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Abstract We compare two conceptually different stochastic microstructure mod-
els, i.e. a graph-based model and a pluri-Gaussian model, that have been intro-
duced to model the transport properties of three-phase microstructures occurring
e.g. in solid oxide fuel cell electrodes. Besides comparing both models, we present
new results regarding the relationship between model parameters and certain mi-
crostructure characteristics. In particular, an analytical expression is obtained for
the expected length of triple phase boundary per unit volume in the pluri-Gaussian
model. As a case study, we consider 3D image data which show a representative
cutout of a solid oxide fuel cell anode obtained by FIB-SEM tomography. The two
models are fitted to image data and compared in terms of morphological char-
acteristics (like mean geodesic tortuosity and constrictivity) as well as in terms
of effective transport properties. The Stokes flow in the pore phase and effective
conductivities in the solid phases are computed numerically for realizations of the
two models as well as for the 3D image data using Fourier methods. The local
and effective physical responses of the model realizations are compared to those
obtained from 3D image data. Finally, we assess the accuracy of the two methods
to predict permeability as well as electronic and ionic conductivity of the anode.
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1 Introduction

For many materials, the microstructure has a strong impact on their effective prop-
erties. In particular, this includes functional materials as, e.g., electrodes of solid
oxide fuel cells (SOFC) [32], batteries [33] and organic photovoltaic devices [6]. In
order to study the microstructure influence on effective macroscopic properties,
numerical simulations based on stochastic microstructure modeling have become
a commonly used and powerful tool [34]. Using methods of stochastic geometry [8,
16], microstructures are modeled by random sets to simulate virtual, but real-
istic microstructures on the computer. These virtual structures can be used as
input for numerical simulations of effective macroscopic properties like effective
conductivity or permeability. Thereby microstructure-property relationships can
be efficiently studied [29,31], as model-based simulations of virtual microstruc-
tures allow for the generation of a large database of various microstructures in
short time. Besides studying microstructure-property relationships, fitting para-
metric stochastic microstructure models to experimental image data has further
advantages. In [35], relationships between production parameters and microstruc-
ture characteristics have been investigated by the aid of a stochastic model which
has been fitted to the microstructure of organic semi-conductor films for different
values of production parameters. By interpolation of model parameters, virtual
microstructures with production parameters which have not been manufactured
in reality so far have been generated via predictive simulations. Moreover, having
fitted a stochastic model to image data of a microstructure without any structural
gradient, the size of the sampling window in which the virtual microstructures are
generated is only restricted by computational power. Thus, in most cases virtual
microstructures which are larger than the observed ones can be generated. Doing
so, a model-based investigation of the local heterogeneity of microstructures can
be performed, in particular the size of the representative volume element can be
determined as, e.g., in [1,12].

While many different types of stochastic microstructure models are available in
the literature for two-phase materials, see e.g. [8] and the references therein, less
models are present for three-phase microstructures. Diverse packing algorithms
have been developed to model both solid phases by a union of spherical [7,13],
cylindrical or ellipsoidal [5] particles. Furthermore, using excursion sets of two
Gaussian random fields allows to reproduce more complex shapes in the model,
see e.g. [22]. A detailed theoretical description of this model is given in [15, Chap-
ter 16.2]. In [2] a general method is proposed which shows a way how to model
three-phase microstructures based on models for two-phase microstructures, more
precisely, by two independent random sets. In particular, in [2], those cases are
discussed in which both of the two independent random sets are given either by
a Boolean model [19] or by excursion sets of Gaussian random fields. The latter
model type is called the pluri-Gaussian model in the following. It is a special type
of the model considered in [22] and the relationships between its model param-
eters and microstructure characteristics are well-understood. Recently, a further
three-phase microstructure model – conceptually different from the previous ones
– has been introduced in [25]. This model is based on random geometric graphs
and has been developed to model three-phase microstructures in SOFC.

In the papers mentioned above, estimation of model parameters and model sim-
ulations are described provided that the model type is given. However, in practical
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applications the choice of the model type is also of significant importance. Thus,
in the present paper, we compare the graph-based model proposed in [25] with the
pluri-Gaussian model of [2]. Thereby, we intend to provide advice to practitioners
who have to make the decision on model types. The comparison is performed on
three-phase microstructures in SOFC anodes. In particular, the models are com-
pared regarding effective transport properties, i.e., effective conductivities in the
solid phases and permeability in the pore space. Therefore, effective properties are
numerically simulated using FFT-methods [21,37] and the obtained results are
interpreted in combination with microstructure characteristics. For the considered
microstructures, the goodness-of-fit of prediction fomulas for effective conductiv-
ity and permeability [10,31] is discussed. Besides comparing the two models, we
derive new results regarding quantitative relationships between model parame-
ters and microstructure characteristics for both models. Based on a simulation
study, an empirical formula is found which relates model parameters to volume
fractions of phases in the graph-based model. Moreover, an analytical expression
for the expected length of the triple phase boundary per unit volume in terms of
model parameters is derived for the pluri-Gaussian model. The length of the triple
phase boundary is an important characteristic for the considered three-phase mi-
crostructures in SOFC anodes as the electrochemical reactions being important
for the overall performance are taking place there [28].

The present paper is organized as follows. We start with a description of the
considered image data in Section 2, which is used as an example to compare the
stochastic microstructure models. The considered microstrucure models are de-
scribed in Section 3, where new results regarding relationships between model
parameters and microstructure characteristics are presented. In Section 4, the fit
of the models to tomographic image data is discussed with respect to transport
relevant microstructure characteristics and numerically simulated effective trans-
port properties. We provide a general comparison of the considered stochastic
microstructure models in Section 5, before conclusions are drawn in Section 6.
Furthermore, a nomenclature is provided at the end of the manuscript.

2 Tomographic image data of SOFC anodes

The 3D image data to which the stochastic microstructure models are fitted in
the present paper represents the microstructure of anodes in solid oxide fuel cells.
The anodes consist of nickel, a ceramic phase, called Yttrium-stabilized zirco-
nia (YSZ), and pores. A comprehensive analysis of such anodes based on image
data, consisting of cubic voxels with a side length of 30nm and obtained by FIB-
SEM tomography, is given in [27]. In this paper, the authors investigated anodes
manufactured with different powders of YSZ, i.e. fine, medium and coarse, before
and after redox cycling.

In this kind of fuel cells, anodes contribute to electricity generation in the
following way, which is illustrated in Figure 1. Oxygen ions are transported through
the YSZ phase to the triple phase boundary, to which hydrogen is transported
through the pores. At the triple phase boundary, the chemical reaction

H2(g) + O2− 
 2e− + H2O(g)
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Fig. 1 Schematic sketch of an operating nickel-YSZ anode: oxygen ions and hydrogen are
transported to the triple phase boundary (left). Fuel oxidation at the triple phase bound-
ary generates electrons, which are then transported through the nickel phase to the metallic
interconnector (right).

takes place resulting in free electrones. These electrones are finally transported to
the metallic interconnector. The kinetics of the described reaction as well as the
associated polarization and transport resistances depend strongly on the geometry
of the nickel-YSZ microstructure, which influences conduction processes in the
solid phases and flow in the pore space.

In the present paper, we consider image data from [27] corresponding to the
fine-structured anode before redox-cycling to give an example for fitting two dif-
ferent microstructure models with respect to effective transport properties. Note
that in this microstructure all three phases are nearly completely connected. The
image represents a cutout of the anode of size 20µm× 25µm× 15µm and a scaling
is performed to remove anisotropy effects, which are ascribed to FIB-SEM imag-
ing [25]. A 3D visualization of the data set is given in Figure 3 in Section 3.4, where
image data is compared to virtual structures simulated by means of stochastic 3D
modeling.

3 Stochastic microstructure modeling

In this section, we give a brief summary of microstructure characteristics which
are used for estimation of model parameters and model validation. Then, we recall
the definitions of the stochastic microstructure models considered in this paper
and present new results regarding the relationship of model parameters and mi-
crostructure characteristics. Finally, both models are fitted to 3D image data. In
the following, we consider the three phases as random closed sets [8], where Ξ1

denotes the nickel phase, Ξ2 the YSZ phase and Ξ3 the pore space.1 Note that
both stochastic microstructure models allow to appropriately reproduce specific

1 A different notation has been used in [25], where Ξ1 denoted the pore space and Ξ3 the
nickel phase. We change the notation here to be consistent with the notation of the pluri-
Gaussian model considered in [2]. In the graph-based model the index of Ξ is not meaningful
in contrast to the pluri-Gaussian model.
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microstructure characteristics of the considered Ni-YSZ anodes, even if they do
not intend to mimic the underlying production process.

3.1 Microstructure characteristics

In both, the graph-based model and the pluri-Gaussian model, the three phases are
represented by stationary and isotropic random closed sets Ξ1, Ξ2 and Ξ3 in R3. In
this section we briefly summarize the definitions of microstructure characteristics
considered in the present paper. To begin with, the volume fractions ε1, ε2, ε3 are
defined by

εi = Eν3(Ξi ∩ [0, 1]3) (1)

for i = 1, 2, 3, where ν3 denotes the three-dimensional Lebesgue measure. The
specific surface area of phase i = 1, 2, 3 is defined by

Si = EH2(∂Ξi ∩ [0, 1]3), (2)

where ∂A denotes the boundary of a set A ⊂ R3 and Hk denotes the k-dimensional
Hausdorff measure for each k = 1, 2, 3. Moreover, we define the expected length of
the triple phase boundary per unit volume by

LTPB = EH1(Ξ1 ∩ Ξ2 ∩ Ξ3 ∩ [0, 1]3). (3)

Note that the triple phase boundary is of special importance in solid oxide fuel
cell anodes as the electrochemical reactions influencing the polarization resistance
of the anode half-cell take place there. To quantify the dependency structure of
the three phase, we consider the two-point coverage probability functions

Ci(h) = P(o ∈ Ξi, t ∈ Ξi), (4)

for i = 1, 2, 3, where |t| = h. Due to the assumption of isotropy, Ci(h) does
not depend on the specific choice of t, but only on the distance h of t from the
origin. The two-point coverage probability functions play an important role for
parameter estimation of the pluri-Gaussian model, see Section 3.3. For estimat-
ing the parameters of the graph-based model, mean geodesic tortuosities τ1, τ2, τ3
measuring the mean length of shortest transportation paths with respect to the
materials thickness as well as constrictivities β1, β2, β3 quantifying the strength of
bottleneck effects are used. Constrictivity for complex microstructures is defined
by β = r2min/r

2
max, where, roughly speaking, rmax is defined as the median of the

volume equivalent particle radius distribution and rmin is defined as a median de-
scribing the characteristic bottleneck of the microstructure [11]. Constrictivity is
a value between 0 and 1. The lower the constrictivity, the stronger is the limiting
effect of bottlenecks on transport within the considered phase. For a formal def-
inition of both, mean geodesic tortuosity and constrictivity, in the framework of
stationary random closed sets the reader is referred to [24].
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3.2 Graph-based microstructure model

In the graph-based model (GBM), introduced in [25], a stationary random geo-
metric graph is considered for each phase. The graphs are random in the sense
that their vertex sets are modeled by random point processes. The edges of the
graphs are put deterministically according to a parametric rule. Finally, three
full-dimensional phases are constructed from the random graphs. Formally, the
three closed random sets Ξ1, Ξ2 and Ξ3 are defined as follows. Let X1, X2 and
X3 be independent homogeneous Poisson point processes [20] with some intensi-
ties λ1, λ2, λ3 > 0, which model the vertex sets of the random geometric graphs.
That is, the vertices are distributed completely at random in the three-dimensional
space with a predefined expected number of points in the unit cube. Then, the
corresponding graphs G1,G2,G3 are obtained by putting the edges according to the
rule of so-called beta-skeletons [14] with parameters b1, b2, b3 ≥ 1, respectively. For
i = 1, 2, 3, connectivity properties of Gi can be controlled by the aid of the pa-
rameter bi. The higher the value of bi is, the less edges are put in the graph Gi. In
particular, for 1 ≤ bi ≤ 2, the graph Gi is completely connected with probability
1 as stated in [9]. Given the graphs Gi and three additional model parameters
γ1, γ2, γ3 > 1 we define the random closed sets

Ξi = {x ∈ R3 : d′γi
(x,Gi) ≤ min

1≤j≤3
d′γj

(x,Gj)}, i = 1, 2, 3 (5)

where d′γi
(x,Gi) = min{γid(x,Gi), d(x,Xi)} and d(x,A) = infy∈A |x − y| is the

minimum Euclidean distance between x and a set A ⊂ R3. This means that a
point x belongs to, e.g., Ξ1 if the distance of x to G1 with respect to d′γ1

does not
exceed the distance of x to G2 and G3 with respect to d′γ2

and d′γ3
, respectively.

Note that d′1(x,A) = d(x,A) for all x ∈ R3, A ⊂ R3. Finally a Gaussian kernel
with some variance s2GBM is applied to smooth the boundaries between the three
phases as described in [25]. Note that the resulting random sets Ξ1, Ξ2 and Ξ3

are stationary as well as isotropic. For the simulation of model realizations of the
GBM, we refer to Section 3.2.1 in [25]. Details regarding the implementation and
the runtime of simulations in the present paper are provided in Appendix C.

Fig. 2 Plot of volume fractions ε̂ ? estimated by Equation (6) over volume fractions estimated ε̂
by the point-count method. For each parameter constellation, the values ε̂ ? and ε̂ are computed
for all three phases.
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In the following we extend Equation (3.10) in [25], which relates model param-
eters to the volume fractions ε1, ε2, ε3 of the random closed sets Ξ1, Ξ2, Ξ3 in the
case γ1 = γ2 = γ3 = 1. To be more precise, we derive an approximation formula for
ε1, ε2, ε3 in the more general case γ1 = γ2 = γ3 = γ and sGBM = 0.02µm by a simu-
lation study, where γ > 1. We choose sGBM = 0.02µm since this value was obtained
when fitting the model to tomographic image data, described in Section 2, cf. also
Table 1. For this purpose, volume fractions are estimated for all parameter vec-
tors (λ1, λ2, λ3, b1, b2, b3, γ) ∈ Θ, where Θ = {0.74µm−3, 1.11µm−3, 1.48µm−3}3×
{1, 1.5, 2}3 × {2, 3, 4, 5, 6}. Then, it turns out that for each i ∈ {1, 2, 3}

ε̂ ?i =
h(λi, bi, γ)∑3
j=1 h(λj , bj , γ)

, (6)

where

h(λ, b, γ) = 2λγ2 + 3

√
λ2

(3b− 1)4
(7)

for all λ > 0, b ≥ 1, γ > 1, leads to an appropriate approximation formula of
volume fractions.

Figure 2 shows that the approximation by ε̂ ? given by Equation (6) leads to
similar results as the estimator ε̂ obtained by using the point-count method [8] to
estimate volume fractions from discretized model realizations. The coefficient of
determination R2 is given by R2 = 0.9806.

3.3 Pluri-Gaussian microstructure model

A different model for the stationary random closed sets Ξ1, Ξ2, Ξ3, namely the
pluri-Gaussian model (PGM) [2], is based on excursion sets of Gaussian random
fields in R3, see [8,15]. A Gaussian random field Z = {Z(t), t ∈ R3} in R3 is a
random function mapping from R3 to R, where for each finite collection of points
t1, . . . , tn ∈ R3, n ≥ 1, the random vector (Z(t1), . . . , Z(tn)) follows the law of a
multivariate normal distribution. For an introduction to random fields and their
geometric properties, we refer to [3]. Let Z = {Z(t), t ∈ R3} and Y = {Y (t), t ∈
R3} be two independent motion-invariant, i.e. stationary and isotropic, Gaussian
random fields with Z(o), Y (o) ∼ N (0, 1) and covariance functions ρZ and ρY ,
respectively. Here o denotes the origin in R3. Note that for each h ≥ 0, the value of
the covariance function ρZ(h) is defined as the covariance of the random variables
Z(o) and Z(t), where t has distance h to the origin. Due to the stationarity and
isotropy of Z, the value ρZ(h) does not depend on the particular choice of t. Let
uZ , uY ∈ R be arbitrary real numbers and define the random closed sets Ξ1, Ξ2

and Ξ3 by Ξ1 = {t ∈ R3 : Z(t) ≥ uZ}, Ξ2 = {t ∈ R3 : Z(t) ≤ uZ , Y (t) ≥
uY } and Ξ3 = {t ∈ R3 : Z(t) ≤ uZ , Y (t) ≤ uY }. This means that the three
phases are defined according to the values of the random fields Z and Y , e.g.,
Ξ1 contains all points in R3, where the value of the random field Z exceeds the
threshold uZ . Due to the stationarity and isotropy of the random fields Z and
Y , the random sets Ξ1, Ξ2 and Ξ3 are stationary and isotropic as well. For the
PGM, some relationships between model parameters and structural characteristics
as volume fractions, two-point coverage probability functions and specific surface
areas are well understood [2]. By definition, we have ε1 = Φ−1(1 − uZ), ε2 =
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(1 − ε1)Φ−1(1 − uY ) and ε3 = 1 − ε1 − ε2, which allows for an estimation of
uZ and uY by estimating volume fractions from image data of the considered
microstructures. Moreover, for all h ≥ 0, the following equations

C1(h) = ε21 +
1

2π

∫ ρZ(h)

0

e
−u2

Z
1+t

√
1− t2

dt, (8)

see [15], and

C2(h)

1− 2p1 + C1(h)
=

(
ε2

1− ε1

)2

+
1

2π

∫ ρY (h)

0

e
−u2

Y
1+t

√
1− t2

dt, (9)

see [2], hold. They relate the covariance functions ρX and ρY to the two-point
coverage probability functions of the three phases. We fit a parametric model to
the two-point coverage probability functions C1 and C2, which can be estimated
from image data. Thereby we choose a different class of parametric functions than
the one considered in [2]. To be more precise, we use the model

Ci(h) = ε2i + εi(1− εi)e−θi1h(1+θi2h), (10)

for h ≥ 0, i ∈ {1, 2} and some parameters θ11, θ12, θ21, θ22 > 0. Then, we use
Equations (8) and (9) for a numerical computation of ρZ and ρY . Since, for each
h ≥ 0, the right-hand sides in Equations (8) and (9) are monotonously increasing
in ρZ(h) and ρY (h), respectively, the values of ρZ(h) and ρY (h) can be computed
using the method of bisection. In a further step ρZ and ρY are smoothed by the
aid of a Gaussian kernel with some variance s2PGM to minimize the errors with
respect to specific surface areas of the three phases [2]. We refer to Section 7 in
[2] for a description of how to simulate realizations of the PGM. Details regarding
the implementation and runtime of simulations performed in the present paper
are given in Appendix C.

In the PGM, the influence of model parameters on contact areas between any
two of the three phases is well understood [2]. Besides contact areas, the length of
the triple phase boundary is important for the functionality of certain microstruc-
tures, as, e.g., for the Ni-YSZ anodes considered in the present paper. We give
a result which relates the expected length of the triple phase boundary LTPB to
the covariance functions ρZ and ρY in the case that Z and Y are mean square
differentiable [3]. In the following, we denote by f(0+) the derivative from the
right at 0 of a function f : [0,∞) −→ R, provided that it exists.

Proposition 1 Let Z and Y be mean square differentiable. Then, the expected
length of triple phase boundary per unit volume is given by

LTPB =
e−(u2

Z+u2
Y )/2

π

√
ρ′′Z(0+)ρ′′Y (0+) (11)

The corresponding proof is postponed to Appendix A. Note that the deriva-
tives in Equation (11) exist and are finite due to the assumption that Z and
Y are mean square differentiable [3]. Moreover, using the spectral representation
of isotropic covariance functions [3, Theorem 2.5.3] it can be easily shown that
ρ′′Z(0+), ρ′′Y (0+) < 0 and thus,

√
ρ′′Z(0+)ρ′′Y (0+) is well defined. Note that in our
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case the functions ρZ and ρY are only implicitly determined by Equations (8)-
(10) and the smoothing by a Gaussian kernel. As we focus on effective transport
properties of the three phases for a comparison of the graph-based model with the
pluri-Gaussian model, a detailed analysis of the length of the triple phase bound-
ary is beyond the scope of the present paper and is left to future research. This
includes an investigation of the relationship between the analytically derived ex-
pected length of the triple phase boundary per unit volume with values computed
from discrete image data.

3.4 Model fitting to 3D image data of SOFC anodes

In this section we describe the fitting of model parameters to the tomographic
image data presented in Section 2. Model validation is postponed to Section 4.3,
when effective properties like effective conductivities of solids and permeability of
the pore space are computed for tomographic image data and model realizations.
The model parameters of the graph-based model have already been fitted to this
data set in [25]. The model parameters are chosen in order to minimize the discrep-
ancy between tomographic image data and model realizations regarding volume
fractions, mean geodesic tortuosities and constrictivities of the solid phases as well
as the occurence of triple phase boundary voxels. The minimization is iteratively
performed using the Nelder-Mead algorithm [23]. The numerical values of the fit-
ted model parameters are given in Table 1 and a model realization with fitted
parameters is visualized in Figure 3.

Table 1 Numerical values of fitted model parameters of the graph-based model.

λ1 λ2 λ3 b1 b2 b3 γ1 γ2 γ3 sGBM

0.95µm−3 1.18µm−3 0.87µm−3 1.94 1.97 2.11 4.12 4.31 4.47 0.02µm

Table 2 Numerical values of fitted model parameters of the pluri-Gaussian model.

ε1 ε2 θ11 θ12 θ21 θ22 sPGM

0.33 0.42 2.00µm−1 1.10µm−1 2.33µm−1 0.67µm−1 0.11µm

The parameters of the pluri-Gaussian model are fitted proceeding analogously
to [2]. At first, the discrete FFT is used to estimate the two-point coverage prob-
ability functions C1 and C2 from image data, cf. [26]. The functions C1 and C2

are fitted by the parametric functions given in Equation (10). The estimated nu-
merical values of θ11, θ12, θ21 and θ22 are given in Table 2. In the next step, the
fitted parametric functions are plugged into Equations (8) and (9) to numerically
compute ρZ and ρY . For this purpose, the method of bisection is used. This is
possible since the right-hand sides in Equations (8) and (9) are monotonous in
ρZ(h) (and ρY (h) respectively) for each fixed h ≥ 0.

Simulations of the fitted pluri-Gaussian model show that the expected area
of interfaces per unit volume is overestimated compared to the values estimated
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from image data. For the estimation of the expected area of interfaces, the method
presented in [26] is used. Thus, the smoothing parameter sPGM is fitted in order
to minimize the difference between interface areas of model realizations and image
data. By means of a simulation study, we obtain sPGM = 0.11µm. A realization of
the fitted pluri-Gaussian model is visualized in Figure 3.

(a) (b) (c)

Fig. 3 3D cutout of tomographic image data (a) and virtual microstructures simulated with
the graph-based model (b) and with the pluri-Gaussian model (c). The microstructures consist
of pores (black), YSZ (dark grey) and nickel (bright grey). Each cutout has a size of 12µm×
12µm× 12µm and consists of cubic voxels with an edge length of 30nm.

4 Effective transport properties

To validate the stochastic microstructure models considered in Section 3, effective
transport properties are numerically simulated for model realizations and tomo-
graphic image data, followed by a discussion of microstructure-property relation-
ships. At first, the numerical simulation of conductivity and permeability is briefly
described. For further information with respect to implementation and runtime of
the numerical simulations, the reader is referred to Appendix C.

4.1 Numerical simulation of effective transport properties

The fluid flow occurring in the pore phase is modeled using the Stokes equation
for an incompressible Newtonian fluid with viscosity µf and velocity v driven by
a pressure field p:

µf∆v = ∇p, ∇ · v = 0, (12)

where ∆ = ∇ · ∇ is the Laplacian operator, here applied to each component of
v, ∇p the gradient vector of the pressure field, and ∇ · v the divergence of the
velocity field. The problem’s boundary conditions read:

v(x) ≡ 0, x ∈ Γ, 〈∇p〉 = G, v(x)#, p(x)−G · x#, (13)

where Γ is the pore-solid interface, 〈·〉 denotes mean over the computational do-
main, G is a vector representing the macroscopically-applied pressure drop and #
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denotes periodicity over the computational domain. The effective response of the
material is given by Darcy’s equation:

µf 〈vi〉 = κijGj , G = 〈∇p〉, (14)

where κ is the permeability of the medium and G the macroscopic pressure gradi-
ent. For isotropic or quasi-isotropic media, as considered in the present paper, the
second-order tensor κ reduces to a scalar. Full-field solutions for the velocity and
pressure fields are computed numerically on digitalized images using the Fourier-
based “FFF-Stokes” algorithm [36]. For convenience, we set G1 = 1, G2 = G3 = 0,
µf = 1 (arbitrary units) and compute the permeability κpores = κ11 = 〈µfv1/G1〉.
Note that κpores is an intrinsic quantity that does not depend on µf but solely on
the geometry.

Making use of the Fourier-based “direct scheme” with “discrete” Green opera-
tor [37], we estimate ionic and electronic conductivity in the two solid phases. We
solve the following problem:

∇ · J = 0, E = −∇φ J(x) =

{
σsolE(x), if x ∈ S,

0, otherwise,
(15)

where S denotes the considered conductive phase, J is the electrical current vector
(or particle current), E the electrical vector field (or opposite gradient of ionic
concentration), φ is the electrical potential (or ionic concentration) and σsol is the
intrinsic electrical conductivity of nickel (or the intrinsic ionic diffusion coefficient
of YSZ). The periodic boundary conditions read:

J(x)#, E(x)#, φ(x) + 〈E〉 · x#, (16)

where 〈E〉 denotes the applied electrical field (or applied concentration gradient).
In both problems, the effective conductivity σ is computed by averaging the fields
E and J:

〈J〉 = σ · 〈E〉. (17)

Again, the second-order tensor σ reduces to a scalar for isotropic media. We apply
〈E1〉 = 1, 〈E2〉 = 〈E3〉 = 0 and define the normalized effective conductivity (or
M -factor) related to the nickel and YSZ phases by σNi,YSZ = σ11/σsol, where
σ11 = 〈J1〉/〈E1〉, computed in their respective problems. The M -factor does not
depend on σsol, but only on the geometry of the two solid phases.

Boundary conditions are applied such that the solutions for the conductivity
and Stokes flow problems are that of a periodic, infinite 3D medium with ele-
mentary cell given by the PGM or GBM models, simulated on finite-size domains
containing 5123 voxels, or to tomographic 3D image data, containing 849×648×430
voxels. Opposite faces of the latter do not correspond as in the elementary cell of
a periodic structure, which induces unwanted boundary effects along the surfaces.
To minimize such effects, we insert a layer with a size of 50 voxels of pore (or
conducting phase) normal to the direction of the applied loading, which serves
to connect the current or fluid flow paths from one side to the opposite. The ef-
fective conductivity and permeability are estimated by taking field averages over
the interior domain, without the layer. For the FIB-SEM image, this treatment
increases the conductivity by about 4% in the nickel phase and 3% in the YSZ
phase, whereas the permeability in the pore phase is increased by a relative factor
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(a) (b) (c)

(d) (e) (f)

Fig. 4 FFT maps of the flow velocity component v1, oriented parallel to the applied pressure
drop G1 = 1 (Pa) and corresponding microstructure with pores in black (2D sections, axis 1,
i.e. the transport direction, is oriented vertically, top to bottom). The 2D sections correspond
to realizations of the optimized PGM model (a, d) and the optimized GBM model (b,e) as well
as to tomographic image data (c,f). The same color scale in the range [−1; 1.2] (×10−5 ms−1)
is used in maps (a-c). Positive values of the fluid velocity in white and yellow, negative values
in black, zero values in red (solid phase in blue). The images have a size of 12µm× 12µm.

of 7%. Figure 4 shows 2D sections of FFT field maps for the fluid velocity compo-
nent in the pore phase, for the GBM and PGM models, as well as for the FIB-SEM
data, to be compared with the geometry of the underlying microstructures. In all
three microstructures, only some of the paths through the pore space intersecting
the 2D sections represented in the figure participate in the fluid transport. Also,
some of the paths transport fluid in a direction opposite to the applied pressure
drop (black spots), highlighting the tortuosity of the fluid paths.

4.2 Optimization of model parameters for precise fitting of effective transport
properties

As described in Section 3.4 the graph-based model as well as the pluri-Gaussian
model are fitted to tomographic image data. By means of numerical simulations,
the corresponding effective transport properties κpores, σNi and σYSZ are computed
for tomographic image data and for realizations of both models with the fitted
parameter constellations given in Tables 1 and 2. In the following, we denote
the virtual structure with fitted parameters by GBM (fit) and PGM (fit) for the
graph-based model and the pluri-Gaussian model, respectively. Additionally, the
parameters of both models are slightly varied and model realizations are simulated.
Then, effective transport properties are also computed for these modified virtual
microstrucures. It turns out that with slightly varied model parameters the fit of
effective transport properties can be further improved.
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For this purpose, we perform a simulation study. For the graph-based model
sGBM = 0.02µm is kept fix and we restrict ourselves to the simplified case in
which b1 = b2 = b3 = b ∈ {1.8, 1.9, 2.0, 2.1} and γ1 = γ2 = γ3 = γ ∈ {2,
3, 3.5, 4.1, 4.2, 4.3, 4.4, 5, 6}. This simplification is reasonable since the values of
b1, b2, b3 and γ1, γ2, γ3 fitted to tomographic image data are close to each other,
cf. Table 1. Moreover, we fix λ2 = 1.18µm−3 and choose λ1 and λ3 in order to fit
the volume fractions of tomographic image data. Therefore, we use the relationship
between model parameters and volume fractions given in Equation (6). For the
pluri-Gaussian model, we keep the parameters ε1, ε2, θ11, θ21 and sPGM fix and
vary the two remaining parameters, i.e., θ12 ∈ {0.17, 0.33, 1.00, 1.67} [µm−1]
and θ22 ∈ {0.33, 0.67, 2.00, 3.33} [µm−1]. Then, for each of the simulated virtual
microstructures permeability of the pore space and conductivity of the two solid
phases are computed. We denote the virtual structures for which the sum of relative
errors regarding effective properties of tomographic image data is minimized by
GBM (opt) and PGM (opt), respectively. The optimum parameter constellation is
β = 1.8, γ = 2 in the graph-based model and θ12 = 1.67µm−1, θ22 = 0.33µm−1 in
the pluri-Gaussian model. The achieved improvement regarding the fit of effective
properties is discussed in the following section.

Table 3 Numerically simulated values of effective transport properties κpores,MNi and MYSZ

for tomographic image data and realizations of both models with fitted parameter constella-
tions.

κpores[10−11cm2] MNi MYSZ

Image data 0.403 0.075 0.177

GBM (fit) 0.278 0.091 0.152

GBM (opt) 0.353 0.097 0.175

PGM (fit) 0.147 0.098 0.191

PGM (opt) 0.419 0.092 0.193

Table 4 Estimated values of volume fractions ε = (ε1, ε2, ε3), mean geodesic tortuosities
τ = (τ1, τ2, τ3) and constrictivities β = (β1, β2, β3) for tomographic image data and realizations
of both models with fitted parameter constellations. Recall from Section 3 that the index 1
belongs to nickel, 2 to YSZ and 3 to the pore space.

ε τ β

Image data (0.33, 0.42, 0.25) (1.17, 1.10, 1.26) (0.33, 0.42, 0.31)

GBM (fit) (0.32, 0.40, 0.28) (1.13, 1.10, 1.17) (0.33, 0.44, 0.24)

GBM (opt) (0.32, 0.42, 0.26) (1.12, 1.09, 1.15) (0.34, 0.46, 0.28)

PGM (fit) (0.34, 0.41, 0.25) (1.16, 1.08, 1.17) (0.46, 0.61, 0.39)

PGM (opt) (0.32, 0.42, 0.26) (1.14, 1.09, 1.19) (0.46, 0.57, 0.39)
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Table 5 Estimated values of rmax = (rmax,1, rmax,2, rmax,3), rmin = (rmin,1, rmin,2, rmin,3)
for tomographic image data and realizations of both models with fitted parameter constella-
tions. Recall from Section 3 that the index 1 belongs to nickel, 2 to YSZ and 3 to the pore
space.

rmax[10−6m] rmin[10−6m]

Image data (0.3744, 0.3000, 0.3093) (0.2145, 0.1920, 0.1734)

GBM (fit) (0.3285, 0.3483, 0.3126) (0.1872, 0.2286, 0.1533)

GBM (opt) (0.3285, 0.3606, 0.3048) (0.1614, 0.2454, 0.1902)

PGM (fit) (0.3906, 0.2109, 0.162) (0.2646, 0.1641, 0.1011)

PGM (opt) (0.3072, 0.3366, 0.2898) (0.2091 0.2535 0.1806)

4.3 Model validation and microstructure-property relationships

We validate both stochastic microstructure models considered in Section 3 with
respect to effective transport properties. Therefore, we consider permeability of
the pore space and the M -factors of the two solid phases, denoted by MNi and
MYSZ. The M -factor of a conducting phase is defined as the ratio of effective con-
ductivity over intrinsic conductivity. Since in our study the intrinsic conductivity
is a material dependent constant, the effective conductivity is directly related to
the corresponding M -factor. Moreover, the microstructure charateristics volume
fraction ε, mean geodesic tortuosity τ as well as rmin and rmax determining con-
strictivity β are computed for all three phases. These microstructure characteris-
tics have a strong influence on effective conductivity as shown in [31], where the
empirical formula

M̂ =
ε1.15β0.37

τ4.39
(18)

of the M -factor was derived based on a combination of stochastic modeling and
numerical simulations. Note that prediction errors of Equation (18) increase for
smaller volume fractions with a tendency to overestimate the M -factor [30, Figure
7]. In a recent study [10] for gas diffusion layers used in polymer electrolyte fuel
cells, the following empirical formula for permeability κ has been obtained:

κ̂ =
(rmin + rmax)2

32
M̂ (19)

In Tables 3, 4 and 5, the computed microstructure characteristics and the simu-
lated effective transport properties are given.

Connectedness, of central importance for transport properties, should be very
similar in the models and tomographic images. We emphasize that each phase
in both the PGM and GBM models are well-connected as in the FIB-SEM 3D
image. More precisely, in the graph-based model, complete connectivity of each
phase i ∈ {1, 2, 3} is theoretically guaranteed if bi ≤ 2. Even if b3 > 2 here, the
largest completely-connected cluster in the pore space takes more than 98.5% of
the pore space in the GBM (fit) [25], whereas this quantity is larger than 99% for
all three phases in both structures realized by the pluri-Gaussian model, i.e. PGM
(fit) and PGM (opt).

Volume fractions are fitted well by the stochastic microstructure models. Only
small discrepancies occur for GBM (fit), see Table 4. The reason for these discrep-
ancies is that the parameter fitting was performed here in order to numerically
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optimize the fit of the two solid phases with respect to ε, τ, β and the occurrence
of triple phase boundary voxels simultaneously. Thus the fit of volume fractions
is not as good as the fit in the cases of GBM (opt), PGM (fit) and PGM (opt),
where ε1, ε2 and ε3 are adjusted due to known relationships between volume frac-
tions and model parameters. Mean geodesic tortuosities behave similarly for both
models. While τ2 is fitted well, τ1 and τ3 are slightly underestimated. For con-
strictivities of nickel and YSZ, the best fit is obtained by GBM (fit), which is
not surprising as these values have been used for model fitting. By a variation of
model parameters in the graph-based model the fit of β1 and β2 becomes slightly
worse. However, the accordance of β3 with respect to tomographic image data
is improved. Furthermore, one can observe that constrictivity is overestimated in
the pluri-Gaussian model, i.e., there are less limiting effects of bottlenecks in the
model realizations compared to tomographic image data.

(a) (b)

(c) (d)

Fig. 5 Comparison of geometrically predicted values M̂Ni, M̂YSZ and κ̂pores with numerically
simulated values MNi,MYSZ and κpores of effective transport properties. Results for perme-
ability (c) in the pore space and for the M -factor of nickel (a) and YSZ (b). Additionally, the
distribution function of the electrical current J computed by means of numerical simulations
within the nickel phase is shown for tomographic image and realizations of the microstructure
models (d).

The predictions for the M -factor and effective permeability provided by the
empirical formulas (18) and (19) are first compared to numerical FFT computa-
tions in Fig. 5. For all models, the analytical predictions overestimate the effective
properties in the average by 8% for YSZ and 17% for nickel. In effect, the differ-
ence is higher for the phase with lower volume fraction (nickel). For permeability,
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a significantly higher difference is observed, especially for the GBM model. Note
however that, contrary to (18), the exponents in 19 have not been fitted to a
database of virtual microstructure characteristics.

In the next step, we let model parameters vary to approach the three effec-
tive transport properties using virtual structures (see Table 3). Model GBM (fit)
is in good agreement with the M -factors of solid phases, while permeability of
the pore space is strongly underestimated. The reason for that is the good fit of
structural characteristics of solid phases on the one hand, and the underestimation
of constrictivity of the pore space β3. When the microstructure characteristic β3
is increased in the model, we obtain a more accurate prediction of κpores (model
GBM (opt)). However, the value of κpores predicted by GBM(opt) is still signifi-
cantly lower than the one computed for tomographic image data. The quality of
the fit of PGM (fit) for MNi and MYSZ is as good as the fit of GBM (fit). How-
ever, GBM (fit) underestimates MYSZ while PGM (fit) overestimates MYSZ. The
accordance of conductivities between model and tomographic image data does not
change significantly when going from PGM (fit) to PGM (opt) and the correspond-
ing microstructure characteristics ε, β, τ are close to each other. Still, a structural
difference between PGM (fit) and PGM (opt) can be observed, which is reflected in
the values of rmax and rmin. In particular, a much better fit of rmax and rmin of the
pore space is obtained in PGM (opt) compared to PGM (fit). As these structural
characteristics influence permeability due to Equation (19), the better fit of κpores
in PGM (opt) compared to PGM (fit) is attributed to the better fit of rmax and
rmin. Concluding the comparison of effective transport properties, it turns out that
the geometry-based estimation of model parameters for both the graph-based and
the pluri-Gaussian model, presented in [2] and [25], do not necessarily lead to the
best fit regarding effective transport properties. This result indicates that the mi-
crostructure characteristics taken into account for the geometry-based estimation
do not completely determine the effective transport properties. We discuss this
effect in the following at the example of the M -factor of the nickel phase, which
is overestimated by 20 to 30%. Note however that this is the worst prediction of
the three transport properties regarding the relative error. Nickel is also the phase
with the lowest volume fraction. Presumably, the transport paths are the most
tortuous for this phase, leading to regions that although connected to the perco-
lating cluster, do not participate to the overall transport. We call this part the
dead-end volume. The fraction of dead-end volume is not reflected in the notions
of mean geodesic tortuosity and constrictivity and leads thus to a less accurate
prediction of the M -factor with Equation (18), see [30]. It is not taken into account
in the geometrical prediction of the M -factor as we are not aware of any rigorous
definition of the dead-end volume purely based on geometry. Nevertheless, having
computed the current in the nickel phase via numerical simulations as described in
Section 4.1, its dead-end volume can be defined as the subset of the nickel phase
where the current is approximately 0. In order to give a better impression of the
occurrence of dead-end volume, 2D visualizations are given in Appendix B.

In Figure 5 the distribution function of the electrical current within the nickel
phase, i.e. F|J1|(s) = P (|J1| ≤ s), is shown for tomographic image data as well
as for PGM(opt) and GBM(opt). The different increase of distribution functions
at s = 0 leads to a further underpinning of the assumption that the fraction of
dead-end volume is different in the three microstructures. Compared to tomo-
graphic image data, the fraction of dead-end volume seems to be underestimated
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in PGM(opt) and GBM(opt), which would explain that the M -factor of the nickel
phase is overestimated in the model realizations.

Overall, the joint fit of permeability and conductivities of the solid phases is
not sufficiently good, if the parameters are estimated only on the basis of geomet-
ric characteristics. However, using the estimated model parameters as a starting
point for a parameter estimation with respect to transport properties a much bet-
ter fit can be obtained, at the price of a slightly less optimal fit of the geometric
microstructure characteristics. Moreover, the fit of effective properties is better for
the PGM compared to the GBM. In particular, the GBM underestimates perme-
ability of the pore space.

5 Comparison of three-phase microstructure models

The considered microstructure models, one based on three random geometric
graphs (GBM) and the other one based on two independent Gaussian random
fields (PGM) are conceptually different from each other. By definition, connectiv-
ity properties of the three phases can be directly controlled by model parameters in
the graph-based model. For a certain constellation of model parameters it is even
possible to ensure the complete connectivity of all three phases. Moreover, for a
simplified version of the model (b1 = b2 = b3 = 2 and γ1 = γ2 = γ3 = 1) results
regarding the asymptotic behavior of the estimators for τ and β have been ob-
tained [24]. Complete connectivity of the phases can not be achieved in the PGM
for any parameter constellation by definition. Furthermore, the estimation of τ
and β has not yet been investigated for this model type from a theoretical point of
view. However, the fit to tomographic image data, where the three phases exhibit
good connectivity properties, shows that the connectivity can be sufficiently well
reproduced by the PGM. To be precise, more than 99% of each phase is percolating
in transport direction and thus contributes to flow or conduction processes. On
the other hand, the relationships between model parameters and microstructure
characteristics like volume fraction, specific surface area and two-point coverage
probability functions are well understood for the PGM [15]. Furthermore, in the
present paper a formula for the expected length of the triple phase boundary per
unit volume is derived. Such relationships are difficult to access analytically in the
GBM and could not be derived so far. Thus a simulation study is performed to
empirically relate model parameters with volume fractions of phases.

Using the relationships between model parameters and volume fractions as well
as two-point coverage probability functions, the model parameters of the PGM
can be directly estimated from image data. As volume fractions and two-point
coverage probability functions can be estimated based on 2D images representing
sections through a 3D microstructure, the model parameters of the PGM can also
be estimated based on 2D image data assuming that the considered microstructure
exhibits no anisotropy effects. This is a big advantage of the model as 3D imaging
is much more expensive than 2D imaging. The model parameters in the GBM are
numerically optimized regarding volume fractions, mean geodesic tortuosities and
constrictivities of the solid phases as described in [25]. This method can not be
used to estimate the model parameters based on 2D images, as the computation
of τ and β requires the full 3D information. Note that the numerical optimization
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is also more time-consuming compared to the estimation of model parameters in
the pluri-Gaussian model.

The decision which of both models is preferable has to be made in dependence
on the specific material or application for which the model is used. For the image
data considered in the present paper, the PGM leads to a better fit regarding
effective transport properties. Even if a better fit of constrictivity is obtained by
the graph-based model, it underestimates permeability of the pore space and thus
it does not allow to predict all relevant transport properties sufficiently well. So,
for a model-based investigation on effective transport properties we suggest to
prefer the PGM. However, due to the better fit of constrictivity, the GBM is –
in the case of these particular structures – more appropriate for an investigation
of the occurrence of bottlenecks. Besides that, in contrast to the PGM, the GBM
allows for versatile modifications leading to topologically different microstructures.
To be more precise, using different types of random geometric graphs, modeling
the backbones of the three phases would enable promising extensions of the model
towards higher flexibility.

6 Conclusions

Two three-phase 3D microstructure models, namely the pluri-Gaussian model of [2]
and the graph-based model of [25] are compared with respect to effective trans-
port properties. The comparison is performed at an example of tomographic image
data representing a three-phase microstructure occurring in SOFC anodes. For this
purpose, both parametric models are fitted to image data based on geometrical
characteristics of the microstructure. In a second step, the model parameters are
optimized (using the fitted parameter constellations as starting points) with re-
spect to permeability of the pore space as well as effective conductivities of the
solid phases. By means of prediction formulas empirically derived in previous pub-
lications, we discuss the relationship between the fit of purely geometrical charac-
teristics like volume fraction, mean geodesic tortuosity and constrictivity on the
one hand and effective transport properties on the other hand. For the considered
data set, the pluri-Gaussian model leads to a better fit of effective transport prop-
erties than the graph-based model, even if the pluri-Gaussian model overestimates
the values of constrictivity. Finally, a comparison of the two microstructure models
attempts to provide criteria in order to decide whether the pluri-Gaussian model or
the graph-based model is used for a model-based investigation of microstructure-
property relationships. Note that the presented models can also be used to study
the microstructure influence on further effective properties like mechanical stress-
strain curves in three-phase microstructures and are thus not restricted to effective
conductivity and permeability.

Appendix

A Proof of Proposition 1

To prove Proposition 1, we introduce a further stationary random set Ξ̃2 defined by Ξ̃2 = {t ∈
R3 : Y (t) ≥ λY }. Note that the specific surface areas S1 and S̃2 of Ξ1 and Ξ̃2 respectively can
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be computed by

S1 =
2

π
e−u

2
Z/2

√
−ρ′′Z(0+) (20)

and

S̃2 =
2

π
e−u

2
Y /2

√
−ρ′′Y (0+), (21)

if Z and Y are mean-square differentiable, see [8, Equation (6.165)] and [4, Remark 7]. In that
case, ρZ and ρY are twice differentiable from the right and ρ′′Z(0+), ρ′′Y (0+) < 0, see [3]. At

first, we derive a formula which allows us to express LTPB in terms of S1 and S̃2. We show
that

LTPB = πS1S̃2/4. (22)

Then, the assertion follows directly, when plugging Equations (20) and (21) into Equation (22).
To prove Equation (22), note that the intersection Ξ0 = Ξ1 ∩ Ξ2 ∩ Ξ3 is a motion-invariant
random closed set and can be considered as a spatial fiber process in the sense of [8, Section 8.4].
Then, Ξ0∩[0, 1]2×{o} forms a motion-invariant point process with intensity ϑ0 ≥ 0. According
to [8, Equation (8.63)] we obtain LTPB = 2ϑ0. Furthermore, note that the intersection of ∂Ξ1

with an arbitrary one-dimensional subset of R3 forms a motion-invariant point process with
intensity ϑ1 ≥ 0 satisfying S1 = 2ϑ1, see [8, Equation(8.84)]. In order to compute ϑ0, we use
the independence of Z and Y . This gives

ϑ0 = EH0(Ξ0 ∩ [0, 1]2 × {o})

=

∫
E
(
H0(∂Ξ1 ∩ ∂Ξ̃2 ∩ ([0, 1]2 × {o})) | Y

)
dPY

= ϑ1

∫
H1(∂Ξ̃2 ∩ ([0, 1]2 × {o}) dPY

=
π

8
S1S̃2, (23)

where the last equality is obtained by [8, Equation(8.83)]. ut

B Visualization of dead-end volume in 2D

The dead-end volume turned out to serve as a reasonable interpretation of the difference
observed between models (e.g. the PGM model) and the tomographic image data regarding
the M -factor of the nickel phase. In order to visualize the dead-end volume, we have computed
the current flow in a hypothetical structure. For this purpose, we considered YSZ and the pore
space in a random 2D slice of tomographic image data and of realizations of the PGM model
as conducting phases, while nickel is insulating. An electrical field 〈E1〉 = 1 is applied for these
2D structures. This approach is useful for several reasons. First, it is easier to compare the
field patterns between different structures in a purely-2D problem. This is however possible
as long as discrepancies between the M -factors of model realizations and FIB-SEM images
observed in 3D are also reflected in the results of 2D computations. Second, the nickel phase
does not percolate in a 2D cut, hence we consider the flow in the complementary phase of
the nickel (YSZ and pores). Indeed if the nickel phase of the models were representative of
that observed in the FIB-SEM image, this would be the case also for its complementary. We
observe a very significant difference between the two effective conductivities in 2D, equal to
σYSZ,pores = 0.21 for the realization of the PGM model and σYSZ,pores = 0.31 for the FIB-
SEM image. This suggests that the reason for the discrepancy is also present in the simpler
2D problem. In Figure 6), regions of low current values |J1| < 0.026 are highlighted in red.
These regions are considered as dead-end volume of the union of pores and YSZ. We observe
that there is a significantly larger amount of such regions in realization of the PGM model
than in tomographic image data. This can be related to much larger clusters in the model
realization for the union of YSZ and of the pores than in tomographic image data (Figures 6a
and 6b), which act as barriers. The presence of such barriers is consistent with a higher value
of effective conductivity σYSZ,pores = 0.31 of tomographic image compared to the model
realization (σYSZ,pores = 0.21).
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(a) (b)

(c) (d)

Fig. 6 Current field J1 (b, d) in 2D microstructures (a, c, flow occurs in the complement of
the white phase) obtained as the union of the YSZ and pore phases: FIB-SEM image (a, b)
and PGM model (c, d). The applied eletrical field is 〈E1〉 = 1, 〈E2〉 = 0 and axis 1 is oriented
left to right on the maps. The color maps (b, d) indicate the current flow in the direction of
axis 1 (lowest value in black, highest in white, values in-between in red and yellow). The color
bar is restricted to current values between 0 and 2. Zones of low current values |J1| < 0.026
are shown in red in maps (a) and (c).

C Description of computer implementation of the calculations

In the following, we provide some technical details of the implementations used to simulate
the virtual microstructures and their effective transport properties. The simulation of virtual
microstructures by the GBM is implemented using Java in the framework of the software library
Geostoch [18]. Drawing one model realization with the parameters given in Table 1 takes
about 25 minutes on a desktop computer. The code for generating virtual microstructures
with the PGM is written in Matlab [17]. One model realization with the parameters given
in Table 2 takes about 5 minutes on a desktop computer. For the simulation of effective
conductivity and permeability as described in Section 4.1, a Fortran code parallelized on a 24-
cores machine is used. Calculations take about 2 hours and 40 minutes for effective conductivity
and permeability, respectively.

Nomenclature

β1, β2, β3 constrictivities of the three phases
ε1, ε2, ε3 volume fractions of the three phases
ε̂ estimator for the volume fraction of a stationary random closed

sets
ε̂? estimator for the volume fraction in the graph-based microstruc-

ture model
γ1, γ2, γ3 parameters of the distance measure used for the graph-based

microstructure model
Γ pore-solid interface
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κ [m2] permeability

κ̂ [m2] geometrical predictor of permeability

λ1, λ2, λ3 [m−3] intensities of the Poisson point processes

µf [kg ·m−1 · s−1] viscosity of an incompressible Newtonian fluid

ν3 3-dimensional Lebesgue measure

Φ probability distribution function of the standard normal dis-
tribution

φ [kg ·m2 · s−3 ·A−1] electrical potential (or ionic concentration)

ρY , ρZ covariance functions of the Gaussian random fields Y and Z

σ [kg−1 ·m−2 · s3 ·A2] effective conductivity

σsol [kg−1 ·m−2 · s3 ·A2] intrinsic conductivity

τ1, τ2, τ3 mean geodesic tortuosities of the three phases

Θ parameter space

θij [m−1] parameters for modeling two-point coverage probability func-
tions, i, j ∈ {1, 2}

ϑ0 [m−2], ϑ1 [m−1] intensities of point processes related to the triple phase bound-
ary

Ξ1, Ξ2, Ξ3 random closed sets denoting the three different phases

b1, b2, b3 parameters of the beta-skeletons

C1, C2, C3 two-point coverage probability functions of the three phases

d(x,A) Euclidean distance between a point x ∈ R3 and a set A ⊂ R3

dγ(x,A) distance measure with parameter γ between a point x ∈ R3

and a set A ⊂ R3

E [kg ·m · s−3 ·A−1] electrical vector field (or opposite gradient of ionic concentra-
tion)

G [kg ·m−2 · s−2] macroscopic pressure gradient

G1,G2,G3 beta-skeletons of the three phases

h function used to estimate the volume fraction in the graph-
based model

Hk k-dimensional Hausdorff measure for k ∈ {1, 2, 3}
J [A] electrical current (or particle current)

LTPB [m−2] expected length of the triple phase boundary per unit volume

M M -factor, i.e. the ratio of effective and intrinsic conductivity

M̂ geometrical predictor of the M -factor

o origin in the 3-dimensional Euclidean space

p [kg ·m−1 · s−2] pressure field

R3 3-dimensional Euclidean space

R2 coefficient of determination

rmax [m] median of the volume equivalent particle radius distribution

rmin [m] median radius of the characteristic bottleneck in a microstruc-
ture

S conductive phase

S1, S2, S3 specific surface area of the three phases

sGBM [m] smoothing parameter of the graph-based microstructure model

sPGM [m] smoothing parameter of the pluri-Gaussian microstructure model

uY , uZ thresholds defining the excursion sets of the Gaussian random
fields Y and Z

v [m · s−1] velocity of an incompressible Newtonian fluid

X1, X2, X3 homogeneous Poisson point processes

Y, Z Gaussian random fields

∆ Laplacian operator

∇ gradient operator

∂A boundary of a set A ⊂ R3
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