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ABSTRACT

We suggest a procedure for quantitative quality controbaidgraphic reconstruction algorithms. Our task-
oriented evaluation focuses on the correct reproductiophafse boundary length and has thus a clear im-
plication for morphological image analysis of tomograptata. Indirectly the method monitors accurate
reproduction of a variety of locally defined critical imagsafures within tomograms such as interface posi-
tions and microstructures, debonding, cracks and poresog@oaphic errors of such local nature are neglected
if only global integral characteristics such as mean squde¥iation are considered for the evaluation of an
algorithm. The significance of differences in reconstruttijuality between algorithms is assessed using a
sample of independent random scenes to be reconstructede Bne generated by a Boolean model and thus
exhibit a substantial stochastic variability with respectmage morphology. It is demonstrated that phase
boundaries in standard reconstructions by filtered bagkption exhibit substantial errors. In the setting of
our simulations, these could be significantly reduced byube of the innovative reconstruction algorithm
DIRECTT.

Keywords: Tomography, Reconstruction Algorithm, Morpdgital Image Analysis, Phase Boundary, Metro-
logy, Non-Destructive Testing.

INTRODUCTION the further analysis of the tomograms in a specific ap-
plication e.g. from medicine or materials science. Typi-

The principle of tomographic reconstruction of acal FOMszr medical applications_ar_e based on curves
volume from lower-dimensional projections as e.g. apr the receiver operator characterl_stlcs. They allow to
plied in X-ray or electron tomography was mathe_stu_dy_t_he dete_:ctablllty of different tissues and thus the
matically discovered by Radon (1917). For a Compre[ellablllty of dlagnosths (Hanson, 1990; Herman and
hensive introduction and important aspects of applica®Ungd: 1989). There is a large variety of FOMSs fo-
tions see e.g. Banhart (2007), Buzug (2008), and FrarfdSing on the correct reproduction of gray values. The
(2005). Tomographic reconstructions can be computcce?‘OSt common representative Qf gray value oriented
by a variety of different techniques such as filtere OMs is the mean squared deviation
backprojection (FBP) (Feldkampt al, 1984; Kak
and Slaney, 2001), algebraic reconstruction techniques d = \/Z(xﬁecx?ha”)z/\/Z(xf’ha”)Z, (1.1)
(ART) (Carazoet al, 2005; Gilbert, 1972), geomet- ] ]
ric tomography (Gardner, 1995) or discrete tomogra-
phy (Batenburg, 2005; Herman and Kuba, 2007). Thavhich averages over the gray value differenef$—
comparative evaluation of these algorithms is naturallyP"a" yanween all pixelg in the reconstruction and the
dependent on the choice of quality criteria. These arghantom (Gilbert, 1972; Hansit al, 2008). Alter-
mathematically formulated by a figure of merit (FOM) natively, mean absolute differences of gray values as
measuring the deviation of a phantom data set from itgell as deviations of gray value means and variances
reconstruction, which is computed from simulated proin the reconstruction from the respective values of the
jections of the phantoms. Since ranking of the reconphantom have been considered (Sorzanal., 2001).
struction quality provided by different algorithms is Moreover, phase-specific mean gray values have been
FOM-dependent (Herman and Odhner, 1991), FOMased to assess the detectability of different components
need to be chosen in a task-oriented way (Hansomyithin a material (Sorzanet al.,, 2001).
1990). That means, the FOM needs to detect differEspecially if -as in real experiments- the density to re-
ences in reconstruction quality which are relevant t@wonstruct is unknown, reconstruction residuals can be a
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valuable source of information for assessing the qualkresent challenges for correct reconstruction (e.g. cer-
ity of a tomogram (Langet al., 2008). These residuals tain gray value gradients) can be incorporated. How-
are obtained by subtracting a simulated projection oéver, insights with respect to the statistical significance
the reconstruction from the measured projection for albf differences in reconstruction quality can only be
rotation angles. gained if instead of a small number of determinis-
All approaches described above focus on global accuic phantoms a sufficiently large sample of random
racy of the reconstruction, whereas evaluation resulghantom data is investigated (Hanson, 1990; Herman,
can hardly be interpreted with respect to the prese009; Herman and Yeung, 1989; Mak al, 1994
vation of locally defined image characteristics such agnd 1996). This way statistical tests can be applied to
little cracks in the material or the exact shape of phaseompare reconstruction errors caused by different al-
boundaries. Correct reconstruction of locally defined@orithms. Many types of artifacts in tomographic re-
characteristics is however crucial for unbiased compuconstructions such as smearing or stripes result from
tation of morphological image characteristics such a#e relative positions of single objects within the scene
connectivity, boundary length or surface area. Quant® be reconstructed (Hanson, 1990). Thus, a sample of
titative information on these characteristics is a valufandom phantoms resembling the experimentally oc-
able source of information in a wide range of appli-curring range of scenes ensures t_hat statistically signif-
cations such as metrology (Neuschaefer-Rabal, icant errors of this type are taken into account, whereas
2008), pathology (Mattfeldst al, 2007), environmen- they may not even occur in determlnlstlc_phantom
tal health (Stoegeet al, 2006) or design of materi- data. To the best of our knowledge in previous stud-

als (Frostet al, 2006). We therefore suggest to di- €S Samples of phantoms have only been generated

rectly incorporate measurements of morphological imYnder moderate randomization with respect to object

age characteristics into the FOMs used to evaluate t®0Sitioning. In particular, objects were clearly sepa-
g rated from each other (Hanson, 1990). For studies dis-

mographic reconstruction algorithms. Apart from mea- . -~ P . .
surements of phase boundary length and surface ar yssing detectabmj[y of tumors in b|o_Iog|ca_I tissue po-
ential tumor locations were even fixedpriori and

(see e.g. Parlet al, 2000) many other morpholo- ndom effects were limited to Bernoulli experiments
gical characteristics such as connectivity (Ohser anffnoo > W imited ulll exper
marking the sites as occupied by a tumor or by reg-

Schladitz, 2008) and fractal dimension (Baumaain lar tissue (Hanson, 1990; Herman 1989). Compared
3"’.199\:;’\3 are setr;]5|lt|ve tg thg thape of phlaselbou 0 these images the phantoms considered in our study
Ssziﬁbn eunae“\;eralgness heC| E o;ss_essb oca recoe_nx_hibit a substantially higher morphological variabil-
; N quailty g phase boundaries by measu ty. They are realizations of a model from stochastic
ing deviations in boundary length between the origina eometry, namely a 2D Boolean model consisting of
2D phantom images and their tomographic reconstru ’

: : yverlapping discs (Molchanov, 1997; Schneider and
tions. Other appro_aches, V.Vh'ch have been sugge_s'ged eil, 2008), which are placed at randomly chosen lo-
study reconstruction quality with focus on the vicin-

; . , cations within the image (for details see Section Phan-
ity of phase boundaries, are based on weighted avergsy, pata). Thus, our phantom data reflect properties

ging of gray value deviations between phantom and rés¢ composite or porous materials with an irregular spa-
construction (Sorzanet al, 2001), where weighting is 15| structure, which nevertheless exhibit spatial homo-
with respect to distance from phase boundaries. In conseneity in the sense of stochastic geometry. Repeated
trast to this FOM our method provides a direct assesgampling from the Boolean model sets us in a posi-
ment of reconstruction quality in terms of quantitativejgn to compare reconstruction errors of different al-
morphologicalimage analysis. Previous methods to 10gorithms by two-sample-goodness-of-fit tests. In this
cally evaluate reconstruction quality consider averag@ay, differences in reconstruction quality of two algo-
gray value deviations within certain regions of inter-rithms can be assessed on a statistically sound basis.
est (Furuieet al, 1994) and thus have the additionaIThe approach we suggest occurs particu|ar|y natural
disadvantage that these regions need to be speeifiedor the selection of tomographic reconstruction algo-
priort. rithms in applications aiming at the quantitative anal-
The two principle questions arising in comparison ofysis of complex materials. For a specific experimental
reconstruction algorithms ask for the relevance andetting, the methodology suggested in this study can
for the significance of differences in reconstructionpe adapted to phantom data sets resembling structural
quality, respectively. Relevant differences can possiproperties of the experimentally investigated material.
bly be detected by computation of an appropriatelyadditionally, artifacts related to the specific imaging
chosen FOM for a single phantom such as the welltechnique or even to a specific experimental instrument
known section of a head introduced in Shepp and Loreed to be taken into account. Simulations of projec-
gan (1974). The use of such deterministic input offersions would thus e.g. incorporate noise, beam harden-
the advantage that specific features which typicallyng, limited rotation or alignment problems (Carazo
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al., 2005; Haibel 2008). such that the mean number of points/ih= [0,500?

In the following the suggested methodology will be ap-was 1200. Since reconstructions are pixel images,
plied to investigate the performance of standard FBFhroughout our study we investigated discretized reali-
algorithms in comparison to the innovative reconstruczations of this Boolean model on a grid of 5000
tion technique DIRECTT (Direct Iterative Reconstruc-pixels. The gray value of each pixel was chosen pro-
tion of Computed Tomography Trajectories) (Larege portional to its area fraction covered by the realization
al., 2008). The phantom data will be two-dimensional.of the Boolean model. Notice that gray values are cho-
In many applications such as electron tomographyen independently of the number of circles covering
projections are acquired in parallel beam geometry. Aa location. All gray values were rounded to integers
a consequence, tomograms of 3D volumes are a staakd the maximum gray value was set to 255. In or-
of 2D reconstructions from 1D projection data. Thusder to allow for statistical analysis, 100 independent
in parallel beam geometry our results on 2D dataset®alizationsbs, ... ,bigg of B were generated and dis-
are also relevant for the 3D case. The exact conseretized.

quences for 3D morphological image analysis remain

an interesting subject for future applications of our  g|MULATION OF IDEAL AND NOISY

methodology.
We will see that the applied FBP algorithms alter the PROJECTIONS

structure of phase boundaries in such a way that boun- Projections were performed in parallel beam ge-
dary length measurements are substantially affectesinetry. The sample was rotated in steps & Qp
whereas the DIRECTT reconstructions preserve boune a maximum angle of 180 For the ideal projec-
dary structures in a much better way. In a first stepions model elements were projected individually and
we will demonstrate these effects for projections ofadded to the sinogram, i.e., we performed a projection
phantoms without noise (referred to as ‘ideal projecof mass (or density, resp.) instead of intensities. This
tions’ below). Afterwards we will show that the supe- approach is equivalent to integration over strips of de-
riority of the DIRECTT reconstruction remains valid tector width, and thus reflects that detector elements as
under the addition of simulated noise to the projectionwell as the pixels of the phantom are not points but area
data. elements. The detector elements had exactly the same
The paper is organized as follows. After discussingize as the reconstruction pixels. The original observa-
phantom generation and simulation of projections weion window was extended by a two pixel edge of zero
give an introduction to the investigated reconstructiorentries on all sides. The rotation axis was set at the
techniques in order to illustrate their principle ideas tayindows’ center. In order to ensure complete visibility
a non-expert reader. Then we briefly discuss the e®fthe reconstruction pixels under all projection angles,
timation techniques for measuring boundary lengthihe length of the line detector was chosen sufficiently
leaving additional details for the appendix. Further{arge.
more, we introduce the FOMs serving as basis for then order to assess the impact of noise on the recon-
evaluation and the statistical tests we applied. We corstruction results we simulated intensity sinograms un-
clude by the presentation of the results and their disder a noisy X-ray source. Other experimental artifacts
cussion. such as cross-talking, focal smearing, beam hardening

or limited dynamic range (non-linearities in detection)

were not simulated. For the noisy intensity measured at

METHODS detector locatiorf under rotation anglg one obtains
the approximative formula

PHANTOM DATA 1(8) = X /exp(— py(€). (2.2)

The phantoms projected and reconstructed for
this study were discretized versions of realizations ofvhere the processX; ,} denotes Gaussian white noise
Boolean models in 2D, which were sampled on an obWwith fixed expectatioriEXs , = > 0 and variance
servation windowV = [0,5007 (Fig. 1(a)). Boolean VarXs , = 0°>0 andpy(&) denotes the correspond-
models are a class of random closed sets whose coimg ideal projection of density for a given object. This
struction is based on a homogeneous Poisson point patpproximates a Poisson-distributed number of X-ray
tern{S,}n>1. In our specific setting we used a Booleanquanta with high expectation (Buzug, 2008). Notice
model which is defined as the uni@=J;;_,B(S,,r) that for each detector locatioh and rotation angle
of circlesB(S,,r) of radiusr = 10 centered a,. The y the recorded intensity,(¢) has a normal distribu-
intensity of the homogeneous Poisson process 6n Rion. However, expectation and variance differ from
determining the random locatiof$, }n>1 was chosen the respective values of the initial intensity¢ , and
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(e) fast FBP

Fig. 1. Sample phantom and its reconstructions from projectiomdahe right upper corner has been scaled by
factor 3.
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are given byuexp(—py(&)) ando?exp—py(€))? re-  The most commonly used FBP algorithm is based on
spectively. Thus, the stochastic counting rate at the dehis formula and organized as follows. In a first step
tector depends not only on the input intensity but alsehe Fourier transform#,(q) of the projections are
on the projected object. The noise level is expressed bgomputed. These are subjected to an inverse Fourier
the signal-to-noise-ratio (SNF%. In an experimental transform after radial weighting by the factéq|,
setting under Gaussian approximation of Poisson noisghich yields filtered projection images. Backprojec-
one haso = ,/fi. However, for simulation purposes tions without weighting result in a convolution of the
we fixedpu and variedo, since the parameter of inter- image to be reconstructed with the point spread func-
est was the SNR rather than the absolute value of thi@on 1/(/x|| (Buzug, 2008). In practice, the transforms
initial intensity. are naturally done by discrete (inverse) Fourier trans-
forms of the discretely sampled signal. In the backpro-

TOMOGRAPHIC RECONSTRUCTION Jection step, for every pixel of the discrete output im-

age the corresponding position on each filtered projec-
ALGORITHMS tion image is determined and the corresponding value
Filtered backprojection is added to the sum which discretizes the outer inte-

. _ gralin (2.5). Since this position will in most cases be a
A standard technique for the tomographic reconnon-integer pixel position, interpolation schemes need
struction of projection data is filtered backprojectiontg pe applied to neighboring pixels. By Shannon’s sam-
(FBP) (Feldkampet al., 1984; Kak and Slaney, 2001). pling theorem, at a given real space sampling distance
FBP is widely utilized in computed tomography usinga¢ the signal can only be correctly reconstructed up
X-rays (Buzug, 2008) as well as electrons (Carazo tg a frequencyQ = (2A&)~! in Fourier space. Thus,
al., 2005) In the f0||0W|ng' we will brleﬂy summalrize the radial We|ght|ng by the funct|o|n|| in (25) is 0n|y
the mathematical foundations of FBP. reasonable fofg| < Q. In other words, the sampling
Let f : R® — [0,0) denote a density distribution on scheme imposes a band limitation which naturally de-
R“ with bounded support which is to be reconstructedermines the range of integration in the discrete ap-
from the set of projectiongp, : y € [0,2rm)} wherey  proximation of the inner integral in (2.5). In applica-
denotes the rotation angle. A single projectiid ) = tions high frequencies are often considered as noise.
fefL f(x)dxis an integral taken along the line Therefore, in practice frequencies are not weighted ra-
Y . . . . .
dially but the filter function is replaced by a modi-
) ) fied version|g/W(q), whereW(q) is a window func-
cosy —sin(y)\ . tion that decreases the weight of the high frequency
e?,v: {¢ <sin(y)> S< cogy) ) seR}, (23 band. Apart from a simple cutoff at frequenayax
(i.e. sett_ing\N(q) = Jjo.gmae (101)) (Ramachandran and
Lakshminarayanan, 1971), a variety of smoother ker-
nel functions have been suggested, which suppress un-
lclesired local extrema in the reconstructions (cf. Buzug,
2008). A less commonly used alternative algorithm to
the real space FBP outlined above directly exploits
the sampling on a polar grid, which is determined
gby the Fourier slice theorem (Sandbergal,, 2003).
. This Fourier space algorithm is more efficient than real
Py(a) = F(qcody).gsin(y)). (24) space FBP if the number of projections is sufficiently
That is, the Fourier transform of the one-dimensionalarge. Moreover, it allows for higher order spline inter-
projection at rotation anglg corresponds to the slice polation of the data without additional cost. In order to
of the two-dimensional Fourier transformed objéct monitor the impact of the FBP algorithm, reconstruc-
passing through the origin in directign Substituting tions were computed by the real space and the Fourier
polar coordinates in the formula of the inverse Fouriespace approach. The latter will be referred to as ‘fast
transform and a subsequent application of the FouridfBP’. For this study the implementation of the fast
slice theorem yields the identity (for details cf. Buzug,FBP provided by the IMod software (Kremet al.,

which is perpendicular to the first axis rotatedjoy
and has distanc& from the origin. The mathematical
key ingredient of FBP is the Fourier slice theorem. Fo
the Fourier transforn®,(q) = [, py(&)e 294 d¢& of
a projectionpy(&) at a fixed rotation anglg € [0,2m)
the Fourier slice theorem states the identity (cf. Buzu
2008)

2008) 1996) was applied. Notice that the license for this com-
_ _ ponentis not included in the standard version. In order
f(x) = [g' /", |a|Py(q)e2™Miacody)Hxesiny) g qdy, to assess the influence of specific implementations on
the reconstruction quality of the commonly used real

for all x € R?. space FBP we computed real space FBPs by two dif-

(2.5) ferent software packages namely Inspect3D (version
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3.0, FEI company') and the IMod software (version (extended by’ zeros at both ends) with the discrete
3.11.2). filter functionc: {—2¢,...,2(} — R, more precisely
An unmodified radial filter with simple cutoff was used s = S ke SkC(k— ).

for comparison of FBP to other reconstruction tech-Computation of the DIRECTT reconstructions in the
niques. The cutoff frequency was set to the maximunpresent study involved switching between two differ-
spatial frequency that could occur in our image dataent filter functions. The first six iteration steps were
We will nevertheless demonstrate the effect on recorperformed after application of the mass filter
structions which is caused by switching to a Gaussian

decay of the filter function at varying cutoff frequen- -5 forke {-2¢,...,2(}\ {0},

cies . (k) = 252t L fork=0.

Both software packages we applied are designed to re- k=1k? (2.6)

construct 3D volumes from 2D projections. Howeverryg o nsequent steps of iteration (fourteen for recon-
the software backprojects each 2D slice of the volumgyy,ctions of ideal projections) were based on contrast-

separately and thus each sample of our 2D phantogiered sinograms, where the contrast fikgiis given
data could be considered as a single slice of a 3D vol;

ume. Sample reconstructions can be found in Fig. 1.
-1 forke {-1,1},

DIRECTT ce(k)=4¢ 2 fork=0, 2.7
The algorithm DIRECTT (Langet al, 2008) rep- 0 else
resents a promising alternative to conventional re-

construction algorithms such as FBP or ART. Fig. 2The weights of all possible trajectories (correspond-

schematically displays the algorithm's iterative phi_mg to integer reconstruction positions) are computed

losophy. The 2D algorithm is applicable to parallel a t_)y avera_ging a'of‘g the respe_ctiye traces within th? op-
well as f;';\n beam geometry of projection. In thefollow-stlona”y filtered sinogram. This involves interpolation

. L L . between neighboring sinogram pixels corresponding to
ing we study parallel beam projections as illustrated "Yifferent detector elements. This is a substantial dif-
Flig. 2, whischb?re corg?u)te(d in Ist%pg fgr e?Ch detec(;oLerence to FBP, where intérpolation is performed in
element. Subfigure 2(a) (top left) indicates a mode : ; : L
volume at the example of a 14 pixel object. Subfig- ourier space (fast FBP) or in the backprojection step

ure 2(b) (bottom left) represents the respective densitpabfiiggzrsl (Ijn%%é?ggj ?r%zlbssgcgrgglgs)ely) Fourier trans-

si'nogram '(Radon transform (Ra<_jon_, 1917)) which 'Sn the update step of DIRECTT, a fraction of the tra-
e_|ther atheved by c_ompute_.\d' |_or01ect|or_1 of modgl der'J'ectory weight is added to the respective area element
sities (Fig. 2(a)) or is the initial experimental inten-j, 1" raconstruction array if the weight ranks within
sity data converted according to Lambert-Beer's law, yreqefined top percentage of all trajectory weights.
(cf. Buzug, 2008). Demanding that each element oypjg s jllustrated in Fig. 2(c), where 11 out of the 14
the reconstruction array corresponds to exactly ongyiginal elements in the example have been added. The
sinusoidal trajectory of the sinogram (Fig. 2(b)), thepsiection (Radon transform) of the reconstruction ar-
DIRECTT algorithm selects pixels, i.e. area elementsyay (j.e. a computed sinogram) is then subtracted from
corresponding to trajectories of dominant weight forfine griginal data set. The obtained residual sinogram
an update of the reconstruction. The given densityrig. 2(d), containing trajectories of 3 remaining ele-
sinogram can optionally be filtered along the detectopents in the example) is subject to the same procedure
direction. This is helpr| to avoid artifact formati(?n in the Subsequent iteration Steps until a pre_se|ected
equivalent to the effects of an unfiltered backprojeccriterion of convergence is reached. This procedure can
tion. However, an intriguing feature of DIRECTT is pe described as an iterative Radon and inverse Radon
that adaptations of the filter function can be used t@ransform. In contrast to FBP there is no integral com-
evaluate trajectories with focus on specific aspectgutation along the line detector (including limited sam-
of interest such as mass or contrast. Switching filtergling due to its element size) but an optional over-
between subsequent iteration steps can be used to kampling along the numerous projection angles. One
corporate a variety of different aspects of the imagef DIRECTT’s unique characteristics is its very pre-
into the reconstructions step by step. Let the discreteise projection of reconstruction elements taking into
sinogram be given by the matr&= (s;), such that account their actual size and shape which is essential
i=1...,Nandj=—¢...,¢, whereN denotes the for enhanced spatial resolution. That is, reconstruc-
number of projection angles and 2 1 is the num- tion pixels are considered as a set of densely packed
ber of detector elements. Then the filtered sinogramlements instead of being (circularly smeared) point
is given by the matrixS*, where theith row 5" of S functions only. Hence, all previously described calcu-
is obtained by a convolution of thigh row 5 of S lations are performed based on squared area elements
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in a Cartesian matrix. DIRECTT is of particular inter- 255, respectively.
est when the focus is on reconstruction of finely strucAny attempt to measure morphological characteristics
tured details or on precise location of reconstructedf a discretized set faces the problem that the shape
elements rather than on computing time. In contrast tof the set before discretization cannot be reconstructed
FBP, DIRECTT does not treat each (detector) projeckrom the pixel image. In order to estimate the fore-
tion individually, i.e. it is not deconvolved globally or ground area we applied the natural approach of count-
(Fourier) filtered, but the entire trajectory of a recon-ing the number of foreground pixels. For estimating the
struction element is considered over all projections. Iroriginal boundary length, different formulae from inte-
contrast to ART, DIRECTT does not modify the entity gral geometry and stereology can be exploited. Never-
of all reconstruction elements simultaneously. theless, estimation results and consequently approxi-
mation errors are more than likely to differ with respect
to the estimation method chosen. In order to ensure
reliability of our statistical results on reconstruction
quality, we therefore implemented two different meth-
ods for measuring the boundary length of the fore-
ground phase.
The first method we applied has been introduced in
Klenket al.(2006) and further discussed in Gudedei
al. (2007). It will be referred to as the Steiner method
since it is based on a discretized version of a Steiner-
type formula known from the geometry of polyconvex
sets. Details of this method are given in the appendix.
As input parameter the algorithm needs a sequence of
so-called dilation radirz...,r,. Measurement results
are dependent on the choiceref. ., r,. Therefore, for
our investigations we used two different sets of dilation
Fig. 2.Reconstruction principle of the iterative proce- radii. The first choice; = 4.2+ 1.3i, i = 1,...,1000,
dure applied by DIRECTTa) Model volume of &4  was suggested in Guderlet al. (2007), whereas the
pixel object.(b) Density sinogram of the model. Each second choice, = 0.4+ 0.09,i = 1,...,158, was op-
trajectory corresponds to one of the pixe(s) Inter-  timized to obtain results whose mean coincides with
mediate reconstruction array, whefid out of thel4  the theoretical mean boundary length of the Boolean
pixels have been adde(l) Residual sinogram after model used for phantom generation. The correspond-
subtraction of the sinogram generated by the interme'mg mean value formulae of Boolean models can be
diate reconstruction in (c) from the sinogramin (b).  found in Schneider and Weil (2008).
The second method we applied in order to measure
ESTIMATION OF AREA AND BOUN- the boundary length of the input images and the re-
constructed data is discussed in Ohser and Miicklich

DARY LENGTH (2000) and will be referred to as the Cauchy method. It

For the evaluation of reconstruction algorithms weapproximates the boundary length of a discretized set
compared the area as well as the boundary length &y a discrete analog of Cauchy’s surface area formula,
measured by two different computational methods irwhich expresses the boundary lengfi) of the sek
the discretized input data to values found for the varias an integral of the total projection lengthkfover
ous reconstructed images. Notice that we are interestedl directions (see appendix). The algorithms discussed
in the boundary length and area of the discretized vein this section were implemented in the Geostoch soft-
sion of the entire Boolean mod® = |J;_1B(S,,r)  ware library (Mayeet al, 2004).
rather than in the cumulated morphological characte-

ristics of the single circleB(S,,r), n > 1. Comparison STATISTICAL TESTS FOR COMPARI-

of morphological image characteristics requires a bi-
narization of the images, which was done by simple SON OF RECONSTRUCTION ERRORS

thresholding, where the threshold parameter was setto Reconstruction algorithms were statistically com-
50% of the maximum greyvalue. In order to excludepared via the empirical probability distribution of the
bias by pure scaling differences, thresholding was doneeconstruction error. The error was defined as relative
after normalizing the gray values of each image in suckeviation of the morphological characteristics on the
a way that the average gray values occurring in theeconstructions from the phantom data. The morpho-
background and the foreground phase were set to 0 atatjical characteristics measured were boundary length
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and area of the foreground. The following definition of
reconstruction error is given for the example of a mea-
surement method for the boundary length which leads
to an estimatot. for this morphological characteristic.
Effects of different reconstruction algorithms on area
measurements were compared in an analogous way.
Given two reconstruction algorithnfg andA; and an
estimator. for the boundary length, for the phantoms

Hy: P(Xy > Xp) # 1. Thus, differences in variabil-
ities of reconstruction errors within the two sam-
ples will not lead to the rejection dfly as easily

as differences in the means or medians of the two
samples. The one-sided version tddgs P(X; <

X2) > % againstH; : P(X; < Xp) < 3, i.e. whether

the sample ofp; is statistically smaller than the
second sample. For mathematical details, see e.g.

bPhan . bP0a" and their reconstructionsy, ... b%,, Gibbons (1985, p 164) and Lehmann and Romano
k = 1,2, the relative reconstruction errors (2005, p 243).

— TheAnsari-Bradley tesassumes thdi, (x—m) =

A _ | LooP™) L) -
el = BT and Fa, (8(x—m)) for all x € R, an unknown nuisance
i parametem used to normalize the location of the
& phan, o Ao (2.8) sample and some scaling ratio> 0. The test fo-
e = | H0uso)_thiiso) cuses on the question if the distributions differ in
L(bP'so dispersion rather than in location. Thus, the ABT

testsHp : 8 = 1 againstH; : 8 # 1. One-sided al-
ternatives are possible but not considered in this
study. Details can be found in Gibbons (1985, p
179).

For all tests in this study version 2.8.1 of thRe

were computed fori = 1,...,50. Since the phan-

tomsb?"" . bPha" were discretized versions of in-
dependently sampled realizations of a Boolean model,
the entire collection of errors from the two samples
Al Al eA2 A2 . . . .

e, ..,65,6°,...,654 inherited stochastic indepen- .
dence. Consequently, two-sample-goodness-of-fit tes ogramming language (R Development Core Team,

could be applied in order to compare the two distri- 07) was applied. Test results are given in terms of

i a p-value, which is the largest level of significance at
butions the error samplaf?, ... & andel?,. . ey &P g g

were drawn from. Given a pair of reconstruction al-
gorithms A; and Ay, Kolmogorov-Smirnov (KST),
Wilcoxon rank (WRT) and Ansari-Bradley (ABT) tests
were performed. For KST and WRT two different null RESULTS

hypotheses were considered, firstly that the cumulative : : .

distribution functions (CDFFa, and Fa, of the error Reconstruction errors are visualized by boxplots

distributions are equal, and secondly, that the error g 'g. 3~ 6). The box depicts the median and the (pos-
algorithmA, tends to be smaller than the one produce ibly approximated) quartiles of the data. The centered

X . i ertical lines show the smallest and largest observa-
by Az in the stochastic sense defined below. tions if their distance from the box does not exceed
— TheKolmogorov-Smirnov testhecks the null hy- 1.5 times the box size. More extreme values within the

pothesisHy : Fa, (X) = Fa,(X) for all x € R against sample are plotted as circles. Note that in the boxplots
the two-sided-alternative that the values of the twoVe consider signed relative errors, where these quanti-
CDFs differ for somex € R. Any differences be- ties are defined as in (2.8) but without taking absolute
tween the two samples will lead to the rejectionvalues. However, all statistical tests are based on un-
of Hg if they are too large in the statistical sense Signed relative errors.

In the one-sided version of the KST the null hy-
pothesidy : Fa, (X) > Fa, (X) for all xe R is tested,
which would imply that the first sample & sta-
tistically consists ofsmallervalues than the sec-

ond one. For details see Conover (1971, p 309) and _ _
For DIRECTT the classic FOM of MSD defined

Gibbons (1985, p 127). .
_ _ in (1.1) had a value of .0139, whereas the corre-
— TheWilcoxon rank tesis equivalent to the Mann- sponding values for the FBP algorithms were in the
Whitney U-test. It is especially sensitive to devi-interval between ©69 and 0074, with best results
ations in the location parameters B, andFa,,  for the Inspect3D software and the highest error mea-
i.e., itis used to determine whether one of the dissured for the standard FBP in IMOD (Fig. 3). Although
tribution functions is shifted relative to the other. very small, the differences in MSD between the FBP
If the random variables$; and X; have CDFs techniques were found to be statistically significant by
Fa, and Fa,, respectively, the two-sided version KST and WRT. This is plausible since there was hardly
of the WRT testsHp : P(X1 > Xp) = % against stochastic variability in the single MSD samples.

which the null hypothesis is not rejected.

RECONSTRUCTIONS FROM
PROJECTIONS

IDEAL
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The area measurements of the foreground phase blead a noticeable impact on the error in boundary
haved rather stable under all reconstruction algorithmiength measurement. Suppression of high frequencies
and relative errors were only at the level of few perincreased the relative deviation in boundary length
mille (Fig. 4). Errors fluctuated around O for DIRECTT measurements on the reconstructions from the original
and were only around.002 for the fast FBP and the images independently of the method of measurement
Inspect3D software. The standard FBP implemented itFig. 6).

IMod showed a slightly increased error level of around
0.006. KST and WRT classified the differences be-
tween the algorithms as statistically significant, though
the absolute level was very small.

Boxplots in Fig. 5 indicate that the signed relative er-
rors for measurements of boundary length differed be-
tween reconstruction algorithms. Stochastic variability
of the errors within the sample was similar for all four
reconstruction algorithms as indicated by the hgh
values of the Ansari-Bradley test (Tab. 1). In the DI-
RECTT reconstructions the Steiner method measured DIRECTT  FBPIMod FBP Inspect3D fast FBP

a decrease in boundary length of arours?4 and the

Cauchy method a decrease of arourP®in compar-

ison to the original phantoms. However, the FBP al+ig. 3. Mean squared deviations of reconstructions
gorithms produced significantly higher relative errorsirom original phantoms.

than DIRECTT as indicated by thp-values of the
tests in their one-sided versions in Tab. 1. The error
produced by the fast FBP algorithm was significantly
smaller than the error produced by the standard FBP
implemented in IMod, which in turn was slightly but
significantly smaller than the error found in the FBP
reconstruction done with Inspect3D.

For all reconstruction algorithms error levels depended®
on the method used to measure boundary length. Ave=
raging over all three FBP implementations, the Steiner
method yielded a slightly stronger decrease in boun-
dary lengths of around 13%. The choice of radii for
the Steiner method had only a hardly noticeable im-

pact on the measurements of relative errors (Fig. 5(jg 4 Relative deviation of area measurements on re-
vs. 5(b)). In summary, it should be emphasized that ORonstructions from original phantoms.

the FBP-reconstructions all methods of measurement
consistently indicated a decrease of boundary length
in comparison to the original phantoms, whereas the RECONSTRUCTIONS  FROM  NOISY

deviation on the DIRECTT reconstructions was signif- PROJECTIONS

icantly smaller. Allp-values of tests for equality of er-  The sensitivity of the relative error in boundary
ror distributions were so small that the KST as well agength measurements to noise in the projection data
the WRT detected differences when the level of signiwas investigated for the DIRECTT algorithm and FBP
ficance was set ta = 0.001/2. This in particular im-  (Fig. 7). Since the errors of the different FBP algo-
plies that the hypothesis of equal error distributiongithms were of similar order, we chose the standard
was rejected in a Bonferroni-corrected setting for mul+Bp implementation of IMod for the comparison. Em-
tiple testing at levelr = 0.01. The latter defines that pirical 96% confidence intervals were computed from
a hypothesigio is rejected at a levak once a single the two error samples under ideal projections. SNRs
one ofn tests performed on the same data rejétat  were considered between 50 and 400 in steps of 50. For
levela /n. As a consequence, the probability of a falseeach SNR a phantom was picked at random and noise
rejection is bounded by, which in most cases is quite was added to its projections as described in Sec. 2.2.
a conservative estimate for the type 1 error of the testThese were then used as input data for DIRECTT and
The cutoff frequency, at which FBP algorithms switchFBP.

from highpass to Gaussian filtering of the FourierFor noisy projections the quality of the DIRECTT re-
transformed projections before backprojecting themgonstructions improved in terms of MSD over the first

0.08
Il

mean squared deviation
0.04 0.06
1 1

0.02
Il

——

0.00
L

0.010
Il

relative error
0.006
1

e
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Il

—_—

-0.002

T T T T
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iterations but from a certain point on decreased agairarea can be regarded as stable with respect to standard
This deterioration of the reconstruction quality occurs=BP techniques.

when the residual sinograms are dominated by nois@ur evaluation was based on a set of phantom im-
and thus, further iterations introduce erroneous inforages consisting of discretized realizations of a Boolean
mation into the reconstructions. The number of iterimodel, which were independently sampled. Therefore,
ations for the DIRECTT reconstructions under noiseclassical two-sample tests could be applied to com-
evaluated in Fig. 7 was chosen such that MSD wapare the errors of different algorithms. Since differ-
minimized. Fig. 7 shows that the error of the DI-ences between error distributions of boundary length
RECTT reconstructions under noise was not containetheasurements for the considered reconstruction algo-
in the confidence interval of the error under ideal profithms were rather pronounced (see the boxplots in
jections. For SNRs higher than 150 the FBP reconFig. 5) the unambiguous-values of the Kolmogorov-
structions from noisy input data stayed within or closeSmirnov and the Wilcoxon rank test in Tab. 1 were
to the range of error under ideal projections. Neverio be expected. The Ansari-Bradley test indicated that
theless, the relative loss in boundary length caused Hispersion of the error samples was not significantly
DIRECTT was in all cases less than in the FBP recondifferent between algorithms and was probably mainly
structions. SNRs of less than 20 did not yield reasoncontrolled by the stochastic variability of the phantom

able reconstruction results. data.
The testing methodology we suggested can be trans-
ferred to any other FOM and set of randomly sam-
pled phantom data. This way also subtle differences
DISCUSSION in reconstruction quality can be evaluated with statisti-
cal rigor. It should again be emphasized that a statisti-
Our results demonstrate that standard FBP recortal approach to the evaluation of reconstruction quality

struction algorithms for projection data may alter th(.aessentially relies on randomly sampled phantoms. Re-

boundary structure of two-phase phantom images 'Bonstruction of deterministic phantom data is a valu-

such a way that measurements of boundary length aBle tool to investigate the capability of reconstruction
substantially affected. As a standard gray value Orizqqrithms to reproduce certain predefined image fea-
ented global measure of reconstruction quality, MSOres. An approach based on randomly sampled phan-
already indicated errors in the FBP reconstructiongyms js complementary since it can be used to monitor
Locally defined image characteristics such as phasge statistical significance of errors produced by recon-
boundaries and quantitative image characteristics cayction algorithms. This information is especially im-

however hardly be related to global integral FOMsyant for the quantitative investigation of irregularly
such as MSD in a direct way. Thus, for monitor- g\ ;ctured materials.

ing reconstruction artifacts distorting fine details andThroughout this study the relative error in boundary
their consequences for quantitative image analysis it iﬁength was measured by two different techniques and
important to consider alternative FOMSs. In this con-_ for the Steiner method — two choices of parame-
text boundary length measurements can be a valyars. This way bias introduced by boundary measure-
able source of information since they are sensitive tgnent techniques could be excluded. Since the meth-
changes of local pixel configurations. Correspondingyds are based on discrete approximations of different
FOMs can thus provide a more comprehensive viewormulae for the boundary length of a polyconvex set
on reconstruction quality. (see Appendix), deviations in measurement results nat-
Apart from boundary length also other characteristicgrally occurred. Although relative errors measured by
frequently considered in quantitative morphologicakhe Cauchy method were found to be slightly smaller
image analysis and spatial statistics such as connegran the errors measured by the Steiner method, quali-
tivity (Ohser and Schladitz, 2008; Thiedmaahal, tative as well as statistical findings agreed for all meth-
2009), spherical contact distribution function (Mayer,ods applied. Thus, our findings were not tied to a spe-
2004; Thiedmanret al, 2008) and fractal dimen- cific measurement approach.

sion are dependent on adequate reproduction of phageorder to relate the errors caused by the general tech-
boundaries. Since we have seen that FBP algorithmsique of FBP to the effect caused by different algorith-
alter the structure of phase boundaries, estimation ¢hic approaches, FBP reconstructions were conducted
these image characteristics from FBP reconstructiorisy the standard real space FBP and the fast FBP al-
occurs to be problematic, even if comparative studiegorithm suggested by Sandbeet al, 2003. More-

of different materials or scenarios may still be possibleover, for the real space FBP two different implementa-
On the other hand, foreground area showed very limtions from the IMod software and the Inspect3D pack-
ited sensitivity to the reconstruction artifacts producedhge were compared. The reconstruction errors as as-
by FBP algorithms. Thus, measurements of foregroungessed by the relative boundary length was found to

10
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Fig. 7. Sensitivity of relative errors of boundary length measuwgata to noise in the projections. The red lines
mark a96% confidence interval of the error under ideal, i.e. noiselgsgections found for FBP, the blue lines
mark a corresponding confidence interval for DIRECTT. Reidtsare reconstruction errors of FBP found for
single randomly picked phantoms under the noise level tipion the x-axis. The blue points are the corre-
sponding errors using DIRECTT.

be qualitatively similar for all three FBP implemen- dow functions which reduce the impact of high fre-
tations, even if the fast FBP yielded significantly bet-quencies in comparison to simple radial weighting.

ter results than the two real space algorithms. The st&or ideal projection data DIRECTT presented itself
tistical significance of the differences in FBP recon-as a powerful reconstruction algorithm, which repro-
struction errors produced by the real space FBP iduced phase boundaries in an almost perfect way. This
IMod and the Inspect3D software suggest that the petias been achieved under the simple but essential as-
formance of FBP techniques depends on their implesumptions of homogeneous density within the pixels,
mentation. It should however again be pointed out thategarded as area elements, and identical pixel sizes
error levels are very similar and our qualitative find-within the model, the detector and the reconstruction.
ings are implementation-independent. It should als&irst tests with DIRECTT however indicated that the
be emphasized that rankings of implementations careconstruction quality is still remarkable when pixels
only be given with respect to a specific FOM. Thisof smaller size than the detector elements are recon-
is clearly illustrated by the rankings of the Inspect3Dstructed (Lange and Hentschel, 2007).

reconstructions which exhibit a higher boundary erin order to challenge the results obtained for noise-
ror than the other FBP reconstructions but performetess projections, noise of different level was added to
best within the FBP group with respect to MSD. Thisthe projection data of single randomly chosen phan-
rather good representation of gray values is possiblioms and the reconstruction results of DIRECTT and
the consequence of the 16 bit image representatidFBP were compared. The FBP reconstructions exhib-
used in Inspect3D, whereas IMod computes reconited a high noise tolerance, since the relative error in
structions based on 8 bit images. Principle sources dfoundary length measurement did hardly leave an em-
errors in real space FBP algorithms are the interpolgpirical 96% confidence interval that had been com-
tion schemes applied in the backprojection step. Botputed for the ideal projections (Fig. 7). This shows
real space FBP implementations used a computatiothat under noisy projections the reconstruction er-
ally fast linear interpolation. The slight superiority of ror in the phase boundaries is not dominated by the
the fast FBP is possibly the result of the Fourier spacaoise but by properties of the FBP technique. The
approach, which may reduce interpolation errors alon@IRECTT reconstructions reacted more sensitively to
boundaries. the noise, since the errors increased and were outside
Cutoff frequencies applied in FBPs can hamper corthe 96% confidence interval for the DIRECTT recon-
rect reconstructions of phase boundaries in a substastructions under ideal projections. Nevertheless, in all
tial way (Fig. 6). This effect is plausible since edgescases the DIRECTT reconstructions exhibited a sub-
are represented by high frequencies in Fourier spacstantially smaller error than the FBP tomograms. Thus,
It can also be expected to occur for other types of winthe improvement in reconstruction quality that can be

12
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achieved by DIRECTT appears to not to be limited tacomographic reconstruction (Bags al., 2007; Baten-
ideal sets of input data but can also be expected in exurg, 2005, Herman and Kuba, 2007). Discrete tomo-
perimental settings. The simulated projections of pixegraphy exploits a-priori information on the object to
data serving as input for the reconstruction algorithm$e reconstructed, namely the number of materials it is
do not exactly describe a tomographic experiment witttomposed of. Therefore, the algorithms can partially
a spatially continuous material. However, our methodsompensate for missing information, e.g. caused by
chosen for the transformation of the spatially continudimited rotation of the sample (Langet al, 2008).
ous realizations of the Boolean model into pixel phanFurthermore, they return an image which does not re-
toms and the computation of the projections by strigjuire segmentation of the different materials. By con-
integrals yield an adequate approximation of an expestruction, DIRECTT also offers the option to compute
imental setting. discrete tomograms and thereby to reconstruct details
It should be mentioned that it is difficult to determinewhich cannot be extracted from the projections in the
the optimal number of iterations for the reconstructiorstandard setting. Nevertheless, our results demonstrate
of noisy experimental input data. It is a challengingthat even without the a-priori information needed for
problem to judge whether a residual sinogram is domdiscrete tomography mode, DIRECTT reconstructions
inated by erroneous information from projection noiseexhibit a level of contrast and detail preservation which
and hence, further steps of iteration will only result inis not achieved by conventional FBP reconstruction.
artifacts. This is an important subject for further stud-We have illustrated that under ideal and noisy projec-
ies. tions reconstruction algorithms can cause statistically
The merits of the DIRECTT reconstructions come agignificant changes of image morphology. For prac-
the cost of increased computation time, which totaledical applications the error caused by the reconstruc-
22 minutes on an Intel Xeon 5130 processor (2.0 GHZAION algorithms needs to be carefully related to the ef-
one core) for a single input image. However, stanfect of experimental imperfections in the projection
dard algebraic reconstruction algorithms such as SIR§ata. These may comprise alignment deviations, the
(Gilbert, 1972), which is commonly used in electronSPecific noise level or limited rotation. Expert knowl-
tomography (Balet al, 2007), are also computation- €dge about these experimental conditions is important
ally more demanding than FBP. In contrast to DI-I0 identify appropriate reconstruction algorithms and
RECTT, in addition to the number of iterations, theytn€ir parameters, that meet the specific needs of an ap-
usually require optimization of other parameters in orPlication. Nevertheless, whenever realistic projections
der to yield satisfactory results (Caraebal, 2005). can be simulated and a FOM capturing the aspects of
Since for our phantom data a SIRT reconstructioft€resthas been defined, randomly generated phantom

computed by the Inspect3D software with 20 iterationdata reflecting the structural properties of the investi-

exhibited substantially increased blurring at the phasgat€d object and statistical analysis provide a powerful
boundaries in comparison to the FBP results, we did€ting to compare different reconstruction techniques.

not include SIRT in our comparative analysis.

It is possible that other backprojection techniques than

standard FBP are capable of an improved represen- APPENDIX

tation of phase boundaries. These algorithms com-

prise A-tomography, where local inversion formulae MEASURING BOUNDARY LENGTH BY
ensure that space-continuously defined functions and THE STEINER METHOD

their theoretical reconstructions have the same jumps. _

One should however point out thkitomography does € algorithm for boundary length measurement
not reconstruct the density distributidritself but the ~ We réfer to as the Steiner method exploits the follow-
function A f, whereA = /—A denotes the Calderon 'NY Steiner-type formula: Lek C R® be polyconvex
operator which does not preserve gray values (for geset, i.e.a finite union of convex sets, thenifos O the

tails see Faridangt al, 1997: Kuchmenet al, 1995:  So-called weighted volumg (K) of the setk can be

Louis and Maass, 1993). An innovative and compuVritten as

tationally efficient reconstruction technique has been _ .2

proposed by Louis (2008). This approach combines re- Pr(K) = r"mVo(K) + Va(K), (-9)
construction and edge detection and could also enabighere %, (K) is the boundary length(K) of K and
superior reconstructions of phase boundaries in com(K) denotes the Euler-Poincaré characteristics of
parison to standard FBP techniques. Furthermore, fa€. In the 2D setting the latter counts the number of
samples consisting of few different materials such asonnectivity components in the foreground minus the
our phantom data, algorithms from discrete tomogranumber of holes. For a convex d€the weighted vol-
phy have been reported to be very promising tools foume p;(K) coincides with the volume of the parallel
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set(K @ B(r,0)) \ K, which consists of all points not surface area formula, which expresses the boundary
contained inK but whose distance t& is at most lengthL(K) of the polyconvex seK as an integral of

r (Fig. 8). In case the boundary &f has concavity the total projection lengtig (K) of the se in direc-
points,pr (K) is obtained by partitioningk ©B(r,0))\  tion 6:

K in a specific way and counting the volumes of the ob- 1 fem

tained cpomponen}t/s with certaingmultiplicities (Kleak L(K) = 5/0 T (K)d®. (5.11)

al., 2006). If oy (K) is known for two different dilation

radii ro andry, by (5.9) we obtain the linear equation The total projection length is defined ag(K) =

system 5 Vo(KNeg)dr, i.e., as the integral of the number
of connected components of the one-dimensional in-
Pro(K) = rgmvo(K) +roVa(K), tersection ofK and the linese g, wheree g is the
(5.10) line with direction® € [0, rT) and the directed distance
pr, (K) = rZmvi(K) +riva(K), r € R from the origin (Fig. 9). Integration is with re-

, . spect to the distancedrom the origin. On discretized
which can be uniquely solved fdry(K) andVi(K). binary images, the total projection length can be ap-

This equation system can also be exploited to obtain : : . . )
estimator for the boundary length of a discretized Ve%‘rommated by computing relative frequencies of cer

sion of a seK on a square lattice. For details on hoWtaln pixel configurations at the phase boundary (Ohser

to compute the left-hand sides in (5.10) for discretizecilnd Muckdich, 2000). Based on these approximations

sets we refer to Klenlet al. (2006). Nevertheless, it O.f the total projection length in the 8 canonical direc-

should be pointed out that a central aspect of the alg lons i a_2D square lattice, the integral (5.11) can
rithm is a polyhedral approximation of the set which€ numerically evaluated by means of a quadrature
is used to determine its boundary. For approximatSCcheme.
ing pr(K) the occurrences of certain 8-neighborhood
configurations around boundary pixels are counted. In
simulation studies, estimation results for the boundary
length were shown to significantly improve if instead Nero
of approximatingp;(K) for only two dilation radii
a higher number of dilation radfri,...,r, was used
(Klenk et al,, 2006). This usually yields an overdeter-
mined system of equations, and thus, a solution can be
obtained by the standard least-squares method. Esti-
mation results are dependent on the choice of the radii
ri...,r.

) N
N/

Fig. 9. A polyconvex set K intersected by the ling,e
which has directiond € [0, 1) and the directed dis-
tance re R from the origin. In the example depicted,
the number of connected componeridde g) is 2.

- /
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p-values KST KST WRT WRT ABT
two-sided | one-sided | two-sided | one-sided || two-sided
DIRECTT vs. FBP IMod < 0.0001 > 0.9999 < 0.0001 > 0.9999 > 0.9999
DIRECTT vs. FBP Inspect3D < 0.0001 > 0.9999 < 0.0001 > 0.9999 > 0.9999
DIRECTT vs. fast FBP < 0.0001 > 0.9999 < 0.0001 > 0.9999 > 0.9999
fast FBP vs. IMod < 0.0001 > 0.9999 < 0.0001 > 0.9999 > 0.9999
fast FBP vs. Inspect3D < 0.0001 > 0.9999 < 0.0001 > 0.9999 > 0.9999
FBP IMod vs. Inspect3D <0.01 > 0.9999 < 0.001 > 0.9999 > 0.5

Table 1.Bounds for the p-values of the tests conducted for compadtthe relative errors of boundary length
produced by the different reconstruction algorithms urni@seless projections. Small p-values of two-sided WR
and KS tests indicate that error distributions are signifithg different. Large p-values of the one-sided KST and
WRT mean that the first of the algorithms in column 1 producsgrificantly smaller error than the other one.
Large p-values of the two-sided ABT suggest that the vditiabf the errors is similar for the two reconstruction

algorithms considered.
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