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Abstract The variability and interdependence of local porosity and local mean
geodesic tortuosity, which is a measure for the sinuosity of shortest transportation
paths, is investigated at the example of the microstructure in sack paper. By means
of statistical image analysis, these two morphological characteristics are computed
for several cutouts of 3D image data obtained by X-ray microcomputed tomog-
raphy. Considering cutouts of different sizes allows us to study the influence of
the sample size on the local variability of the considered characteristics. Moreover,
the interdependence between local porosity and local mean geodesic tortuosity is
quantified by modeling their joint distribution parametrically using Archimedean
copulas. It turns out that the family of Gumbel copulas is an appropriate model
type, which is formally validated by a goodness of fit test. Besides mean geodesic
tortuosity, we consider further related morphological characteristics, describing the
sinuosity of those shortest transportation paths, whose minimum diameter exceeds
a predefined threshold. Moreover, we show that the copula approach investigated
in this paper can also be used to quantify the negative correlation between local
porosity and these modified versions of local mean geodesic tortuosity. Our results
elucidate the impact of local porosity on various kinds of morphological character-
istics, which are not experimentally accessible and which are important for local
air permeance – a key property of sack paper.

Keywords Sack paper · µ-CT · porosity · tortuosity · statistical microstructure
analysis · parametric copula model

Mathematics Subject Classification (2010) 62H11 · 62P30

M. Neumann · V.Schmidt
Institute of Stochastics, Ulm University, Helmholtzstraße 18, 89069 Ulm, Germany, Tel.: +49-
731-5023617 E-mail: matthias.neumann@uni-ulm.de

E. Machado Charry · K. Zojer
Institute of Solid State Physics and NAWI Graz, Graz University of Technology, Peters-
gasse 16/III, 8010 Graz, Austria

E. Machado Charry · K. Zojer
Christian Doppler Laboratory for Mass Transport through Paper, Graz University of Technol-
ogy, Petersgasse 16/III, 8010 Graz, Austria



2 M. Neumann, E. Machado Charry, K. Zojer, V. Schmidt

1 Introduction

One of the major questions when studying porous materials is the relationship
between the morphology of the pore space and the corresponding macroscopic
properties [29]. To investigate this kind of problems, the combination of tomo-
graphic 3D imaging and subsequent image analysis is a powerful tool, which al-
lows for the computation of morphological characteristics that are experimentally
not accessible [6,22,26]. Typically, these morphological characteristics are globally
aggregated characteristics. Such global characteristics are, in principle, defined for
unboundedly large microstructures that feature a certain spatial homogeneity [6].

Mathematically speaking, these microstructures can be considered as realiza-
tions of stationary random sets. When estimating such characteristics from im-
age data, local fluctuations of the microstructure play an important role. On the
one hand, local fluctuations determine the minimum size of the investigated mi-
crostructure or a subset thereof such that the estimates of morphological charac-
teristics are representative [1,7,14,24]. On the other hand, it is highly desirable to
quantify the local variability of morphological characteristics itself. A variability in
morphological characteristics of a porous material inherently leads to a variability
in its macroscopic properties. This is illustrated with the dependence of effective
transport properties on a locally varying porosity [12]. For example, the relation-
ship between univariate distributions of local porosity and local conductivity of
sandstone is investigated in [27]. For a comprehensive discussion of fluctuations of
local volume fractions, we refer to Chapter 11 in [29] and the references therein.

In the present article, we investigate the variability of local porosity and local
mean geodesic tortuosity [20] for a paper-based material. The mean geodesic tor-
tuosity is a descriptor for the sinuosity of shortest transportation paths through
the pore space. In going beyond our previous exploratory study [21], where we
only considered mean geodesic tortuosity, we account for the length of shortest
transportation paths with several local descriptors. Our selection of descriptors
discriminate paths not only in terms of their sinuosity, but also with respect to
possibly encountered ‘bottlenecks’. Each of these descriptors is related to a pre-
defined threshold. For a given threshold, the corresponding descriptor measures
the lengths of those shortest transportation paths, whose minimum diameter ex-
ceeds the threshold. In other words, only those paths are considered, which can
be traversed by balls with a diameter corresponding to the predefined threshold.

We expect the lengths of shortest transportation paths to strongly relate to the
air permeance through paper [2], in particular for the sack paper considered in the
present article. Sack paper is used for the packing of powdered goods. Thus, the air
permeance is – besides tensile energy absorption – its most important macroscopic
property, since it allows an efficient de-aeration of bags during filling [11]. Hence,
the descriptors derived from the mean geodesic tortuosity are, besides porosity,
important morphological characteristics of sack paper. The main objective of the
present paper is to quantitatively assess the variability and interdependence of
these morphology-related descriptors, in particular their correlation. For this pur-
pose, we proceed as follows. First, we determine each individual descriptor from
image data obtained by X-ray microcomputed tomography (µ-CT), see [16]. Sec-
ond, utilizing copulas [4,19], we then construct a parametric The selected model
type for the copula, i.e., the family of Gumbel copulas, has the major advantage,
that it is appropriate to model the joint distribution of porosity and the path-
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Fig. 1 Cutout of a 2D slice of the binarized image data corresponding to a vertical cross-
section through the paper sheet. Shown is the cutout before (a) and after determination of the
inner pore space (b). The cellulose material (fibers) and the inner pore space are represented
in dark and bright grey, respectively.

length related descriptors for differently chosen values of the diameter threshold
of the latter. Moreover, the model fits well for different sizes of the considered lo-
cal environment and it leads to an improvement of the fit compared to the Frank
copula used in [21]. Having fitted the parametric model for the joint distributions,
trends with respect to variability and interdependence of the considered local de-
scriptors can be quantified by the parameter of the Gumbel copula. Moreover,
we directly obtain the conditional distribution of the path-length related descrip-
tors for a given local porosity. Thereby, we particularly focus on the influence of
the threshold parameter appearing in the definition of the path-length related de-
scriptors, which leads to new insights going beyond the results presented in [21].
Summarizing, the presented parametric modeling approach has the following ad-
vantages compared to a non-parametric approach. It enables us to show that even if
the distributions of local characteristics computed from cutouts with varying sizes
are different, they still have a similar structure since one and the same model type
leads to an appropriate fit. Moreover, the complexity of data is strongly reduced
to the low-dimensional parameter space and the distributions under consideration
can be analytically expressed, which leads, in turn, to analytical expressions for
the conditional distribution of local path-length related descriptors for given local
porosity. Thereby the variability and interdependence of local porosity and local
path-length related descriptors which are assumed to be essential for air perme-
ance in sack paper are quantified by means of the model parameters and their
interpretation is reduced to the interpretation of the parameters of the distribu-
tion.

2 Materials and Imaging

Our analysis is based on sack paper made of unbleached pulp with a specific basis
weight of 70 g/m2. The latter value, which corresponds to the supplier specifi-
cations, is confirmed by a test in accordance to the standard DIN EN ISO 536
(Paper and board: Determination of grammage). This type of sack paper is em-
ployed to produce cement bags and thus, combines a high porosity with a superior
mechanical strength.

The 3D microstructure of the considered material is deduced from µ-CT im-
ages. The imaging is performed using an Xradia 500 Versa 3D X-ray microscope
(Zeiss, Germany). The isotropic voxels have an edge length of 1.5 µm and the final
image has a size of 2.001 mm × 2.802 mm × thickness after binarization. For
detailed information regarding the experimental setup, the preprocessing, and the
binarization of image data, we refer to [16].
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As illustrated in Figure 1a, the microstructure obtained after binarization con-
sists of fibers (dark), mainly formed of cellulose, and pores (white). A key step in
determining the porosity of paper material from 3D image data is the definition
of the top and bottom surfaces of the paper sheet. This is particularly important
for paper types exhibiting a large surface roughness and thus a large variability of
local thickness (cf. Figure 1a). The so-called rolling ball approach [5] is the most
reasonable method to define each surface [16], since it accurately represents the
inherent roughness of the surface. A ball with a given radius (here 15 µm) is fol-
lowing (‘rolling along’) the surface formed of the cellulose material. All voxels that
cannot be reached by the ball are then assigned to the inner pore space, i.e., to
the set of voids that form the pores within the paper and in which transport paths
are established. Figure 1b illustrates the distinction between this inner pore space
(light gray) from the surrounding void space (white) in the cross-section shown in
Figure 1a after applying the rolling ball algorithm.

3 Local heterogeneity of the 3D microstructure

In order to quantify the local heterogeneity of the 3D microstructure, we consider
a set of non-overlapping cutouts taken from the complete image data representing
the microstructure of sack paper. Let the z-direction indicate the transversal direc-
tion connecting top and bottom paper surface. Then, a sensible three-dimensional
cutout is square-shaped in the xy-plane and contains the complete microstructure
in z-direction. As indicated in Figure 2 the centers of the squares are arranged
in a square grid with a side length of 150 µm that is imposed on the xy-plane.
Given that the cutouts must not overlap, our setting leads to a total number of 204
cutouts. The side length of the squares, defining the cutout size in the xy-plane,
is varied from 30 µm to 60 µm, 90 µm, 120 µm, and 150 µm.

With the set of cutouts at hand, the quantification of the local heterogeneity
encompasses three distinct methodological steps. First, we determine the porosity
and the descriptors that measure the sinuosity of transportation paths through the
pore space of these cutouts. The univariate distribution of the considered descrip-
tors is modeled parametrically, where we capture the change in distribution of the
descriptors with increasing cutout size. Secondly, we also model the joint bivariate
distribution of these morphological characteristics parametrically for each cutout
size. The fitted parametric model of the joint bivariate distribution quantifies the
relationship between porosity and descriptors for the sinuosity of transportation
paths and it allows us to compute the conditional distribution of local descriptors
related to path lengths for a given value of local porosity. In the last step, we
provide a validation of our copula model. A discussion of the results regarding
the local variability and interdependence between the considered morphological
characteristics is given separately in Section 4.

3.1 Local porosity and local mean geodesic tortuosity

For each cutout, the local porosity is computed in the following way. At first,
the top and bottom surfaces, i.e., the boundaries of sack paper in z-direction, are
determined as described in Section 2. Then, the local porosity of a cutout is defined
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Fig. 2 Square-shaped cutouts in xy-plane (red), arranged on a square grid, are considered to
investigate the local heterogeneity of the 3D microstructure.

as the ratio of pore voxels to all voxels, which are contained in the cutout and
which are located between the top and bottom surface. We assume stationarity
of the microstructure of the considered sack paper with respect to translations
in the xy-plane, which is a rather natural assumption. Thus the local porosities
in the different cutouts are identically distributed, i.e., the local porosities are
considered as copies of one and the same random variable, denoted by P . Note
that the distribution of P depends on the size of the cutout. If P refers to a specific
cutout size, the size is explicitly given in the following.

Having computed the local porosity for all cutouts, we obtain a sequence of
local porosities for each cutout size, see Figure 3a. The resulting histograms can be
well modeled by the densities of beta-distributions [13]. The beta-distribution is a
univariate probability distribution with probability density function f : R→ [0,∞)
defined by

f(p) =
Γ (a+ b)

Γ (a)Γ (b)
pa−1(1− p)b−1 1I0≤p≤1, (1)

for each p ∈ R, where a, b > 0 are some parameters, 1I denotes the indicator func-
tion, and Γ the gamma function. The parameters a and b are fitted via maximum
likelihood estimation as described in [3]. The probability density functions of the
fitted beta-distributions, that are shown in Figure 3b, indicate a good accordance
with the local porosities from image data (Figure 3a).

Note that the distributions of local porosities in Figure 3a can also be well
described by normal distributions. Normally distributed random variables take
values smaller than 0 and larger than 1 with positive probability. In contrast, a
random variable following the law of a beta-distribution only takes values between
0 and 1 with probability 1, as the support of the beta-distribution is the interval
[0, 1]. Thus, the beta distribution is inherently more appropriate to model the
distribution of local porosities.

Besides local porosity, we investigate the local behavior of mean geodesic tor-
tuosity. Being a purely geometrical descriptor, mean geodesic tortuosity τ (applied
to sack paper) is the average of shortest path lengths from the bottom surface to
the top surface divided by the local thickness of the sack [16]. To compute the
mean geodesic tortuosity of a cutout, we average only over those paths, the start-
ing points of which are located in the considered cutout. The paths themselves,
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however, are allowed to leave the cutout. Otherwise we would introduce a bias
into our computations as the boundary effects would have a stronger impact on
local mean geodesic tortuosity of smaller cutouts. For a formal definition of mean
geodesic tortuosity in the framework of random closed sets, we refer to [20]. To
compute the shortest path lengths from 3D image data for given starting points,
we use the Dijkstra algorithm [28] on the voxel grid. In addition to the mean
geodesic tortuosity τ , we consider modifications τ (r) of mean geodesic tortuosity,
where only those paths are considered which permit the passage of a ball of radius
r > 0. We investigate the case of mean geodesic tortuosity τ = τ (0) (r = 0) as well
as the two modifications with r = 1.5 µm and r = 3 µm, i.e., τ (1.5) and τ (3.0). A
step size of 1.5 µm is used between the different values of r, since 1.5 µm is the
edge length of the cubic voxels, see Section 2. The largest value of r considered
in the present paper is 3.0 µm, since only a small amount of the pore space is
accessible via an intrusion of spheres with a radius being larger than 3.0 µm, see
Figure 9 in [16].

Note that for each fixed r ≥ 0 and any given cutout, τ (r) is a random variable,
where we assume – as for local porosity – that its distribution does not depend on
which particular cutout is considered. If τ (r) refers to a specific cutout size, this
is explicitly stated in the following.

The distribution of local mean geodesic tortuosities, visualized in Figure 3c, can
be well modeled by a shifted generalized gamma-distribution [13] with probability
density function g : R→ [0,∞) given by

g(t) =
k(t− 1)d−1

αdΓ
(
d
k

) e−( t−1
α )

k

1It≥1, (2)

for each t ∈ R, where α, d, k > 0 are the parameters of the distribution. Note that
the support of the generalized gamma-distribution considered in Equation (2) is
the interval [1,∞). The parameters α, d, and k are fitted by means of maximum
likelihood estimation, where the maximization of the log-likelihood function is per-
formed using the Nelder-Mead algorithm [18]. The probability density functions of
the fitted shifted gamma distributions are shown in Figures 3d, 3f, 3h, respectively.
One can observe that these probability density functions model appropriately the
histograms computed from image data (see Figures 3c, 3e, 3g).

For the parametric distributions modeling the univariate distributions of poros-
ity and the three path-length related descriptors, a formal validation is performed
by means of the Kolmogorov-Smirnov test. In all cases, the test does not reject the
null hypothesis that the considered data is a realization of the corresponding fitted
parametric distribution at the level of 5 %. The p-values are listed in the appendix,
where we also provide the numerical values of the fitted model parameters, i.e.,
the obtained estimators for a, b, α, d, and k.

3.2 Joint distribution of local porosity and local mean geodesic tortuosity

In this section, the interdependence of local porosity and local path length re-
lated descriptors is determined based on the data of the cutouts considered in the
previous Section 3.1. In principle, the interdependence can be straight-forwardly
investigated considering empirical bivariate distribution, that we can directly com-
pute from tomographic image data. Here, we deliberately establish a parametric
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3 Comparison between the probability density distributions computed empirically from
image data (left panels) and from the corresponding fitted beta and gamma distributions,
respectively (right panels). Local porosity (a,b), and the descriptors derived from the mean

geodesic tortuosities τ (0) (c,d), τ (1.5) (e,f), and τ (3.0) (g,h) are shown.
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bivariate distribution prior evaluating the interdependence. For this purpose, we
use so-called copulas, which are an appropriate tool to model bivariate distri-
butions for given univariate marginal distributions. The use of copulas leads to
several benefits. The main advantage is that the complexity of modeling the bi-
variate distribution is split up into modeling the univariate marginal distributions
and modeling the copula, where the latter contains all the information about the
interdepedence between local porosity and the local path length related descrip-
tors. This enables us to interprete the considered interdependence by interpreting
the parameters of the copula. Note that the copula model used in the present
paper has only one real-valued parameter. Moreover, the copula approach is quite
flexible by allowing for arbitrary models for the univariate distribution and to
combine them with an arbitrary parametric family of copulas.

A two-dimensional copula is the joint probability distribution function C :
[0, 1]2 → [0, 1] of a random vector (U, V ) taking values in [0, 1]2 with probability 1
where both marginals of (U, V ) are uniformly distributed on the unit interval [25].
In particular, we have for all 0 ≤ u, v ≤ 1 that C(u, v) = P(U ≤ u, V ≤ v),P(U ≤
u) = u and P(V ≤ v) = v. Sklar’s theorem [19], a fundamental result of copula
theory, states that for an arbitrary pair of random variables P and τ (r) with
univariate distribution functions F : R → [0, 1], F (p) = P(P ≤ p) and G : R →
[0, 1], G(t) = P(τ (r) ≤ t), respectively, there exists a copula C which admits the
representation

H(p, t) = C(F (p), G(t)) (3)

of the joint distribution function H : R2 → [0, 1] of P and τ (r), for all p, t ∈ R.
Recall that in our case, P and τ (r) denote the random local porosity and the
random modified local mean geodesic tortuosity for given r ≥ 0, respectively, of a
cutout of predefined size. If the random vector (P, τ (r)) has the joint probability
density function h : R2 → [0,∞), we immediately obtain a formula for h from
Equation (3), namely

h(p, t) = f(p)g(t)

(
∂2

∂p ∂t
C

)
(F (p), G(t)), (4)

where f : R → [0,∞) and g : R → [0,∞) are the univariate probability density
functions of P and τ (r), respectively. Note that using Equation (4), one can easily
derive the probability density function hτ(r)|P=p : R2 → [0,∞) of the conditional

distribution of τ (r) given that P = p for each p with f(p) > 0 or vice versa. To be
precise, from Equation (4) we obtain that

hτ(r)|P=p(t) =
h(p, t)

f(p)
= g(t)

(
∂2

∂p ∂t
C

)
(F (p), G(t)) (5)

for all p, t ∈ R with f(p) > 0. This means that the copula approach allows us to
compute the conditional probability density function of local mean geodesic tortu-
osity for a given local porosity – and vice versa, since the conditional distribution
of P for given τ (r) is obtained analogous to Equation (5).

To model the data at hand, we select the family of Gumbel copulas as a model
type. We compared the fits obtained with one-parametric families of so-called
Archimedean copulas, see Chapter 4 in [19], i.e., with the family of Gumbel and
Clayton copulas to fits with copulas of the Frank type. This comparison revealed
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Table 1 Estimated values λ̂ of λ for different cutout sizes and tortuosities τ (0), τ (1.5) and
τ (3.0). The parameter λ quantifies the dependence between the local porosity and the respective
local mean geodesic tortuosity for given cutout sizes.

side length of cutouts 30 µm 60 µm 90 µm 120 µm 150 µm

λ̂ for τ (0) 1.41 1.46 1.59 1.68 1.73

λ̂ for τ (1.5) 1.47 1.51 1.67 1.74 1.77

λ̂ for τ (3.0) 1.24 1.30 1.50 1.67 1.74

that Gumbel copulas achieve a description that is superior to Frank copulas, even
though Frank copula type were already shown to appropriately model the correla-
tion between local porosity and local mean geodesic tortuosity in sack paper [21].
The choice of Gumbel copulas is formally validated in Section 3.3. Note that nega-
tive correlations cannot be directly modelled by means of the Gumbel copula, see
Example 5.4 in [19]. Since a preliminary assessment of the data indicated a neg-
ative correlation between local porosity and local mean geodesic tortuosity [21],
the Gumbel copula requires us to model the distribution of the random vector
(P, τ (r)) indirectly by modeling (P,−τ (r)). This joint distribution of P and −τ (r)
uniquely defines the joint distribution of P and τ (r).

The Gumbel copula Cλ with parameter λ ≥ 1 is defined by

Cλ(u, v) = exp

(
−
(

(− log u)λ + (− log v)λ
)1/λ)

(6)

for all 0 ≤ u, v ≤ 1. If the parameter λ equals 1, then the Gumbel copula coincides
with the product copula, which is equivalent to the independence of P and −τ (r).
The larger the value of λ is the stronger is the positive correlation between P and
−τ (r) and, thus, the more negative correlation between P and τ (r).

The parameter λ is fitted by means of the pseudo-likelihood method, see [8],

where we plug in the values F̂ (p) and Ĝ(t) of the empirical distribution functions
of F (p) and G(t) for u and v, respectively. This means that we divide the problem
of estimating the parameters of the bivariate distribution function of P and τ (r)

into two parts. First, in Section 3.1, the parameters of the univariate distribution
functions are fitted. Then, in the present section, we only compute the estimate λ̂
for the parameter λ of the Gumbel copula, which models the dependence between
local porosity and local values of τ (0), τ (1.5), and τ (3.0), respectively. The values
of λ̂ are summarized in Table 1. This method of parameter estimation has the
advantage that the computation of λ̂ does not depend on the parametric models
used for the univariate marginal distributions. Thereby, it is guaranteed that the
estimated values λ̂ reflect only the interdependence between local porosity and the
local path length related descriptors.

3.3 Validation of the copula model

A goodness of fit test is performed to validate the choice of Gumbel copulas for
modeling the joint distribution of local porosity and the mean length of local short-
est transportation paths. For this purpose, we use a goodness of fit test proposed
in [9]. This test compares the fitted parametric copulas model to the so-called
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(a) (b)

(c) (d)

Fig. 4 Comparison between two bivariate probability density distributions computed em-
pirically from image data (a,b) and from the corresponding fitted parametric model, respec-

tively (c,d). The bivariate distributions are shown for τ (1.5) with a cutout side length of

60 µm (a,c) and for τ (3.0) with a cutout side length of 90 µm (b,d).

empirical copula ĈN , i.e., a bivariate distribution function that is computed non-
parametrically from observed data.

For a number of observations N , we consider the pairs of local porosity and the

corresponding value of τ (0), τ (1.5) or τ (3.0) denoted by (P1, τ
(r)
1 ), . . . , (PN , τ

(r)
N ).

Similar to the estimation of the copula parameter λ, we consider the sequence of

random vectors (U1, V1), . . . , (UN , VN ) defined via Ui = F̂ (Pi) and Vi = Ĝ(τ
(r)
i )

for each i = 1, . . . , N. Then, the empirical copula ĈN : [0, 1]2 → [0, 1] is given by

ĈN (u, v) =
1

N

N∑
i=1

1IUi≤u1IVi≤v (7)

for all 0 ≤ u, v ≤ 1. To evaluate the discrepancy between the empirical copula and
the fitted copula model, we consider the Cramér-von-Mises-type test statistic

SN =

N∑
i=1

(ĈN (Ui, Vi)− Cλ̂(Ui, Vi))
2, (8)

where Cλ̂ is the Gumbel copula fitted as described in Section 3.2. Then, by means
of the statistic SN , given in Equation (8), the hypothesis H0 that the underlying
copula C of the random vector (P, τ (r)) belongs to the Gumbel family is tested
against the alternative H1 that C is not in the Gumbel family. The corresponding
p-values are determined via Monte-Carlo simulation using the parametric boot-
strap (with 10000 replications) implemented in the statistical software package



Local porosity and local tortuosity 11

Table 2 The p-values corresponding to the goodness of fit test for different cutout sizes and
tortuosities τ (0), τ (1.5) and τ (3.0).

side length of cutouts 30 µm 60 µm 90 µm 120 µm 150 µm

p-value for τ (0) 0.20 0.22 0.23 0.38 0.42

p-value for τ (1.5) 0.45 0.10 0.41 0.75 0.35

p-value for τ (3.0) 0.49 0.08 0.77 0.61 0.43

Table 3 Mean values and empirical standard deviations of porosity, τ (0), τ (1.5) and τ (3.0) for
different cutout sizes.

side length of cutouts 30 µm 60 µm 90 µm 120 µm 150 µm

porosity 0.35 ± 0.11 0.35 ± 0.08 0.35 ± 0.06 0.35 ± 0.06 0.35 ± 0.05

τ (0) 1.46 ± 0.25 1.45 ± 0.20 1.44 ± 0.17 1.43 ± 0.15 1.43 ± 0.13

τ (1.5) 1.56 ± 0.31 1.54 ± 0.26 1.53 ± 0.21 1.52 ± 0.19 1.52 ± 0.16

τ (3.0) 2.36 ± 0.99 2.32 ± 0.92 2.29 ± 0.85 2.29 ± 0.78 2.29 ± 0.72

R [23] as described in [15]. The obtained p-values are shown in Table 2. For each
version of tortuosity and for each cutout size, the hypothesis H0 is not rejected at
the significance level of 5 %, since the minimum p-value is 0.08 (τ (3.0), cutout size
60 µm). Thus we consider the Gumbel copula as an appropriate copula model for
the joint distribution of local porosity and local tortuosity.

In order to illustrate the goodness of fit, two bivariate probability density func-
tions of the parametric model are compared to those estimated from image data,
see Figure 4. The bivariate probability density functions of (P, τ (r)) are presented
for r = 1.5 µm with a cutout side length of 60 µm and for r = 3.0 µm with a
cutout side length of 90 µm. These cases are chosen as they are the ones with
lowest and highest p-values in the goodness of fit test, respectively. A good ac-
cordance between the parametric models and the empirical distributions obtained
from image data can be observed in Figure 4.

4 Trends in local heterogeneity

With an appropriate parametric model for the joint bivariate distribution of lo-
cal porosity and the mean length of local shortest transportation paths at hand
(cf. Section 3), we now inspect more closely the trends obtained for the local
porosity, τ (0), τ (1.5), τ (3.0), and their interdependence.

Figure 3 shows the univariate empirical distributions of the considered morpho-
logical characteristics computed from image data and the corresponding estimated
distributions of the parametric model. For local porosity, τ (0), τ (1.5) and τ (3.0), we
can observe a decreasing variance with increasing cutout sizes, while the mean
values approximately remain the same, see Table 3.

In terms of the minimal path diameter r, we find the relation τ (r1) ≤ τ (r2)

confirmed for all r1 ≤ r2 and all cutouts, since each path, that permits a ball with
a radius r2 to pass, readily admits a ball of a smaller radius r1. Moreover, note
that an increase of r not only causes a monotonous increase in the mean value τ (r)
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(cf. Figure 3e-f), see [16], but also in the variances of τ (r) (cf. Table 3). The latter
trend is caused by the fact that the number of those shortest transportation paths,
that are significantly longer than the corresponding mean value, increases with
increasing r. The increasing contribution of longer pathways becomes particular
apparent when comparing τ (1.5) with τ (3.0) (Figure 3e-f).

The local porosity and the local lenghts of transportation paths are nega-
tively correlated for all cutout sizes, independent whether τ (0), τ (1.5), or τ (3.0) is
concerned. A negative correlation between porosity and tortuosity can be readily
expected, as a lower porosity should hamper the formation of shorter pathways.
This relationship has been theoretically demonstrated for simple geometrical mi-
crostructure models [10]. In our case, the negative correlation is an inherent con-
sequence of the fact that the Gumbel copula is appropriate to model the joint
distribution of local porosity and local tortuosity (validated in Section 3.3)1. The
parameter λ of the Gumbel copula quantifies the correlation between local porosity
and local tortuosity, i.e., the larger λ is the stronger is the negative correlation.

The estimators λ̂ for λ, collected in Table 1, reveal in particular: (i) λ̂ increases

with the cutout size for each τ (0), τ (1.5), and τ (3.0); (ii) λ̂ indicates that porosity
correlates most strongly with τ (1.5) followed by τ (0) and τ (3.0); and (iii) for the

largest cutout size of 150 µm, the values of λ̂ for τ (0), τ (1.5), and τ (3.0) are close
to each other.

The dependence of λ̂ on the cutout size, stated in (i), is readily rationalized
by considering the computation of the mean geodesic tortuosity. In the latter, we
consider all those paths, whose starting points are located in the corresponding
cutout, while the path itself is allowed to leave the cutout. The more paths
start in a cutout that the paths eventually leave, the less is the correlation with
the porosity of this cutout. The length of those paths depends also on the local
porosity in the neighborhood of the considered cutout. Since the amount of paths
leaving the cutout is larger for smaller cutouts, it is reasonable that λ̂ increases
with the cutout size. Under mild conditions, e.g., in case that the shortest path
lengths are bounded from above by some constant2, the impact of paths leaving the
cutout vanishes when the cutout size tends to infinity [20]. Under these conditions

we would assume that λ̂ converges to a constant value if the cutout size tends to
infinity.

To rationalize (ii), i.e., why τ (1.5) appears to correlate most strongly, two com-
peting effects have to be taken into account. On the one hand, τ (r) of a cutout
considers those transportation pathways, that posses a minimal diameter of at
least r and that originate in the cutout. The larger r, the more of these trans-
portation pathways tend to leave the cutout, because the paths become longer in
general. In combination with the argument put forward in (i), increasing r trans-

late into decreasing values of λ̂. On the other hand, the larger r, the more pores
are necessary to form short transportation paths that permit the passage of balls

1 Recall from Section 3.2 that we use the Gumbel copula to model the joint distribution of
the random vector (P,−τ (r)), where P and τ (r) denote the porosity and the random value of
mean geodesic tortuosity or one of its modifications, respectively, in a cutout of predefined size.
Since the Gumbel copula allows only to model the joint distribution of positively correlated
random variables, the random variables P and τ (r) are negatively correlated.

2 More precisely, we mean that the shortest path length of each starting point at the bottom
surface is bounded by some constant, provided that there exists a path from this starting point
to the top surface.
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(a) (b) (c)

Fig. 5 Conditional distributions of τ (0) (a), τ (1.5) (b) and τ (3.0) (c) for given local porosities
computed by means of the copula model. The cutout size is 150 µm.

of radius r. This effect leads to increasing values of λ̂ for increasing r. In going
from τ (0) with τ (1.5) (cf. Table 1), the latter effect is stronger. However, when
going further to τ (3.0), the former effect appears to dominate.

The competition between the two aforementioned effects also rationalizes ob-
servation (iii), i.e., that large cutout sizes yield rather similar values of λ̂ for
τ (0), τ (1.5) and τ (3.0). It is remarkable that the interdependence between porosity
and τ (0), τ (1.5) and τ (3.0) is predicted to be similar for a cutout size of 150 µm,
even though the marginal distributions of τ (0), τ (1.5) and τ (3.0) are markedly dif-
ferent (cf. red curves in Figure 2). Apparently, the two competing effects that

dictate the relationship between r and λ̂ are balanced most equally for the par-
ticular cutout size of 150 µm. Since the effect of transportation paths leaving the
cutout is assumed to vanish for increasing cutout sizes, we conjecture that λ̂ re-
mains dependent on r, in fact, keeps monotonously increasing, for cutouts of even
larger size. To underpin this conjecture, further investigations with respect to the
relationship between local porosity and local values of τ (r) would be necessary,
where more values of r and larger cutout sizes have to be taken into account.

Besides the quantification of the interdependence between local tortuosity and
local porosity, we obtain the conditional distributions of τ (0), τ (1.5) and τ (3.0) for
a given local porosity directly from Equation (5). Examples of such conditional
distributions derived from the copula model are shown in Figure 5 for a cutout
size of 150 µm. Here one can observe that the skewness of the conditional dis-
tributions decreases with increasing local porosity. Once having established such
conditional distributions, they can be used to predict intervals, in which the val-
ues of τ (0), τ (1.5) and τ (3.0) are located with a certain probability for a given
local porosity. This is particularly appealing, since porosity can be – contrary to
τ (0), τ (1.5) and τ (3.0) – experimentally determined. Thus, based on the knowledge
of porosity, the presented methodology helps to predict the behavior of further
morphological characteristics, which are meaningful for the air permeance in sack
paper.

5 Conclusions

In the present article, we have parametrically modeled the joint distribution of
local porosity and local morphological characteristics describing the lengths of
shortest transportation paths in sack paper, which has been recently investigated
with respect to global characteristics in [16]. For this purpose, we have considered
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cutouts of 3D image data obtained by µ-CT and studied the variability and in-
terdependence of the considered morphological characteristics for different sizes of
cutouts. We proposed a copula model which allows for a quantification of the joint
distribution by means of its model parameter. The obtained results show how the
interdependence between local porosity and local values of τ (r), i.e., of tortuosity,
where only paths with a certain minimum diameter are considered, changes with
r ≥ 0. Briefly summarizing the results of Section 4, local porosity and local values
of τ (0), τ (1.5) and τ (3.0) are negatively correlated, the interdependence becomes
stronger with increasing cutout size and no monotonicity (in r) of the interdepen-
dence is observed. Moreover, by the aid of the model, we compute the conditional
distribution of τ (0), τ (1.5) and τ (3.0) given the local porosity of a cutout. Doing so,
we give deeper insights regarding the influence of local porosity on the windedness
of shortest transportation paths through the pore space of sack paper, which is
important to better understand the impact of local porosity on local air permeance
- a key property of sack paper.

Appendix

In addition to Section 3.1, we provide the numerical values of the fitted parameters
regarding the univariate distributions of porosity, τ (0), τ (1.5), and τ (3) in Tables 4,
5, 6, and 7, respectively. Moreover, the corresponding p-values of the Kolmogorov-
Smirnov test indicating the goodness of fit are shown. Since our sample consists
of 204 observations, the p-values are simulated based on the procedure proposed
in [17], rather than using the ones of the asymptotic case. For this purpose, we
make use of the implementation in the statistical software package R [23].

Table 4 Estimated values â and b̂ for the parameters a and b of the beta-distribution mod-
eling the univariate distribution of porosity. Moreover, the p-values corresponding to the
Kolmogorov-Smirnov test for different cutout sizes are shown.

side length of cutouts 30 µm 60 µm 90 µm 120 µm 150 µm

â 6.15 12.53 19.54 25.19 29.38

b̂ 11.49 23.63 36.39 46.82 54.69

p-value 0.90 0.99 0.99 0.95 0.72

Table 5 Estimated values α̂, d̂, and k̂ for the parameters α, d and k of the shifted general-
ized gamma distribution modeling the univariate distribution of τ (0). Moreover, the p-values
corresponding to the Kolmogorov-Smirnov test for different cutout sizes are shown.

side length of cutouts 30 µm 60 µm 90 µm 120 µm 150 µm

α̂ 0.137 0.017 0.013 0.016 0.014

d̂ 1.02 0.72 0.75 0.81 0.85

k̂ 3.49 7.37 9.98 11.85 15.15

p-value 0.54 0.88 0.85 0.88 0.80
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Table 6 Estimated values α̂, d̂, and k̂ for the parameters α, d and k of the shifted generalized
gamma distribution modeling the univariate distribution of τ (1.5). Moreover, the p-values
corresponding to the Kolmogorov-Smirnov test for different cutout sizes are shown.

side length of cutouts 30 µm 60 µm 90 µm 120 µm 150 µm

α̂ 0.188 0.033 0.025 0.011 0.020

d̂ 1.02 0.75 0.78 0.72 0.84

k̂ 3.12 5.95 8.24 11.81 12.96

p-value 0.88 0.95 0.80 0.92 0.92

Table 7 Estimated values α̂, d̂, and k̂ for the parameters α, d and k of the shifted generalized
gamma distribution modeling the univariate distribution of τ (3.0). Moreover, the p-values
corresponding to the Kolmogorov-Smirnov test for different cutout sizes are shown.

side length of cutouts 30 µm 60 µm 90 µm 120 µm 150 µm

α̂ 0.066 0.017 0.005 0.009 0.013

d̂ 0.59 0.51 0.47 0.52 0.56

k̂ 3.32 4.47 5.92 6.53 7.15

p-value 0.97 0.86 0.93 0.30 0.30
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