in
step 3, then skip this step and go to step 5.

5. Put a disc with radius r(1) around all cluster centers generated in steps 3
and 4 in order to generate the cluster discs.

6. Generate a realization x′ of a Poisson distributed random variable with
parameter (xin + xout)a

(1)π(r(1))2. Put x = x′ − q, which can be interpreted as
the number of thunderstorm cell centers to be simulated.

7. Repeat x times the following. Choose one cluster generated in step 3 or
4 at random and generate a uniformly distributed thunderstorm cell center in the
corresponding cluster disc.

8. Put a disc with radius r around each point generated in step 7 and around
each remaining cell center yi for i = 1, . . . , q. The union of all these discs can be
interpreted as a realization of M under the conditions that

(i) the realization contains the thunderstorm cells with centers y1, . . . , yq and
(ii) the expected number of generated thunderstorm cells is not changed com-

pared to unconditional simulation.
The entire procedure described in this section can also be applied using not

only observed thunderstorm cells from period T − d but also from earlier periods
(depending on how big d is chosen) since thunderstorms, in particular those with
hail flag 2, have a good chance to exist two hours or even longer.

5According to the properties of Poisson point processes, the number of cluster centers #{i :
Yi ∈ U} in U and the number of cluster centers #{i : Yi ∈ W \ U} outside U should be inde-
pendent random variables. However, if xout is not reduced accordingly if more than xin cluster
centers are needed to get one of them in each disc b(yi, r

(1)) for i = 1, . . . , q, we will generate too
many clusters on average. This will introduce a model bias that leads to significantly too high area
probabilities in applications.
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3.5. Application and model validation. In this section we perform a validation
of the proposed cluster-based germ-grain model for thunderstorm cells. For this
purpose, we again consider the forecast periods, point probabilities, test areas and
thunderstorm records from NowCastMIX that were introduced in Sect. 2.5. When
estimating the cluster parameters as described in Sect. 3.3 and using the conditional
simulation algorithm stated in Sect. 3.4, we assume that forecasts are always made
directly at the beginning of the corresponding forecast period and that NowCast-
MIX data are available for the one-hour period before the forecasting period, which
means that d = 60 minutes. When applying conditional simulation, NowCastMIX
data is used for the condition and for validation. However, for the condition only
data prior to the start of the forecast period is used, whereas for validation data is
considered that is not available when the forecast is made. In Fig. 7 two typical
realizations of the germ-grain model M are shown. The image on the left-hand
side shows a realization of M as described in Sect. 3.1, whereas for the image on
the right-hand side the conditional simulation algorithm stated in Sect. 3.4 is used.
Both realizations resemble the corresponding thunderstorm observations shown
in Fig. 1 (bottom right) much better than the realization of the Cox germ-grain
model in Fig. 1 (bottom left), with the conditionally simulated realization being
even more similar to the NowCastMIX data. Also when comparing area probabil-

Figure 7. Typical realizations of the cluster-based germ-grain model
for July 11, 2016, 15-16 UTC generated by unconditional simula-

tion (left) and conditional simulation using NowCastMIX data (right).

ities, we observe significant differences among the various approaches considered
in this paper. Fig. 8 illustrates the test areas B1, . . . , B999 colored according to
the corresponding area probabilities π(B1), . . . , π(B999) for the forecast period
July 11, 2016, 15-16 UTC, where all area probabilities are computed by means of
the formula derived in Sect. 3.2. We observe that the area probabilities in Fig. 8
correspond well to the underlying point probabilities, see Fig. 1 (top left), and also
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resemble the area probabilities in Fig. 1 (top right) with the only difference that
they are considerably lower now. Estimation of point and area probabilities based
on conditional Monte Carlo simulation of the proposed model leads to clearly dif-
ferent results, compare Fig. 9 (left) with Fig. 1 (top left) and Fig. 9 (right) with
Fig. 8. Both point and area probabilities look much sharper now, forecasting a high
probability for a few points/areas, instead of low or medium probabilities in the
entire South and East of Germany. We also observe that the estimated probabilities
correspond particularly well with the thunderstorm observations for this period,
compared to Fig. 1 (bottom right).

Figure 8. Area probabilities of B1, . . . , B999 computed (unconditionally) ac-
cording to the cluster-based germ-grain model for July 11, 2016, 15-16 UTC.

Figure 9. Thunderstorm probabilities for July 11, 2016, 15-16 UTC estimated by con-
ditional simulation of the cluster-based germ-grain model using NowCastMIX data:
point probabilities of s1, . . . , s1575 (left), area probabilities of B1, . . . , B999 (right).

To conclude this example of our application and to formally show the perfor-
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mance of the model, we compute the biases, logarithmic skill scores and empirical
correlation coefficients of estimated probabilities and observed thunderstorm indi-
cators. In Fig. 10 the test areas B1, . . . , B999 are colored according to the corre-
sponding scores for area probabilities computed by means of the formula derived in
Sect. 3.2. The results reveal that the cluster-based germ-grain model is much more
suitable for the modeling of thunderstorm cells than the Cox germ-grain model
considered in Sect. 2. Compared to Fig. 2 (right), biases were reduced drastically
(the mean bias is -0.4 %, single values are between -3 % and 2 %). The lowest
and highest biases occur in those regions, where similar biases are also present in
the underlying point probabilities, see Fig. 2 (left). Logarithmic skill scores are
positive for all test areas over land (mean value of 0.28, single values ranging be-
tween 0.15 and 0.4) and thus clearly higher than for the Cox germ-grain model of
Sect. 2, see Fig. 3 (right). Correlation coefficients have similar values as for the
Cox germ-grain model (mean value of 0.4, most single values between 0.25 and
0.6), compare to Fig. 4 (right). Finally, we observe that forecast quality can be
improved significantly when point and area probabilities are estimated based on
conditional simulation of the cluster-based germ-grain model. In Fig. 11 and 12
the considered score functions for point and area probabilities are shown. When
comparing estimated point probabilities with those probabilities from the available
data, see Fig. 2-4 (left), we find that logarithmic skill scores (mean value 0.51, sin-
gle values reaching up to 0.7) and correlation coefficients (mean value 0.63, single
values reaching up to 0.8) are considerably higher when using conditional simula-
tion. Furthermore, no model bias is introduced. The results for area probabilities
are even more convincing. A comparison of scores with those in Fig. 10 shows
drastically increased logarithmic skill scores (mean value of 0.49, single values up
to 0.65) and correlation coefficients (mean value of 0.71, almost all single values
between 0.55 and 0.8) together with a mean bias of less than 1%. This shows im-
pressively that estimation of both point and area probabilities (conditioned on past
thunderstorm observations) according to the method presented in this section has
a very high precision and thus is a valuable tool in the forecasting of thunderstorm
events for short lead times.

4. CONCLUSION

In the present paper we considered two different approaches for spatial stochas-
tic modeling of thunderstorm cells with the purpose of estimating point and area
probabilities for the occurrence of thunderstorms. In both approaches thunderstorm
cells were represented by germ-grain models that are based on different types of
spatial point processes. For the developed models, formulas for the computation
of point and area probabilities were derived. The first approach, where cell centers
were modeled using Cox processes, turned out to be inappropriate, due to intro-
ducing systematic biases to computed area probabilities. The second approach in-
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Figure 10. Comparison of area probabilities computed according to the cluster-based
germ-grain model with thunderstorm indicators from NowCastMIX: biases (top left),

logarithmic skill scores (top right) and empirical correlation coefficients (bottom).

volved the utilization of spatial doubly-stochastic cluster processes for modeling of
thunderstorm cell centers. In contrast to the Cox germ-grain model, which can be
fitted relying solely on available point probabilities, the cluster-based approach also
requires thunderstorm records of past periods to statistically determine all model
parameters. The benefit of using this more complex model is its ability to provide
reliable area probabilities, which perform even better (according to computed val-
idation scores) than the underlying point probabilities. The forecast quality can be
considerably increased even more if realizations of the model are generated con-
ditionally on thunderstorm records from past periods leading to a very high cor-
respondence of simulated model realizations and thunderstorm observations for
short forecast lead times. In this way, nowcasting data based on radar and lightning
observations is seamlessly combined with forecast probabilities from numerical
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Figure 11. Comparison of point probabilities estimated using conditional simulation of
the cluster-based germ-grain model with thunderstorm indicators from NowCastMIX: biases
(top left), logarithmic skill scores (top right) and empirical correlation coefficients (bottom).

models and statistical postprocessing. The model does neither assume spatial nor
temporal stationarity and model fitting does not require any observations from the
period the forecasts are made for. This, together with the reasonable computation
time, makes the model suitable for applications in operational weather prediction.
A certain limitation is that the model is designed for short lead times only (up to
six hours maximum), whereas the conditional simulation algorithm only makes
sense for lead times up to two hours. A possible topic of future work could be, e.g.,
the incorporation of elliptic clusters, spatially varying cluster parameters or even
the integration of precipitation produced by single thunderstorm cells in order to
provide meteorologically more realistic thunderstorm realizations.
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Figure 12. Comparison of area probabilities estimated using conditional simulation of the
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