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Abstract

Silica monoliths are hierarchically structured, versatile materials that are widely used in analytical
separation science, e.g., liquid chromatography. Their functionality strongly depends on the 3D
morphology of their macropore and mesopore spaces. In the present paper, we consider three dif-
ferently manufactured silica monolith samples, where the process conditions of their hydrothermal
treatment (affecting, e.g., mesopore size) have been varied, and present a parametric stochastic 3D
microstructure model that is able to generate digital twins of the resulting mesopore spaces. The
model, which is based on random point processes and relative neighborhood graphs, theoretically
guarantees the complete connectivity of both, the silica phase and the mesopores. The parametric
model is fitted to electron tomographic image data. For this purpose, we optimize a cost function
that is based on empirically derived relationships between model parameters and volume fraction,
mean geodesic tortuosity and constrictivity. Validation is performed regarding further microstruc-
ture characteristics, which are not used for model fitting, and regarding effective diffusivity, which
is numerically simulated by a particle-tracking algorithm based on random walks.

Keywords: Stochastic microstructure modeling, amorphous silica, random point process, relative
neighborhood graph, effective diffusivity, random walk

1. Introduction

Silica monoliths combine low bulk density, high porosity, and mechanical stability with a large
surface area. Thus they are versatile materials being widely used in diverse industrial applications
for chemical separations, filtering, heterogeneous catalysis, gas adsorption, etc. [1, 2, 3, 4, 5,
6]. Silica monoliths consist of the silica skeleton and pores, where the latter can be subdivided5

into interskeleton macro- and intraskeleton mesopores. The original process to prepare macro-
mesoporous silica monoliths was introduced in [7]. It consists of sol-gel transition with concurrent,
polymer-induced phase separation yielding wet, macro-microporous gels, followed by hydrothermal
treatment of the gel to widen the micropores to mesopores through surface etching. Silica monoliths
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with different properties of the pore space can be synthesized by varying the content of the silica
precursor, pH of the starting gel, chemical structure, molecular weight, and content of the polymer,
as well as the conditions of the hydrothermal treatment.
While the highly permeable macropores allow for efficient advective transport by pressure-driven
flow, the mesopores enable fast transport of solutes to and from active sites inside the skeleton [2,5

5, 8]. Moreover, the mesoporous skeleton provides a large surface for active sites accessible by
diffusion. However, when the interfacial kinetics (sorption, reaction) are fast, hindered diffusion
through the network of mesopores inside the monolith skeleton can become the limiting factor
to the process performance and efficiency. Thus, a better understanding of relationships between
the morphology of mesopores and the corresponding effective properties is crucial to optimize10

processes controlled by hindered diffusion. Due to this strong impact of the microstructure on
effective diffusivity [9, 10], identifying preferable morphologies has the potential to significantly
improve functional properties of silica monoliths.
For this purpose, the 3D morphology of silica monoliths can be investigated by means of tomo-
graphic imaging and a subsequent statistical analysis of the 3D microstructure. Since manufac-15

turing and the subsequent imaging process for a large number of samples is expensive in time and
costs, parametric stochastic microstructure modeling is a powerful tool to overcome these limi-
tations via an approach called virtual materials testing. More precisely, a parametric stochastic
3D microstructure model is fitted to tomographic image data, which allows for the generation of
digital twins, i.e., virtual microstructures with similar structural properties compared to those20

observed by tomographic imaging. Note that in materials research the segmented tomographic
reconstruction is frequently considered as a digital twin of the 3D microstructure, whereas in the
present paper the notion of digital twins refers to realizations of the stochastic 3D microstructure
model. By systematic variation of the model parameters, a large range of virtual microstructures
can be generated on the computer which are still realistic, but differ from the samples used for25

imaging. These virtual microstructures serve as input for numerical simulations of functional prop-
erties, which makes it possible to empirically derive microstructure-property relationships. Virtual
materials testing has been applied, e.g., to quantify the influence of microstructure on effective
conductivity and permeability in [11, 12, 13, 14, 15].
In the present paper, we perform the first step for virtual materials testing of amorphous, meso-30

porous silica from hierarchical, macro-mesoprous silica monoliths. This means that we present
a graph-based stochastic microstructure model which enables us to generate digital twins of the
mesopore space exhibiting different morphologies. For this purpose, we introduce a new parametric
stochastic microstructure model, which is a modification of the model used in [16] for applications
in solid oxide fuel cells. The model is fitted to tomographic image data of three differently processed35

silica monolith samples described in [17]. These monoliths stem from the same sol-gel processing
step, but were subjected to varied conditions during the postgelational, hydrothermal treatment
step, resulting in different mesopore size, mesoporosity, and surface area. In the following, the
three samples are denoted as Si12, Si21 and Si26. The number corresponds to the mean meso-
pore diameter (in nanometer) based on nitrogen physisorption analysis [17]. Tomographic image40

data have been obtained by scanning transmission electron microscopy (STEM), see [18, 19] for
an overview. The voxel sizes as well as the overall sizes of the 3D images are listed in Table 1.

The remainder of this paper is organized as follows. In Section 2, we describe several quantities that
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are used for characterizing the 3D morphology of the mesoporous silica. The parametric stochastic
microstructure model is presented in Section 3. Model fitting to tomographic image data for the
generation of digital twins is described in detail in Section 4. Finally, the fitted microstructure
model is validated with respect to structural and functional properties, see Section 5. We conclude
this paper with a summary of the main results in Section 6.5

Table 1: General sample information.

Sample Si12 Si21 Si26

Size in x-direction [nm] 227.5 224 270
Size in y-direction [nm] 227.5 224 270
Size in z-direction [nm] 175 175 135

Voxel size [nm] 0.35 0.5 0.5

2. Transport-relevant microstructure characteristics

In this section, we briefly explain the mathematical definitions of several transport-relevant mi-
crostructure characteristics which are used in the present paper for model fitting and validation.
Note that we consider both the solid and the pore phase as stationary random closed sets, which10

turned out to be a powerful framework for microstructure characterization based on image data,
see, e.g., [20, 21]. The random closed set representing the solid phase is denoted by ΞS, while ΞP

denotes the random closed set representing the pore space.1 In the following, we use the subscripts
S and P in order to indicate whether the considered microstructure characteristic refers to the
solid phase or the pore space.15

2.1. Volume fraction and porosity

Obviously, one of the most important characteristics is the volume fraction of the solid phase,
denoted by εS. More precisely, it holds εS = E(ν3(ΞS ∩ [0, 1]3)), where ν3 denotes the three-
dimensional Lebesgue measure. This quantity is estimated from 3D image data using the point-
count method, which has been applied since the 19th century and is, e.g., described in [20]. From20

the volume fraction of the solid phase, we directly obtain the porosity εP = 1− εS.

2.2. Mean geodesic tortuosity

Besides volume fraction, the so-called mean geodesic tortuosity turned out to be of great relevance
when considering transport phenomena in dispersed porous microstructures [22]. This quantity
characterizes the length of shortest transportation paths. Note that there exist several definitions25

of tortuosity in the literature. For a comprehensive overview, the reader is referred to [23, 24, 25].

1For technical reasons, the interface between solid and pores is considered to belong to both ΞS and ΞP , i.e., we
have ΞP = cl(Ξ{

S), where A{ and cl(A) denote the complement and the topological closure of a subset A ⊂ R3 of
the three-dimensional Euclidean space, respectively.
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Further descriptors related to the concept of geometrical path lengths with a special focus on their
relationship to transport properties are discussed in the literature [14, 26, 27]. Mean geodesic
tortuosity of a stationary random closed set Ξ is a direction-dependent quantity. First, a starting
plane and a target plane have to be chosen. Then, mean geodesic tortuosity of Ξ is defined as the
ratio of the expected length of the shortest path from an arbitrary point of the starting plane going5

through Ξ to the target plane over the distance between starting and target plane. To estimate
mean geodesic tortuosity from image data, we compute shortest paths on the voxel grid using
Dijkstra’s algorithm, see [28]. For a formal definition of this characteristic in the framework of
stationary random closed sets, we refer to [15].

2.3. Constrictivity10

When considering diffusion processes, the occurrence of bottleneck effects can significantly influ-
ence the resulting effective diffusivity. Thus, a further important geometrical characteristic is the
constrictivity β ∈ [0, 1], which quantifies the strength of bottlenecks. This microstructure char-
acteristic has been introduced in [29] and has proven to play a major role for several functional
materials, for example in solid oxide fuel cells [30, 31]. The definition of constrictivity is based on15

the continuous phase size distribution and a geometrically simulated intrusion porosimetry. The
continuous phase size distribution CPSD : [0,∞)→ [0, 1] characterizes the morphology of the pre-
defined phase, where CPSD(r) is given by the maximum volume fraction of the union of (potentially
overlapping) balls of radius r, where these balls have to be completely contained in the considered
phase. Note that the value CPSD(r) coincides with the volume fraction of the considered phase20

after a so-called morphological opening using a ball with radius r as structuring element. In par-
ticular, CPSD coincides with the opening size distribution [32, 33]. The radius rmax is now defined
as the largest radius r for which CPSD(r) is greater or equal than half the volume fraction of the
considered phase. In contrast to CPSD, the simulated intrusion porosimetry IP : [0,∞)→ [0, 1] is
a direction-dependent characteristic, where the only difference between CPSD(r) and IP(r) is the25

fact that the balls of radius r are no longer allowed to be placed arbitrarily within the considered
phase. Instead, they intrude into the considered phase from a predefined starting plane along the
specified direction, which accounts for bottleneck effects. Then, analogously to rmax, the radius
rmin is defined as the maximum radius for which IP(r) is greater or equal than half the volume
fraction of the considered phase. Finally, constrictivity is defined by β = (rmin/rmax)

2 ∈ [0, 1],30

where lower values of β correspond to more pronounced bottlenecks. Using the concept of mor-
phological opening [32, 33] and the Hoshen-Kopelman algorithm [34] allows for an estimation of
CPSD and IP and thus for an estimation of constrictivity from image data. We refer to [15] for a
formal definition of constrictivity and details regarding its estimation.

2.4. Chord length distribution35

A further useful microstructure characteristic is the so-called chord length distribution [32, 33].
The chord length in direction ϕ ∈ [0, π

2
] × [0, 2π) of a random closed Ξ is defined as the random

length of a line segment in Ξ ∩ `, where ` denotes the line with direction ϕ going through the
origin. The corresponding distribution is said to be the chord length distribution of Ξ in direction
ϕ. We denote the chord length distribution functions in x-, y- and z-direction by Lx, Ly and Lz40

and the corresponding mean chord lengths by mx,my,mz, respectively. In case that Ξ is isotropic,
the chord length distribution functions are independent of the direction. Thus, the chord length
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distributions allow us to characterize potential anisotropy effects. Further information regarding
chord length distributions can be found in [20, 21, 35].

2.5. Specific surface area

Next, we consider the specific surface area, which is defined as the mean interface area between solid
and pores per unit volume. For estimating this characteristic from 3D image data, we compute a5

weighted sum that arises from considering all local 2 × 2 × 2 voxel configurations [21]. For this
purpose, we use the weights proposed in [36].

2.6. Two-point coverage probability function

A further useful quantity for characterizing random closed sets is the so-called two-point coverage
probability function [20, 37]. Note that this quantity is also called covariance function in the10

literature [21, 32, 33]. For a stationary and isotropic random closed set Ξ, the probability P(o ∈
Ξ, x ∈ Ξ) depends only on the distance r = ‖x‖ from x ∈ R3 to the origin o ∈ R3. In this case,
the two-point coverage probability function C : [0,∞) → [0, 1] of Ξ is defined by C(r) = P(o ∈
Ξ, x ∈ Ξ) for arbitrary points x with distance r to the origin. This quantity can be estimated
from 3D image data by the Fourier-based approach described in [21]. In the present paper, we15

consider the two-point coverage probability function of the pore space in amorphous, mesoporous
silica, denoted by CP for model validation. Note that CP uniquely determines CS, the two-point
coverage probability function of the solid phase. In particular, we have CS(r) = 1− 2εP + CP (r).

3. Model Description

In the present paper, we modify the graph-based model proposed in [16], where a parametric mod-20

eling approach for the three-phase microstructure of solid oxid fuel cell electrodes is described.
Doing so, we obtain a new stochastic microstructure model which allows for the generation of
digital twins of amorphous silica on the meso-scale. The general idea is to use k ≥ 1 stochastically
independent random point processes, where k is the number of phases of the underlying material.
Afterwards, the points of each point process in three-dimensional space are connected according25

to some deterministic rule leading to spatial graphs G1, ..., Gk. Finally, the random closed set Ξi

modeling the i-th phase is given by the set of those points in R3 which are closer to Gi than to all
the other graphs. In the following, the parametric stochastic 3D microstructure model is described
in detail, where we will see later that this type of model is able to ensure the complete connectivity
of both phases, solid and pores, which is one of the main morphological features of amorphous,30

mesoporous silica.

3.1. Random point processes

In general, random point processes are a popular tool from stochastic geometry for modeling
irregular spatial point patterns [20, 38]. In particular, parametric families of random point processes35

are frequently used in the context of microstructure modeling, where materials of interest are among
others solid oxid fuel cells [16, 39, 40], organic semiconductors [41], mesoporous alumina [42], solar
cells [43], and electrodes in lithium-ion batteries [44].
In [16], the vertices of the spatial graphs G1, ..., Gk are modeled by homogeneous Poisson point
processes. In the present paper, this modeling step is generalized by using Matérn cluster processes40
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instead, which leads to a more flexible model compared to homogeneous Poisson point processes.
The Matérn cluster process has three parameters, i.e., the parent intensity λ1 > 0, the child
intensity λ2 > 0 and the cluster radius r > 0, where a Poisson point process with intensity λ1 > 0
models a point pattern of cluster centers. This is called the parent point process. For each cluster
center, a second homogeneous Poisson point process with intensity λ2 > 0 is considered within a5

ball of radius r around the cluster center. These point processes are called child point processes, the
points of which form the points of the resulting Matérn cluster process. In particular, a Matérn
cluster process is a special case of a so-called Neyman-Scott process [45]. For a more formal
definition, we refer to [46].
The simulation of a Matérn cluster process in a bounded sampling window W ⊂ R3 is based on the10

simulation of Poisson point processes as described in [38]. At first, we determine the cluster centers
by simulating the parent process in W ⊕B(x, r), where B(x, r) = {y ∈ R3 : ‖x− y‖ ≤ r} denotes
the closed ball with radius r around the center x ∈ R3 and ⊕ denotes the Minkowski addition [33].
More precisely, for two sets A,B ⊂ R3, the Minkowski addition of the sets A and B is defined by
A⊕B = {a+ b : a ∈ A, b ∈ B}. For each cluster center, we simulate the corresponding child point15

process, which is stochastically independent from all other considered point processes. For more
details regarding Matérn cluster processes, we refer to [47, 48].

3.2. Relative neighborhood graph

As already mentioned, the second modeling step is to construct a random spatial graph. For this20

purpose, we make use of the relative neighborhood graph (RNG), which has been introduced in
[49]. This graph can be considered as random spatial graph in case that the set of vertices arise
from a random point process X in R3. The relative neighborhood graph generated by X, denoted
by RNGX , is the random spatial graph RNGX = (X,EX), where the (random) vertex set X
is given by the random point process itself. The construction of the edge set EX is based on a25

so-called critical region A ⊂ R3. More precisely, the critical region between two points x, y ∈ R3

is given by A(x, y) = B(x, ‖x− y‖) ∩ B(y, ‖x− y‖). Finally, the (random) edge set EX is given
by EX = {(Si, Sj) ∈ X × X : #A(Si, Sj) = 2}, i.e., there is an edge between two vertices
Si, Sj ∈ X if the critical region A(Si, Sj) contains no further points except of Si and Sj. For an
efficient numerical computation of RNGs, one can exploit the fact that the relative neighborhood30

graph of a finite set of points is a subgraph of its Delaunay triangulation [49]. Computing the
Delaunay triangulation is carried out with MATLAB [50], which uses the quickhull algorithm [51].
A survey of theoretical results regarding RNGs can be found in [52]. Finally, note that the relative
neighborhood graph is completely connected with probability one if the underlying random point
process is given by a Matérn cluster process, see [53].35

3.3. Random closed set model

At this point we are able to introduce the random closed set model, which will turn out to be
capable to generate digital twins of amorphous, mesoporous silica. In this case we just have two
phases: the pore space and a solid phase, i.e., k = 2.
Thus, the model is based on two stochastically independent Matérn cluster processes XS and XP

with parent intensities λS,1, λP,1 > 0, child intensities λS,2, λP,2 > 0 and cluster radii rS, rP > 0,
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respectively. Thus, altogether, the model has a six-dimensional parameter vector

θ = (λS,1, λP,1, λS,2, λP,2, rS, rP ) ∈ (0,∞)6.

In a next step, we construct both relative neighborhood graphs RNGXS
and RNGXP

. The random
closed set ΞS(θ), which models the solid phase of the mesoporous silica, is given by

ΞS(θ) = {x ∈ R3 : d(x,RNGXS
) ≤ d(x,RNGXP

)}. (1)

In order to formally define the distance d(x,G) between a point x ∈ R3 and a random spatial
graph G, we consider the graph RNGXS

as a random closed set, i.e.,

Ξ(RNGXS
) =

⋃
(Si,Sj)∈EXS

SiSj,

where SiSj = {z ∈ R3 : z = λSi + (1− λ)Sj for some λ ∈ [0, 1]} denotes the line segment between
Si and Sj. The distance between a point x ∈ R3 and the relative neighborhood graph RNGXS

can
be now defined as d(x,RNGXS

) = inf
y∈RNGXS

‖x− y‖, where d(x,RNGXP
) is defined analogously.5

Note that the complete connectivity of both RNGs directly implies that the random closed sets ΞS

and ΞP are completely connected, which motivates the choice of this model since the solid phase
as well as the pore space in mesoporous silica are typically completely connected.

4. Model fitting10

In this section we describe in detail how the model described in Section 3 is fitted to the three
data sets Si12, Si21 and and Si26, which have been obtained by scanning transmission electron
microscopy (STEM), see [17] for details. At first, we have to preprocess the 3D image data since
our stochastic 3D microstructure model is isotropic. In a next step, we describe the numerical
optimization procedure to obtain the“optimal”model parameters, where we make use of empirically15

derived relationships between model parameters and three microstructure characteristics (volume
fraction, mean geodesic tortuosity and constrictivity). Since these quantities do not depend on
the scale, we rescale the model parameters such that the chord length distribution, and thus the
scale, is matched. Finally, a post-processing step is applied in order to further improve the visual
accordance between model realizations and tomographic image data.20

4.1. Pre-processing
The utilized random closed set model is isotropic. However, by analyzing the mean chord length of
the silica phase of all three data sets in x-, y- and z-direction, one can observe that the tomographic
image data is not isotropic, see Table 2, which is caused by the missing wedge during the imaging
procedure [54].25

In order to obtain image data, for which the microstructure characteristics described in Section 2
do not depend on the chosen direction, we rescale the 3D binary images in x- and y-direction using
nearest neighbor interpolation, see [55], where the subsequent procedure is analogously applied
to all three tomographic image data sets. In order to calculate the scaling factors in x- and y-
direction, denoted by sx and sy respectively, we minimize the L2-distance between the chord length30

distribution function in z-direction and the chord length distribution function in x- or y-direction
after rescaling. The resulting scaling factors are given in Table 2.
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Table 2: Mean chord length in x-, y-, and z-direction as well as the scaling factors for each sample.

Sample Si12 Si21 Si26

mx,S 13.0 16.3 17.6
my,S 10.9 14.0 15.2
mz,S 15.9 19.2 19.0
sx 0.838 0.862 0.871
sy 0.7189 0.754 0.794

4.2. Simulation study

To quantitatively investigate the relationships between the six model parameters λS,1, λP,1, λS,2,
λP,2, rS and rP , we generated 324 virtual microstructures in the sampling window W = [0, 400]3,
i.e., a cube with a side length of 400 voxels, by varying the six parameters of the model described
in Section 3. For each of these model realizations, the volume fraction εS, the mean geodesic5

tortuosity τS and the constrictivity βS are computed, i.e., all these quantities are computed with
respect to the solid silica phase. Afterwards, we fit a linear model for each of these characteristics
to predict them as functions of the model parameters.
To begin with, we investigate the relationship between model parameters and volume fraction.
Since εS ∈ [0, 1], we used the link function f1(x) = log(x/(1 − x)) to ensure that the predicted10

volume fraction ε̂S is always between zero and one. More precisely, we consider the linear model

f1(ε̂S) = c1 log(λS,1) + c2λS,2 + c3rS + c4 log(λP,1) + c5λP,2 + c6rP . (2)

It turns out that using log(λS,1) and log(λP,1) as predictors leads to a better fit compared to λS,1
and λP,1. After computation of the regression coefficients c1, ..., c6, we apply the inverse of the link
function, which is given by f−1

1 (x) = exp(x)/(1 + exp(x)), in order to obtain the predicted volume
fraction ε̂S ∈ [0, 1] leading to R2

ε = 0.9872.15

To express βS ∈ [0, 1] in terms of model parameters, we use again the link function f1 for predicting
constrictivity, which results in the model

f1(β̂S) = c1 log(λS,1) + c2 log(λS,2) + c3rS + c4 log(λP,1) + c5 log(λP,2) + c6rP (3)

with R2
β = 0.6466.

Finally, for relating the model parameters to τS ∈ [1,∞), we consider the link function f2(x) =
log(x− 1) together with its inverse function f−1

2 (x) = exp(x) + 1. The linear model for predicting20

mean geodesic tortuosity is given by

f2(τ̂S) = c0 + c1λS,1 + c2 log(λS,2) + c3rS + c4λP,1 + c5 log(λP,2) + c6rP , (4)

which leads to R2
τ = 0.8851.

The summary statistics for the linear regression models given in (2) to (4) can be found in Table 3
and the corresponding prediction error plots are shown in Figure 1. Even though the goodness
of fit with regard to tortuosity and constrictivity is improvable, we will see later on that the25

model realizations are nevertheless similar in terms of morphological characteristics as well as
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Table 3: Summary statistics for the linear regression models given in (2), (3 and (4). Note that R2 is computed
after applying the inverse of the link function.

coefficient c0 c1 c2 c3 c4 c5 c6 R2

model in (2) - 0.7201 0.6402 0.2657 -0.7288 -0.6256 -0.2608 0.9872
model in (3) - 0.4287 0.3816 0.1638 -0.4590 -0.3371 -0.1357 0.6466
model in (4) -2.7035 -30916 -0.5192 -0.2179 32173 0.4817 0.1989 0.8851
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Figure 1: Prediction of volume fraction (left), constrictivity (center) and mean geodesic tortuosity (right). All
characteristics have been computed on the solid phase. The red line is the line through the origin with slope one.

with regard to effective diffusivity. Furthermore, the R-squared statistic will be used as weighting
factor in Section 4.3, which allows us to put more weight on characteristics that can be predicted
more accurately. Note that we are also able to predict volume fraction, mean geodesic tortuosity
and constrictivity of the pore space with Equations (2), (3) and (4) by simply interchanging λS,1
with λP,1, λS,2 with λP,2 and rS with rP . These empirically derived relationships between the six5

model parameters and three microstructure descriptors are used for computing “optimal” model
parameters, which is described in the next section.

4.3. Optimization procedure

Our goal is to determine a six-dimensional parameter vector θopt such that virtual microstructures
generated with θopt are similar to the tomographic image data. Hence, the cost function g(θ)10

is based on five image characteristics, i.e., the quantities εS, τS, τP , βS and βP . When using a
hat over the symbol of the considered quantity, we refer to the predicted value of this quantity
obtained by the regression models of the previous section. For a given parameter vector θ =
(λS,1, λP,1, λS,2, λP,2, rS, rP ) ∈ (0,∞)6, the cost function is defined as

g(θ) = R2
ε

(
ε̂S(θ)−εS

εS

)2

+R2
τ

(
τ̂S(θ)−τS

τS

)2

+R2
τ

(
τ̂P (θ)−τP

τP

)2

+R2
β

(
β̂S(θ)−βS

βS

)2

+R2
β

(
β̂P (θ)−βP

βP

)2

.

The cost function g(θ) is numerically minimized in MATLAB [50] using the interior-point algorithm15

[56, 57, 58]. For the resulting “optimal” model parameters, the corresponding model realizations
reflect the main features of the tomographic image data well with two exceptions. The first
problem concerns the scale of the simulated microstructures, which will be addressed in the next
section. The second issue refers to the “smoothness” of the simulated microstructures, which will
be increased by a post-processing step.20
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Table 4: Model parameters (rounded to two decimal places) of the fitted microstructure model for each sample.

λS,1[nm−3] λP,1[nm−3] λS,2[nm−3] λP,2[nm−3] rS[nm] rP [nm]

Si12 6.55 · 10−4 6.55 · 10−4 3.64 · 10−3 4.36 · 10−3 3.51 3.57
Si21 2.60 · 10−4 2.60 · 10−4 1.10 · 10−3 1.74 · 10−3 4.62 4.87
Si26 2.29 · 10−4 1.82 · 10−5 4.65 · 10−4 1.53 · 10−3 4.64 5.08

4.4. Rescaling of model parameters

In order to force the virtually generated microstructures to lie on the same length scale as the
tomographic image data, we make use of a helpful theoretical property of the proposed model.
More precisely, the volume fraction, mean geodesic tortuosity and constrictivity of both phases do
not change, when using the parameter vector θ̃ = (s3λS,1, s

3λP,1, s
3λS,2, s

3λP,2, srS, srP ) with an5

arbitrary scalar s > 0 instead of θ. In contrast to this, the mean chord lengths in x-, y- and z-
direction depend on s, i.e., it holds that mx(ΞS(θ̃)) = 1

s
· mx(ΞS(θ)). Of course, this formula is

also true, when computing the mean chord length in y- and z-direction, respectively. Thus, we are
able to rescale the parameter vector θ in such a way that the mean chord lengths coincide without
changing volume fraction, mean geodesic tortuosity and constrictivity. More precisely, the optimal10

scaling factor sopt for each of the three samples is computed as

sopt =
1

3

(
m̃x,S

mx,S

+
m̃y,S

my,S

+
m̃z,S

mz,S

)
, (5)

where the tilde indicates an average of ten model realizations and the symbols without tilde cor-
respond to tomographic image data. The values of sopt are given by 0.97858 (Si12), 1.0269 (Si21)
and 0.9843 (Si26), respectively.

4.5. Post-processing15

After rescaling the model parameters, we obtain virtual microstructures, which reflect the 3D
morphology of tomographic image data better, but still with one exception. More precisely, in
the simulated microstructures the interface between the mesopores and the silica phase is not as
“smooth” as in the tomographic image data. Thus, we apply a post-processing step as in [12, 40]
in order to smooth the simulated binary images. For this purpose, a Gaussian filter is used [55].20

To be more precise, we apply a Gaussian filter with a standard deviation of σx = σy = σz = 4
to the model realizations and apply a global threshold, where the threshold is chosen in such a
way that the volume fraction of the smoothed model realization coincides with the target volume
fraction εS. Note that this step is carried out on a bounded sampling window. By doing so, each
model realization is conditioned on the event that the volume fraction of the realization matches25

the volume fraction observed in tomographic image data. Since volume fraction significantly in-
fluences the M -factor [30], this step allows us to compare the M -factor, which will be used for
the functional model validation in Section 5.2, in a reasonable way. The effect of smoothing is
visualized in Figure 2.

30

A visual comparison between realizations of the fitted stochastic 3D microstructure model and
tomographic image data is shown in Figure 3.

10



Figure 2: Two-dimensional cutout (150 nm × 100 nm) of a model realization of sample Si12 before (left) and after
smoothing (center) as well as a cutout of the tomographic image data (right) for comparison.

Figure 3: Volume renderings of tomographic image data (top row) and realizations of the fitted microstructure
model (bottom row) for the samples Si12 (left), Si21 (center) and Si26 (right).

5. Model validation

After we have fitted the stochastic 3D model to the samples Si12, Si21 and Si26, respectively,
we now validate the model in two different ways. On the one hand, we compare microstructure
characteristics of tomographic image data with those of model realizations. On the other hand, we
simulate the effective diffusivity Deff by means of a particle-tracking algorithm based on random5

walks [26, 59, 60]. Thus, we are able to compare simulated and tomographically measured 3D
microstructures with respect to their functionality. Note that all characteristics used within this
section are averaged results based on ten model realizations for each sample, where the size of the
sampling window as well as the voxel size is given in Table 1.

10
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Table 5: Comparison between tomographic image data and simulated microstructures with regard to various image
characteristics. The values in brackets correspond to the standard deviations estimated from ten model realizations.

Sample Si12 Si21 Si26

Tomography: εS [%] 42.33 35.08 29.82
Simulation: εS [%] 42.33 (0.05) 35.06 (0.04) 29.83 (0.04)

Tomography: Specific surface area [nm−1] 0.1121 0.0727 0.0581
Simulation: Specific surface area [nm−1] 0.1033 (0.0006) 0.0683 (0.0007) 0.0520 (0.0006)

Tomography: τP 1.055 1.055 1.043
Simulation: τP 1.059 (0.003) 1.045 (0.002) 1.037 (0.002)

Tomography: τS 1.110 1.158 1.179
Simulation: τS 1.097 (0.006) 1.151 (0.016) 1.212 (0.0356)

Tomography: βP 0.602 0.676 0.593
Simulation: βP 0.621 (0.020) 0.661 (0.024) 0.637 (0.029)

Tomography: βS 0.600 0.505 0.461
Simulation: βS 0.531 (0.013) 0.433 (0.041) 0.397 (0.039)

5.1. Structural validation

To begin with, we consider the volume fraction of the silica phase. As it can be seen in Table 5,
this quantity fits perfectly, which is not surprising since the smoothing is carried out in such a way
that the volume fraction εS observed in tomographic image data is matched.

5

Next, we examine the goodness of fit with regard to specific surface area. Table 5 indicates that
specific surface area is slightly underestimated by the model. Note that this quantity is not exactly
matched, potentially because the post-processing step lowers the specific surface area. Neverthe-
less, the relative error with regard to this quantity has significantly decreased by introducing the
post-processing step.10

Next, we compare simulated and tomographically measured 3D microstructures with respect to
mean geodesic tortuosity, which has been defined in Section 2.2. As one can easily infer from
Table 5, relative errors between 0.4% and 2.8% indicate that mean geodesic tortuosity in both
phases is nicely matched by the model.15

The last scalar quantity which we consider in this section is constrictivity. With regard to the pore
space, which is the phase where diffusion processes take place, we observe only minor differences
between the constrictivity of simulated and tomographically measured 3D microstructures. When
considering the silica phase instead, the model realizations possess a significantly lower constric-20

tivity, which might be caused by the fact that constrictivity can not be predicted as accurately as
volume fraction and mean geodesic tortuosity.

In addition to the above mentioned scalar quantities, we will now validate the model with regard to

12



function-valued characteristics. To begin with, we consider the continuous size distributions of both
phases, which are shown in Figure 4. All in all, the main differences between the 3D morphologies
of the three samples are reflected by the model. In addition, the increase of the mean pore diameter
from sample Si12 via Si21 to Si26 is reproduced in the model, which corresponds to a shift of the
CPSD to the right. However, the simulated microstructures do not exhibit large pores, i.e., the5

continuous pore size distribution is decreasing faster to zero compared to tomographic image data.
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Figure 4: Continuous phase size distribution of the silica phase (left) and the pore space (right) for each sample.

As already mentioned in Section 2, one can take the strength of bottleneck effects into account by
simulating intrusion porosimetry. Figure 5 shows that the behavior of this quantity with respect
to both phases is nicely captured by the fitted models. In addition, the characteristic bottleneck
radius, i.e., the radius for which a significant drop in the IP can be observed, is also matched by10

the simulated mesoporous silica.
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Figure 5: Simulated intrusion porosimetry of the silica phase (left) and the pore space (right) for each sample.

Next, we consider the chord length distribution function of the silica phase, where the correspond-
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ing plots are shown in Figure 6. First, one can observe that the chord length distribution functions
in x-, y- and z-direction of simulated 3D microstructures as well as of tomographic image data
coincide. This is not surprising since the tomographic image data has been appropriately rescaled
and the model is isotropic by construction. In addition, the shape of all plots in Figure 6 is very
similar to each other even though the mean chord length has been used as the only information5

for rescaling the model parameters in Section 4.4.
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Figure 6: Chord length distribution functions of the silica phase for the samples Si12 (left), Si21 (center) and Si26
(right).

Finally, we consider the two-point coverage probability function of the mesopores, which has been
introduced in Section 2.6. Figure 7 only shows minor deviations between the plots of this charac-
teristic for simulated and tomographically measured 3D microstructures.10
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Figure 7: Two-point coverage probability function of the pore space for the samples Si12 (left), Si21 (center) and
Si26 (right).

5.2. Functional validation

After having validated the model with regard to various microstructure characteristics, we now
validate the model with respect to an important functional property. More precisely, the effective
diffusion coefficients Deff for the simulated and tomographically reconstructed microstructures were
determined with a technique based on random walks and particle tracking (RWPT) [59, 61], which15

has already been used in previous papers [26, 62, 63]. Briefly speaking, a large number N = 5 · 106

of point-like particles (tracers) was randomly and uniformly distributed in the pore space of the
analyzed 3D microstructure. Then, during each time step ∆t of the simulation, the displacement of

14



every tracer due to random diffusive motion was calculated from a Gaussian distribution with zero
mean and standard deviation (2D0∆t)

1
2 along each Cartesian coordinate, where D0 is the diffusion

coefficient of tracers in free space, sometimes called intrinsic diffusivity. The random motion was
simulated assuming that there are no interactions among the tracers and no passive interactions of
the tracers with the pore walls, which was handled through a multiple-rejection boundary condition5

at the solid surface [64, 65]. When a tracer hits the pore wall during an iteration, the displacement
was rejected and recalculated until the target tracer position was in the pore space. In addition,
mirror boundary conditions have been implemented to ensure that there are no abrupt changes
when a marker “leaves” the observation window. The time step ∆t of the RWPT-simulation was
adjusted such that the mean diffusive displacement did not exceed ∆h

10
, where ∆h is the spatial10

resolution of the voxel grid. The effective diffusion coefficient was evolved from

Deff = lim
t→∞

1

6N

∂

∂t

N∑
i=1

‖ri(t)− ri(0)‖2 , (6)

where ri(t) denotes the position of the i-th tracer at time t. A normalized characteristic derived for
effective diffusivity is the so-called M -factor, which is defined by M = Deff/D0 · εP ∈ [0, 1]. As it
can be seen in Figure 8, the M -factor is slightly overestimated by the proposed 3D microstructure
model. This might be caused by the slight underestimation of the specific surface area through the15

model, i.e., the surface between the pore space and the solid phase is less rugged, which possibly
leads to less hindered diffusion processes and thus a slightly larger M -factor. Nevertheless, the
mean relative error with respect to the M -factor equals 2.8% (Si12), 2.7% (Si21) and 2.6% (Si26),
respectively, which shows that the digital twins of the considered silica samples generated by the
stochastic microstructure model lead to a similar diffusion behavior compared to the tomographic20

image data. This conclusion is also in good accordance with the prediction formula presented in
[30], where it has been shown that the M -factor can be reliably predicted by volume fraction, mean
geodesic tortuosity and constrictivity via

M̂ =
ε1.67−0.48βP
P

τ 5.18
P

. (7)

More precisely, the relative errors between the simulated and the predicted M -factor computed on
tomographic image data are equal to 3.7% (Si12), 2.3% (Si21) and 5.2% (Si26), respectively. The25

average of the relative error of ten model realizations equals 4.1% (Si12), 4.5% (Si21) and 5.8%
(Si26), respectively. Note that the predicted M -factor always slightly underestimates the numer-
ically simulated M -factor. For investigations regarding the relationship between microstructure
characteristics and the M -factor of the interskeleton macropores in silica monoliths, we refer to [66].

30

6. Conclusion

In the present paper, we considered three differently processed samples of amorphous, mesoporous
silica from the (mesoporous) skeleton of hierarchically structured, macro-mesoporous silica mono-
liths. We have presented a parametric random closed set model, which is able to generate digital
twins of these samples, where both pore space and solid phase were completely connected. The35
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Figure 8: Simulated M -factor for ten different realizations of the fitted microstructure model (left). M -factor
predicted by using Equation (7), which has been derived in [30] (right). In both plots, the solid line corresponds to
tomographic image data, whereas each dot corresponds to a realization of the calibrated stochastic 3D microstructure
model.

model has been fitted to 3D image data obtained by scanning transmission electron microscopy
(STEM). Model fitting has been carried out by taking advantage of empirically derived relation-
ships between the model parameters and three microstructure descriptors, i.e., volume fraction,
mean geodesic tortuosity and constrictivity. Moreover, the proposed model has been validated
with respect to morphological properties, which have not been used for model fitting, and with5

regard to effective diffusivity. The very good accordance between tomographic image data and
virtually generated morphologies shows that we are really able to generate digital twins, i.e., vir-
tual, but realistic mesoporous silica materials. Thus, by systematic variation of model parameters
the proposed model can be used in the future to generate a broad range of further virtual meso-
porous silica morphologies, which serve as a geometry input for numerical simulations of effective10

diffusivity or other functional properties. This approach, called virtual materials testing, allows us
to systematically investigate microstructure-property relationships and to detect preferable mor-
phologies with optimized properties.

Data availability15

The raw/processed data required to reproduce these findings cannot be shared at this time as the
data also forms part of an ongoing study.
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[13] D. Westhoff, J. Skibinski, O. Šedivý, B. Wysocki, T. Wejrzanowski, and V. Schmidt, “Inves-
tigation of the relationship between morphology and permeability for open-cell foams using
virtual materials testing,” Materials & Design, vol. 147, 1–10, 2018.

[14] S. Barman, H. Rootzén, and D. Bolin, “Prediction of diffusive transport through polymer films35

from characteristics of the pore geometry,” AIChE Journal, vol. 65, no. 1, 446–457, 2019.

17
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