Programmierung des Z80

		,

Programmierung des Z80

Rodnay Zaks

Anmerkung:

Z80 ist ein geschütztes Warenzeichen von ZILOG Inc., USA.

Originalausgabe in Englisch

Titel der englischen Ausgabe: Programming the Z80

Original Copyright @ 1980 by SYBEX Inc., Berkeley, USA

Deutsche Übersetzung: Bernd Ploss

Umschlag: Daniel Le Noury

Satz: tgr typo-grafik-rcpro gmbH., Remscheid

Gesamtherstellung: Druckerei Hub. Hoch, Düsseldorf

Der Verlag hat alle Sorgfalt walten lassen, um vollständige und akkurate Informationen zu publizieren. SYBEX-Verlag GmbH, Düsseldorf, übernimmt keine Verantwortung für die Nutzung dieser Informationen, auch nicht für die Verletzung von Patent- und anderen Rechten Dritter, die daraus resultieren. Hersteller behalten das Recht, Schaltpläne und technische Charakteristika ohne Bekanntgabe an die Öffentlichkeit zu ändern. Für genaue technische Daten auf dem neuesten Stand wird der Leser an die Hersteller verwiesen.

ISBN 3-88745-099-X

- Auflage 1982
- 2. Auflage 1982
- 3. Auflage 1983
- Auflage 1983
- 5. Auflage 1984
- 6. Auflage 1984
- 7. Auflage 1985 (zweite, überarbeitete und erweiterte Ausgabe)
- 8. Auflage 1985
- 9. Auflage 1986

Alle deutschsprachigen Rechte vorbehalten. Kein Teil des Werkes darf in irgendeiner Form (Druck, Fotokopie, Mikrofilm oder einem anderen Verfahren) ohne schriftliche Genehmigung des Verlages reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

Printed in Germany

Copyright © 1982, 1985 SYBEX-Verlag GmbH, Düsseldorf

Dankwort

Der Entwurf eines Textbuches über Programmierung ist immer schwierig. Ein solches Buch aber so zu konzipieren, daß es als Einführung in die Programmierung taugt und trotzdem fortgeschrittene Konzepte präsentiert, ohne daß Hardware- und Softwareaspekte außer acht gelassen werden, ist eine Herausforderung. Der Autor möchte sich hier für die vielen Vorschläge zu Verbesserungen und Änderungen des Buches bei O. M. Barlow, Dennis L. Feick, Richard D. Reid, Stanley E. Erwin, Philip Hooper, Dennis B. Kitsz, R. Ratke und Jim Crocker bedanken. Sein besonderer Dank gilt Chris Williams für seine Beiträge zu dem Z80 Instruktions-Set und dem Kapitel über Datenstrukturen.

Alle weiteren Vorschläge zur Verbesserung oder Änderung des Buches sollten an den Verlag geschickt werden.

Die Tabellen zu den Hexadezimal-Kodes der Z80-Instruktionen in Kapitel 4 sind mit Genehmigung von Zilog Inc, USA, nachgedruckt. Tabellen 2.26 und 2.27 wurden mit Genehmigung von Intel Corporation, USA, abgedruckt.

Inhaltsverzeichnis

I.	Grundbegriffe	17
II.	Z80 Hardware Organisation	43
III.	Grundlegende Techniken der Programmierung Einführung, Arithmetische Programme, Multiplikation von BCD-Zahlen, Division von Dualzahlen, Zusammengefaßte Darstellung der Befehle, Unterprogramme, Zusammenfassung	89
IV.	Der Befehlssatz des Z80	147
V.	Adressierungstechniken	429
VI.	Ein-/Ausgabetechniken Einführung, Eingabe und Ausgabe, Parallele wortweise Übertragung, Serielle bitweise Übertragung, Zusammengefaßte Darstellung der Peripherie, Verwaltung von Ein- und Ausgabe, Zusammenfassung	449
VII.	Ein-/Ausgabegeräte Einführung, Die Standard-PIO, Das interne Steuerregister, Programmierung einer PIO, Die Zilog-Z80-PIO	497
VIII.	Beispiel für Anwendungen Einführung, Löschen eines Speicherbereichs, Abfrage von Ein-/Ausgabegeräten, Eingabe von Zeichen, Test eines Zeichens, Test eines Zeichens, Test eines Zeichenbereiches, Erzeugen des Paritybits, Codeumwandlung: ASCII nach BCD, Hexadezimal nach ASCII, Suchen des größten Elementes in einer Tabelle, Summe von n Elementen, Berechnung einer Prüfsumme, Zählen der Nullen, Übertragung von Blöcken, Transfer eines Blocks von BCD-Zahlen, Vergleich zweier vorzeichenbehafteter 16-Bit-Zahlen, Bubble-Sort, Zusammenfassung	507

IX.	Datenstrukturen	525
	menfassung 2. Teil – Beispiele zum Entwurf Einführung, Darstellung der Daten in der Liste, Eine einfache Liste, Alphabetische Liste, Verkettete Liste, Zusammenfassung	
х.	Entwicklung von Programmen Einführung, Grundlegende Entscheidungen, Unterstützende Software, Wie man schrittweise ein Programm entwickelt, Alternativen bei der Hardware, Der Assembler, Bedingte Assemblierung, Zusammenfassung	563
XI.	Schluß Die technologische Entwicklung, Der nächste Schritt	585
Anha	ng A	587
Anha	ng B	588
Anha	ng C	589
Anha	ung D	590
Anha	Der Befehlssatz des Z80	591
Anha	ng F	598
Anha	Aquivalente Befehle: 8080-Z80	599
Lösu	ngen zu den Übungen	601
Stich	wortverzeichnis	635

Verzeichnis der Abbildungen

AUU. 1.1.	Prubulagrammi zur Konstantnattung der Kaum-	
	temperatur	19
Abb. 1.2:		22
Abb. 1.3:	Tabelle der Zweierkomplemente	28
Abb. 1.4:	BCD Tabelle	34
Abb. 1.5:	Typische Gleitkommadarstellung	36
Abb. 1.6:	ASCII-Umwandlungs-Tabelle	38
Abb. 1.7:	Oktale Symbole	39
Abb. 1.8:	Hexadezimalkode	41
Abb. 2.1:	Z80-Standardsystem	44
Abb. 2.2:	"Standardarchitektur" eines Mikroprozessors	46
Abb. 2.3:	Schieben und Rotieren	47
Abb. 2.4:	Die 16-Bit-Adreßregister erzeugen den Adreßbus.	48
Abb. 2.5:	Die beiden Befehle zur Manipulation des Stapels	51
Abb. 2.6:	Einen Befehl aus dem Speicher holen	52
Abb. 2.7:	Automatische Abfolge	52
Abb. 2.8:	Architektur mit einem einzelnen Bus	53
Abb. 2.9:	Ausführung einer Addition – R0 in den Akku	54
Abb. 2.10:	Addition - Zweites Register R1 in die ALU	54
Abb. 2.11:	Das Ergebnis wird erzeugt und kommt nach R0	55
Abb. 2.12:	Der kritische Wettlauf	56
Abb. 2.13:	Zwei Puffer werden benötigt	56
Abb. 2.14:	Interne Organisation des Z80	61
Abb. 2.15:	Typisches Befehlsformat	63
Abb. 2.16:	Die Kodes der Register	64
Abb. 2.17:	Instruction Fetch – (PC) wird zum Speicher geschickt	66
A b. 2.18:	PC wird inkrementiert	66
Abb. 2.19:	Der Befehl kommt aus dem Speicher ins IR	67
Abb. 2.20:	Übertragung von C nach D	68
Abb. 2.21:	Übertragung von C nach D	68
Abb. 2.22:	Der Inhalt von TMP wird nach D übertragen	69
Abb. 2.23:	Zwei Transfers werden gleichzeitig ausgeführt	71
Abb. 2.24:	Das Ende von ADD	72
Abb. 2.25:	Das Ende von ADD	73
Abb. 2.26:	Abkürzungen von INTEL	74
Abb. 2.27:	Intel Befehlsformate	76
Abb. 2.28:	Übertragung des Inhalts von HL zum Adreßbus	80
Abb. 2.29:	LD A,(Adresse) ist ein Dreiwortbefehl	81
Abb. 2.30:	Vor der Ausführung von LD A	81
Abb. 2.31:	Nach der Ausführung von LDA	82
Abb. 2.32:	Nach der Ausführung von LD A	82
Abb. 2.33:	Anschlußbelegung der Z80 MPU	85

Abb. 3.0:	Die Register des Z80	90
Abb. 3.1:	Acht-Bit-Addition RES = $OP1 + OP2$	91
Abb. 3.2:	LD A,(ADR1): OP1 wird aus dem Speicher geladen	92
Abb. 3.3:	ADD A,(HL)	92
Abb. 3.4:	LD (ADR3), A (Lege den Akkumulator im Speicher	
	ab)	93
Abb. 3.5:	16-Bit-Addition – die Operanden	94
Abb. 3.6:	Speicherung der Operanden in umgekehrter Reihen-	
	folge	96
Abb. 3.7:	folge	97
Abb. 3.8:	Eine 32-Bit-Addition	98
Abb. 3.9:	Eine 32-Bit-Addition	99
Abb. 3.10:	Speicherung von BCD-Ziffern	102
Abb. 3.11:	Speicherung von BCD-Ziffern	105
Abb. 3.12:	Der grundlegende Algorithmus für die Multiplikation	
	- ein Flußdiagramm	107
Abb. 3.13:	8 x 8 Bit Multiplikationsprogramm	108
Abb. 3.14:	8 x 8 Bit Multiplikation – die Register	109
Abb. 3.15:	LD BC (MPRAD)	110
Abb. 3.16:	LD BC,(MPRAD)	111
Abb. 3.17:	Schieben und Rotieren	113
Abb. 3.18:	Von E nach D Schieben	114
Abb. 3.19:	Tabelle zur Multiplikationsaufgabe	115
Abb. 3.20:	Multiplikation: Nach dem ersten Befehl	116
Abb. 3.21:	Multiplikation: Nach zwei Befehlen	117
Abb. 3.22:	Multiplikation: Nach zwei Befehlen Multiplikation: Nach fünf Befehlen Ein Durchlauf durch die Schleife Verbesserte Multiplikation, Schritt 1	117
Abb. 3.23:	Fin Durchlauf durch die Schleife	118
Abb. 3.24:	Verhesserte Multiplikation Schritt 1	110
Abb. 3.25:	Register zur verbesserten Multiplikation	120
Abb. 3.26:	Verbesserte Multiplikation, Schritt 2	121
Abb. 3.27:	16 x 16 Bit Multiplikation — die Register	122
Abb. 3.28:	16 x 16 Bit Multiplikationsprogramm	123
Abb. 3.29:	16 x 16 Bit Multiplikation mit 32-Bit-Ergebnis	125
Abb. 3.30:	Flußdiagramm für duale 8-Bit-Division	126
Abb. 3.31:	16/8 Bit Division — die Register	126
Abb. 3.32:	16/8 Bit Divisionsprogramm	127
Abb. 3.33:	Formular für das Divisionsprogramm	120
Abb. 3.34:	Formular für das Divisionsprogramm Nicht-wiederherstellende Division – die Register	130
Abb. 3.35;	Unterprogramma ufrufe	135
Abb. 3.36:	Unterprogrammaufrufe	137
Abb. 3.37:	Die Unterprogrammaufrufe	132
Abb. 3.38:	Die Unterprogrammaufrufe	130
Abb. 3.39:	Multiplikation: eine vollständige Aufzeichnung	1/2
Abb. 3.40:	Des Multiplikationsprogramm (havadezimel)	143
Abb. 3.41:	Das Multiplikationsprogramm (hexadezimal)	145
Abb. 4.1	Zwei Durchläufe durch die Schleife Schieben und Rotieren	143
ALDD: 4.1.	achieden mid Koheren	148

Abb. 4.2:	Acht-Rit-Ladehefehle – LD	152
Abb. 4.3:	Acht-Bit-Ladebefehle – LD	153
Abb. 4.4:	Austausch 'EX' und 'EXX'	154
Abb. 4.5:	Blocktransferbefehle	155
Abb. 4.6:	Blocksuchbefehle	156
Abb. 4.7:	Acht-Rit Arithmetik und Looik	157
Abb. 4.8:	Acht-Bit Arithmetik und Logik	158
Abb. 4.9:	Schieben und Rotieren	161
Abb. 4.10:	Rotieren und Schieben	
Abb. 4.11:	Neun-Bit-Rotation	162
Abb. 4.12:	Acht-Bit-Rotation	
Abb. 4.13:	Rotieren von Ziffern	163
Abb. 4.14:	Bitmanipulationen	164
Abb. 4.15:	Bitmanipulationen	165
Abb. 4.16:	Das Flagregister	165
Abb. 4.17:	Das Flagregister	170
Abb. 4.18:	Springhefehle	172
Abb. 4.19:	Sprungbefehle	173
Abb. 4.20:	Die Ausgabebefehle	175
Abb. 4.21:	Die Eingabebefehle	176
Abb. 4.22:	Verschiedene CPU Steuerbefehle	177
Abb. 5.1:	Grundlegende Adressierungsarten	
Abb. 5.2:	Adressierung (direkt indiziert)	433
Abb. 5.3:	Indirekte indizierte Adressierung	433
Abb. 5.4:	Indirekte Adressierung	434
Abb. 5.5:	Indirekte Adressierung	101
7100. 5.5.	Oncode	438
Abb. 5.6:	Opcode	440
Abb. 5.7:	Blocktransfer – Initialisierung der Register	441
Abb. 5.8:	Speicherbelegung beim Blocktransfer	443
Abb. 5.9:	Speicherbelegung beim Blocktransfer Addition zweier Blöcke: BLK1=BLK1+BLK2	446
Abb. 5.10:	Speicherorganisation für den Blocktransfer	447
Abb. 6.1:	Ein Relais einschalten	451
Abb. 6.2:	Ein programmierter Impuls	451
Abb. 6.3:	Prinzipielles Flußdiagramm einer Verzögerungs-	
	schleife	452
Abb. 6.4:	Parallele Übertragung von Worten - der Speicher	456
Abb. 6.5:	Parallele Übertragung von Worten: Flußdiagramm	
Abb. 6.6:	Bitserielle Übertragung	
Abb. 6.7:	Seriell nach Parallel: die Register	462
Abb. 6.8:	Handshaking (Ausgabe)	466
Abb. 6.8a:	Handshaking (Ausgabe)	466
Abb. 6.9:	Drucker – Datenwege	467
Abb. 6.10:	Drucker – Datenwege	469
Abb. 6.11:	Hexadezimalzeichen, die mit einer Siebensegment-	- +2
	anzeige erzeugt werden	469

Abb.	6.12:	Format eines Fernschreiberwortes	472
Abb.	6.13:	TTY-Eingabe mit Echo	473
Abb.	6.14:	Fernschreiberprogramm	474
Abb.	6.15:	Eingabe vom Fernschreiber	475
Abb.	6.16:	Ausgabe auf den Fernschreiber	476
Abb.	6.17:	Ausdruck eines Speicherbereichs	478
Abb.	6.18:	Drei Methoden der Ein-/Ausgabesteuerung	479
Abb.	6.19:	Flußdiagramm einer Pollingschleife	481
Abb.	6.20:	Eingabe von einem Lochstreifenleser	481
Abb.	6.21:	Ausgabe auf einen Stanzer oder Drucker	482
Abb.		Der Stapel des Z80 nach einem Interrupt	482
Abb.		Sicherstellen einiger Arbeitsregister	483
Abb.	6.24:	Interrupt Folge	484
Abb.		Der NMI erzwingt eine automatische Verzweigung	485
Abb.		Interrupt Modi	487
Abb.	6.27:	Interrupt Modi	488
Abb.		Interrupt Modus 1	489
Abb.		Interrupt Modus 2	490
Abb.	6.30:	Modus 2 – ein praktisches Beispiel	491
Abb.	6.31:	Abfrage und vektorisierter Interrupt	493
Abb.	6.32:	Mehrere Geräte können die gleiche Interruptleitung	
		verwenden	494
Abb.		Inhalt des Stapels während mehrerer Interrupts	494
Abb.		Interruptlogik	496
Abb.		Typische PIO	498
Abb.	7.2:	Der Gebrauch einer PIO - Laden des Kontroll-	
		registers	499
Abb.		Der Gebrauch einer PIO – Laden der Datenrichtung	500
Abb.		Der Gebrauch einer PIO – Lesen des Status	500
Abb.		Der Gebrauch einer PIO - Lesen einer Eingabe	501
Abb.		Die Anschlußbelegung der Z80 PIO	502
Abb.		Blockdiagramm der Z80 PIO	503
Abb.		Größtes Element in einer Tabelle	
Abb.		Summe von N Elementen	514
Abb.		BCD-Blocktransfer - der Speicher	517
Abb.		Vergleich zweier vorzeichenbehafteter Zahlen	518
Abb.		Bubble-Sort Beispiel: Schritte 1 bis 12	520
Abb.		Bubble-Sort Beispiel: Schritte 13 bis 21	
Abb.		Bubble-Sort Flußdiagramm	522
Abb.		Bubble-Sort	523
Abb.		Ein indirekter Zeiger	526
Abb.		Struktur eines Inhaltsverzeichnisses	527
Abb.		Eine verkettete Liste	528
Abb.		Einfügen eines Blocks	528
Abb.		Eine Schlange	
Abb.	9.6:	Ringliste	530

Abb. 9.7:	Stammbaum	531
Abb. 9.8:	Doppelt verkettete Liste	531
Abb. 9.9:	Die Tabellenstruktur	
Abb. 9.10:	Typische Eintragungen in die Liste	
Abb. 9.11:	Die einfache Liste	
Abb. 9.12:	Flußdiagramm zur Suche in der Tabelle	536
Abb. 9.13:	Flußdiagramm zum Einfügen in die Tabelle	
Abb. 9.14:	Löschen einer Eintragung (einfache Liste)	
Abb. 9.15:	Löschen in der Tabelle – Flußdiagramm	
Abb. 9.16:	Einfache Liste – die Programme	
Abb. 9.17:	Einfache Liste - ein Durchlauf als Beispiel	
Abb. 9.18:	Binäres Suchen – Flußdiagramm	
Abb. 9.19:	Eine binäre Suche	
Abb. 9.20:	Füge "BAC" ein	
Abb. 9.21:	Lösche "BAC"	548
Abb. 9.22:	Flußdiagramm zum Löschen (alphabetische Liste) !	549
Abb. 9.23:	Binäres Suchprogramm	550
Abb. 9.24:	Alphabetische Liste – Ein Lauf als Beispiel	553
Abb. 9.25:	Struktur der verketteten Liste	555
Abb. 9.26:	Verkettete Liste - Eine Suche	557
Abb. 9.27:	Verkettete Liste: Beispiel des Einfügens	557
Abb. 9.28:	Beispiel des Löschens (Verkettete Liste)	558
Abb. 9.29:	Verkettete Liste – die Programme	559
Abb. 9.30:	Verkettete Liste - ein Durchlauf	561
Abb. 10.1:	Programmierebenen	565
Abb. 10.2:	Ein typischer Speicherbelegungsplan	570
Abb. 10.3:	Programmierformular für einen Mikroprozessor	
Abb. 10.4:	Assemblerliste – ein Beispiel	
Abb. 10.5:	Priorität der Operatoren	

Vorwort

Dieses Buch wurde konzipiert als ein vollständiger in sich abgeschlossener Text zum Erlernen des Programmierens unter Verwendung des Z80. Es kann von allen gelesen werden, die auch bisher noch nicht programmiert haben. Von besonderem Wert sollte es für alle diejenigen sein, die den Z80 verwenden.

Für alle Leser, die schon programmiert haben, lehrt dieses Buch spezielle Programmiertechniken unter Verwendung der besonderen Eigenschaften des Z80. Dieser Text deckt die Methoden elementarer bis mittlerer Schwierigkeit ab, die man braucht, um effektiv zu programmieren. Ziel dieses Textes ist es, demjenigen, der diesen Mikroprozessor verwenden will, fundierte Grundlagen zu liefern. Natürlich lehrt kein Buch wirklich zu programmieren, solange man es nicht tatsächlich tut. Es ist jedoch zu hoffen, daß dieses Buch den Leser zu einem Punkt führt, an dem er sich in der Lage fühlt, mit dem Programmieren selbst zu beginnen, und an dem er einfache oder auch etwas anspruchsvollere Probleme mit einem Mikroprozessor lösen kann.

Dieses Buch basiert auf der Erfahrung des Autors, der mehr als 1000 Personen gelehrt hat, wie man Mikrocomputer programmiert. Deshalb ist es konsequent strukturiert. Jedes Kapitel führt normalerweise von einfachen zu komplexeren Problemen. Leser, die die elementare Programmierung schon erlernt haben, können den Anfang eines Kapitels überspringen. Andere, die noch nie programmiert haben, müssen vielleicht die hinteren Abschnitte jedes Kapitels ein zweites Mal durcharbeiten. Das Buch wurde dazu entworfen, den Leser durch sämtliche grundlegende Konzepte und Techniken zu führen, die man für Programme wachsender Komplexität braucht. Deshalb sei es dringend empfohlen, die Reihenfolge der Kapitel einzuhalten. Um wirkliche Erfolge zu erzielen, ist es zusätzlich wichtig, daß der Leser versucht, so viele Aufgaben wie möglich zu lösen. Die Schwierigkeit der Aufgaben wurde sorgfältig abgestimmt. Sie dienen der Überprüfung, daß der behandelte Stoff auch wirklich verstanden wurde. Wenn man die Aufgaben nicht bearbeitet, dann kann man den Wert dieses Buchs als Lehrmittel nicht voll nutzen. Mehrere der Aufgaben können z. T. erhebliche Zeit beanspruchen, wie z. B. die Multiplikationsübung. Löst man jedoch auch diese Aufgaben, so lernt man Programmieren wirklich. Dies ist unerläß-

Für diejenigen, die am Ende dieses Buchs am Programmieren Geschmack gefunden haben, sei das Buch "Z80 Anwendungen" von James W. Coffron (Ref.-Nr. 3037, August 1984) empfohlen.

Andere Bücher in dieser Serie behandeln die Programmierung anderer weit verbreiteter Mikroprozessoren.

Für diejenigen, die ihre Hardwarekenntnisse erweitern wollen, seien die Bücher "Chip und System: Einführung in die Mikroprozessoren-Technik" (Ref.-Nr.: 3017) und "Mikroprozessor Interface Techniken" (Ref.-Nr.: 3012) empfohlen.

Der Inhalt dieses Buchs wurde sorgfältig geprüft und sollte korrekt sein. Jedoch können trotzdem einige unvermeidliche Schreibfehler oder andere Irrtümer enthalten sein. Der Autor ist für alle Hinweise aufmerksamer Leser dankbar, so daß zukünftige Ausgaben von Ihren Erfahrungen profitieren können. Auch für andere Verbesserungsvorschläge (z. B. Programme, die von Lesern gewünscht, entwickelt oder für wichtig befunden werden) ist der Autor dankbar.

1

Grundbegriffe

Einführung

Dieses Kapitel soll in die Grundbegriffe und Bezeichnungen der Computerprogrammierung einführen. Der Leser, der mit diesen Begriffen schon vertaut ist, wird vielleicht den Inhalt dieses Kapitels nur flüchtig durchsehen und sich dann Kapitel 2 zuwenden. Es sei jedoch auch dem erfahrenen Leser empfohlen, den Inhalt dieses einführenden Kapitels genau anzusehen. Viele wichtige Begriffe werden hier erläutert, z. B. Zweierkomplement, BCD und andere Darstellungen. Einige dieser Begriffe sind für den Leser vielleicht neu, andere erweitern die Kenntnisse und Fähigkeiten auch des erfahrenen Programmierers.

Was ist Programmierung?

Ist ein Problem gegeben, muß man zuerst eine Lösung finden. Diese Lösung in Form eines schrittweisen Verfahrens nennt man einen Algorithmus. Ein Algorithmus ist eine Vorschrift, nach der ein gegebenes Problem Schritt für Schritt gelöst wird. Er muß nach einer endlichen Zahl von Schritten zum Abschluß gebracht werden. Den Algorithmus kann man in einer beliebigen Sprache oder Symbolik darstellen. Ein einfaches Beispiel für einen Algorithmus ist:

- 1. Stecke den Schlüssel in das Schlüsselloch
- 2. Drehe den Schlüssel eine Umdrehung links herum
- Fasse den Türdrücker an
- Bewege den Türdrücker nach unten und drücke gegen die Tür.

Stimmt der Algorithmus für den vorliegenden Typ von Türschloß, wird sich die Tür jetzt öffnen. Diese Vorschrift aus vier Schritten beschreiben einen Algorithmus zum Öffnen einer Tür.

Sobald die Lösung für ein Problem in Form eines Algorithmus dargestellt ist, kann der Algorithmus von dem Computer abgearbeitet werden. Leider ist es eine feststehende Tatsache, daß Computer normales gesprochenes Deutsch (oder jede andere natürliche Sprache) weder verstehen noch ausführen können. Der Grund ist die syntaktische Mehrdeutigkeit aller natürlicher Sprachen. Nur eine wohldefinierte Teilmenge einer natürlichen Sprache kann von einem Computer "verstanden" werden. Diese nennt man dann eine Programmiersprache.

Einen Algorithmus in eine Folge von Befehlen in einer Programmiersprache zu übersetzen, nennt man *Programmierung*. Genauer ausgedrückt heißt die Übersetzung des Algorithmus in die Programmiersprache *Kodierung*. Programmierung bezieht sich in Wirklichkeit nicht nur auf die Kodierung, sondern auf den gesamten Entwurf der Programme und der "Datenstrukturen", die von dem Algorithmus benutzt werden.

Effektive Programmierung setzt nicht nur voraus, daß man verschiedene Techniken zur Ausführung von Standardalgorithmen versteht, sondern auch daß man alle Hardwarehilfsmittel des Computers, wie interne Register, Speicher und periphere Geräte, geschickt nutzt und die passenden Datenstrukturen kreativ einsetzt. Diese Techniken werden in den nächsten Kapiteln behandelt.

Programmierung verlangt auch eine konsequente Disziplin bei der Dokumentation, so daß die Programme für andere wie auch für den Autor verständlich sind. Zu einem Programm gehört sowohl eine interne als auch eine externe Dokumentation.

Interne Dokumentation bezieht sich auf Kommentare innerhalb des Programms, die sein Funktionieren erklären. Externe Dokumentation sind Unterlagen zum Entwurf, die vom Programm getrennt sind, wie schriftliche Erklärungen, Handbücher und Flußdiagramme.

Flußdiagramme

Fast immer wird zwischen Algorithmus und Programm ein Zwischenschritt eingeschaltet, das Flußdiagramm. In einem Flußdiagramm wird der Algorithmus einfach als Folge von Rechtecken und Rauten, die die einzelnen Schritte des Algorithmus enthalten, symbolisch dargestellt. Rechtecke verwendet man für Befehle oder "ausführbare Anweisungen", Rauten für Verzweigungen wie: Ist die Aussage X wahr, dann gehe nach A, sonst nach B. Statt jetzt eine formale Beschreibung von Flußdiagrammen zu bringen, werden wir Flußdiagramme später in diesem Buch einführen und diskutieren, wenn wir Programme erläutern.

Flußdiagramme werden dringend empfohlen als Zwischenschritt zwischen der Spezifikation des Algorithmus und der Kodierung der Lösung! Bemerkenswerterweise hat man herausgefunden, daß etwa 10% der Programmierer ein Programm erfolgreich schreiben können, ohne ein Flußdiagramm zu haben. Man hat aber auch herausgefunden, daß unglücklicherweise 90% der Programmierer meinen, sie gehörten zu diesen 10%! Das Ergebnis: Durchschnittlich 80% der Programme versagen, wenn sie zum ersten Mal auf einen Computer laufen sollen. (Die Prozentangaben sind natürlich nicht exakt.) Kurz gesagt, die meisten Programmiererneulinge sehen die Notwendigkeit, ein Flußdiagramm zu zeichnen, nur selten ein. Dies führt üblicherweise zu "unsauberen" oder fehlerhaften Programmen. Sie verbrauchen dann viel Zeit beim Testen und Korrigieren ihrer Programme (das nennt man dann Debugging). Flußdiagramme zu zeichnen, sei deshalb in allen Fällen dringend emp-

fohlen. Dazu braucht man vor der Kodierung nur wenig zusätzliche Zeit, erhält aber normalerweise ein klares Programm, das richtig und schnell funktioniert. Sind die Flußdiagramme einmal gut verstanden, dann wird ein kleiner Prozentsatz der Programmierer in der Lage sein, diesen Schritt im Geiste auszuführen, ohne ihn zu Papier zu bringen. Leider sind dann die Programme, die sie schreiben, für andere meist nur schwer zu verstehen, weil die Dokumentation durch die Flußdiagramme fehlt. Deshalb wird allgemein empfohlen, das Verfahren der Flußdiagramme bei allen wichtigen Programmen konsequent anzuwenden. Viele Beispiele werden das ganze Buch hindurch vorgestellt werden.

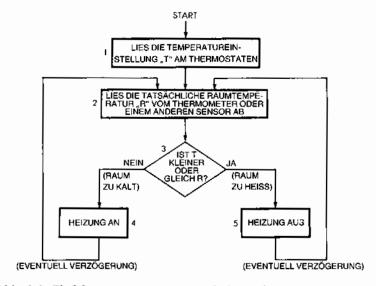


Abb. 1.1: Fluβdiagramm zur Konstanthaltung der Raumtemperatur

Darstellung von Information

Alle Computer handhaben Informationen in Form von Zahlen oder in Form von Zeichen. Wir wollen hier die externe und die interne Darstellung von Information in einem Computer untersuchen.

Interne Darstellung von Information

In einem Computer wird jede Information als Gruppe von Bits dargestellt. Bit ist die Abkürzung von binary digit, d. h. Binärziffer ("0" oder "1"). Eingeschränkt durch die Eigenschaften der üblichen Elektronik, verwendet die einzige praktikable Darstellung von Information eine Logik aus zwei Zuständen (die Darstellung der Zustände "0" und "1"). Die zwei Zustände der Schaltungen, die in der digitalen Elektronik verwendet werden, sind allgemein "ein" und "aus", und diese werden durch die

Symbole "0" und "1" logisch dargestellt. Weil diese Schaltungen verwendet werden, um "logische" Funktionen auszuführen, nennt man sie "binäre Logik". Als Ergebnis davon wird heute tatsächlich die gesamte Informationsverarbeitung in binärem Format ausgeführt. Bei den Mikroprozessoren im allgemeinen und beim Z80 im besonderen sind diese Bits in Achtergruppen strukturiert. Eine Gruppe von acht Bit nennt man ein Byte, eine Gruppe von vier Bit nennt man ein Nibble.

Wir wollen jetzt untersuchen, wie Information intern im Binärformat dargestellt wird. Zwei Bereiche müssen dabei innerhalb des Rechners unterschieden werden. Der erste ist das Programm, d. h. eine Folge von Befehlen. Der Zweite sind die Daten, mit denen das Programm arbeitet, und die Zahlen oder alphanumerischen Text enthalten können. Wir werden jetzt folgende drei Darstelungen von Information diskutieren: Programme, Zahlen und alphanumerische Daten.

Darstellung von Programmen

Alle Befehle werden intern durch ein oder mehrere Byte dargestellt. Ein sogenannter "Kurzbefehl" besteht aus einem einzelnen Byte. Ein längerer Befehl besteht aus zwei oder mehr Bytes. Da der Z80 ein Acht-Bit-Mikroprozessor ist, holt er Byte für Byte nacheinander aus dem Speicher. Deshalb kann ein Ein-Byte-Befehl immer schneller ausgeführt werden, als ein Zwei- oder Drei-Byte-Befehl. Wir werden später sehen, daß dies ein entscheidendes Merkmal für den Befehlssatz jedes Mikroprozessors und damit auch des Z80 ist, bei dem besonderer Aufwand getrieben wurde, möglichst viele Ein-Byte-Befehle zur Verfügung zu stellen, um die Leistungsfähigkeit bei der Programmausführung zu verbessern. Die Begrenzung auf eine Länge von acht Bit hat jedoch zu wichtigen Einschränkungen geführt, die später herausgestellt werden sollen. Dies ist ein klassisches Beispiel für den Kompromiß zwischen Geschwindigkeit und Flexibilität bei der Programmierung. Der binäre Code zur Darstellung der Befehle ist vom Hersteller vorgeschrieben. Wie jeder andere Mikroprozessor wird der Z80 mit einem festen Befehlssatz geliefert. Diese Befehle sind vom Hersteller definiert und werden am Ende des Buches mit dem zugehörigen Code aufgelistet. Jedes Programm wird durch eine Folge dieser binären Befehle gebildet. Die Z80-Befehle werden in Kapitel 4 vorgestellt.

Darstellung numerischer Daten

Die Darstellung von Zahlen ist nicht ganz einfach und man muß verschiedene Fälle unterscheiden. Zuerst müssen wir ganze, dann vorzeichenbehaftete, d. h. positive und negative Zahlen, und schließlich Dezimalzahlen darstellen können. Jetzt wollen wir diese Bedingungen und mögliche Lösungen ansprechen.

Ganze Zahlen kann man dual darstellen. Die duale Form ist einfach die Darstellung des Zahlenwertes im Dualsystem. Im Dualsystem repräsentiert das Bit ganz rechts 2 hoch 0. Das nächste Bit links repräsentiert 2 hoch 1, das nächste 2 hoch 2 und das Bit ganz links 2 hoch 7 = 128.

$$b_7b_6b_5b_4b_3b_2b_1b_0$$
 bedeutet $b_72^7 + b_62^6 + b_52^5 + b_42^4 + b_32^3 + b_22^2 + b_12^1 + b_02^0$

Die Potenzen von 2 sind:

$$2^7 = 128, 2^6 = 64, 2^5 = 32, 2^4 = 16, 2^3 = 8, 2^2 = 4, 2^4 = 2, 2^6 = 1$$

Die duale Darstellung entspricht der dezimalen Zahlendarstellung, in der z. B. "123" bedeutet:

$$\begin{array}{r}
 1 \times 100 = 100 \\
 + 2 \times 10 = 20 \\
 + 3 \times 1 = 3
 \end{array}$$
= 123

Beachten Sic, daß $100=10^2$, $10=10^4$ und $1=10^0$.

In diesem "Stellenwertsystem" bedeutet jede Ziffer eine Zehnerpotenz. Im Dualsystem repräsentiert jede Binärziffer oder jedes "Bit" eine Zweierpotenz statt einer Zehnerpotenz im Dezimalsystem.

Beispiel:,, 00001001" dual bedeutet:

dezimal

9

Wir wollen einige weitere Beispiele untersuchen:

"10000001" bedeutet:

dezimal

129

"10000001" bedeutet also dezimal 129.

Wenn Sie die duale Zahlendarstellung untersuchen, dann werden Sie verstehen, warum die Bits von rechts nach links von 0 bis 7 durchnummeriert sind. Bit 0 ist "b_o" und entspricht 2⁰. Bit 1 ist "b₁" und entspricht 2¹ usw.

Dezimal	Dual	Dezimal	Dual
0	00000000	32	00100000
1	00000001	- 33	00100001
2	00000010		
3	00000011		
4	00000100		
5	00000101	63	00111111
6	00000110	64	01000000
7	00000111	65	01000001
8	00001000	•	
9	00001001	•	
10	00001010	127	01111111
11	00001011	128	10000000
12	00001100	129	10000001
13	00001101		
14	00001110		
15	00001111		
16	00010000	•	
17	00010001	•	
•			
•			
		254	11111110
31	00011111	255	11111111

Abb. 1.2: Dezimal-Dual Tabelle

Die dualen Äquivalente der Dezimalzahlen 0 bis 255 sind in Abb. 1-2 aufgelistet.

Aufgabe 1.1: Welchen Wert hat "11111100" in dezimaler Darstellung?

Dezimal nach Dual

Umgekehrt wollen wir jetzt das duale Äquivalent von dezimal "11" berechnen:

 $11: 2 = 5 \text{ Rest } 1 \Rightarrow 1 \text{ (niederwertigstes Bit)}$

 $5:2=2 \text{ Rest } 1 \implies 1$

 $2:2=1 \text{ Rest } 0 \stackrel{.}{\bullet} 0$

1:2=0 Rest 1 1 (höchstwertiges Bit)

Das duale Äquivalent ist 1011 (dazu wird die Spalte ganz rechts von unten nach oben gelesen).

Das duale Äquivalent einer Dezimalzahl ergibt sich, indem man wiederholt durch 2 dividiert, bis man den Quotienten 0 erhält.

Aufgabe 1.2: Was ist 257 dual?

Aufgabe 1.3: Wandle 19 nach dual, dann zurück nach dezimal.

Rechnen mit Dualzahlen

Die Rechenregeln für Dualzahlen sind einfach. Die Regeln für die Addition sind:

$$0 + 0 = 0$$

 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = (1) 0$

Hierbei bedeutet (1) einen Übertrag (carry) von 1 (beachten Sie, daß "10" das duale Äquivalent von dezimal "2" ist). Duale Subtraktion führt man aus durch "Addition des Komplements". Sie wird später erklärt, wenn wir die Darstellung negativer Zahlen lernen.

Beispiel:

Wie im Dezimalsystem addiert man auch Dualzahlen, indem man rechts beginnend spaltenweise addiert.

Addition der rechten Spalte:

$$\frac{10}{(0+1)}$$

$$\frac{10}{(0+1)}$$
(0 + 1 = 1, kein Übertrag)

Addition der nächsten Spalte:

$$\frac{10}{11}$$
 1 (1 + 0 = 1, kein Übertrag)

Aufgabe 1.4: Berechne 5 + 10 dual. Überprüfe, daß das Ergebnis 15 ist.

Einige weitere Beispiele dualer Addition:

Das letzte Beispiel veranschaulicht die Rolle des Übertrags.

Wenn wir die Bits ganz rechts betrachten:

$$1 + 1 = (1) 0$$

Es tritt ein Übertrag von 1 auf, der zu den nächsten Bits addiert werden muß:

Das Endergebnis: 0100

Ein anderes Beispiel:

$$0111$$
 (7)
+ 0011 (3)
= 1010 (10)

In diesem Beispiel tritt wieder ein Übertrag auf, bis hin zur Spalte ganz links.

Aufgabe 1.5: Berechne das Ergebnis von

Paßt das Ergebnis in vier Bit?

Mit acht Bit ist es demnach möglich, die Zahlen "00000000" bis "11111111", d. h. "0" bis "255", direkt darzustellen. Zwei Einschränkungen sollten wir uns dabei sofort verdeutlichen. Erstens stellen wir nur positive Zahlen dar, und zweitens ist die Größe der Zahlen auf 255 bgrenzt, wenn wir nur acht Bit verwenden. Wir wollen jetzt diese beiden Probleme nacheinander ansprechen.

Vorzeichenbehaftete Dualdarstellung

In der vorzeichenbehafteten Dualdarstellung verwendet man das Bit ganz links, um das Vorzeichen der Zahl zu kennzeichnen. Üblicherweise kennzeichnet man eine positive Zahl mit "0", eine negative mit "1". Jetzt bedeutet "1111111" –127, während "011111111" +127 bedeutet. Wir können jetzt positive und negative Zahlen darstellen, der Betrag der Zahlen ist aber auf maximal 127 begrenzt.

Beispiel: $,0000\,0001$ " bedeutet +1 (die führende ,0" ist ,+", gefolgt von $,000\,0001$ " = 1). $,1000\,0001$ " ist -1 (die führende ,1" ist ,-").

Aufgabe 1.6: Was ist -5 in vorzeichenbehafteter Dualdarstellung?

Jetzt wollen wir über das Problem der Größe sprechen: Um größere Zahlen darzustellen, wird es nötig sein, eine größere Anzahl Bits zu verwenden. Wenn wir zum Beispiel sechzehn Bit (zwei Byte) verwenden, können wir Zahlen von -32k bis +32k in dualer Form mit Vorzeichen darstellen (im Computerjargon bedeutet 1k 1024). Bit 15 wird für das Vorzeichen verwendet und die restlichen 15 Bit (Bit 14 bis Bit 0) für den

Betrag der Zahl: 2¹⁵ = 32k. Ist dieser Betrag immer noch zu klein, wird man drei oder mehr Byte verwenden. Wenn wir große ganze Zahlen darstellen wollen, dann ist es nötig, intern eine größere Zahl von Bytes zu verwenden. Deshalb stellen die meisten einfachen BASIC-Versionen und andere Sprachen für ganze Zahlen nur eine beschränkte Genauigkeit zur Verfügung. So können sie für die Zahlen, mit denen sie arbeiten, ein kürzeres internes Format verwenden. Bessere Versionen von BASIC oder von anderen Sprachen rechnen mit zusätzlichen signifikanten Dezimalstellen auf Kosten einer größeren Anzahl Bytes für jede Zahl

Jetzt wollen wir uns um ein anderes Problem kümmern, nämlich das der möglichst effektiven Verarbeitungsgeschwindigkeit. Wir versuchen, eine Addition in der vorzeichenbehafteten Dualdarstellung, die wir dargestellt haben, auszuführen. Wir wollen "-5" und "+7" addieren.

+7 wird dargestellt durch 00000111 -5 wird dargestellt durch 10000101

Die duale Summe ist:

10001100 oder -12.

Dies ist jedoch nicht das richtige Ergebnis. Das richtige Ergebnis wäre +2. Um diese Darstellung richtig zu gebrauchen, muß man spezielle Maßnahmen ergreifen, die vom Vorzeichen abhängen. Dies führt zu größeren Schwierigkeiten und zu geringerer Effektivität. Mit anderen Worten: Die duale Addition vorzeichenbehafteter Zahlen funktioniert nicht richtig. Dies ist natürlich sehr ärgerlich, denn der Computer soll Information ja nicht nur darstellen, sondern auch damit rechnen.

Die Lösung dieses Problems ist die Darstellung als Zweierkomplement, die man statt der vorzeichenbehafteten Dualdarstellung verwendet. Vor Einführung des Zweierkomplements wollen wir erst einen Zwischenschritt betrachen, das Einerkomplement.

Einerkomplement

In der Darstellung als Einerkomplement erscheinen alle positiven ganzen Zahlen in ihrer korrekten dualen Form. Beispielsweise wird "+3" wie üblich als 00000011 dargestellt. Das Komplement "-3" erhält man jedoch dadurch, daß man jedes einzelne Bit invertiert. Jede 0 wird in eine 1 und jede 1 in eine 0 geändert. In unserem Beispiel ist "-3" dargestellt als Einerkomplement 11111100.

Ein anderes Beispiel:

+2 ist 00000010 -2 ist 11111101

Beachten Sie, daß positive Zahlen in dieser Darstellung links mit einer "0", negative links mit einer "1" beginnen.

Aufgabe 1.7: Die Darstellung von +6 ist 00000110. Was ist die Darstellung von -6 als Einerkomplement?

Als Test wollen wir minus 4 und plus 6 addieren:

-4 ist 11111011 +6 ist 00000110

Die Summe ist: (1) 00000001, wobei (1) einen Übertrag anzeigt.

Das richtige Ergebnis wäre "2" oder "00000010".

Ein weiterer Versuch:

-3 ist 11111100

-2 ist 11111101

Die Summe ist: (1)11111001

oder "1" und ein Übertrag. Das richtige Ergebnis wäre "-5". Die Darstellung von "-5" ist 11111010. Es funktionierte also nicht.

In der beschriebenen Form sind positive und negative Zahlen darstellbar. Das Ergebis einer normalen Addition kommt jedoch nicht immer "richtig" heraus. Deshalb werden wir noch eine andere Darstellung verwenden. Sie entsteht aus dem Einerkomplement und wird Zweierkomplement genannt.

Zweierkomplement

Beim Zweierkomplement werden positive Zahlen immer noch wie üblich vorzeichenbehaftet dual dargestellt, genau wie beim Einerkomplement. Der Unterschied liegt in der Darstellung negativer Zahlen. Eine negative Zahl im Zweierkomplement erhält man, indem man zuerst das Einerkomplement berechnet und dann eins addiert. Wir wollen dies an einem Beispiel illustrieren:

+3 ist in vorzeichenbehafteter Dualdarstellung 00000011. Das Einerkomplement davon ist 11111100. Durch Addition von Eins erhält man das Zweierkomplement 11111101.

Wir wollen eine Addition ausprobieren:

Das Ergebnis stimmt.

Jetzt wollen wir die Subtraktion ausprobieren:

$$\begin{array}{ccc} (3) & 00000011 \\ (-5) & +11111011 \end{array}$$

=111111110

Wir prüfen das Ergebnis, indem wir das Zweierkomplement berechnen:

Das Einerkomplement von 11111110 ist 00000001 Addition von 1 + 1

Das Zweierkomplement ist also

00000010 oder +2.

Unser Ergebnis oben, "11111110" stellt "-2" dar. Es ist richtig!

Wir haben jetzt Addition und Subtraktion ausprobiert und die Ergebnisse waren richtig (wobei wir den Übertrag nicht beachtet haben). Es scheint, als ob das Zweierkomplement funktioniert!

Aufgabe 1.8: Was ist die Zweierkomplement-Darstellung von 127?

Aufgabe 1.9: Was ist die Zweierkomplement-Darstellung von -128?

Wir wollen jetzt +4 und -3 addieren (die Subtraktion wird ausgeführt, indem man das Zweierkomplement addiert):

+4 ist 00000100 -3 ist 11111101

Das Ergebnis ist: (1) 00000001

Wenn wir den Übertrag nicht beachten, ist das Ergebnis 00000001, d. h. dezimal "1". Dies ist das richtige Ergebnis. Ohne einen vollständigen mathematischen Beweis zu geben, wollen wir einfach feststellen, daß diese Darstellung funktioniert. In der Darstellung als Zweierkomplement ist es möglich, vorzeichenbehaftete Zahlen zu addieren oder zu subtrahieren, ohne das Vorzeichen zu beachten. Wenn man die gebräuchlichen Regeln der dualen Addition anwendet, kommt das Ergebnis einschließlich des Vorzeichens richtig heraus. Ein Übertrag wird nicht beachtet. Dies ist ein wesentlicher Vorteil. Wäre das nicht der Fall, müßte man das Vorzeichen des Ergebnisses immer korrigieren, was Addition und Subtraktion wesentlich verlangsamen würde.

Der Vollständigkeit halber wollen wir feststellen, daß das Zweierkomplement die gebäuchlichste Darstellung für einfachere Prozessoren wie Mikroprozessoren ist. Für komplexe Prozessoren mag man andere Darstellungen verwenden. Man kann z. B. das Einerkomplement verwenden, benötigt aber spezielle Schaltungen, um das Ergebnis zu "berichtigen".

Von jetzt an werden alle vorzeichenbehafteten ganzen Zahlen stillschweigend als Zweierkomplemente dargestellt werden. Abb. 1.3 enthält eine Tabelle von Zweierkomplementen.

Aufgabe 1.10: Was sind die kleinste und die größte Zahl, die man als Zweierkomplement darstellen kann, wenn man nur ein Byte verwendet?

Aufgabe 1.11: Berechne das Zweierkomplement von 20. Berechne dann das Zweierkomplement des Ergebnisses. Ergibt sich wieder 20?

Das folgende Beispiel dient dazu, die Regeln für das Zweierkomplement verständlich zu machen. Insbesondere kennzeichnet Ceinen möglichen Übertrag. (C ist Bit 8 des Ergebnisses.)

V kennzeichnet einen Überlauf des Zweierkomplements, z. B. wenn das Vorzeichen "versehentlich" verändert wird, weil die Zahlen zu groß sind. Es ist ein wichtiger interner Übertrag von Bit 6 nach Bit 7 (dem Vorzeichenbit). Dies wird weiter unten erklärt.

+	2er-Komplement Kode	_	2er-Komplement Kode
+ 127	0(1(111)	- 128	10000000
+ 126	01111110	- 127	10000001
+ 125	01111101	- 126	01000001
l		- 125	10000011
+ 65	01000001	- 65	10111111
+ 64	01000000	-64	11000000
+ 63	00111111	-63	11000001
+ 33	00100001	- 33	11011111
+ 32	00100000	- 32	11100000
+ 31	00011111	-31	11100001
+ 17	00010001	17	11101111
+ 16	00010000	16	£1110000
+ 15	00001111	15	11110001
+14	00001110	- 14	11110010
+13	00001101	13	11110011
+12	00001100	12	11110100
+11	00001011	- 11	11110101
+ 10	00001010	- 10	11110110
+9	00001001	- 9	11110111
+8	00001000	- 8	11111000
+7	00000111	7	11111001
+6	00000110	-6	11111010
+ 5	00000101	- 5	11111011
+ 4	00000100	- 4	11111100
+ 3	00000011	– 3	11111101
+ 2	00000010	- 2	[11111]0
+1	00000001	- 1	11111111
+0	00000000		

Abb. 1.3: Tabelle der Zweierkomplemente

Wir wollen jetzt die Rolle des Übertrags "C" und des Überlaufs "V" demonstrieren.

Der Übertrag C

Hier ist ein Beispiel für einen Übertrag:

$$\begin{array}{cccc}
 & 10000000 \\
 + (129) & + 10000001 \\
\hline
 & (257) = (1) & 00000001
\end{array}$$

wobei (1) einen Übertrag anzeigt.

Das Ergebnis erfordert ein neuntes Bit (Bit "8", denn das Bit ganz rechts ist Bit "0"). Es ist das Übertragsbit.

Wenn wir annehmen, daß das Übertragsbit das neunte Bit des Ergebnisses ist, erkennen wir das Ergebnis als 100000001 = 257.

Allerdings muß man das Übertragsbit mit Sorgfalt identifizieren und behandeln. Intern im Mikroprozessor sind die Register, in denen das Ergebnis gespeichert wird, allgemein nur acht Bit lang. Wenn das Ergebnis gespeichert wird, bleiben nur die Bits 0 bis 7 erhalten.

Deshalb bedarf ein Übertrag immer einer besonderen Behandlung: er muß mit speziellen Befehlen erkannt und dann bearbeitet werden. Bearbeitung des Übertrags heißt entweder, ihn irgendwo zu speichern (mit einem speziellen Befehl), ihn nicht zu beachten oder zu entscheiden, daß ein Fehler aufgetreten ist (wenn das größte zulässige Ergebnis "11111111" ist).

Überlauf V

Hier ist ein Beispiel für einen Überlauf:

Es wurde ein interner Übertrag von Bit 6 nach Bit 7 erzeugt. Dies nennt man einen Überlauf.

Das Ergebnis ist jetzt "versehentlich" negativ. Diese Situation muß erkannt werden, so daß man sie korrigieren kann.

Wir wollen einen anderen Fall überprüfen:

$$\frac{11111111}{+11111111} \quad (-1) \\
+(-1) \\
=(1) \quad 11111110 \quad =(-2)$$
Übertrag

In diesem Fall trat ein interner Übertrag von Bit 6 nach Bit 7 auf und ebenso von Bit 7 nach Bit 8 (der formelle Übertrag C, den wir im vorhergehenden Abschnitt untersucht haben). Die Rechenregeln für Zweierkomplemente sagen, daß dieser Übertrag nicht beachtet werden soll. Dann ist das Ergebnis richtig.

Dies ist der Fall, weil der Übertrag von Bit 6 nach Bit 7 das Vorzeichenbit nicht verändert hat.

Dies ist dann kein Überlauf. Wenn man mit negativen Zahlen rechnet, ist ein Überlauf nicht ein einfacher Übertrag von Bit 6 nach Bit 7. Wir wollen ein weiteres Beispiel überprüfen:

In diesem Fall gab es keinen internen Übertrag von Bit 6 nach Bit 7, aber es trat ein externer Übertrag auf. Das Ergebnis ist falsch, weil sich Bit 7 geändert hat. Es sollte ein Überlauf angezeigt werden.

Ein Überlauf wird in vier Fällen auftreten:

- 1 bei der Addition großer positiver Zahlen,
- 2 bei der Addition großer negativer Zahlen,
- bei der Subtraktion einer großen positiven Zahl von einer großen negativen Zahl,
- bei der Subtraktion einer großen negativen Zahl von einer großen positiven Zahl.

Wir wollen jetzt unsere Definition des Überlaufs verbessern:

Der Überlaufanzeiger, ein spezielles Bit, das für diesen Zweck reserviert ist und "Flag" genannt wird, wird gesetzt, wenn ein Übertrag von Bit 6 nach Bit 7 auftritt und kein externer Übertrag vorliegt oder wenn kein Übertrag von Bit 6 nach Bit 7 auftritt, aber ein externer Übertrag vorliegt. Dies zeigt an, daß Bit 7, d. h. das Vorzeichenbit des Ergebnisses, fehlerhaft geändert wurde. Für den technisch erfahrenen Leser: Das Überlauf-Flag wird gesetzt durch eine Exklusiv-Oder-Verknüpfung des Übertragseingangs und des Übertragsausgangs von Bit 7 (dem Vorzeichenbit). Praktisch jeder Mikroprozessor verfügt über ein spezielles Überlauf-Flag, um diesen Fall anzuzeigen, der berichtigt werden muß.

Ein Überlauf zeigt an, daß das Ergebnis einer Addition oder Subtraktion mehr Bits zur Darstellung belegt, als in dem üblichen Acht-Bit-Register zur Verfügung stehen.

Der Übertrag und der Überlauf

Das Übertrags- und das Überlaufbit werden "Flags" genannt. Sie stehen in jedem Mikroprozessor zur Verfügung, und im nächsten Kapitel werden wir lernen, wie man sie zur effektiven Programmierung benutzt.

Diese beiden Anzeiger liegen in einem speziellen Register, das man Flag- oder "Statusregister" nennt. Dieses Register enthält noch weitere Anzeiger, deren Funktion im Kapitel 4 erklärt wird.

Beispiele

Wir wollen jetzt das Arbeiten von Übertrags- und Überlaufbit in konkreten Beispielen veranschaulichen. In jedem Beispiel kennzeichnet V den Überlauf und C den Übertrag.

Trat kein Überlauf auf, ist V = 0. Trat ein Überlauf auf, ist V = 1 (entsprechend auch der Übertrag C). Beachten Sie, daß der Übertrag nach den Regeln für das Zweierkomplement nicht beachtet werden soll. (Ein mathematischer Beweis wird hier nicht angegeben.)

Positiv-positiv

(richtig)

Positiv-positiv mit Überlauf

Obiges Ergebnis ist falsch, da ein Überlauf auftrat. (falsch)

Positiv-negativ (Ergebnis positiv)

(richtig)

Positiv-negativ (Ergebnis negativ)

(richtig)

Negativ-negativ

(richtig)

Negativ-negativ mit Überlauf

(falsch)

Hier trat ein "Unterlauf" auf, da zwei große negative Zahlen addiert wurden. Das richtige Ergebnis wäre -189, was zur Darstellung in acht Bit zu groß ist.

Aufgbe 1.12: Vervollständige die folgenden Additionen. Gib das Ergebnis an, den Übertrag C, den Überlauf V und ob das Ergebnis richtig ist.

10111111 ()	11111010 ()
+11000001 ()	+11111001 ()
= V: C:	= V: C: □ richtig □ falsch
00010000 ()	01111110 ()
+01000000 ()	+00101010 ()
= V: C:	= V: C: □richtig □ falsch

Aufgabe 1.13: Kann man ein Beispiel angeben, bei dem bei der Addition einer positiven und einer negativen Zahl ein Überlauf auftritt? Warum?

Festkomma-Darstellung

Jetzt wissen wir, wie man vorzeichenbehaftete ganze Zahlen darstellt. Das Problem der Größe haben wir jedoch noch nicht gelöst. Wollen wir größere ganze Zahlen darstellen, benötigen wir mehrere Bytes. Um arithmetische Operationen effektiv auszuführen, ist es notwendig, eine feste Zahl von Bytes zu verwenden, keine variable. Wenn aber die Zahl der Bytes einmal festgelegt ist, ist auch die maximale Größe der Zahlen, die man darstellen kann, festgelegt.

Aufgabe 1.14: Was sind die größte und die kleinste Zahl, die man in zwei Byte mit Zweierkomplementen darstellen kann?

Das Problem der Größe

Bei der Addition von Zahlen haben wir uns auf acht Bit beschränkt, weil der Prozessor, den wir verwenden wollen, intern jeweils acht Bit gleichzeitig verarbeitet. Dies beschränkt uns jedoch auf Zahlen im Bereich von -128 bis +127. Für viele Anwendungen reicht das natürlich nicht aus. Mehrfache Genauigkeit wird verwendet, um die Stellenzahl, die dargestellt werden kann, zu erhöhen. Dann kann ein Zwei-, Drei- oder

N-Byte-Format verwendet werden. Wir wollen als Beispiel ein "doppeltgenaues" 16-Bit Format untersuchen:

00000000	00000000 00000001	ist "0" ist "1"
01111111	11111111	ist "32767"
11111111	11111111	ist "-1"
11111111	11111110	ist "-2"

Aufgabe 1.15: Was ist die größte negative ganze Zahl, die in dreifachgenauem Format als Zweierkomplement dargestellt werden kann?

Diese Methode bringt jedoch auch Nachteile mit sich. Wenn man beispielsweise zwei Zahlen addiert, muß man sie generell in Stücken zu acht Bit addieren. Dies wird in Kapitel 3 (Grundlegende Techniken der Programmierung) erklärt werden. Das führt zu langsamerer Verarbeitung. Außerdem belegt diese Darstellung für jede Zahl 16 Bit, selbst wenn sie mit nur acht Bit dargestellt werden könnte. Es ist deshalb üblich, 16 oder vielleicht 32 Bit zu verwenden, aber selten mehr.

Wir wollen den folgenden wichtigen Punkt bedenken: Welche Zahl von Bit n für die Darstellung als Zweierkomplement auch immer gewählt wird, sie ist dann festgelegt. Wenn als Ergebnis oder bei irgendeiner Zwischenrechnung eine Zahl herauskommt, die länger als n Bit ist, gehen einige Bit verloren. Das Programm rettet normalerweise die n Bit links (die wichtigsten) und läßt die Bits von niedrigerer Ordnung weg. Dies nennt man Abschneiden des Ergebnisses.

Hier ist ein Beispiel im Dezimalsystem, bei dem eine sechsstellige Darstellung verwendet wird:

Das Ergebnis benötigt sieben Stellen! Die "2" nach dem Komma fällt heraus und das Endergebnis ist 148147. Es wurde abgeschnitten. Solange die Position des Kommas nicht verloren geht, wendet man üblicherweise diese Methode an, um den Zahlenbereich für die Rechnungen auf Kosten der Genauigkeit zu erweitern.

Im Dualsystem ist das Problem das gleiche. Die Einzelheiten der dualen Multiplikation werden in Kapitel 4 gezeigt.

Die Darstellung in festem Format kann einen Genauigkeitsverlust verursachen, aber sie wird für übliche Berechnungen und mathematische Operationen ausreichen.

Leider ist bei der Buchhaltung kein Verlust an Genauigkeit tragbar. Wenn zum Beispiel die Registrierkasse einem Kunden eine große Sum-

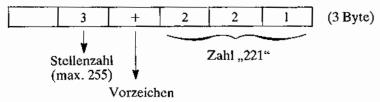
me anzeigt, ist es nicht akzeptabel, wenn er eine fünfstellige Summe bezahlen muß, die auf eine Mark gerundet ist. Wo immer die Genauigkeit des Ergebnisses wesentlich ist, muß man eine andere Darstellung verwenden. Die Lösung, die normalerweise verwendet wird, heißt BCD oder binär kodierte Dezimaldarstellung.

BCD-Darstellung

Das Prinzip der Zahlendarstellung in BCD ist es, jede Dezimalziffer getrennt zu kodieren und so viele Bits zu verwenden, wie zur genauen Darstellung der vollständigen Zahl nötig sind. Um die Ziffern 0 bis 9 zu kodieren, braucht man vier Bit. Mit drei Bit ergeben sich nur acht Kombinationen. man kann damit keine zehn Ziffern kodieren. Vier Bit ergeben 16 Kombinationen und reichen zur Kodierung der Ziffern "0" bis "9" aus. Festzuhalten ist auch, daß sechs der möglichen Kodes in der BCD-Darstellung nicht verwendet werden (siehe Abb. 1.4). Dies führt später beim Addieren und Subtrahieren zu einem Problem, das wir lösen müssen. Weil nur vier Bit benötigt werden, um eine BCD-Ziffer zu kodieren, kann man in jedem Byte zwei BCD-Ziffern unterbringen. Dies nennt man "gepackte" BCD-Darstellung.

KODE	BCD SYMBOL	KODE	BCD SYMBOL
0000 0001 0010 0011 0100 0101 0110	0 1 2 3 4 5	1000 1001 1010 1011 1100 1101	8 9 unused unused unused unused
0111	7	1111	unused

Abb. 1.4: BCD Tabelle

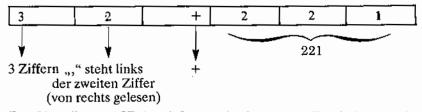

Beispielsweise bedeutet "00000000" in BCD "00". "10011001" ist "99". Eine BCD-Zahl wird folgendermaßen gelesen:

Aufgabe 1.16: Was ist die BCD-Darstellung von "29", von "91"?

Aufgabe 1.17: Ist "10100000" eine zulässige BCD-Darstellung? Warum?

Es werden so viele Bytes verwendet, wie zur Darstellung aller BCD-Ziffern nötig sind. Typischerweise verwendet man ein oder mehrere Nibble am Anfang der Darstellung, um die Gesamtzahl der Nibble, d. h. der verwendeten BCD-Ziffern anzugeben. Ein weiteres Nibble oder Byte wird verwendet, um die Position des Kommas anzugeben. Das Format kann jedoch auf verschiedene Art festgelegt werden.

Hier ist ein Beispiel für eine BCD-Darstellung ganzer Zahlen aus mehreren Bytes:


Dies stellt +221 dar.

Das Vorzeichen kann z. B. durch 0000 für + und 0001 für - festgelegt werden.

Aufgabe 1.18: Stelle "-23123" in der gleichen Konvention dar. Verwende zuerst das BCD-Format wie oben, dann die binäre Form.

Aufgabe 1.19: Stelle "222" und "111" sowie das Ergebnis von "222x111" im BCD-Format dar. (Berechne das Ergebnis von Hand und wandle es in die obige Darstellung um.)

Die BCD-Darstellung kann leicht um Dezimalbrüche erweitert werden. Beispielsweise kann man +2.21 darstellen als

Der Vorteil von BCD ist, daß man absolut genaue Ergebnisse erhält. Sein Nachteil ist, daß viel Speicher benötigt wird, und die Rechenoperationen langsam sind. Dies ist für kaumännische Anwendungen akzeptabel, wird für andere Anwendungen jedoch normalerweise nicht verwendet.

Aufgabe 1.20: Wie viele Bits benötigt man, um "9999" in BCD-Form darzustellen, wie viele in der Darstellung als Zweierkomplement?

Wir haben jetzt die Probleme gelöst, die mit der Darstellung von ganzen Zahlen, von vorzeichenbehafteten ganzen Zahlen und auch von großen ganzen Zahlen zusammenhängen. Wir haben auch schon eine Methode vorgestellt, Dezimalbrüche in BCD-Form darzustellen. Jetzt wollen wir das Problem angehen, wie Dezimalbrüche in einem Format fester Länge dargestellt werden können.

Gleitkomma-Darstellung

Das Grundprinzip ist es, Dezimalbrüche in einem festen Format darzustellen. Um keine Bits zu verschwenden, werden alle Zahlen normalisiert.

"0,000123" verbraucht z. B. auf der linken Seite drei Stellen für Nullen, die keine andere Funktion haben, als die Position des Kommas anzugeben. Die Normalisierung führt zu 0,123 x 10⁻³. "0,123" wird normalisierte Mantisse genannt, "—3" ist der Exponent. Wir haben diese Zahl normalisiert, indem wir alle überflüssigen Nullen auf der linken Seite entfernt und den Exponenten entsprechend angepaßt haben.

Wir wollen ein anderes Beispiel betrachten:

22,1 normalisiert ergibt 0,221 x 102

oder M x 10^E, wobei M die Mantisse und E der Exponent ist.

Man sieht sofort, daß eine normalisierte Dezimalzahl immer durch eine Mantisse kleiner 1 und größer oder gleich 0,1 charakterisiert wird, wenn die Zahl von Null verschieden ist. Mathematisch kann man dies darstellen durch

$$0.1 \le M < 1$$
 oder $10^{-1} < M < 10^{0}$.

In binärer Darstellung ergibt sich entsprechend

$$2^{-1} \le M < 2^0$$
 (oder $0.5 \le M < 1$).

Dabei ist M der Betrag der Mantisse (d. h. ohne das Vorzeichen).

Beispiel: 111,01 normalisiert ergibt 0,11101 x 23.

Die Mantisse ist 0,11101, der Exponent ist 3.

Nachdem wir das Prinzip der Gleitkommadarstellung festgelegt haben, wollen wir uns jetzt die tatsächliche Darstellung anschauen. Eine typische Gleitkommadarstellung ist unten gezeigt.

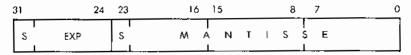


Abb. 1.5: Typische Gleitkommadarstellung

In diesem Beispiel werden insgesamt vier Byte, d. h. 32 Bit benutzt. Das erste Byte links wird verwendet, um den Exponenten darzustellen. Sowohl der Exponent als auch die Mantisse werden als Zweierkomplement dargestellt. Daraus ergibt sich ein maximaler Exponent von 127. "S" in Abb. 1.5 kennzeichnet das Vorzeichenbit.

Zur Darstellung der Mantisse werden drei Byte verwendet. Da das erste Bit des Zweierkomplements das Vorzeichen angibt, bleiben 23 Bit, um den Betrag der Mantisse anzugeben.

Aufgabe 1.21: Wie viele Dezimalstellen kann man in einer Mantisse von 23 Bit darstellen?

Dies ist nur ein Beispiel für eine Gleitkommadarstellung. Es ist auch möglich, nur drei Byte zu verwenden, oder es ist möglich, mehr zu verwenden. Die obige Darstellung mit vier Byte ist aber weit verbreitet und bedeutet einen brauchbaren Kompromiß aus Genauigkeit, Größe der Zahlen, Speicherbedarf und Rechengeschwindigkeit.

Wir haben jetzt die Probleme, die mit der Zahlendarstellung zusammenhängen, untersucht, und wir wissen, wie man ganze Zahlen, vorzeichenbehaftete Zahlen und Dezimalbrüche darstellt. Jetzt wollen wir überlegen, wie alphanumerische Daten intern dargestellt werden können.

Darstellung alphanumerischer Daten

Die Darstellung alphanumerischer Daten, d. h. von Zeichen ist ganz einfach: Alle Zeichen werden in einem acht-Bit-Kode kodiert. In der Computerwelt werden nur zwei Kodes allgemein verwendet, der ASCII-Kode und der EBCDIC-Kode. ASCII heißt "American Standard Code for Information Interchange" und wird bei den Mikroprozessoren universell verwendet. EBCDIC ist eine Variation von ASCII, die von IBM verwendet wird und deshalb für Mikroprozessoren nicht verwendet wird, es sei denn, man will ein IBM-Terminal anschließen.

Wir wollen kurz den ASCII-Kode untersuchen. Wir müssen 26 Großbuchstaben und ebensoviele Kleinbuchstaben des Alphabets kodieren, außerdem zehn Ziffern und etwa 20 weitere Sonderzeichen. Dies kann man leicht mit 7 Bit tun, die 128 mögliche Kodes zulassen (siehe Abb. 1.6). Deshalb werden alle Zeichen mit 7 Bit kodiert. Das achte Bit ist das *Paritätsbit*, wenn es überhaupt verwendet wird. Die Parität ist ein Verfahren, mit dem überprüft wird, daß der Inhalt eines Bytes nicht fälschlicherweise verändert wurde. Die Zahl der Einsen in dem Byte wird gezählt und das achte Bit auf eins gesetzt, wenn das Ergebnis ungerade war. Dadurch wird die Gesamtzahl gerade. Dies nennt man dann gerade Parität. Man kann auch ungerade Parität verwenden, d. h. das achte Bit so setzen, daß die Gesamtzahl von Einsen in dem Byte ungerade wird.

Beispiel: Wir wollen das Paritätsbit zu "0010011" für gerade Parität berechnen. Die Anzahl der Einsen ist drei. Das Paritätsbit muß also eine Eins sein, so daß sich die Gesamtzahl vier, d. h. eine gerade Zahl ergibt. Das Ergebnis ist 10010011, wobei die führende Eins das Paritätsbit ist und 0010011 das Zeichen charakterisiert.

Abb. 1.6 zeigt eine Tabelle der 7-Bit-ASCII-Kodes. Man verwendet sie in der Praxis entweder "wie sie ist", d. h. ohne Parität, indem man eine

Null links anfügt, oder aber mit Parität, indem man das entsprechende Bit links anfügt.

Aufgabe 1.22: Berechne die 8-Bit-Darstellung der Ziffern "0" bis "9" mit gerader Parität. (Dieser Kode wird in den Anwendungsbeispielen in Kapitel 8 verwendet.)

Aufgabe 1.23: Verfahre ebenso mit den Buchstaben "A" bis "F".

Aufgabe 1.24: Gib die Binärdarstellung der folgenden vier Zeichen an. Dabei soll der ASCII-Kode ohne Parität verwendet werden (d. h. das Bit ganz links ist "0").

HEX	MSD	. 0	1	2	3	4	5	6	7
LSD	BITS	000	001	010	011	100	101	110	111
0	0000	NUL	DLE	SPACE	0	@	Ь		ρ
1	0001	SQH	DÇ1	1	1	Α	Q	а	q
2	0010	STX	DC2	**	2	В	R	b	r
3	0011	ETX	DC3	#	3	С	S	c	s
4	0100	EOT	DC4	\$	4	D	Т	d	t
5	0101	ENQ	NAK	%	5	E	U	0	u
6	0110	ACK	SYN	&	6	F	V	f	v
7	0111	BEL	ETB	1	7	G	W	g	w
8	1000	BS	CAN	(8	н	X	h	x
9	1001	HT	EM)	9	- 1	Υ	i	У
Α	1010	LF	SUB	•	:	J	Z	j	z
В	1011	VT	ESC	+	;	K	ſ	k	{
С	1100	FF	FS	,	<	L	١.	- 1	
, D	1101	CR	GS	_	=	М		m	}
E	1110	so	RS		>	N	۸	n	~
F	1111	SI	US	/	?	0	←	0	DEL

Abb. 1.6: ASCII-Umwandlungs-Tabelle

Für spezielle Probleme wie Datenübertragung kann man andere Kodes verwenden, z. B. fehlerkorrigierende Kodes. Dies liegt jedoch außerhalb des Rahmens dieses Buchs.

Wir haben jetzt die gebräuchlichen Darstellungen von Programmen und von Daten innerhalb des Computers untersucht. Jetzt wollen wir die mögliche externe Darstellung betrachten.

Externe Darstellung von Information

Die externe Darstellung bezieht sich auf die Art und Weise, wie Infor-

mation an den Benutzer, d. h. im allgemeinen an den Programmierer übergeben wird. Extern kann Information im wesentlichen in drei Formaten vorliegen: binär, oktal oder hexadezimal und symbolisch.

1. Binär

Es wurde gezeigt, daß Information intern in Bytes gespeichert wird, die aus Sequenzen von acht Bit (Nullen oder Einsen) bestehen. Manchmal ist es günstig, diese interne Information direkt in ihrem binären Format anzuzeigen, und dies nennt man dann binäre Darstellung. Ein einfaches Beispiel sind Leuchtdioden (LEDs), d. h. kleine Lämpchen an der Frontplatte des Computers. Bei einem Acht-Bit-Mikroprozessor sind auf der Frontplatte typischerweise acht LEDs untergebracht, die den Inhalt eines internen Registers anzeigen. (Ein Register wird dazu verwendet, acht Bit Information zu speichern. Es wird in Kapitel 2 näher beschrieben.) Eine LED, die leuchtet, zeigt eine Eins an, eine Null wird durch eine dunkle LED dargestellt. Eine solche Binärdarstellung mag für die detaillierte Fehlersuche in einem komplexen Programm vorteilhaft sein, speziell wenn es Eingaben und Ausgaben enthält, aber sie ist für den Benutzer natürlich unpraktisch. Deshalb betrachtet man in den meisten Fällen Information lieber in symbolischer Form, "9" ist viel leichter zu verstehen als "1001". Es wurden noch weitere Darstellungen entwickelt, die den Kontakt zwischen Mensch und Maschine erleichtern.

Oktal und Hexadezimal

"Oktale" und "hexadezimale" Darstellung fassen jeweils drei bzw. vier Bit in einem Symbol zusammen. Im Oktalsystem wird jede Kombination aus drei binären Bits durch eine Zahl zwischen 0 und 7 dargestellt.

"Oktal" ist ein Format, das drei Bit verwendet, wobei jede Kombination der drei Bit durch ein Symbol zwischen 0 und 7 charakterisiert wird:

dual	oktal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Abb. 1.7: Oktale Symbole

Beispielsweise wird "00 100 100" binär dargestellt als

0 4 4

oder "044" oktal.

Ein anderes Beispiel: 11 111 111 ist

* * * 7 7

oder "377" oktal.

Umgekehrt bedeutet oktal "211":

010 001 001

oder "1001001" binär.

Oktales Format wurde traditionell auf älteren Rechnern verwendet, die mit einer unterschiedlichen Zahl von Bits im Bereich zwischen acht und 64 rechneten. In jüngerer Zeit wurde das Acht-Bit-Format mit dem Übergewicht der Acht-Bit-Mikroprozessoren Standard, und man verwendet eine andere praktischere Darstellung, das hexadezimale Format. In der hexadezimalen Darstellung wird eine Gruppe von vier Bit durch eine Hexadezimalziffer charakterisiert. Hexadezimalziffern stellt man mit den Ziffern 0 bis 9 und den Buchstaben A, B, C, D, E und F dar. Beispielsweise stellt man "0000" durch "0" dar, "0001" durch "1" und "1111" durch den Buchstaben "F" (siehe Abb. 1.8).

Beispiel: 1010 0001 binär wird durch

A l hexadezimal dargestellt.

Aufgabe 1.25: Was ist die Hexadezimaldarstellung von "10101010"?

Aufgabe 1.26: Was ist umgekehrt das binäre Aquivalent zu hexadezimal "FA"?

Aufgabe 1.27: Wie sieht die oktale Darstellung von "01000001" aus?

Der Vorteil des hexadezimalen Formats ist es, daß acht Bit mit nur zwei Ziffern dargestellt werden. Dies kann man sich leichter vorstellen oder merken und schneller in den Computer eintippen als das binäre Äquivalent. Deshalb ist die hexadezimale Form bei den meisten neueren Mikrocomputern die bevorzugte Methode, um Gruppen von vier Bit darzustellen.

Hat die Information, die im Speicher steht, eine spezielle Bedeutung, z. B. Text oder Zahlen, ist die hexadezimale Form natürlich nicht angebracht, um den Sinn dieser Information darzustellen, wenn sie für den Benutzer ausgegeben wird.

Symbolische Darstellung

Symbolische Darstellung bezieht sich auf die externe Darstellung von Information in symbolischer Form. Beispielsweise stellt man Dezimalzah-

DEZIMAL	DUAL	HEX	OKTAL
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	13	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	8	10
9	1001	9	11
10	1010	A	12
11	1011	В	13
12	1100	С	14
13	1101	D	15
14	1110	E	16
15	1111	F	17

Abb. 1.8: Hexadezimalkode

len als Dezimalzahlen dar und nicht als Folge von hexadezimalen Symbolen oder von Bits. Ebenso wird Text als solcher ausgegeben. Natürlich ist die symbolische Darstellung für den Benutzer am bequemsten. Sie wird immer dann verwendet, wenn ein entsprechendes Ausgabegerät wie ein Bildschirm oder ein Drucker zur Verfügung steht. (Ein Bildschirm funktioniert ähnlich wie ein Fernsehgerät und wird zur Anzeige von Text oder von Grafik verwendet.) Für kleinere Systeme wie Einplatinencomputer ist es leider oft zu teuer, solche Anzeigen vorzusehen, und der Benutzer ist auf hexadezimale Kommunikation mit dem Computer beschränkt.

Zusammenfassung der externen Darstellungen

Die symbolische Darstellung von Information ist am günstigsten, weil sie für den Benutzer die natürlichste Form ist. Jedoch wird dazu ein teures Interface in Form einer alphanumerischen Tastatur und eines Drukkers oder eines Bildschirms benötigt. Aus diesem Grund ist sie bei den billigeren Systemen oft nicht vorhanden. Dann verwendet man eine andere Darstellung, und in diesem Fall herrscht das hexadezimale Format vor. Nur in seltenen Fällen, wenn es um die Fehlersuche in Hardware oder Software geht, wird die binäre Darstellung verwendet. Dabei wird der Inhalt von Registern oder Speichern direkt binär angezeigt.

(Die Frage, ob eine direkte binäre Anzeige auf der Frontplatte von Vorteil ist, war immer Gegenstand hitziger Debatten. Darauf soll hier aber nicht eingegangen werden.)

Wir haben jetzt gesehen, wie Information intern und extern dargestellt wird. Wir werden jetzt einen echten Mikroprozessor untersuchen, der diese Information verarbeitet.

Zusätzliche Aufgaben

Aufgabe 1.28: Was ist der Vorteil des Zweierkomplements zur Darstellung von vorzeichenbehafteten Zahlen gegenüber anderen Darstellungen?

Aufgabe 1.29: Wie würden Sie "1024" in direktem dualen Format darstellen, wie in vorzeichenbehaftetem dualen Format und wie als Zweierkomplement?

Aufgabe 1.30: Was ist das V-Bit? Sollte es der Programmierer nach einer Addition oder Subtraktion testen?

Aufgabe 1.31: Berechne das Zweierkomplement von "+16", "+17", "+18", "-16", "-17" und "-18".

Aufgabe 1.32: Gib die hexadezimale Darstellung des folgenden Textes an, der intern im ASCII-Format ohne Parität gespeichert ist: "NACH-RICHT".

2

Z80 Hardware Organisation

Einführung

Um auf einem elementaren Niveau zu programmieren, braucht man die interne Struktur des Prozessors, den man verwendet, nicht im einzelnen zu verstehen. Um jedoch effizient zu programmieren, ist ein solches Verständnis nötig. Das Ziel dieses Kapitels ist es, das grundlegende Hardwarekonzept des Z80 vorzustellen, das man benötigt, um die Arbeitsweise des Z80-Systems zu verstehen. Ein vollständiges Mikrocomputersystem enthält nicht nur den Mikroprozessor (hier den Z80), sondern auch andere Bausteine. Dieses Kapitel präsentiert den eigentlichen Z80, während die anderen Bausteine (hauptsächlich Ein-/Ausgabebausteine) in einem anderen Kapitel (Kapitel 7) erklärt werden.

Wir werden hier die grundlegende Architektur des Mikroprozessorsystems besprechen und dann die interne Organisation des Z80 genauer studieren. Wir werden zum Teil die verschiedenen Register untersuchen. Wir werden dann den Mechanismus der Programmausführung und -kontrolle studieren. Vom Standpunkt der Hardware ist dieses Kapitel nur eine vereinfachte Darstellung. Der Leser, der ein tiefergehendes Verständnis erwerben will, sei auf unser Buch "Chip und System. Einführung in die Mikroprozessoren-Technik" (Ref.-Nr. 3017) verwiesen.

Der Z80 wurde entworfen, um den 8080 zu ersetzen und zusätzliche Eigenschaften anzubieten. In diesem Kapitel wird des öfteren auf den Entwurf des 8080 verwiesen werden.

Systemarchitektur

Die Architektur eines Mikrocomputersystems ist in Abb. 2.1 dargestellt. Der Mikroprozessor (MPU), hier ein Z80, ist auf der linken Seite abgebildet. Er realisiert die Funktionen einer Zentraleinheit (CPU) auf einem einzelnen Chip. Der Mikroprozessor enthält eine Arithmetik-Logik-Einheit (ALU) mit ihren internen Registern und die Steuereinheit (CU), die den Ablauf des Systems steuert. Ihr Arbeiten wird in diesem Kapitel erklärt.

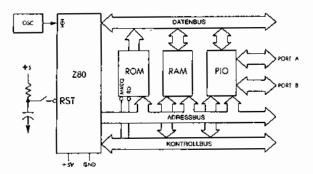


Abb. 2.1: Z80-Standardsystem

Die MPU hat drei Busse: einen 8 Bit breiten bidirektionalen Datenbus, der oben abgebildet ist, einen 16 Bit breiten unidirektionalen Adressbus und einen Kontrollbus, der im unteren Teil der Abbildung dargestellt ist. Wir wollen die Funktion jedes dieser Busse erklären.

Der Datenbus überträgt die Daten, die zwischen verschiedenen Elementen des Systems ausgetauscht werden. Typischerweise überträgt er Daten vom Speicher zur MPU, von der MPU zum Speicher oder von der MPU zu einem Ein-/Ausgabebaustein. (Ein Ein-/Ausgabebaustein hat die Aufgabe, mit einem externen Gerät zu kommunizieren.)

Der Adreßbus überträgt eine Adresse, die von der MPU erzeugt wird und die ein Register auswählt, das an das System angeschlossen ist. Die Adresse legt das Ziel oder die Quelle der Daten fest, die über den Datenbus übertragen werden.

Der Kontrollbus übermittelt die verschiedenen Signale, die zur Synchronisation des Systems gebraucht werden.

Nachdem wir den Sinn der Busse beschrieben haben, wollen wir jetzt die zusätzlichen Bausteine anschließen, die für das vollständige System nötig sind.

Jede MPU benötigt eine genaue zeitliche Referenz, die aus einem Quarz und einem Taktgeber besteht. In den meisten "älteren" Mikroprozessoren ist der Taktgeber außerhalb der MPU und besteht aus einem zusätzlichen Baustein. In den moderneren Mikroprozessoren ist der Taktgeber meistens in die MPU integriert. Der Quarzkristall befindet sich jedoch wegen seiner Größe immer außerhalb der MPU. Quarz und Taktgeber erscheinen in Abb. 2.1 links von der MPU.

Jetzt wollen wir unsere Aufmerksamkeit den anderen Elementen des Systems zuwenden. Wir gehen die Zeichnung von links nach rechts durch und erkennen:

Das ROM (read-only-memory) ist der Lesespeicher und enthält das Programm für das System. Der ROM-Speicher hat den Vorteil, daß sein Inhalt beständig ist und beim Ausschalten des Systems nicht verschwindet.

Das ROM enthält deshalb immer einen *Urlader* (bootstrap) oder einen *Monitor* (dessen Funktion später erklärt wird), die den Start des Systems erlauben. In einer Anlage für Prozeßsteuerung werden nahezu alle Programme in ROMs gespeichert, da sie fast nie geändert werden. In einem solchen Fall muß der Benutzer das System von Fehlern in der Stromversorgung schützen. Das Programm darf nicht flüchtig sein. Es muß in einem ROM stehen.

Bei einem Hobby-Anwender jedoch oder bei der Programmentwicklung (wo der Programmierer sein Programm testet) stehen die meisten Programme im RAM, so daß sie leicht geändert werden können. Später können sie im RAM bleiben, oder in das ROM übernommen werden, wenn das gewünscht wird. Das RAM ist allerdings flüchtig. Sein Inhalt geht verloren, wenn die Spannung abgeschaltet wird.

Das RAM (random-access-memory) ist der Schreib-/Lesepeicher des Systems. Ein System zur Steuerung enthält normalerweise nur wenig RAM (nur für Daten). Ein System zur Programmentwicklung wird andererseits viel RAM enthalten, da es Programme und Software zur Unterstützung der Entwicklung enthält. Vor dem Arbeiten muß der gesamte Inhalt des RAM von einem externen Gerät geladen werden.

Schließlich enthält das System einen oder mehrere Interfacebausteine, so daß es mit der Umwelt in Verbindung treten kann. Der am häufigsten verwendete Interfacebaustein ist die PIO oder der Parallel-Ein-/Ausgabe-Baustein. In der Zeichnung ist eine PIO abgebildet. Wie alle anderen Bausteine des Systems ist die PIO mit allen drei Bussen verbunden und sie stellt wenigstens zwei 8-Bit-Ports zur Kommunikation mit der Außenwelt zur Verfügung. Weitergehende Einzelheiten über die Funktion einer PIO können dem Buch "Chip und System", speziell für das Z80 System dem Kapitel 7 (Ein-/Ausgabebausteine) entnommen werden.

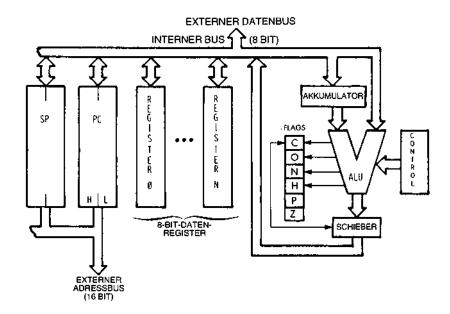
Alle diese Bausteine sind mit allen drei Bussen einschließlich des Kontrollbusses verbunden. Um die Zeichnung nicht zu unübersichtlich zu machen, sind die Verbindungen zwischen Kontrollbus und den verschiedenen Bausteinen nicht eingezeichnet.

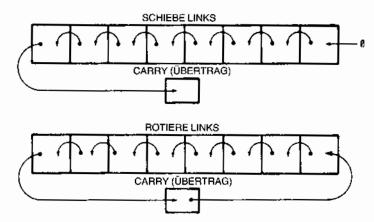
Die Funktionsbausteine, die wir beschrieben haben, brauchen nicht notwendigerweise aus einzelnen hochintegrierten Schaltkreisen zu bestehen. Wir können auch Kombinationsbausteine verwenden, die sowohl eine PIO als auch eine begrenzte Menge von ROM oder RAM enthalten.

Für ein reales System sind noch weitere Bausteine notwendig. Im einzelnen müssen die Busse normalerweise gepuffert werden. Für die Speicherbausteine mag eine Dekodierlogik verwendet werden, und schließlich werden eventuell bestimmte Signale mit Treibern verstärkt. Diese zusätzlichen Schaltungen werden hier nicht besprochen, weil sie für die Programmierung keine Bedeutung haben. Der Leser, der speziell am Aufbau und an der Interfacetechnik interessiert ist, sei auf das Buch "Mikroprozessor Interface Techniken" (Ref.-Nr. 3012) verwiesen.

Im Innern eines Mikroprozessors

Die große Mehrheit der Mikroprozessoren, die heute auf dem Markt ist, besitzt die gleiche Architektur. Diese "Standardarchitektur" wird hier beschrieben. Sie ist in Abb. 2.2 dargestellt. Die Module dieses Standardmikroprozessors werden jetzt von rechts nach links im einzelnen erklärt.




Abb. 2.2: "Standardarchitektur" eines Mikroprozessors

Das Kästchen "Steuerung" auf der rechten Seite stellt die Steuereinheit dar, die das gesamte System synchronisiert. Ihre Aufgabe wird innerhalb dieses Kapitels erklärt werden.

Die ALU führt arithmetische und logische Operationen durch. Ein spezielles Register versorgt einen der Eingänge der ALU, hier den linken Eingang. Er wird Akkumulator genannt. (Es können auch mehrere Akkumulatoren vorhanden sein.) Der Akkumulator kann innerhalb des gleichen Befehls sowohl als Eingabe als auch als Ausgabe (als Quelle und Ziel) angesprochen werden.

Die ALU führt auch Schieben und Rotieren aus.

Ein Schiebebefehl verschiebt den Inhalt eines Bytes um eine oder mehrere Stellen nach links oder nach rechts. Dies ist in Abb. 2.3 abgebildet. Jedes Bit wurde um eine Position nach links verschoben. Die Einzelheiten von Schieben und Rotieren werden im nächsten Kapitel dargestellt.

Achtung: Einige Schiebe- und Rotier-Operationen schließen das Carry nicht ein.

Abb. 2.3: Schieben und Rotieren

Der Schieber kann am Ausgang der ALU liegen, wie in Abb. 2.2 gezeichnet, er kann aber auch am Eingang liegen.

Links von der ALU liegen die Flags oder das Statusregister. Ihre Aufgabe ist es, spezielle Zustände innerhalb des Prozessors zu speichern. Der Inhalt der Flags kann mit speziellen Befehlen getestet werden, oder er kann über den internen Datenbus gelesen werden. Ein bedingter Befehl kann abhängig vom Wert eines dieser Bits die Ausführung eines neuen Programms bewirken.

Die Rolle des Statusbits im Z80 wird später in diesem Kapitel erklärt.

Flags setzen

Die meisten Befehle, die der Mikroprozessor ausführt, beeinflussen ein oder mehrere Flags. Es ist wichtig, immer auf das Schaubild zurückzugreifen, das der Hersteller mitliefert, und das angibt, welche Bits durch die Befehle beeinflußt werden. Dies ist wesentlich, wenn man verstehen will, wie ein Programm abläuft. Für den Z 80 enthält der Anhang ein solches Schaubild.

Die Register

Dazu wollen wir Abb. 2.2 betrachten. Auf der linken Seite des Bildes erscheinen die Register des Mikroprozessors. Man kann die *Universalregister* und die *Adreßregister* unterscheiden.

Die Universalregister

Universalregister werden für die Aufgabe der ALU benötigt, Daten mit hoher Geschwindigkeit zu verarbeiten. Weil die Zahl der Bits, die innerhalb eines Befehls sinnvoll ist, beschränkt ist, ist die Zahl der Register (die man direkt ansprechen kann) normalerweise auf weniger als acht beschränkt. Jedes dieser Register ist ein Satz von acht Flip-Flops, die mit dem internen bidirektionalen Datenbus verbunden sind. Diese acht Bits können gleichzeitig vom oder zum Datenbus übertragen werden. Die Ausführung dieser Register als MOS-Flip-Flops bedeutet die schnellste Art von verfügbarem Speicher, auf ihren Inhalt kann man in einigen zehn Nanosekunden zugreifen.

Interne Register werden normalerweise von 0 bis n durchnumeriert. Die Aufgabe der Register ist glücklicherweise nicht festgelegt: man nennt sie "Universalregister". Sie können beliebige Daten, die das Programm verwendet, enthalten.

Diese Universalregister verwendet man normalerweise, um acht Bit breite Daten zu speichern. Bei einigen Mikroprozessoren besteht die Möglichkeit, zwei dieser Register gleichzeitig zu ändern. Diese nennt man dann Registerpaare. Diese Einrichtung ermöglicht es. 16 Bit breite Größen (Daten oder Adressen) zu speichern.

Die Adreßregister

Die Adreßregister sind 16-Bit-Register, die zum Speichern von Adressen vorgesehen sind. Man nennt sie auch oft Zähler oder Zeiger. Ihre wesentliche Eigenschaft ist es, daß sie mit dem Adreßbus verbunden sind. Die Adreßregister beliefern den Adreßbus. Der Adreßbus erscheint im linken und im unteren Teil von Abb. 2.4.

Der einzige Weg, über den der Inhalt dieser Register geladen werden kann, ist der Datenbus. Zwei Transfers über den Datenbus sind nötig, um 16 Bit zu übertragen. Um zwischen der unteren und der oberen Hälf-

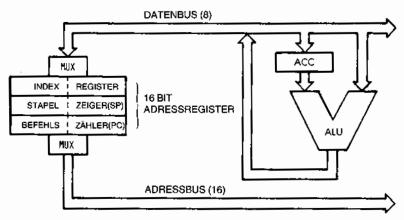


Abb. 2.4; Die 16-Bit-Adreßregister erzeugen den Adreßbus

te jedes Registers zu unterscheiden, werden diese normalerweise mit L (low, untere Hälfte) oder H (high, obere Hälfte) bezeichnet und benennen die Bits 0 bis 7 bzw. die Bits 8 bis 15. Diese Bezeichnung wird immer dann verwendet, wenn man zwischen den beiden Hälften der Register unterscheiden muß. In den meisten Mikroprozessoren gibt es wenigstens zwei Adreßregister. "MUX" in Abb. 2.4 bedeutet Multiplexer.

Befehlszähler (PC)

Der Befehlszähler (program counter) muß in jedem Mikroprozessor vorhanden sein. Er enthält die Adresse des Befehls, der als nächster ausgeführt werden soll. Der Befehlszähler ist für die Ausführung eines Programms unerläßlich und grundsätzlich notwendig. Der Mechanismus der Ausführung eines Programms und der automatischen Abfolge der Befehle wird im nächsten Abschnitt erklärt. Kurz gesagt wird ein Programm normalerweise schrittweise abgearbeitet. Um auf den nächsten Befehl richtig zugreifen zu können, ist es notwendig, ihn vom Speicher in den Mikroprozessor zu bringen. Der Inhalt des Befehlszählers wird auf den Adreßbus gelegt und zum Speicher übertragen. Im Speicher wird der Inhalt der Zelle, die durch diese Adresse angesprochen wird, ausgelesen und das entsprechende Wort zur MPU zurückgeschickt. Dies ist der Befehl. Bei einigen wenigen außergewöhnlichen Mikroprozessoren, wie bei dem aus zwei Bausteinen bestehenden F8, gibt es keinen PC im Mikroprozessor. Dies bedeutet nicht, daß das System keinen Befehlszähler enthält. Aus Gründen der Effektivität wird der PC direkt im Speicherbaustein eingebaut.

Stapelzeiger (SP)

Der Stapel (stack) wurde noch nicht eingeführt und wird im nächsten Abschnitt beschrieben. In den meisten leistungsfähigen Mikroprozessoren für universelle Anwendungen ist der Stapel softwaremäßig, d. h. im Speicher realisiert. Um die Position des obersten Stapelelements im Speicher zu verfolgen, hat ein 16-Bit-Register die Aufgabe des Stapelzeigers. Der Stapelzeiger enthält die Adresse des Stapelelementes im Speicher. Es wird sich zeigen, daß der Stapel für Interrupts und Unterprogramme unerläßlich ist.

Indexregister (IX)

Die indizierte Adressierung ist eine Möglichkeit der Speicheradressierung, über die Mikroprozessoren nicht immer verfügen. Die verschiedenen Techniken der Adressierung werden in Kapitel 5 beschrieben. Die indizierte Adressierung bietet die Möglichkeit, mit einem einzigen Befehl auf Blöcke von Daten zuzugreifen. Ein *Indexregister* enthält normalerweise eine Distanz, die automatisch zu einer Basisadresse addiert wird (oder es enthält eine Basisadresse, die zu einer Distanz addiert wird). Kurz gesagt, verwendet man die indizierte Adressierung, um auf ein beliebiges Wort in einem Block von Daten zuzugreifen.

Der Stapel

Ein Stapel wird formal eine LIFO-Struktur genannt (last-in, first-out). Ein Stapel ist ein Satz von Registern oder Speicherstellen, die dieser Datenstruktur zugeordnet sind. Die wesentliche Eigenschaft des Stapels ist seine chronologische Struktur. Das erste Element, das im Stapel abgelegt wird, steht immer am unteren Ende des Stapels. Das Element, das als letztes abgelegt wurde, liegt am oberen Ende des Stapels. Analog funktioniert ein Stapel Teller auf der Theke eines Restaurants. In der Theke ist ein Loch mit einer Feder am Boden. Teller werden in dem Loch aufgestapelt. Mit dieser Anordnung wird gewährleistet, daß der Teller, der als erster abgelegt wurde (der Älteste), immer ganz unten ist. Der Teller, der als nächster abgelegt wurde, liegt darüber. Dieses Beispiel veranschaulicht noch eine andere Eigenschaft des Stapels. Bei normalem Gebrauch kann man mit nur zwei Befehlen auf den Stapel zugreifen: "Push" und "Pop" (oder "Pull"). Mit dem Befehl Push wird ein Element oben auf den Stapel gelegt (beim Z80 sind es zwei Elemente). Der Befehl Pull entfernt das oberste Element vom Stapel. Bei einem Mikroprozessor wird der Akkumulator auf den Stapel abgelegt. Der Befehl Pop überträgt das oberste Element des Stapels in den Akkumulator. Zur Übertragung anderer spezieller Register, wie des Statusregisters zum Stapel, kann es spezielle Befehle geben. Der Z80 ist in dieser Hinsicht vielseitiger als die meisten anderen Mikroprozessoren.

Der Stapel wird benötigt, wenn man folgende drei Hilfsmittel bei der Programmierung verwenden will: Unterprogramme, Interrupts und kurzzeitige Datenspeicher. Die Aufgabe des Stapels bei der Abarbeitung von Unterprogrammen wird in Kapitel 3 (Grundlegende Techniken der Programmierung) erklärt. Die Funktion des Stapels bei Interrupts wird in Kapitel 6 (Ein-/Ausgabetechniken) beschrieben. Die Rolle des Stapels bei der schnellen Zwischenspeicherung von Daten wird schließlich an speziellen Programmbeispielen gezeigt werden.

An diesem Punkt nehmen wir einfach an, daß ein Stapel in jedem Computersystem nötig ist. Ein Stapel kann auf zwei Arten realisiert werden:

- 1. Im Mikroprozessor selbst steht eine feste Zahl von Registern zur Verfügung. Dies ist ein "Hardwarestapel". Sein Vorteil ist die hohe Geschwindigkeit. Er hat jedoch den Nachteil einer begrenzten Anzahl von Stapelelementen.
- 2. Die meisten universellen Mikroprozessoren verwenden eine andere Methode, den Softwarestapel, um den Stapel nicht auf eine sehr kleine Anzahl von Registern zu beschränken. Dieses Verfahren wurde auch beim Z80 gewählt. Beim Softwareverfahren enthält ein spezielles Register im Mikroprozessor, hier das Register SP, den Stapelzeiger (oder manchmal die Adresse des obersten Elements plus eins). Der Stapel wird dann als Speicherbereich realisiert. Der Stapelzeiger benötigt deshalb 16 Bit, um auf eine beliebige Stelle des Speichers zeigen zu können.

Abb. 2.5: Die beiden Befehle zur Manipulation des Stapels

Der Zyklus der Befehlsausführung

Wir wollen uns jetzt der Abb. 2.6 zuwenden. Die MPU erscheint auf der linken, der Speicher auf der rechten Seite. Der Speicherbaustein kann ein ROM oder ein RAM sein oder ein anderer Baustein, der Speicher enthält. Der Speicher wird verwendet, um Befehle und Daten zu speichern. Hier wollen wir einen Befehl aus dem Speicher holen, um die Rolle des Befehlszählers zu veranschaulichen. Wir wollen annehmen, daß der Inhalt des Befehlszählers gültig ist. Er enthält dann eine 16-Bit-Adresse, die Adresse des nächsten Befehls, die aus dem Speicher geholt werden soll. Jeder Prozessor arbeitet in drei Zyklen:

- 1 Hole den nächsten Befehl (Fetch)
- 2 Dekodiere den Befehl (Decode)
- 3 Führe den Befehl aus (Execute).

Hole Befehl

Wir wollen jetzt den Ablauf verfolgen. Im ersten Zyklus wird der Inhalt des Befehlszählers auf den Adreßbus gelegt und zum Speicher übertragen (über den Adreßbus). Wenn nötig, wird gleichzeitig ein Lesesignal (read) auf den Steuerbus des Systems ausgegeben. Der Speicher empfängt die Adresse. Diese Adresse wird verwendet, um eine Speicherzelle im Speicher auszuwählen. Nachdem der Speicher die Adresse empfangen hat, wird die Adresse von internen Dekodern dekodiert und wählt die Speicherzelle an, die durch die Adresse angegeben wurde. Einige hundert Nanosekunden später gibt der Speicher die acht Bit Daten, die durch die angegebene Adresse ausgewählt wurden, auf den Datenbus aus. Dieses 8-Bit-Wort ist der Befehl, den wir hereinholen wollen. In unserer Abbildung wird dieser Befehl oben auf den Datenbus gelegt.

Wir wollen die Abfolge kurz zusammenfassen: Der Inhalt des Befehlszählers wird auf den Adreßbus ausgegeben. Ein Lesesignal wird erzeugt. Um den Speicherzyklus und vielleicht 300 Nanosekunden verzögert wird der Befehl an der angegebenen Adresse auf den Datenbus gelegt (vor-

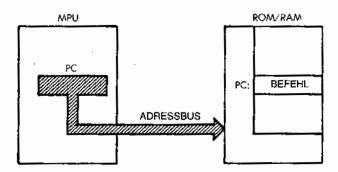


Abb. 2.6: Einen Befehl aus dem Speicher holen

ausgesetzt, es ist ein Ein-Byte-Befehl). Der Mikroprozessor liest dann den Datenbus und legt seinen Inhalt in einem speziellen internen Register, dem IR Register ab. Das IR Register ist das Befehlsregister (instruction register). Es ist acht Bit breit und wird dazu verwendet, den gerade aus dem Speicher geholten Befehl aufzunehmen. Der Fetch-Zyklus ist damit abgeschlossen. Die 8 Bit des Befehls liegen jetzt in einem speziellen Register in der MPU, dem IR Register. Das IR erscheint auf der linken Seite der Abb. 2.7. Es ist für den Programmierer nicht zugänglich.

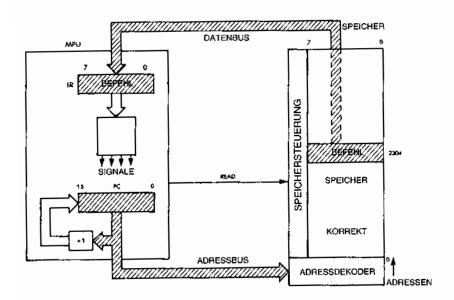


Abb. 2.7: Automatische Abfolge

Dekodierung und Ausführung

Sobald der Befehl im IR steht, dekodiert die Steuereinheit seinen Inhalt und erzeugt die Folge von internen und externen Signalen, die zur Ausführung dieses Befehls nötig sind. Es tritt deshalb eine kurze Verzögerung auf, während der der Befehl dekodiert wird, gefolgt von der Phase der Ausführung, deren Länge von der Art des Befehls abhängt. Einige Befehle laufen vollständig innerhalb der MPU ab, andere Befehle holen Daten vom Speicher oder legen sie dort ab. Deshalb benötigen unterschiedliche Befehle verschieden lange Ausführungszeiten. Diese Zeitdauer wird als Anzahl von (Takt-) Zyklen angegeben. Die Zahl der Zyklen für jeden Befehl ist im Anhang angegeben. Weil verschiedene Taktfrequenzen verwendet werden können, gibt man die Ausführungszeit normalerweise als Anzahl von Taktzyklen an und nicht in Nanosekunden.

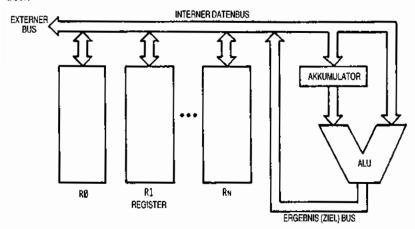


Abb. 2.8: Architektur mit einem einzelnen Bus

Hole nächsten Befehl

Wir haben jetzt unter Verwendung des Befehlszählers beschrieben, wie ein Befehl aus dem Speicher gelesen werden kann. Während der Ausführung eines Programms werden Befehle nacheinander aus dem Speicher geholt. Deshalb muß ein automatischer Mechanismus vorgesehen sein, um die Befehle der Reihe nach hereinzuholen. Diese Aufgabe erfüllt ein einfacher Inkrementierer, der an den Befehlszähler angeschlossen ist. Dies wird in Abb. 2.7 veranschaulicht. Jedes Mal, wenn der Inhalt des Befehlszählers (in der Zeichnung unten) auf den Adreßbus ausgegeben wird, wird sein Inhalt inkrementiert und in den Befehlszähler zurückgeschrieben. Wenn der Befehlszähler beispielsweise den Wert "0" enthielt, wurde die "0" auf den Adreßbus ausgegeben. Dann wird der Inhalt des Befehlszählers inkrementiert und der Wert "1" in den Be-

fehlszähler zurückgeschrieben. Mit dieser Methode wird beim nächsten Mal, wenn der Befehlszähler verwendet wird, der Befehl an der Adresse 1 geholt. Wir haben so einen automatischen Mechanismus zur Befehlsabfolge eingebaut.

Es muß betont werden, daß die obige Beschreibung vereinfacht ist. In Wirklichkeit können einige Befehle zwei oder drei Byte lang sein, so daß aufeinanderfolgende Bytes auf diese Art vom Speicher geholt werden. Der Mechanismus bleibt jedoch identisch. Der Befehlszähler dient genauso dazu, aufeinanderfolgende Bytes eines Befehls zu holen, wie auf-

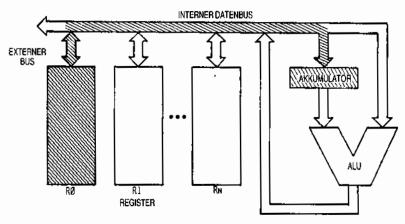


Abb. 2.9: Ausführung einer Addition - R0 in den Akku)

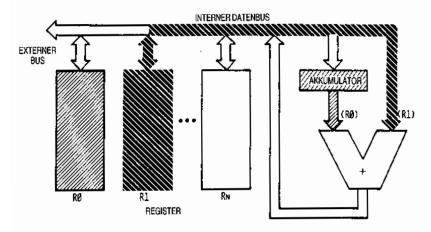


Abb. 2.10: Addition - Zweites Register R1 in die ALU

einanderfolgende Befehle. Der Befehlszähler bildet zusammen mit dem Inkrementierer einen automatischen Mechanismus mit dem Zweck, auf aufeinanderfolgende Speicherstellen zu zeigen.

Wir werden jetzt einen Befehl innerhalb der MPU abarbeiten (siehe Abb. 2.8). Ein typischer Befehl ist beispielsweise: R0 = R0 + R1. Dies heißt: Addiere die Inhalte von R0 und R1 und speichere das Ergebnis in R0. Um diese Operation auszuführen, wird der Inhalt von R0 aus dem Register R0 gelesen, über den Bus zum linken Eingang der ALU übertragen und in dem Pufferregister dort gespeichert. Dann wird R1 angewählt und sein Inhalt wird auf den Bus ausgelesen und zum rechten Eingang der ALU übertragen. Dieser Ablauf ist in den Abb. 2.9 und 2.10 veranschaulicht. Jetzt wird der rechte Eingang der ALU von R1 und der linke Eingang von dem Pufferregister bestimmt, das den vorhergehenden Wert von R0 enthält. Die Operation kann jetzt durchgeführt werden. Die Addition wird von der ALU ausgeführt und das Ergebnis erscheint am Ausgang der ALU, in Abb. 2.11 in der rechten unteren Ecke. Das Ergebnis wird auf den Bus ausgegeben und zum Register R0 zurückübertragen. Das heißt, daß die Eingabesteuerung von R0 freigegeben wird, so daß Daten eingeschrieben werden können. Der Befehl ist jetzt vollständig ausgeführt worden. Das Ergebnis der Addition steht in R0. Man sollte beachten, daß der Inhalt von R1 durch diese Operation nicht verändert wurde. Dies ist ein allgemeines Prinzip: Der Inhalt eines Registers oder eines Schreib-/Lesespeichers wird durch eine Leseoperation nicht verändert.

Das Pufferregister am linken Eingang der ALU war notwendig, um den Inhalt von R0 zwischenzuspeichern, so daß der einzige Bus für eine andere Übertragung verwendet werden kann. Ein Problem bleibt jedoch bestehen.

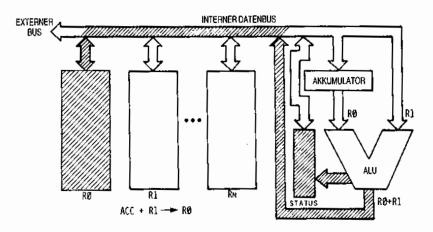


Abb. 2.11: Das Ergebnis wird erzeugt und kommt nach R0.

Der kritische Wettlauf

Der einfache Aufbau, der in Abb. 2.8 gezeigt wurde, funktioniert nicht richtig.

Frage: Wo liegt das zeitlich kritische Problem:

Antwort: Das Problem besteht darin, daß das Ergebnis, das die ALU ausgibt, auf den Bus ausgegeben wird. Es breitet sich nicht nur in der Richtung nach R0 aus, sondern entlang des ganzen Busses. Es wird speziell den rechten Eingang des ALU verändern und damit auch das Er-

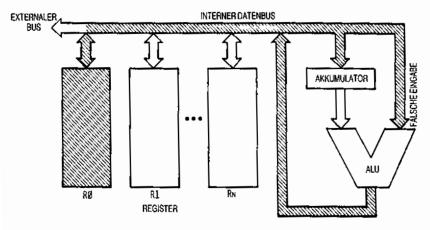


Abb. 2.12: Der kritische Wettlauf

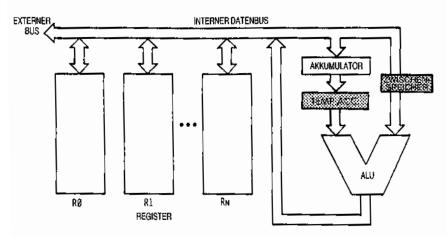


Abb. 2.13: Zwei Puffer werden benötigt

gebnis, das einige Nanosekunden später herauskommt. Das ist der kritische Wettlauf. Der Ausgang der ALU muß von ihrem Eingang getrennt werden (siehe Abb. 2.12).

Es gibt verschiedene Möglichkeiten, die den Eingang der ALU von ihrem Ausgang trennen. Man könnte ein Pufferregister verwenden. Das Pufferregister könnte am Ausgang oder am Eingang der ALU angebracht werden. Üblicherweise bringt man es am Eingang der ALU an. Hier würde es am rechten Eingang angeschlossen. Die Pufferung des Systems reicht jetzt für ein korrektes Arbeiten aus. Später in diesem Kapitel wird gezeigt werden, daß das Register am linken Eingang dieser Abbildung als Akkumulator verwendet wird (vorausgesetzt, man verwendet ein Byte lange Befehle), dann benötigt der Akku ebenfalls einen Puffer, wie in Abb. 2.13 dargestellt.

Interne Organisation des Z80

Die Begriffe, die man braucht, um die internen Elemente des Mikroprozessors zu verstehen, wurden bereits eingeführt. Wir wollen jetzt den Z80 selbst genauer untersuchen und seine Fähigkeiten beschreiben. Die interne Organisation des Z80 ist in Abb. 2.14 dargestellt. Das Diagramm zeigt eine logische Beschreibung des Bausteins. Es mag zusätzliche Verbindungen geben, die aber nicht eingezeichnet sind. Wir wollen das Diagramm von rechts nach links untersuchen.

Auf der rechten Seite des Bildes erkennt man die Arithmetik- und Logikeinheit (ALU) an ihrer charakteristischen "V"-Form. Der Akkumulator, der im vorhergehenden Abschnitt beschrieben wurde, ist mit A im rechten Eingangspfad der ALU bezeichnet. Im vorhergehenden Abschnitt wurde gezeigt, daß der Akkumulator mit einem Pufferregister verbunden werden sollte. Dieses Register ist mit ACT bezeichnet. Auch der linke Eingang der ALU ist mit einem Zwischenspeicher versehen, der TMP genannt wird. Die Arbeitsweise der ALU wird im nächsten Abschnitt klar werden, in dem wir die Ausführung tatsächlicher Befehle beschreiben werden.

Das Flag-Register wird beim Z80 "F" genannt und ist rechts vom Akkumulator eingezeichnet. Der Inhalt des FLAG-Registers wird im wesentlichen von der ALU bestimmt, es wird aber gezeigt werden, daß einzelne Bits auch durch andere Baugruppen oder Ereignisse verändert werden können.

Der Akkumulator und die Flag-Register sind als Doppelregister gezeichnet und entsprechend A, A' und F, F' genannt. Der Grund dafür ist, daß der Z80 intern mit zwei Registersätzen ausgestattet ist: A + F und A' + F'. Man kann jedoch immer nur einen dieser Registersätze verwenden. Mit einem speziellen Befehl können die Inhalte von A und F mit denen von A' und F' vertauscht werden. Um die Erklärungen zu vereinfachen, werden in den meisten der folgenden Diagramme nur A und

F dargestellt. Der Leser sollte aber daran denken, daß er wahlweise auf den Zweitregistersatz A' und F' umschlagen kann.

Die Rolle der einzelnen Flags im Flag-Register wird in Kapitel 3 (Grundlegende Techniken der Programmierung) beschrieben.

In der Mitte der Abbildung ist ein großer Block von Registern eingezeichnet. Im oberen Teil des Registerblocks kann man zwei identische Gruppen erkennen. Jede enthält sechs Register mit den Bezeichnungen B, C, D, E, H, L. Dies sind die "Acht-Bit-Universalregister des Z80. Hinzu kommt ein internes Registerpaar (W, Z), das dem Programmierer jedoch nicht zugänglich ist. Es wird hier nur erwähnt, da dieses Registerpaar für die Ausführung von Befehlen innerhalb des Z80 von Bedeutung ist (vergl. S. 65 ff.).

Zwei Besonderheiten unterscheiden den Z80 von dem Standardmikroprozessor, der am Anfang dieses Kapitels beschrieben wurde. Zum einen besitzt der Z80 zwei Blöcke von Registern, d.h. zwei identische Gruppen von sechs Registern. Es können allerdings zu einem Zeitpunkt immer nur sechs Register verwendet werden. Es gibt jedoch spezielle Befehle, um zwischen den Registerblöcken hin und her zu schalten. Ein Block verhält sich deshalb wie ein interner Speicher, während der andere ein arbeitender Satz von Registern ist. Mögliche Anwendungen dieser speziellen Eigenschaften werden im nächsten Kapitel beschrieben.

Für den Augenblick werden wir annehmen, daß es nur die sechs Universalregister B, C, D, E, H, L gibt, den Zweitregistersatz beachten wir vorläufig nicht, um Verwirrung zu vermeiden.

Das Symbol MUX oberhalb des Registerblocks ist eine Abkürzung für Multiplexer. Die Daten, die vom internen Datenbus hereinkommen, werden durch den Multiplexer zu dem ausgewählten Register geleitet. Zu einem Zeitpunkt kann jedoch nur eines dieser Register mit dem internen Datenbus verbunden werden.

Eine zweite Eigenschaft dieser sechs Register ist es, zusätzlich zu ihrer Eigenschaft, Universalregister zu sein, daß sie eine Verbindung zum Adressbus besitzen. Deshalb sind sie zu Paaren zusammengefaßt. Es können beispielsweise die Inhalte der Register B und C gleichzeitig auf den 16-Bit-Adreßbus ausgegeben werden, der im unteren Teil der Abbildung dargestellt ist. So kann dieser Block von sechs Registern entweder verwendet werden, um 8-Bit-Daten zu speichern, oder als 16-Bit-Zeiger zur Speicheradressierung.

Die dritte Gruppe von Registern, die unterhalb der vorher beschriebenen Register in der Mitte von Abb. 2.14 eingezeichnet ist, enthält vier "reine" Adreßregister. Wie in jedem Mikroprozessor finden wir den Befehlszähler (PC) und den Stapelzeiger (SP). Erinnern Sie sich daran, daß der Befehlszähler die Adresse des Befehls enthält, der als nächster ausgeführt werden soll.

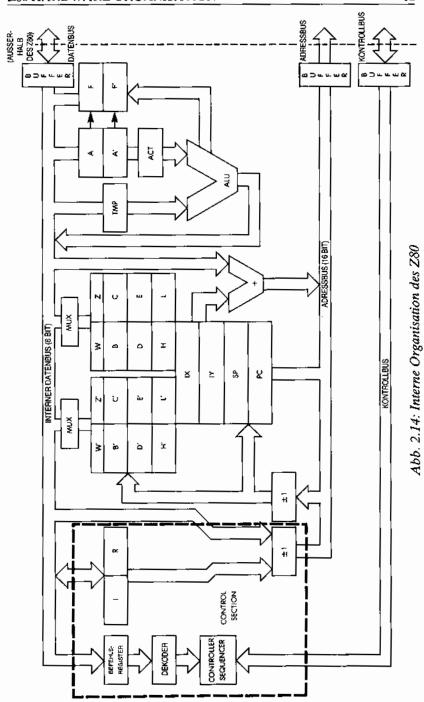
Der Stapelzeiger zeigt auf das oberste Element des Stapels im Speicher. Beim Z80 zeigt er auf den letzten Eintrag in den Stapel. (Bei anderen Mikroprozessoren zeigt er gerade über den letzten Eintrag.) Außerdem wächst der Stapel nach unten, das heißt zu kleineren Adressen hin.

Das bedeutet, daß der Stapelzeiger jedesmal dekrementiert werden muß, wenn ein neues Wort auf den Stapel abgelegt (Push) wurde. Umgekehrt muß der Stapelzeiger inkrementiert werden, wenn ein Wort vom Stapel geholt (Pop) wurde. Beim Z80 erfassen Push und Pop jeweils zwei Worte gleichzeitig, so daß der Stapelzeiger um zwei dekrementiert bzw. inkrementiert wird.

Wenn wir die beiden verbleibenden Register aus dieser Vierergruppe betrachten, finden wir einen neuen Typ von Register, der noch nicht beschrieben wurde: zwei Indexregister, genannt IX (Indexregister X) und IY (Indexregister Y). Diese beiden Register sind mit einem speziellen Addierer verbunden, der als kleine V-förmige ALU rechts von diesen Registern in Abb. 2.14 eingezeichnet ist. Ein Byte, das über den internen Datenbus hereinkommt, kann zum Inhalt von IX oder IY addiert werden. Dieses Byte nennt man Distanz (displacement), wenn man einen indizierten Befehl verwendet. Es gibt spezielle Befehle, die diese Distanz automatisch zum Inhalt von IX oder IY addieren und eine Adresse erzeugen. Diesen Vorgang nennt man Indizieren. Er erlaubt einen vorteilhaften Zugriff auf irgendeinen Block fortlaufender Daten. Diese nützliche Fähigkeit wird in Kapitel 5 bei den Adressierungstechniken beschrieben.

Schließlich erscheint links unterhalb des Registerblocks ein spezielles Kästchen, das mit "+-1" markiert ist. Dies ist ein Inkrementierer/Dekrementierer. Der Inhalt jedes der vier Register, die zu dem zuletzt beschriebenen Block gehören (die reinen Adreßregister), kann immer dann automatisch inkrementiert oder dekrementiert werden, wenn das Register eine Adresse auf den internen Datenbus ausgibt. Dies ist eine wichtige Möglichkeit, wenn man automatische *Programmschleifen* einbauen will, was im nächsten Kapitel beschrieben wird. Wenn man diese Möglichkeit ausnutzt, kann man bequem auf aufeinanderfolgende Speicherzellen zugreifen.

Jetzt wollen wir uns dem linken Teil der Abbildung zuwenden. Ein einzelnes Registerpaar ist auf der linken Seite eingezeichnet: I und R. Das I-Register nennt man *Interruptregister*. Seine Funktion wird im Abschnitt über Interrupts in Kapitel 6 (Ein-/Ausgabetechniken) beschrieben. Es wird nur in einer speziellen Betriebsart verwendet, wo ein indirekter Unterprogrammaufruf als Antwort auf einen Interrupt erzeugt wird. Das I-Register speichert die obere Hälfte der indirekten Adresse. Die untere Hälfte wird von dem Baustein, der den Interrupt auslöst, geliefert.


Das R-Register ist das Refreshregister. Es dient dazu, dynamische Speicher automatisch aufzufrischen. Ein solches Register lag bisher üblicher-

weise außerhalb des Mikroprozessors, weil es zu dem dynamischen Speicher gehört. Es ist eine vorteilhafte Einrichtung, die den Aufwand an zusätzlicher Hardware für einige Typen dynamischer Speicher verkleinert. Es wird hier nicht zum Zweck der Programmierung verwendet werden, da es im wesentlichen eine Hardwareeinrichtung ist (siehe das Buch "Mikroprozessor Interface Techniken" für eine detaillierte Beschreibung des Auffrischens von Speichern). Es kann jedoch beispielsweise als Softwareuhr verwendet werden.

Wir wollen uns jetzt dem Teil der Zeichnung ganz links zuwenden. Hier ist das Steuerwerk des Mikroprozessors untergebracht. Von oben nach unten finden wir zuerst das Befehlsregister IR, das den Befehl enthält, der ausgeführt werden soll. Das Register IR ist völlig verschieden von dem Registerpaar "I, R", das wir oben beschrieben haben. Der Befehl wird vom Speicher auf den Datenbus ausgegeben, über den internen Datenbus übertragen und schließlich im Befehlsregister abgelegt. Unter dem Befehlsregister erscheint der Dekoder, der Signale zum Controller/Sequencer schickt und die Ausführung des Befehls innerhalb und außerhalb des Mikroprozessors veranlaßt. Das Steuerwerk erzeugt und verwaltet den Kontrollbus, der im unteren Teil der Zeichnung erscheint.

Die drei Busse, die vom System verwaltet oder erzeugt werden, d. h. Datenbus, Adreßbus und Kontrollbus, setzen sich über die Anschlüsse des Mikroprozessors nach außen fort. Die Verbindungen nach außen sind in der Abbildung ganz rechts eingezeichnet. Die inneren Busse sind von den äußeren durch Puffer getrennt, wie in Abb. 2.14 dargestellt.

Jetzt sind alle logischen Elemente des Z80 erklärt worden. Es ist nicht notwendig, die Arbeitsweise des Z80 im einzelnen zu verstehen, wenn man anfangen will, Programme zu schreiben. Für den Programmierer jedoch, der effizienten Kode schreiben will, hängen Geschwindigkeit und Länge eines Programms von der richtigen Wahl der Register ebenso ab, wie von der richtigen Anwendung der Techniken. Um hier richtig zu entscheiden, muß man verstehen, wie Befehle innerhalb des Mikroprozessors abgearbeitet werden. Wir werden deshalb hier die Ausführung typischer Befehle im Innern des Z80 untersuchen und die Aufgaben und die Verwendung der internen Register und Busse zeigen.

Befehlsformate

Die Befehle des Z80 sind in Kapitel 4 aufgelistet. Z80-Befehle können ein, zwei, drei oder vier Bytes lang sein. Ein Befehl legt fest, welche Operation der Mikroprozessor ausführen soll. Vereinfacht gesagt, kann man jeden Befehl darstellen als einen Operationskode (Opcode), auf den wahlweise ein Operanden- oder Adreßfeld folgen kann. Der Opcode legt fest, welche Operation ausgeführt werden soll. Wenn man die Computersprache streng auslegt, dann gehören zum Operationskode nur die Bits, die festlegen, welche Operation durchgeführt wird, aber nicht die Zeiger auf Register, die eventuell dazu notwendig sind. Bei den Mikroprozessoren versteht man unter dem Opcode aber nicht nur diesen Teil, sondern auch eventuelle Zeiger auf Register, die darin enthalten sein können. Dieser "allgemeinere Opcode" soll aus Gründen der Leistungsfähigkeit in ein Acht-Bit-Wort passen (dies ist der begrenzende Faktor für die Zahl der Befehle, die in einem Mikroprozessor verfügbar sind).

Der 8080 verwendet Befehle, die ein, zwei oder drei Bytes lang sein können (siehe Abb. 2.15). Der Z80 ist jedoch mit zusätzlichen indizierten Befehlen ausgestattet, die ein zusätzliches Byte belegen. Beim Z80 sind die Opcodes im allgemeinen ein Byte lang, mit Ausnahme spezieller Befehle, die einen Zwei-Byte-Opcode belegen.

Einige Befehle verlangen, daß dem Opcode ein Datenbyte folgt. In diesem Fall ist der Befehl ein Zwei-Byte-Befehl, dessen zweites Byte aus Daten besteht (außer bei indizierten Befehlen, die ein weiteres Byte belegen).

In anderen Fällen mag der Befehl eine Adresse benötigen. Eine Adresse nimmt 16 Bit ein und damit zwei Bytes. In diesem Fall ist der Befehl eine Drei-Byte- oder ein Vier-Byte-Befehl.

Für jedes Byte des Befehls muß die Steuereinheit eine Lescoperation ausführen, die vier Taktzyklen in Anspruch nimmt. Je kürzer der Befehl ist, um so schneller wird er ausgeführt.

Ein Ein-Byte-Befehl

Ein-Wort-Befehle sind im Prinzip am schnellsten und werden deshalb von den Programmierern bevorzugt. Ein typischer solcher Befehl beim Z80 ist:

Dieser Befehl heißt: Übertrage den Inhalt des Registers r' nach r. Dies ist eine typische "Register-Register"-Operation. Jeder Mikroprozessor muß über solche Befehle verfügen, die es dem Programmierer erlauben, Information aus einem beliebigen Register der Maschine in ein anderes zu übertragen. Befehle, die sich auf spezielle Register beziehen, wie auf den Akkumulator oder auf andere Spezialregister, können einen speziellen Opcode haben.

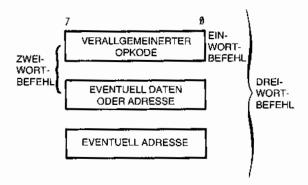


Abb. 2.15: Typisches Befehlsformat

Nach Ausführung des obigen Befehls ist der Inhalt von r gleich dem Inhalt von r'. Der Inhalt von r' wurde durch die Lescoperation nicht verändert.

Jeder Befehl muß intern in binärem Format dargestellt werden. Die obige Darstellung "LD r,r" ist symbolisch oder *mnemotechnisch*. Sie wird als Darstellung des Befehls in *Assemblersprache* bezeichnet und bedeutet einfach eine vorteilhafte symbolische Form für den Binärkode des Befehls. Der Binärkode für diesen Befehl innerhalb des Speichers ist: 0 1 D D D S S S (Bit 0 bis 7).

Diese Darstellung ist immer noch teilweise symbolisch zu verstehen. Jeder der Buchstaben S und D steht für ein binäres Bit. Die drei Ds "D D D" stehen für die drei Bits, die das Zielregister bezeichnen. Mit drei Bit kann man eines von acht möglichen Registern auswählen. Die Kodes für diese Register stehen in Abb. 2.16. Der Kode für das Register B ist beispielsweise "0 0 0", der Kode für das Register C ist "0 0 1" usw.

Ebenso stellt "S S S" die drei Bit dar, die auf das Quellregister zeigen. Vereinbarungsgemäß ist r' die Quelle und r das Ziel. Die einzelnen Bits in der Binärdarstellung sind nicht so plaziert, wie es für den Programmierer am bequemsten ist, sondern so, wie es für die Steuereinheit des Mikroprozessors, die den Befehl dekodieren und ausführen muß, am geeignetsten ist. Dagegen ist die Darstellung in Assemblersprache für den Programmierer gemacht. Man könnte vermuten, daß LD r,r' heißen sollte: Übertrage den Inhalt von r nach r'. Jedoch wurde die Konvention so festgelegt, daß sie in diesem Fall mit der Binärdarstellung übereinstimmt. Diese Festlegung ist natürlich rein willkürlich.

Aufgabe 2.1: Schreibe den Binärkode auf, der den Inhalt von Register B transferiert. Entnimm die Kodes für die Register B und C der Abb. 2.16. Ein anderes einfaches Beispiel für einen Ein-Wort-Befehl ist:

ADD A,r

Dieser Befehl bewirkt die Addition eines bestimmten Registers (r) in

den Akkumulator (A). Diese Operation kann man symbolisch als A = A + r schreiben. In Kapitel 4 kann man überprüfen, daß die Binärdarstellung dieses Befehls

10000555

ist, wobei S S S das Register festlegt, das zum Akkumulator addiert werden soll. Für den Registerkode gilt ebenfalls Abb. 2.16.

Aufgabe 2.2: Wie sieht der Binärcode des Befehls aus, der den Inhalt des Registers zum Akkumulator addiert?

KODE	REGISTER
000	8
001	C
010	D
011	٤
100	H
101	L
110	- (SPEICHER)
111	A

Abb. 2.16: Die Kodes der Register

Ein Zwei-Wort-Befehl

ADD A,n

Dieser einfache Zwei-Wort-Befehl addiert den Inhalt des zweiten Bytes zum Akkumulator. Den Inhalt des zweiten Befehlswortes nennt man ein "Literal". Dies sind Daten, die als acht Bit ohne spezielle Bedeutung behandelt werden. Sie könnten ein Zeichen oder numerische Daten darstellen. Für die Operation ist dies bedeutungslos. Der Befehlskode lautet:

1 1 0 0 0 1 1 0, gefolgt von dem Byte "n".

Man nennt dies eine unmittelbare Operation. "Unmittelbar" bedeutet in den meisten Programmiersprachen, daß das nächste Wort oder die nächsten Worte innerhalb des Befehls Daten sind, die nicht (wie ein Opcode) interpretiert werden sollen. Das heißt, das nächste oder die beiden nächsten Worte werden als Literals betrachtet.

Das Steuerwerk erkennt, aus wievielen Worten jeder Befehl besteht. Es wird deshalb bei jedem Befehl die richtige Anzahl von Worten holen und ausführen. Je länger jedoch die maximale Wortlänge eines Befehls ist, um so komplexer ist die Dekodierung für das Steuerwerk.

Ein Drei-Wort-Befehl LD a,(nn) Dieser Befehl belegt drei Worte. Er bedeutet: Lade den Akkumulator mit dem Inhalt der Speicherzelle, deren Adresse in den nächsten beiden Bytes des Befehls steht. Da eine Adresse 16 Bit lang ist, nimmt sie zwei Worte ein. Dieser Befehl wird binär dargestellt durch:

0 0 1 1 1 0 1 0:			
Untere Adresse:			
Obere Adresse:			

Acht Bit für den Operationskode Acht Bit für den unteren Teil der Adresse Acht Bit für den oberen Teil der Adresse

Ausführung von Befehlen innerhalb des Z80

Wir haben gesehen, daß alle Befehle in drei Phasen ausgeführt werden: Holen. Dekodieren, Ausführen. Wir müssen jetzt einige Definitionen einführen. Jede dieser Phasen benötigt mehrere Taktzyklen. Der Z80 führt jede Phase in einem oder mehreren logischen Zyklen aus, die "Maschinenzyklus" genannt werden. Der kürzeste Maschinenzyklus belegt drei Taktzyklen.

Ein Speicherzugriff beansprucht vier Taktzyklen. Da jeder Befehl zunächst aus dem Speicher geholt werden muß, ist der schnellste Befehl vier Taktzyklen lang. Die meisten Befehle dauern länger.

Jeder Maschinenzyklus wird mit M1, M2 uw. bezeichnet und belegt drei oder mehr Taktzyklen oder "Zustände", die man T1, T2 usw. nennt.

Die Holphase

Die Holphase eines Befehls wird während der ersten drei Zustände des Maschinenzyklus M1 ausgeführt: die Taktzyklen heißen T1, T2 und T3. Diese drei Zustände sind bei allen Befehlen des Mikroprozessors gleich, da alle Befehle vor der Ausführung gelesen werden müssen. Der Holmechanismus funktioniert folgendermaßen:

T1: Ausgabe von PC

Die Aufgabe des ersten Schrittes ist es, die Adresse des nächsten Befehls an den Speicher auszugeben. Diese Adresse steht im Befehlszähler (PC). Als erster Schritt beim Hereinholen jedes Befehls wird der Inhalt von PC auf den Adreßbus ausgegeben (siehe Abb. 2.17). Jetzt wird dem Speicher eine Adresse übergeben, und die Adreßdekoder des Speichers dekodieren diese Adresse, um die entsprechende Speicherstelle auszuwählen. Es vergehen mehrere hundert Nanosekunden (eine Nanosekunde ist 10-9 Sekunden) bis der Inhalt der ausgewählten Speicherstelle an den Speicherausgängen, die mit dem Datenbus verbunden sind, zur Verfügung steht. Üblicherweise wird ein Computer so entworfen, daß die Speicherlesezeit für eine Operation innerhalb des Mikroprozessors genutzt wird. Diese Operation ist das Inkrementieren des Befehlszählers:

Während der Speicherinhalt ausgelesen wird, wird der Inhalt von PC um 1 inkrementiert (siehe Abb. 2.18). Am Ende von Zustand T2 steht der Speicherinhalt zur Verfügung und kann in den Mikroprozessor übertragen werden:

T3: Befehl ins IR

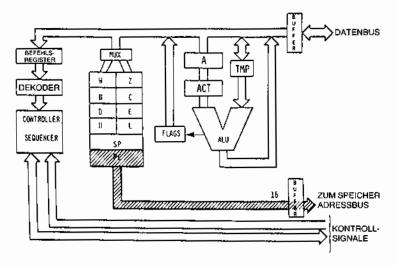


Abb. 2.17: Instruction Fetch - (PC) wird zum Speicher geschickt.

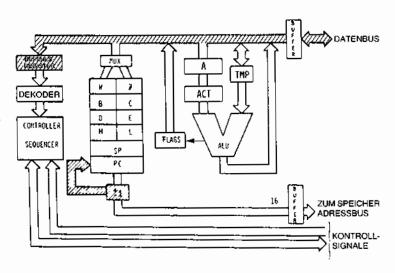


Abb. 2.18: PC wird inkrementiert

Die Dekodier- und die Ausführungsphase

Während des Zustand T3 liegt der Befehl, der aus dem Speicher ausgelesen wurde, auf dem Datenbus und wird in das Befehlsregister des Z80 übertragen, wo er dekodiert wird.

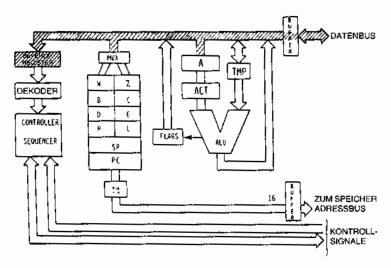


Abb. 2.19: Der Befehl kommt aus dem Speicher ins IR

Es sollte darauf hingewiesen werden, daß der Zustand T4 von M1 immer benötigt wird. Sobald der Befehl während T3 ins IR abgelegt wurde, ist es nötig, ihn zu dekodieren und auszuführen. Dies beansprucht wenigstens einen weiteren Taktzyklus, T4.

Einige wenige Befehle brauchen einen zusätzlichen Zustand während M1 (Zyklus T5). Er wird bei den meisten Befehlen vom Prozessor übersprungen. Wenn die Ausführung eines Befehls außer M1 weitere Maschinenzyklen beansprucht, d. h. M1, M2 oder mehr Zyklen, findet ein direkter Übergang von T4 in M1 nach T1 in M2 statt. Wir wollen ein Beispiel untersuchen. Die genaue interne Abfolge für jedes Beispiel ist in der Tabelle Abb. 2.27 gezeigt. Da diese Tabellen für den Z80 nicht veröffentlicht wurden, werden statt dessen die Tabellen vom 8080 verwendet. Sie liefern ein oberflächliches Verständnis für die Befehlsausführung.

LDD,C

Dies entspricht dem Befehl MOV r1,r2 beim 8080. Beachten Sie Zeile 1 von Abb. 2.27. Auch in diesem Beispiel wurde als Zielregister das Register D gewählt. Der Transfer ist in Abb. 2.20 abgebildet.

Dieser Befehl wurde im vorhergehenden Abschnitt beschrieben. Er überträgt den Inhalt von Register C, mit "C" bezeichnet, ins Register D. Die ersten drei Zustände vom Zyklus M1 werden verwendet, um den Befehl aus dem Speicher zu holen. Am Ende von T3 steht der Befehl in IR, dem Befehlsregister, von wo aus er dekodiert werden kann (siehe Abb. 2.19).

Während T4: (S S S) ▶ TMP

Der Inhalt von C wird ins TMP abgelegt (siehe Abb. 2.21).

Während T5: (TMP) ▶ DDD

Der Inhalt von TMP wird nach D übertragen. Dies ist in Abb. 2.22 gezeigt.

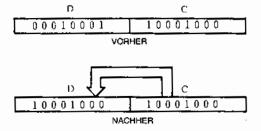


Abb. 2.20: Übertragung von C nach D

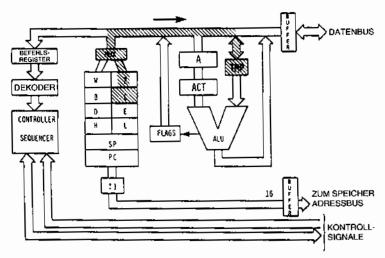


Abb. 2.21: Der Inhalt von C wird ins TMP übertragen

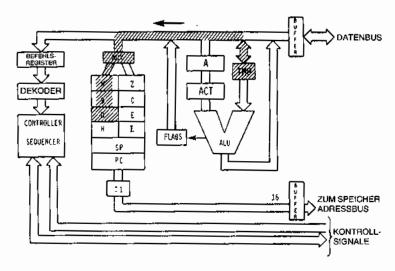


Abb. 2.22: Der Inhalt von TMP wird nach D übertragen

Der Befehl ist jetzt vollständig ausgeführt. Der Inhalt des Registers C wurde in das angegebene Zielregister D übertragen. Damit wird die Ausführung des Befehls beendet. Die anderen Maschinenzyklen M2, M3, M4 und M5 sind nicht notwendig und die Ausführung endet mit M1. Die Ausführungszeit dieses Befehls kann leicht berechnet werden. Die Dauer jedes Zustands beim Standard-Z80 ist die Taktdauer: 500 ns. Die Ausführungszeit dieses Befehls ist die Dauer von fünf Zuständen oder 5 x 500 ns = 2,5 μ s.

Frage: Warum benötigt dieser Befehl zwei Zustände, T4 und T5, um den Inhalt von C nach D zu übertragen, und nicht nur einen Zustand? Er überträgt den Inhalt von C nach TMP und anschließend den Inhalt von TMP nach D. Wäre es nicht einfacher, den Inhalt von C innerhalb eines Zustands nach D zu übertragen?

Antwort: Wegen der Ausführung der internen Register ist dies nicht möglich. In Wirklichkeit sind alle internen Register Teil eines einzigen RAM, eines Schreib-/Lesespeichers innerhalb des Mikroprozessorbausteins. Zu einem Zeitpunkt kann nur ein Wort innerhalb des RAM adressiert oder ausgewählt werden (ein einziger Eingang). Aus diesem Grund ist es nicht möglich, zwei verschiedene Speicherplätze eines RAM gleichzeitig zu lesen und zu schreiben. Es sind daher zwei RAM-Zyklen nötig. Weiterhin ist es notwendig, die Daten zuerst aus dem Register-RAM zu lesen und in einem Zwischenspeicher, dem Register TMP, abzulegen, und sie dann in das endgültige Zielregister, hier das Register D, zurückzuschreiben. Dies ist eine Unzulänglichkeit des Konzepts. Allerdings ist diese Einschränkung bei nahezu allen monolithi-

schen Mikroprozessoren üblich. Um dieses Problem zu lösen, wäre ein RAM mit zwei Zugängen nötig. Dies ist keine prinzipielle Einschränkung bei Mikroprozessoren, und sie besteht bei Bit-Slice-Bausteinen normalerweise nicht. Sie ist ein Ergebnis der Bemühungen um die Pakkungsdichte auf dem Chip und mag in Zukunft behoben werden.

Wichtige Aufgabe:

An diesem Punkt sei es dem Leser dringend empfohlen, den Ablauf dieses einfachen Befehls selbst nochmals durchzusehen, bevor wir zu komplizierteren Befehlen fortschreiten. Gehen Sie zu diesem Zweck zu Abb. 2.14 zurück. Stellen Sie einige kleine "Symbole" wie Streichhölzer, Büroklammern usw. zusammen. Bewegen Sie dann die Symbole auf Abb. 2.14, um den Fluß der Daten aus den Registern in den Bus zu simulieren. Legen Sie beispielsweise ein Symbol auf PC. T1 bewegt das Symbol aus PC über den Adreßbus zum Speicher. Fahren Sie in diesem Sinne mit der simulierten Befehlsausführung fort, bis Ihnen der Transfer über die Busse und zwischen den Registern vertraut ist. Dann sollten Sie in der Lage sein, fortzufahren.

Jetzt werden zunehmend komplexere Befehlsabläufe studiert:

ADD A,r

Dieser Befehl heißt: Addiere den Inhalt von Register r (durch den Binärkode S S S festgelegt) zum Akkumulator (A) und lege das Ergebnis im Akkumulator ab. Dies ist ein *impliziter* Befehl. Er wird implizit genannt, weil er sich nicht ausdrücklich auf ein zweites Register bezieht. Der Befehl referiert nur das Register r explizit. Er setzt stillschweigend voraus, daß das andere Register, das in den Befehl einbezogen ist, der Akkumulator ist.

Wenn der Akkumulator in so einem impliziten Befehl verwendet wird, wird er sowohl als Quelle als auch als Ziel verwendet. Als das Ergebnis der Addition werden Daten im Akkumulator abgelegt. Der Vorteil eines solchen impliziten Befehls ist es, daß der gesamte Opcode nur acht Bit lang ist. Er verlangt nur ein drei Bit langes Registerfeld zur Festlegung von r. Dies ist eine schnelle Art, eine Addition durchzuführen.

In dem System gibt es weitere implizite Befehle, die sich auf andere spezielle Register beziehen. Kompliziertere Beispiele solcher impliziter Befehle sind z. B. die Befehle PUSH und POP, die Information zwischen dem obersten Element des Stapels und dem Akkumulator übertragen und gleichzeitig den Stapelzeiger (SP) modifizieren, indem sie ihn dekrementieren bzw. inkrementieren. Sie verändern implizit das Register Sp.

Die Ausführung des Befehls ADD A,r wird jetzt im Detail untersucht. Dieser Befehl nimmt zwei Maschinenzyklen M1 und M2 in Anspruch. Wie üblich wird der Befehl während der drei ersten Zustände von M1 aus dem Speicher geholt und in IR abgelegt. Am Beginn von T4 ist er de-

kodiert und kann ausgeführt werden. Nun wird angenommen, daß das Register B zum Akkumulator addiert wird. Der Befehlskode ist dann: 1 0 0 0 0 0 0 (der Kode für das Register B ist 0 0 0). Der entsprechende 8080-Befehl heißt ADD r.

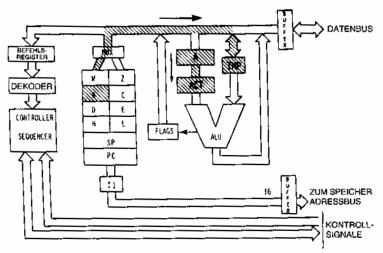


Abb. 2.23: Zwei Transfers werden gleichzeitig ausgeführt

Zwei Transfers werden gleichzeitig ausgeführt. Erstens wird der Inhalt des spezifizierten Quellregisters (hier B) nach TMP übertragen, d. h. zum rechten Eingang der ALU (siehe Abb. 2.23). Gleichzeitig wird der Inhalt des Akkumulators zum Akkumulator-Zwischenspeicher (ACT) übertragen. Wenn Sie Abb. 2.23 untersuchen, können Sie sich davon überzeugen, daß diese Transfers gleichzeitig stattfinden können. Sie verwenden getrennte Wege innerhalb des Systems. Der Transfer von B nach TMP benutzt den internen Datenbus. Der Transfer von A nach ACT verwendet einen kurzen internen Kanal, der von diesem Datenbus unabhängig ist. Um Zeit zu sparen, werden beide Transfers gleichzeitig ausgeführt. An diesem Punkt sind sowohl der rechte als auch der linke Eingang der ALU richtig geladen. Der linke Eingang ist vom Inhalt des Akkumulators bestimmt, der rechte Eingang vom Inhalt des Registers B. Wir sind nun zur Durchführung der Addition bereit. Normalerweise würden wir erwarten, daß die Addition während des Zustands T5 von M1 stattfindet. Dieser Zustand wird jedoch einfach nicht benutzt! Wir beginnen den Maschinenzyklus M2. Während des Zustands T1 passiert nichts! Erst im Zustand T2 von M2 wird die Addition ausgeführt (beachte ADD r in Abb. 2.27).

T2 von M2: (ACT) + (TMP) ▶ A

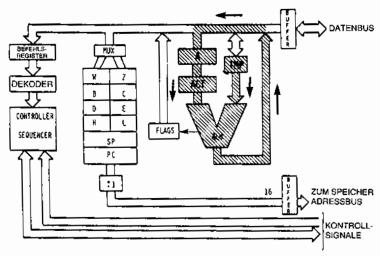


Abb. 2.24: Das Ende von ADD r

Der Inhalt von ACT wird zum Inhalt von TMP addiert und das Ergebnis schließlich im Akkumulator abgelegt. Siehe dazu Abb. 2.24. Die Operation ist jetzt vollständig ausgeführt.

Frage: Warum wurde die Ausführung der Addition bis zum Zustand T2 von Maschinenzyklus M2 verzögert, statt daß sie während des Zustands T5 von M1 stattfand? (Dies ist eine schwierige Frage, die Verständnis vom Aufbau einer CPU voraussetzt. Das benutzte Prinzip ist jedoch grundlegend für den Entwurf taktsynchronisierter CPUs. Wir wollen versuchen zu sehen, was passiert.)

Antwort: Wir verwenden einen üblichen "Trick", der in den meisten CPUs benutzt wird. Man nennt ihn Überlappung von Holen und Ausführung. Folgendes ist die zugrundeliegende Idee: Wenn man nochmals Abb. 2.23 betrachtet, kann man sehen, daß zur Ausführung der Addition nur die ALU und der Datenbus benötigt werden. Speziell wird nicht auf das Register-RAM (den Registerblock) zugegriffen. Wir (oder das Steuerwerk) wissen, daß die nächsten drei Zustände, die nach Abschluß eines Befehls ausgeführt werden, die Zustände T1 und T2 vom Maschinenzyklus M1 des nächsten Befehls sein werden. Wenn wir nochmals die Ausführung dieser beiden Zustände anschauen, dann sehen wir, daß dazu nur ein Zugriff auf den Befehlszähler (PC) und die Benutzung des Adreßbusses nötig ist. Zugriff auf den Befehlszähler heißt Zugriff auf das Register-RAM. (Dies erklärt, warum der gleiche Trick bei dem Befehl LD r,r' nicht verwendet werden konnte.) Es ist deshalb möglich. den schraffierten Bereich in Abb. 2.17 und den schraffierten Bereich in Abb. 2.24 gleichzeitig zu benutzen.

Der Datenbus wird während des Zustands T1 von M1 dazu benutzt. Statusinformationen auszuführen. Er kann nicht für die Addition verwendet werden, die wir durchführen wollen. Aus diesem Grund ist es notwendig, bis zum Zustand T2 zu warten, bevor die Addition wirklich ausgeführt werden kann. Entsprechend der Tabelle passiert folgendes: Die Addition wird während des Zustands T2 von M2 ausgeführt. Der Mechanismus ist jetzt erklärt. Der Vorteil dieser Methode sollte klar sein. Nehmen wir an, wir hätten ein einfaches Verfahren angewendet und die Addition während des Zustands T5 vom Maschinenzyklus M1 ausgeführt. Der Befehl ADD hätte dann 5 x 500 ns = 2500 ns gedauert. Mit dem Verfahren der Überlappung, das eingebaut wurde, wird der nächste Befehl begonnen, sobald der Zustand T4 ausgeführt ist. Auf eine Art und Weise, die für diesen nächsten Befehl nicht bemerkbar ist, verwendet die "kluge" Steuereinheit den Zustand T2, um das Ende der Addition auszuführen. In der Tabelle ist T2 als Teil von M2 gezeigt. Im Prinzip ist M2 der zweite Maschinenzyklus der Addition. In Wirklichkeit wird dieser M2 überlappt, d. h. er ist mit dem Maschinenzyklus M1 des nächsten Befehls identisch. Für den Programmierer ist die Verzögerung. die durch den Befehl ADD verursacht wird, nur vier Zustände, d. h. 4 x 500 ns = 2000 ns, anstatt 2500 ns, wenn man das "direkte" Verfahren benutzt. Es wurden 500 ns gespart, was einer Geschwindigkeitssteigerung von 20% entspricht.

Die Überlappungstechnik ist in Abb. 2.25 abgebildet. Sie wird immer verwendet, wenn es möglich ist, um die wirksame Ausführungsgeschwindigkeit des Mikroprozessors zu erhöhen. Natürlich ist eine Überlappung nicht immer möglich. Die nötigen Busse oder Einrichtungen müssen verfügbar sein, ohne daß ein Zugriffskonflikt auftritt. Das Steuerwerk "weiß", wann eine Überlappung möglich ist.

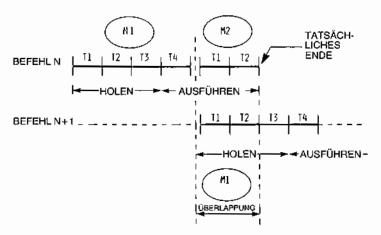


Abb. 2.25: Fetch-Execute-Überlappung während T1-T2

Anmerkungen:

- Der erste Speicherzyklus (M1) ist immer ein Fetch. Das erste (oder einzige) Byte, das den Opcode enthält, wird während dieses Zyklus geholt.
- Ist der READY-Eingang vom Speicher w\u00e4hrend T2 jedes Speicherzyklus nicht high, f\u00fcgt der Prozessor einen Wartezustand (TW) ein, bis READY high wird.
- 3. Wenn nötig, werden die Zustände T4 und T5 für Operationen benutzt, die vollständig innerhalb der CPU abgewickelt werden. Der Inhalt des internen Busses ist während T4 und T5 auf dem Datenbus verfügbar. Dies ist nur für Testzwecke vorgesehen. Ein "X" zeigt an, daß der Zustand anliegt, aber nur für interne Zwecke, wie zur Befehlsdekodierung benutzt wird.
- Nur das Registerpaar rp=B (Register B und C) oder das Registerpaar rp=D (Register D oder E) kann ausgewählt werden.
- 5. Drei Zustände wurden übersprungen,
- 6. Speicher-Lesezyklus: Ein Befehl oder ein Datenwort wird gelesen,
- 7. Speicherzyklus.
- 8. Das READY-Signal wird während des zweiten und dritten Zyklus (M2 und M3) nicht benötigt. Das HOLD-Signal wird während M2 und M3 akzeptiert. Das SYNC-Signal wird während M2 und M3 nicht erzeugt. Während der Ausführung von DAD werden M2 und M3 zur intermen Additton eines Registerpaares benutzt, der Speicher wird nicht angesprochen.
- 9. Das Ergebnis dieser arithmetischen, logischen oder Rotierbefehle wird nicht vor dem Zustand T2 des n\u00e4chsten Befehlszyklus in den Akkumulator (A) \u00fcberragen. Das hei\u00e4t, A wird geladen, w\u00e4hrend der n\u00e4chste Befehl gehoft wird. Dieses \u00dcberrappen von Befehlen erlaubt eine schnellere Verarbeitung.
- 10. Wenn der Wert der unteren vier Bit des Akkumulators größer als neun ist oder wenn das zusätzliche Übertragsbit gesetzt ist, wird 6 zum Akkumulator addiert. Ist der Wert der oberen vier Bit des Akkumulators dann größer als 9 oder ist das Übertragsbit gesetzt, dann wird 6 zu den oberen vier Bit des Akkumulators addient.
- Dies bedeutet den ersten Maschinenzyklus (den Fetch-Zyklus) des n\u00e4chsten Befehlszyklus.

- War die Bedingung erfüllt, wird der Inhalt des Registerpaares WZ statt dem Inhalt des Befehlszählers (PC) auf den Adreßbus (A_Q-1₅) ausgegeben.
- War die Bedingung nicht erfüllt, werden die Maschinenzyklen M4 und M5 übersprungen. Der Prozessor führt stattdessen sofort den Fetch-Zyklus (M1) des nächsten Befehlszyklus weiter.
- 14. War die Bedingung nicht erfüllt, werden die Maschinenzyklen M2 und M3 übersprungen. Der Prozessor führt stattdessen sofort den Fetch-Zyklus (M1) des nächsten Befehlszyklus aus.
- 15. Stack-Lese-Teil-Zyklus
- 16. Stack-Schreib-Teil-Zyklus

17.	Bedingung	CCC
	NZ - nicht Null (Z=0)	000
	Z - Null (Z=1)	001
	NC - kein Übertrag (CY=0)	010
	C - Übertrag (CY=1)	011
	PO – ungerade Pantāt (P=0)	100
	PE - gerade Parität (P=1)	101
	P - plus (S=0)	110
	M - Minus(S=1)	111

- Ein-/Ausgabezyklus: Der 8-Bit-Kode des ausgewählten I/O-Ports wird gleichzeitig an die Adreßleitungen 0-7 (A₀₋₇) und 8-15 (A₈₋₁₅) ausgegeben.
- 19. Ausgabezyklus
- 20. Der Prozessor verbleibt untätig im Halt-Zustand, bis ein Interrupt, ein Reset oder ein Hold akzeptiert wird. Wird eine Hold-Anfrage akzeptiert, geht die CPU in den Hold-Modus. Endet der Hold-Modus, kehrt die CPU zum Halt-Zustand zurück, nach einerm Reset beginnt der Prozessor die Ausführung bei der Adresse Null. Nach einem Interrupt führt der Prozessor den Befehl aus, der auf dem Datenbus erscheint (üblicherweise ein Restart).

SSS oder DDD	Wert	rp	Wert 00
A	111	В	00
В	000	В	01
C	001	H	. 10
D	010	SP	11
E	011		
H	100	1	
	101	1	

Frage: Wäre es möglich, weiter nach diesem Schema vorzugehen und auch den Zustand T3 von M2 zu verwenden, wenn wir einen längeren Befehl ausführen müssen?

Um den internen Mechanismus des Ablaufs zu klären, empfehle ich, die Abb. 2.27 zu untersuchen, die die Befehlsausführung beim 8080 genau zeigt. Der Z80 enthält alle 8080 Befehle und mehr. Die Information, die in Abb. 2.27 dargestellt ist, ist für den Z80 nicht verfügbar. Die Abbildung wurde hier aufgenommen, um die internen Operationen dieses Mikroprozessors verständlich zu machen. Die Äquivalenz zwischen den Befehlen von Z80 und 8080 ist im Anhang F und G aufgelistet.

Jetzt wollen wir einen komplizierteren Befehl untersuchen:

ADDA,(HL)

Der Opcode für diesen Befehl ist 10000110. Dieser Befehl bedeutet: Addiere zum Akkumulator den Inhalt der Speicherstelle (HL). Die Speicherstelle wird durch ein ziemlich merkwürdiges Verfahren bestimmt. Es ist die Speicherstelle, deren Adresse in den Speicherzellen H und L enthalten ist. Dieser Befehl setzt voraus, daß diese beiden Spezialregister (HL) vor der Ausführung des Befehls geladen wurden. Der 16-Bit-Inhalt dieser Register legt die Adresse im Speicher fest, die die Daten enthält. Diese Daten werden zum Akkumulator addiert, und das Ergebnis bleibt im Akkumulator stehen.

Dieser Befehl hat Geschichte. Er wurde eingebaut, um den 8080 kompatibel zu seinem Vorgänger, dem 8008 zu machen. Der alte 8008 hatte nicht die Möglichkeit, Speicher direkt zu adressieren! Um auf einen Speicherinhalt zuzugreifen, mußte man die beiden Register H und L laden und dann einen Befehl ausführen, der sich auf H und L bezog. ADD A,(HL) ist ein solcher Befehl. Es muß herausgestellt werden, daß der 8080 und der Z80 nicht in der gleichen Art wie der 8008 hinsichtlich der Speicheradressierung beschränkt sind. Sie haben die Möglichkeit, den Speicher direkt zu adressieren. Das Verfahren, die Register H und L zu verwenden, bietet einen zusätzlichen Vorteil und keine Einschränkung wie beim 8008.

Wir wollen nun die Ausführung dieses Befehls verfolgen (beim 8080 heißt er ADD M und ist der 16te Befehl in Abb. 2.27). Die Zustände T1, T2 und T3 von M1 werden wie üblich verwendet, um den Befehl zu holen. Während des Zustands T4 wird der Inhalt des Akkumulators zu seinem Pufferregister ACT übertragen, und der linke Eingang der ALU ist festgelegt.

Um das zweite Datenbyte zu erhalten, das zum Akkumulatur addiert werden soll, muß ein Speicherzugriff ausgeführt werden. Die Adresse dieses Datenbytes steht in H und L. Der Inhalt von H und L muß deshalb auf den Adreßbus übertragen werden, wo er zum Speicher geführt wird. Wir wollen dies durchführen.

AMEMONIC	e		Mill						MZ		
	0)040504	01020100	71	Telzi		13	T4	16	71	Talzi	73
MOV /1, /7	0 1 0 0	D S S 4	PC QU1 STATUS	AG-PG	•	-тирля	(\$\$\$31-4 TAMP	[TAP]660			S
M()V r, M	9100	0110		T		1	XIX		HL OUT	OAFA-	-000
MOV M. 1	0 1 1 1	0 5 5 5		Π			(\$55)THE	:.	HL OUT STATUS!	- (94.1)	DATA 6US
SPHC	1111					1.	IML)	50			100
ATVI r, data	0 0 0 0	D 1 1 6					×		PC OUT SEATUSM	02 -	-0000
LIVI W. COLO	0011	0 1 1 0				Ţ	x			87-	- FMP
LXI ip, data	9 6 R P	0 0 0 1					×			PC - PC + 1 67-	-r1
LDA setter	901)	1 5 1 4		L.i			×			PG - PC + 1 B2	- !
TTA adds	0011	0010					×			PC - PC +1 82 -	-z
LHLO HAP	0010	1010		ГΤ			×			PC - PC + 1 12 -	-2
IHLO +60	0010	0010			Ţ <u> </u>	<u></u>	×		PC OUT STATUSHE	PC - PC + 1 87-	-2
LDAX rold		1010			Т	T	×		1000T STATUSÍN	DATA-	
Flax XATE	0 0 7 P	0010			Ţ				TUO 41	CA3 -	- OATA BUS
жено	1110	1011				1-	IHC)—(DE)				
A00 r	1000	0 # # 2					MAI-ACT		164	[ACTI+[FMP]-A	
ADD N	1900	4) 1 4			7		[A]-ACT		HL OUT	DATA-	-747
ADI des	1 1 0 0	9116			T		IAI-ACT		TUO ON BIZUTATE	N: N: 1 87-	- ihb
ADC r	1 2 0 0	1 5 5 5			T	Ī	ISSSP-TMP		PA .	IACTHT#PI-CY-A	
ADC M	1000) 1 1 0					(A)-ACT		AL OLT STATUS(6)	DATA-	+ TAP
ACI 6010	1100	1 1 1 0					(A)~ACT		PC OUT STATUS[6]	PO - PC + 1 12-	744
100.	100)	0 5 5 5			T		(SES)-TAP (AH-ACT		198	(ACTI-ITMPI -A	1
\$08 W	100)	0)10					(A)-ACT		HE OUT	DAYA-	+149
Was	1101	0 1 1 0				T	IAI-ACT		PC OUT STATUSIES	PC + PC + 1 82 -	- TMP
384 -	1001	1 0 6 3					CSSSI-TIMP A]-AGT		19	(ACT)-(FMP)-CY-A	
SãO M	1001	1110			7		IA3-ACT		HE DUT STATUSKS	0474-	- 1145
£51 de la	1 > 0 1	1119			Т		IA)-ACT		PC OUT STATUSH)	PG-PG-1 B2-	e-TMP
1991 1	0 0 0 0	DICS				1	(0001-140 (144) • 1-ALU	ALU-DDD			
INR 64	0011	0100			\top		-х		HL OUT STATUSIES	DATA -	ALU
DOR r	0000	0101			\top		(ODD)TMP (TMPI+1ALU	ALU-000		7.	1 41 9
DC# 44	991)	0101					×		HL IDUT STATUSHI	GATA- (TMP)-1 -	- THE
IHX rp		0 4 > 1				T	IRM +1	A.P			
OCX 19	00 8 9						(RP) - 1	AP			
DADIA	0 4 8 7	1001			T-	П	к		ud-ACT	CLI-TMP,	ALU-L, CY
044	0010	0 1 1 1			1		DAAA, FUGSIKI	7 11	T 1		3200
ANA.	1010	0 6 5 4				1	ISSE-THE IAI-ACT		m	[ACTIO TMPI-A	4.7
AHA M	1010	0110	PC OUT	N-10	• 1 INST	-THP/M	(A)-ACT	<i>i.</i>	HE OUT	DATA	ن ان دار د

Abb. 2.27: Intel Befehlsformate

	мз			344		■					
TI	Talā	73	71	72 2l	11	T 1	1 Z 25	Ta	T4	78	
.,		- ·		· ·						1	
- :				· · · ·							
· ·								· ·			
		····					\vdash				
HL OUT STATUSIN	IFNet -	CUE ATAB							7		
PC OUT STATUS#4	PC-PC+1 83-								·	ļ	
	FG+FG+1 03-	- H	WZ OUT STATUSM	DATA	^		<u> </u>				
\top	N: N: 1)-		WZ OUT STATUS	IA	DATA BUS						
	2C - 2C + 1 83	-#	WZ GUT STATUSIA	DATA		WZ DUT STATUSMI	DATA-		. :	1 7	
PC OUT	PC - PG - 1 B3	- W	WZ OUT STATUSIN	EL1	BUS ATAG	WZ OUT STATUSIN	(H)	OATA BUE			
				,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
				. "							
							i				
		. —			-					7.11	
m	IACTI-ITAMI-A	· · · · · · · · · · · · · · · · · · ·									
ia .	[ACT]+[TMP]→A	-				ļ <u> </u>					
rs.	IACTI-ITMPI+GY+A					· · · · · ·				111 EX	
ia .	IACTI-ITMPI+CY-A					· ` · · · · ·				100	
	·						Γ''''	i			
[9]	(ACTI-ETIMPI~A									3 7 7 7	
(A	IACT)-(TEPF-A						-		Ī		
					T			i	·		
rs.	(ACT)-[FMPI-CY-A	-				Ţ	-				
(9	facti-itMf3-6Y→A										
							1		Ì	133	
HL DUT STATUEDI	ALU-	- DATA BUE				7		i	·	1 7	
41710411						1	T				
HL OUT	ALU-	- DATA BUS	1		T		· · ·		1		
E-(A) VAE-1					<u> </u>	r —					
	···		[T							
PH-ACT	(MI-7MP (ACT)-(TAP)-CY-ALU	ALU-H. CY	· ·		1	1	Τ-	17.	· · ·		
					1	-				100	
						1				1986 B	
(M	factielTMM-A				T:		-	1			

© Intel. Reproduced by permission.

Abb. 2.27: Intel Befehlsformate (Fortsetzung)

MMMONIC	ar c	GP CODE Mpf(1)						MQ.		
	0,000004	01070100	71	Talit	TI	14	76		53cT	73
ANT ONE	1 1 1 0	9 1 1 9	PC OUT	PC - PC + 1	INST-TMP/IR	IAN-ACT	1974 Sept	AC QUIT STATUSHO	PG - PG + 1 07.	~TMP
XRA?	1010	1 8 8 5			1	(A)-ACF		BI	CACTIFITPMI+A	11.
HRA M		1110	\Box			tAJ-ACT		RL OUT	DATA -	+T\¥
XRI deu	1114	1110				IA3ACT	7.6	AC DUT STATUSIES	PC+PC+1 #2-	+ TOP
OMA.	3 9 1 1	-0 6 5 5				(A)~ACT (SSS)~TMP		DH	HACTINITAMI-A	
ORAH	1011	D 1 1 0				(A)-ACT		HL OUT	DATA -	+ TMP
Offic date	1111	6110				tal-act	A Kir Ge	PC OUT STATUSIS	PG-70+1 B2-	-TMP
CHAP C	1011	1 8 4 4				IAI-ACT ISSI-TMP		t×	IACTI-ITMP), FLAGS	100
CMP M	1011	1110				IAD-ACT	1.00	NL OUT	DATA -	THE
Ø) deu	1 1 1 1	1110				(a)-ACT		PC OUT	PG+PG+1 07-	- 11/4
ALC	2500	0 1 1 1				(A)-ALU MOTATE		191	ALU-A.CY	4,ET
Anc	0000	1 1 1 1				EAI-ALU ROYATE		Na	ALU-A, CY	
AAL	0001	0111				MOTAT (6.75	M	ALU-A, CY	V
RAR	0001	111				AJ, CY-ALU ROTATE		ŧ	ALU-A.CY	3 (3)
CVA	0010	3 1 1 1				I <u>E</u> P+A		77.77		
CMC	0011	1 1 1 1				47-44				
and .	0011	0111		ĺ	1)CY		2.57		
page adds	1140	0011				× ×	響響	PROUT STATE	PC - PC + 1 - \$2 -	-2
J cond page [17]	1100	C 0 1 0				MOOT COM	PITION	PC QUT STATUSIN	PC - PC + 1 82 -	+-Z
CALL ager	1100	1101			, -	y-\$	1	ELYADZIO LOCAL	PC - PC + 1 - 07 -	-z
C cond sette 17	1100	6100	i			JUDGE CONC	SP - I	STATUSHI	PG - PG + 1 - 62 -	+2
RET	1) 0 0	1001				x	1. 1465.	SP OUT STATUSIES	SP-SP-1 GATA-	- Z
Fi cond add [12]	1) 6 6	0000			INST-THEIR	JUDG1 COMO	PINOIFIC	SF OUT STATUSINA	SP-SP+1 OATA-	-2
ATTA	1 1 4 4	M 1 1 1			O-W INST-TAPAR	9.9.	-1	SP OUT STATUSHER	EP+SF+1 (PCHE-	-DATA BUT
РСн.	1110	1001			INST-TMPAR	(HL) - ···	PC	(2.74%)		
PUEHTP	1185	0104				10 + 10 .	-1	STATUS 1164	SP - SP - 1 Uni	- DATA BUS
PUSH PSW	FB11	0101				p-p-	-1	SP OUT STATUSHE	\$0-50-1 IA) -	+ DATA BUS
POF ep)) 87	0001				*		STATUS(III)	SF-SF-1 DATA	+-1
POP P\$#	1111	0001			Ţ		355	SP OUT STATUSHIN	SP-P-1 DATA	+JLAGE
KTML	1110	D 0 1 1				×	Gy	SP OUT STATUSING	SP-SP+1 DATA -	-Z
IN part	1101	1 9 1 1				*	2000	MC GUT STATUSIN	PC - PC - 1 B2 -	~ Z, W
OUT out	1 0 1	0011				×	**/	AC OUT STATUSIS	PC - PC+1 02 -	+ ₹.₩
u .	1 / 1 1	10))				CET HATE FAT		KY		7.5
©I	1111	0011				RESET INTE FA		7	20, 872	37
HLT	9111	0110	\Box			ж		PC OUT STATUS	HALT MODE TO	ž in
MOF	0000	0000	PC OUT	PG -PG + 1	IMIT-ТМАЛЯ	. k	\$13.180 A	. V		

Abb. 2.27: Intel Befehlsformate (Fortsetzung)

	ш,			м		1 144						
T1	7362	71	71	BltT	73	Ţ.	13 2	73	r.	тв		
[M	(ACTIVITATIVA					(Y)	155					
I.	57.878	0.757		777					-			
ion	IACTI-(TMPIA		6.49					1.00		1		
[¶	(ACTIVITIES	30,20	A 4 W 1			100	. 77	S 18 19				
(A.V						1.500	1.57			377	•	
19	(ACTIVITIES)-A		377	39/5		777 (S	7	y , s	7	17.		
(S)	ACTIVIEN			74	10000			<i>3</i> , 3, 3, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,		100	,	
		1.	8 % WANG			in y	7.77					
l e	IACTI-ITHM; FLAGS	1. 1. 1. 1.	200	ipia	100	Village	*		4	t		
694	(ACT)-(TMFI, PLAGS	3.00		199				18.630		57		
$y_{i,j+1,0}$	(15/2)				. 7.7.3			1.75				
		32407		1.50	80 775	STREET		1.		73		
	S. 1812			0.000	24.7	Section.		12 1 1 10				
		36.03	76 N. A.	Sec. 20			100	ALTERNATION OF	42.1	374	,	
		123274	* (XXXX		(A) 38		1		75	1		
	Jan S		$\mathcal{I} \sim 3$		100	400	. 15	35 8 100	~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
	* *	1.2761.6		3.13	120	1.45		4 1				
FTATUSED	PC - PC + 1 #2 -	**	497,007				30	$\mathcal{L}_{\mathcal{L}}$		<i>.</i>	WZ OUT STATUSHI	MZI+1-
STATUS!	PC+PC+1 83-		12. "		1.000		475	1000	1000	**	WZ OUT STATUBIU 179	ter2) + 1 =
PC OUT \$7ATUS#4	PC-PC+1 B3-	-11	ETATUSINE	SP + P + I	- DATA BUS	TOO NE	PCU-	DATA BUS		8	STATUE (1)	(m2) + 1 -
PC OUT ETATURIS		+yr 13l	SFOUT STATUS[16]	IPCHI	- DATA BUE	THOUT STATUS	(KL)~	DATA OUS	14	, dea	TATURE THE	1W23 + 1 →
STATUSLISH	SF+SF+1 DATA -	+-1 ⁴	1300		200	1	v	(A)	, c		WZ GUT STATUSINI	DW2J • 1
STATUBIN	9-9-1 DATA-		1 11 27 75			بفرعتني			, c,		WZ OUT STATUSHUZ	(4/20 + 1 →
SF OUT STATUSING	(TMP + COMMISSED	CATA BUS	ng j	100			3 . A	4	.	2.0	WI OUT STATUSIUS	Der 20 + 3
	1.45 W 12	14 (M)	11.4			31(1)						
SP OUT STATUSHE	611-	-DATA BUE	2.70	1.55	2/350	200				177		
SP DUT STATUSTICA		-0474 8 U\$	7.00	100		(72)	133	N. A.	157			
EF OUT	P-fF+1 DATA-		S	200	2.5		33	2.00			,	
SP QUT STATUSIH	EP+4P+1 DATA	-^			WW.	1. 2. 3	7.27		\$48			
STATUSIN	DATA-		STATUSINE	[14]	EUB ATAG	\$POUT \$TATUMUM	107	DAYA BUS	IWZI-	-HL		
MY DUT	GATA-								-87	*	:	
WZ GUT STATUSIN	IAI -	- CATA BUS		A STATE OF					1000	10		
x g ne			(8)	2000	7.7.1.7. 7.7.1.7.1.7.1.7.1.7.1.7.1.7.1.7	3000	-3 3°	30 3		33		
100		27.00	9 75	~ >	140	100	13					
	Share Sale	(SVV)	, Av	1,2	100	(4) Y	V10		145	(X)		
	300	10000	1	y vy		1000	×52	0.0	3	132		

Abb. 2.27: Intel Befehlsformate (Fortsetzung)

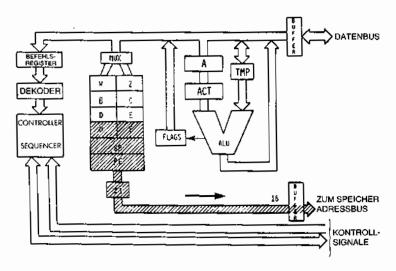


Abb. 2.28: Übertragung des Inhalts von HL zum Adreßbus

Während des Maschinenzyklus M2 lesen wir: HLOUT. H und L sind auf die gleiche Art auf den Adreßbus ausgegeben worden, auf die in den vorhergehenden Befehlen PC ausgegeben wurde. Es sei angemerkt, daß während des Zustands T1 der Status auf dem Datenbus ausgegeben wird (darauf wurde schon hingewiesen). Davon wird hier aber kein Gebrauch gemacht. Vereinfacht betrachtet braucht man zwei Zustände: einen, in dem der Speicher die Daten bereitstellt, und einen zweiten, in dem die Daten verfügbar sind und zum rechten Eingang der ALU (ins TMP) übertragen werden.

Beide Eingänge der ALU sind jetzt festgelegt. Die Situation ist analog zu der, die wir im vorhergehenden Befehl ADD A,r hatten: An beiden Eingängen der ALU stehen gültige Daten. Wir müssen einfach wie vorher addieren. Eine Fetch-Execute-Überlappungstechnik wird angewandt, und statt die Addition während des Zustands T4 von M2 auszuführen, wird sie zum Zustand T2 von M3 verschoben. In Abb. 2.27 sieht man, daß während T2 in der Tat ausgeführt wird: ACT + TMP A. Die Addition ist schließlich ausgeführt, die Inhalte von ACT und TMP sind addiert, und das Ergebnis ist im Akkumulator abgelegt.

Frage: Wie lang ist die scheinbare Ausführungszeit dieses Befehls (für den Programmierer)? Ist sie 4,5 µs oder 3,5 µs, wenn die Taktfrequenz 2,0 MHz beträgt?

Jetzt werden wir einen anderen komplexeren Befehl untersuchen, der eine direkte Speicheradressierung verwendet, wobei er zwei nicht zugängliche Register W und Z benutzt:

LDA,(nn)

Der Opcode ist 00111010. Das Äquivalent beim 8080 heißt LDA addr. Wie üblich werden die Zustände T1, T2 und T3 von M1 verwendet, um den Befehl aus dem Speicher zu holen. T4 wird ebenfalls benutzt, aber man kann keinen sichtbaren Vorgang beobachten. Tatsächlich wird der Befehl während des Zustands T4 dekodiert. Das Steuerwerk findet dabei heraus, daß es die beiden nächsten Bytes dieses Befehls holen muß. um die Adresse zu erhalten, deren Inhalt in dem Akkumulator geladen wird. Die Wirkung dieses Befehls ist es, daß der Akkumulator aus der Speicherzelle geladen wird, deren Adresse in den Bytes 2 und 3 des Befehls festgelegt ist. Beachten Sie, daß der Zustand T4 notwendig ist, um den Befehl zu dekodieren. Man könnte dies als Zeitverschwendung ansehen, da nur ein Teil dieses Zustands benötigt wird, um die Dekodierung durchzuführen. Dies ist auch so. Es ist allerdings der Grundgedanke der getakteten Logik. Weil intern Mikrobefehle verwendet werden, um die Dekodierung und Ausführung durchzuführen, muß man diesen Nachteil für den Vorzug der Mikroprogrammierung in Kauf nehmen. Die Struktur des Befehls erscheint in Abb. 2.29.

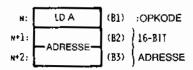


Abb. 2.29: LD A, (Adresse) ist ein Dreiwortbefehl

Jetzt werden die nächsten beiden Byte geholt. Sie legen eine Adresse fest (siehe Abb. 2.30).

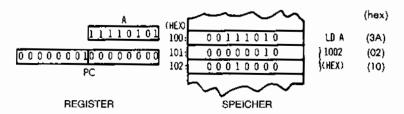


Abb. 2.30: Vor der Ausführung von LD A

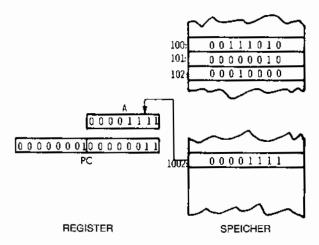


Abb. 2.31: Nach der Ausführung von LD A

Die Wirkung des Befehls ist in den Abb. 2.30 und 2.31 oben dargestellt. Für das Steuerwerk sind zwei spezielle Register innerhalb des Z80 verfügbar (aber nicht für den Programmierer). Sie heißen "W" und "Z" und sind in Abb. 2.28 dargestellt.

Der zweite Maschinenzyklus M2: Wie üblich dienen die beiden ersten Zustände T1 und T2 dazu, den Inhalt der Speicherzelle PC zu holen. Während T2 wird der Befehlszähler PC inkrementiert. Gegen Ende von T2 werden die Daten aus dem Speicher verfügbar und erscheinen auf dem Datenbus. Mit dem Ende von T3 ist das Wort, das aus der Speicherzelle PC geholt wurde (B2, das zweite Byte des Befehls), auf dem Datenbus verfügbar. Es muß jetzt in einem Register zwischengespeichert werden. Es wird in Z abgelegt: B2 \(\rightarrow\) Z (siehe Abb. 2.32).

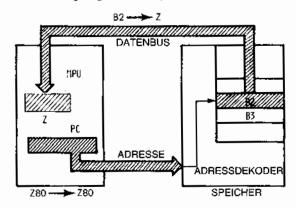


Abb. 2.32: Das zweite Byte des Befehls gelangt nach Z

Maschinenzyklus M3: Wieder wird PC auf dem Adreßbus ausgegeben, inkrementiert und schließlich wird das dritte Byte B3 aus dem Speicher gelesen und in das Register W des Mikroprozessors abgelegt. Zu diesem Zeitpunkt, d. h. am Ende des Zustands T3 von M3, enthalten die Register W und Z innerhalb des Mikroprozessors B2 und B3, d. h. die vollständige 16-Bit-Adresse, die ursprünglich in den beiden Worten stand, die dem Befehl im Speicher folgen. Die Ausführung kann jetzt vollendet werden. W und Z enthalten eine Adresse. Diese Adresse muß zum Speicher geschickt werden, um die richtigen Daten auszulesen. Dies geschieht im nächsten Speicherzyklus:

Maschinenzyklus M4: Jetzt werden W und Z auf den Adreßbus ausgegeben. Die 16-Bit-Adresse wird zum Speicher geschickt, und mit dem Ende von T2 stehen die Daten aus der angesprochenen Speicherzelle zur Verfügung. Sie werden schließlich am Ende des Zustands T3 in A abgelegt. Damit ist der Befehl vollständig ausgeführt.

Dies veranschaulicht die Verwendung eines direkten Befehls. Der Befehl belegt drei Bytes, um eine direkte Zwei-Byte-Adresse zu speichern. Der Befchl verwendet auch vier Speicherzyklen, dreimal mußte der Speicher angesprochen werden, um die drei Bytes des Befehls zu lesen. Ein zusätzlicher Speicherzugriff holte das Datenbyte; das durch die Adresse bestimmt war. Es ist ein langer Befehl. Dieser Befehl ist jedoch wichtig, wenn man den Akkumulator mit einem speziellen Inhalt laden will, der an einer bekannten Adresse im Speicher steht. Es sei angemerkt, daß dieser Befehl die Register W und Z benötigt.

Frage: Hätte dieser Befehl statt der Register W und Z auch andere Register innerhalb des Systems verwenden können?

Antwort: Nein. Hätte dieser Befehl andere Register verwendet, z. B. die Register H und L, dann hätte er deren Inhalt verändert. Nach der Ausführung des Befehls wäre der Inhalt der Register zerstört. Es wird in einem Programm immer vorausgesetzt, daß ein Befehl keine Register verändert, außer die Register, die er ausdrücklich anspricht. Ein Befehl, der den Akkumulator lädt, sollte den Inhalt keines anderen Registers zerstören. Aus diesem Grund ist es nötig, dem Steuerwerk die beiden zusätzlichen Register W und Z zum internen Gebrauch zur Verfügung zu stellen.

Frage: Wäre es möglich, den Befehlszähler PC statt der Register W und Z zu verwenden?

Antwort: Natürlich nicht. Das wäre Selbstmord. Der Leser sollte dies selbst untersuchen.

Jetzt werden wir einen weiteren Befehlstyp studieren: den Befehl Verzweigung oder Sprung, der die Reihenfolge ändert, in der Befehle innerhalb des Programms abgearbeitet werden. Bisher haben wir angenommen, daß Befehle aufeinanderfolgend ausgeführt werden. Es gibt aber

Befehle, die es dem Programmierer erlauben, aus der Folge heraus zu einem anderen Befehl innerhalb des Programms zu springen, oder praktisch gesagt, die zu einem anderen Speicherbereich oder einer anderen Adresse springen. Ein solcher Befehl ist:

JP nn

Dieser Befehl erscheint in Zeile 18 von Abb. 2.27 als "JMP addr". Seine Ausführung wird beschrieben, indem wir die Zeile in der Tabelle horizontal verfolgen. Dies ist wieder ein Dreiwortbefehl. Das erste Wort ist der Opcode und es enthält 11000011. Die nächsten beiden Worte enthalten die 16-Bit-Adresse, zu der der Sprung führt. Prinzipiell ist es die Wirkungsweise dieses Befehls, daß der Inhalt des Befehlszählers durch die 16 Bit, die dem "JUMP"-Opcode folgen, ersetzt wird. Praktisch wird aus Gründen der Effektivität ein etwas anderes Verfahren angewendet.

Wie zuvor wird in den ersten drei Zuständen von M1 der Befehl hereingeholt. Während des Zustands T4 wird er dekodiert und kein anderes Ereignis ist eingetragen (X). Die nächsten beiden Maschinenzyklen werden dazu verwendet, die Bytes B2 und B3 des Befehls zu holen. Während M2 wird B2 geholt und in W abgelegt. Die nächsten beiden Schritte werden von dem Prozessor während des nächsten Fetch ausgeführt, wie es auch bei der Addition der Fall war. Sie werden statt der üblichen Schritte während T1 und T2 des nächsten Befehls ausgeführt. Wir wollen sie anschauen.

Die beiden nächsten Schritte sind: WZ OUT und (WZ)+1 PC. Mit anderen Worten, während des nächsten Fetch-Zyklus wird der Inhalt von WZ statt dem Inhalt von PC ausgegeben. Das Steuerwerk hat registriert, daß ein Sprung ausgeführt wurde und wird den nächsten Befehl anders beginnen.

Die beiden zusätzlichen Zustände haben folgende Wirkung:

Die Adresse, die auf den Adreßbus des Systems ausgegeben wird, ist die Adresse, die in W und Z steht. Mit anderen Worten, der nächste Befehl wird von der Adresse geholt, die in W und Z steht. Dies bedeutet einen Sprung. Zusätzlich wird der Inhalt von WZ um eins inkrementiert und in den Befehlszähler abgelegt, so daß der nächste Befehl richtig geholt wird, indem PC wie üblich verwendet wird. Die Wirkungsweise ist also in Ordnung.

Frage: Warum haben wir den Inhalt von PC nicht direkt geladen? Warum verwenden wir W und Z zur Zwischenspeicherung?

Antwort: PC kann nicht verwendet werden. Hätten wir den unteren Teil von PC (PCL) mit B2 geladen, anstatt B2 zu verwenden, hätten wir den Inhalt von PC zerstört! Es wäre dann unmöglich gewesen, B3 zu laden.

Frage: Wäre es möglich statt W und Z alleine Z zu verwenden?

Antwort: Ja, das wäre möglich, aber es wäre langsamer. Wir hätten Z mit B2 laden, dann B3 hereinholen und in der oberen Hälfte von PC (PCH)

ablegen können. Dann müßten wir jedoch Z nach PCL übertragen, bevor wir den Inhalt von PC verwenden könnten. Dies würde den gesamten Ablauf verlangsamen. Aus diesem Grund sollte man sowohl W als auch Z verwenden. Weiterhin werden W und Z nicht nach PC übertragen, um Zeit zu sparen. Sie werden direkt zum Adreßbus ausgegeben, um den nächsten Befehl zu holen. Das Verständnis dieses Punktes ist entscheidend, wenn man die effiziente Ausführung von Befehlen innerhalb des Mikroprozessors verstehen will.

Frage: (Nur für den interessierten und informierten Leser) Was passiert, wenn am Ende von M3 ein Interrupt auftritt? (Wenn die Befehlsausführung an diesem Punkt unterbrochen wird, zeigt der Befehlszähler auf den Befehl, der dem Sprungbefehl folgt, und die Sprungadresse, die in W und Z steht, geht verloren.)

Die Beantwortung bleibt als interessante Aufgabe dem interessierten Leser überlassen.

Die eingehenden Beschreibungen, die wir für die Ausführung typischer Befehle gegeben haben, sollte die Rolle der Register und der internen Busse klären. Um ein genaues Verständnis der internen Arbeitsweise des Z80 zu erhalten, mag ein zweites Durcharbeiten des vorhergehenden Abschnitts nützlich sein.

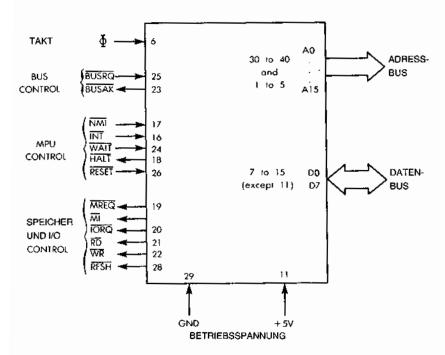


Abb. 2.33: Anschlußbelegung der Z80 MPU

Der Z80 Baustein

Der Vollständigkeit halber wollen wir hier die Signale des Z80 Mikroprozessorbausteins untersuchen. Es ist nicht unbedingt nötig, die Funktion der Z80 Signale zu verstehen, um den Z80 programmieren zu können. Der Leser, der an Einzelheiten der Hardware nicht interessiert ist, kann deshalb diesen Abschnitt überspringen. Die Anschlußbelegung des Z80 ist in Abb. 2.33 dargestellt. Auf der rechten Seite der Abbildung verrichten Daten- und Adreßbus ihre üblichen Aufgaben, wie sie am Anfang dieses Kapitels beschrieben wurden. Wir werden hier die Aufgabe der Signale im Kontrollbus beschreiben. Sie sind auf der linken Seite von Abb. 2.33 dargestellt.

Die Steuersignale wurden in vier Gruppen eingeteilt. Sie werden in der Reihenfolge der Abb. 2.33 von oben nach unten beschrieben.

Am Takteingang wird ein externer Taktgenerator angeschlossen, der den Systemtakt liefert.

Die beiden Steuersignale für den Bus, BUSRQ und BUSAK, dienen dazu, den Z80 von seinen Bussen abzukoppeln. Sie werden hauptsächlich von der DMA (Direct Memory Access) benutzt, können aber auch von einem anderen Prozessor im System verwendet werden. BUSRQ ist das Signal zur Anforderung der Busse. Es wird an den Z80 geschickt. Als Antwort bringt der Z80 seinen Adreßbus, seinen Datenbus und seine Tristate-Steuersignale am Ende des laufenden Maschinenzyklus in den hochohmigen Zustand. Mit dem Signal BUSAK bestätigt der Z80, daß seine Busausgänge hochohmig sind.

Sechs Z80-Steuersignale beziehen sich auf seinen internen Zustand oder seinen Ablauf:

INT und NMI sind die beiden Interruptsignale. INT ist die normale Interruptanforderung. Interrupts werden in Kapitel 6 beschrieben. Mehrere Ein-/Ausgabesteine können an die Interruptleitung INT angeschlossen werden. Wann immer eine Interruptanforderung auf dieser Leitung ansteht und das interne Interrupt-Flip-Flop (IFF) freigegeben ist, wird der Z80 einen Interrupt akzeptieren (vorausgesetzt BUSRQ ist nicht aktiv). Ein Rückmeldesignal wird ausgegeben: IORQ (während des M1-Zyklus). Der Rest des Ablaufs wird in Kapitel 6 beschrieben.

NMI ist der nicht maskierbare Interrupt. Er wird vom Z80 jederzeit akzeptiert und erzwingt einen Sprung zur Adresse 0066 hexadezimal. Auch dies wird in Kapitel 6 beschrieben. (Hier wird ebenfalls vorausgesetzt, daß BUSRQ nicht aktiv ist.)

Das Signal WAIT dient dazu, den Z80 mit langsameren Speichern oder Ein-/Ausgabebausteinen zu synchronisieren. Ist es aktiv, so zeigt es an, daß der betreffende Speicher oder Baustein noch nicht zur Datenübertragung bereit ist. Die Z80 CPU geht dann in einen speziellen Wartezustand, bis das WAIT-Signal inaktiv wird. Dann wird der normale Ablauf fortgesetzt.

Mit dem Signal HALT zeigt der Z80 an, daß er den Befehl HALT ausgeführt hat. In diesem Zustand wartet der Z80 auf einen externen Interrupt und führt solange NOPs aus, um weiterhin den Speicher aufzufrischen.

Das Signal RESET initialisiert üblicherweise die MPU. Es setzt Befehlszähler, Register I und R auf "0". Es setzt das Interrupt-Flip-Flop zurück und setzt den Interrupt-Modus auf "0". Es wird normalerweise nach dem Einschalten der Betriebsspannung angelegt.

Steuerung von Speicher und Ein-/Ausgabe

Der Z80 erzeugt sechs Signale zur Steuerung von Speicher und Ein-/Ausgabebausteinen. Diese sind:

MREQ ist das Signal zur Anforderung des Speichers. Es zeigt an, daß auf dem Adreßbus eine gültige Adresse liegt. Dann kann eine Lese- oder Schreiboperation im Speicher ausgeführt werden.

M1 ist der Maschinenzyklus 1. Dies entspricht dem Fetch-Zyklus eines Befehls.

IORQ ist das Signal zur Anforderung eines Ein-/Ausgabebausteins. Es zeigt an, daß die Ein-/Ausgabeadresse auf den Bits 0-7 des Adressbusses gültig ist. Danach kann eine Lese-/Schreiboperation in dem Ein-/Ausgabebaustein ausgeführt werden. Ebenso wird IORQ zusammen mit M1 erzeugt, wenn der Z80 einen Interrupt zurückmeldet. Externe Bausteine können diese Signale verwenden, um den Interruptvektor auf den Datenbus zu legen. (Normale Ein-/Ausgabeoperationen finden nie während des M1-Zyklus statt. Die Kombination von IORQ und M1 quittiert einen Interrupt.)

RD ist das Lesesignal. Es zeigt an, daß der Z80 bereit ist, den Inhalt des Datenbusses in den Akkumulator zu laden. Es kann von jedem externen Baustein, sei es ein Speicher oder ein Ein-/Ausgabebaustein, verwendet werden, um Daten auf den Datenbus zu legen.

WR ist das Schreibsignal. Es zeigt an, daß auf dem Bus gültige Daten liegen, die in den ausgewählten Baustein geschrieben werden können.

RFSH ist das Auffrischsignal. Ist RFSH aktiv, dann enthalten die unteren sieben Bit des Adreßbusses eine Auffrischadresse für dynamische Speicher. Das Signal MREQ wird dann zur Durchführung der Auffrischung verwendet, indem der Speicherinhalt gelesen wird.

Zusammenfassung

Damit ist unsere Beschreibung der internen Organisation des Z80 vollständig. Die genauen Einzelheiten der Hardware des Z80 sind hier nicht wichtig. Wichtig ist jedoch die Funktion jedes Registers, und dies sollte vollständig verstanden sein, bevor mit den nächsten Kapiteln weitergemacht wird. Jetzt werden die Befehle eingeführt, die wirklich auf dem Z80 verfügbar sind, und Grundtechniken der Programmierung vorgestellt.

Grundlegende Techniken der Programmierung

Einführung

Ziel dieses Kapitels ist es, die grundlegenden Techniken darzustellen, die man benötigt, um ein Programm für den Z80 zu schreiben. Dieses Kapitel wird neue Konzepte einführen, wie die Verwaltung von Registern, Schleifen und Unterprogramme. Es wird sich auf Programmiertechniken konzentrieren, die nur die internen Komponenten des Z80 verwenden, z. B. die Register. Es werden tatsächliche Programme wie Arithmetikprogramme entwickelt. Diese Programme werden die verschiedenen Konzepte veranschaulichen, die bis dahin vorgestellt sind, und sie verwenden reale Z80-Befehle. So wird gezeigt, wie man Befehle verwenden kann, um Information zwischen Speicher und der MPU zu übertragen und zu verarbeiten. Im nächsten Kapitel werden dann die Befehle, die auf dem Z80 verfügbar sind, bis in alle Einzelheiten diskutiert. Das Kapitel 5 wird die Adressierungstechniken vorstellen und das Kapitel 6 die Techniken, die man zur Verfügung hat, um Information außerhalb des Z80 zu verarbeiten: die Ein-/Ausgabetechniken.

In diesem Kapitel werden wir im wesentlichen durch Probieren lernen. Indem wir Programme von wachsender Kompliziertheit untersuchen, lernen wir die Aufgaben der verschiedenen Befehle und der Register kennen, und wir werden die bis dann vorgestellten Konzepte anwenden. Ein wichtiges Konzept wird hier aber noch nicht vorgestellt, die Adressierungstechniken. Diese sind nämlich so komplex, daß sie in einem eigenem Kapitel, dem Kapitel 5, behandelt werden.

Wir wollen nun damit beginnen, einige Programme für den Z80 zu schreiben. Wir fangen mit Arithmetikprogrammen an. Abbildung 3.0 zeigt den Z80 als "Modell für den Programmierer".

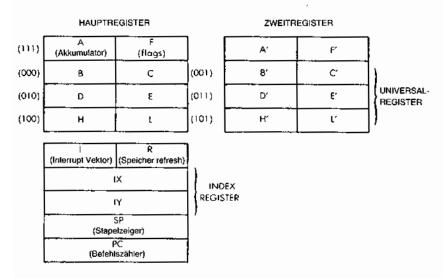


Abb. 3.0: Die Register des Z80

Arithmetikprogramme

Arithmetikprogramme sind Programme für Addition, Subtraktion, Multiplikation und Division. Die Programme, die hier vorgestellt werden, arbeiten mit ganzen Zahlen. Die ganzen Zahlen können dabei als positive Dualzahlen dargestellt werden, oder in Form von Zweierkomplementen, wobei das Bit ganz links das Vorzeichen angibt (siehe die Beschreibung des Zweierkomplements in Kapitel 1).

8-Bit-Addition

Rafahla

Wir wollen zwei Acht-Bit-Operanden addieren, die bei den Adressen ADR1 und ADR2 im Speicher stehen. Die Summe werde RES genannt und soll bei Adresse ADR3 im Speicher abgelegt werden. Dies ist in Abb. 3.1 veranschaulicht. Folgendes Programm führt die Addition durch:

Belefile	Kommemare
LDA,(ADR1)	Lade OP1 nach A
LDHĽ,ADR2	Lade HL mit der Adresse von OP2
ADDA,(HL)	Addiere OP2 zu OP1
LD(ADR3),A	Speichere Ergebnis nach ADR3

Dies ist unser erstes Programm. Die Befehle sind auf der linken Seite aufgelistet, rechts erscheinen Kommentare dazu. Wir wollen das Programm jetzt untersuchen. Es besteht aus vier Befehlen. Jede Zeile wird ein Befehl genannt, der hier in symbolischer Form dargestellt ist. Jeder solche Befehl wird von einem Assembler-Programm in ein, zwei, drei

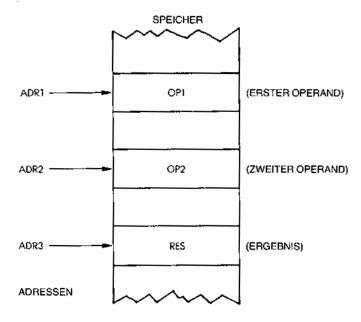


Abb. 3.1: Acht-Bit-Addition RES = OP1 + OP2)

oder vier Bytes übersetzt. Wir wollen uns hier nicht um die Übersetzung kümmern, sondern nur die symbolische Darstellung betrachten.

Die erste Zeile legt fest, daß der Inhalt von ADR1 in den Akkumulator geladen werden soll. Auf Abb. 3.1 bezogen ist der Inhalt von ADR1 der erste Operand "OP1". Dieser erste Befehl bewirkt, daß OP1 vom Speicher in den Akkumulator übertragen wird. Dies ist in Abb. 3.2 dargestellt. "ADR1" ist ein symbolischer Name für die wirkliche 16-Bit-Adresse im Speicher. Der Name ADR1 wird an einer anderen Stelle im Programm festgelegt. Beispielsweise könnte er definiert werden als die Adresse "100".

Dieser Ladebefehl führt zu einer Leseoperation aus Adresse 100 (siehe Abb. 3.2), deren Inhalt über den Datenbus übertragen und im Akkumulator abgelegt wird. Aus dem vorhergehenden Kapitel werden Sie sich noch daran erinnern, daß arithmetische und logische Operationen den Akkumulator als einen der Operanden verwenden. (Einzelheiten dazu im vorhergehenden Kapitel.) Weil wir die beiden Werte OP1 und OP2 addieren wollen, müssen wir zuerst OP1 in den Akkumulator laden. Danach können wir den Inhalt des Akkumulators, d. h. OP1 und OP2 addieren. Das Feld ganz rechts in diesem Befehl heißt Kommentarfeld. Bei der Übersetzung wird es von dem Assemblerprogramm nicht beachtet, aber es verbessert die Lesbarkeit des Programms. Um verstehen zu kön-

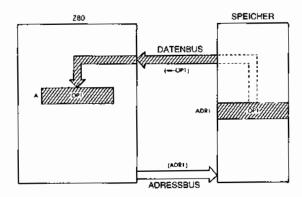


Abb. 3.2: LD A, (ADR1): OP1 wird aus dem Speicher geladen

nen, was das Programm tut, ist es von größter Wichtigkeit, gute Kommentare zu verwenden. Dies nennt man ein Programm dokumentieren. Hier erklärt sich der Kommentar selbst: Der Wert von OP1, der bei der Adresse ADR1 steht, wird in den Akkumulator A geladen.

Die Wirkung dieses ersten Befehls wird in Abb. 3.2 veranschaulicht. Der zweite Befehl unseres Programms ist:

LD HL, ADR1

Dies heißt: "Lade ADR1 in die Register H und L." Um den zweiten Operanden OP2 aus dem Speicher zu lesen, müssen wir zuerst dessen Adresse in ein Registerpaar des Z80 laden, z. B. nach H und L. Dann können wir den Inhalt der Speicherzelle, deren Adrese in H und L steht, zum Akkumulator addieren.

ADD A,(HL)

Wenn wir uns auf Abb. 3.1 beziehen, dann ist der Inhalt der Speicherstelle ADR2 unser zweiter Operand OP2. Der Akkumulator enthält jetzt unseren ersten Operanden OP1. Die Ausführung dieses Befehls führt dazu, daß OP2 aus dem Speicher geholt und zu OP1 addiert wird. Dies ist in Abb. 3.3 dargestellt.

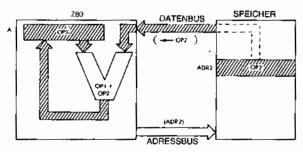


Abb. 3.3: ADD A, (HL)

Im Akkumulator steht dann die Summe. Der Leser wird sich daran erinnern, daß die Ergebnisse arithmetischer Operationen beim Z80 wieder in den Akkumulator abgelegt werden. Bei anderen Prozessoren kann es möglich sein, diese Ergebnisse in andere Register oder in den Speicher abzulegen.

Der Akkumulator enthält jetzt die Summe von OP1 und OP2. Um das Programm abzuschließen, müssen wir nur noch den Inhalt des Akkumulators in die Speicherstelle ADR3 übertragen, um das Ergebnis an der festgelegten Stelle abzuspeichern. Der vierte Befehl unseres Programms erledigt das:

LD (ADR3),A

Dieser Befehl lädt den Inhalt von A in die angegebene Adresse ADR3. Die Wirkungsweise dieses letzten Befehls ist in Abb. 3.4 dargestellt.

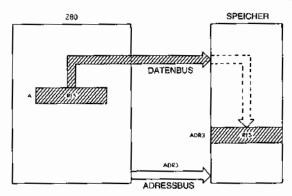


Abb. 3.4: LD (ADR3), A (Lege den Akkumulator im Speicher ab)

Vor der Ausführung des Befehls ADD enthielt der Akkumulator OP1 (siehe Abb. 3.3). Nach der Addition wurde ein neues Ergebnis in den Akkumulator geschrieben, nämlich "OP1 + OP2". Rufen Sie sich nochmals in Gedächtnis zurück, daß der Inhalt jedes Registers in dem Mikroprozessor wie auch der Inhalt jeder Speicherstelle unverändert bleibt, wenn eine Leseoperation auf dieses Register ausgeführt wurde. Mit anderen Worten: Wenn aus einem Register oder einer Speicherstelle gelesen wird, dann verändert sich der betreffende Inhalt nicht. Nur durch eine Schreiboperation in dieses Register wird sein Inhalt verändert. In unserem Beispiel bleibt der Inhalt der Speicherzellen ADR1 und ADR2 das ganze Programm hindurch unverändert. Nach dem Befehl ADD hat sich der Inhalt des Akkumulators jedoch geändert, weil das Ergebnis aus der ALU in den Akkumulator geschrieben wurde. Der alte Inhalt von A ist dann verloren.

Statt ADR1, ADR2 und ADR3 kann man konkrete Adressen verwenden. Will man aber die symbolischen Adressen beibehalten, muß man

sogenannte "Pseudobefehle" verwenden, die den Wert dieser symbolischen Adressen festlegen, so daß sie der Assembler bei der Übersetzung durch die wirklichen physikalischen Adressen ersetzen kann. Solche Pseudobefehle sind beispielsweise:

ADR1 = 100H ADR2 = 120H ADR3 = 200H (H steht für hexadezimal)

Aufgabe 3.1: Machen Sie dieses Buch jetzt zu. Verwenden Sie nur die Befehlsliste am Ende des Buches. Schreiben Sie ein Programm, das zwei Zahlen addiert, die in den Speicherzellen LOC1 und LOC2 stehen. Legen Sie das Ergebnis in LOC3 ab. Vergleichen Sie Ihr Programm dann mit obigem Beispiel.

16-Bit-Addition

Eine Acht-Bit-Addition erlaubt nur die Addition von Acht-Bit-Zahlen, d. h. Zahlen zwischen 0 und 255, wenn man die absolute Dualdarstellung verwendet. Bei den meisten praktischen Anwendungen muß man aber Zahlen addieren, die 16 Bit lang oder länger sind, d. h. man muß mehrfache Genauigkeit verwenden. Wir wollen hier Beispiele für eine Arithmetik mit 16-Bit-Zahlen vorstellen. Diese können leicht auf 24, 32 oder mehr Bit erweitert werden (jeweils auf Vielfache von 8 Bit). Wir wollen annehmen, daß der erste Operand in den Speicherzellen ADR1

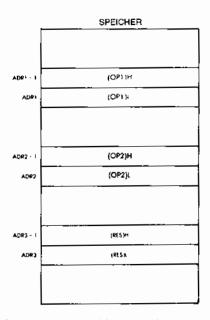


Abb. 3.5: 16-Bit-Addition — die Operanden

und ADR1-1 steht. Da OP1 jetzt eine 16-Bit-Zahl ist, nimmt er zwei 8-Bit-Speicherzellen ein. OP2 ist entsprechend bei ADR2 und ADR2-1 gespeichert. Das Ergebnis soll in den Speicherzellen ADR3 und ADR3-1 abgelegt werden. Dies ist in Abb. 3.5 dargestellt. H kennzeichnet die obere Hälfte (Bit 8 bis 15) und L die untere Hälfte (Bit 0 bis 7).

Das Prinzip dieses Programms ist genau das gleiche wie bei dem vorangehenden. Zuerst wird die untere Hälfte der beiden Operanden addiert, da der Mikroprozessor nur 8 Bit gleichzeitig addieren kann. Tritt bei der Addition dieser unteren Bytes ein Übertrag auf, so wird er automatisch im internen Übertragsbit ("C") gespeichert. Dann werden die oberen Hälften der Operanden und ein eventueller Übertrag addiert, und das Ergebnis wird in den Speicher abgelegt. Das Programm lautet wie folgt:

LD A,(ADR1) Lade die untere Hälfte von OP1

LD HL, ADR2 Adresse der unteren Hälfte von OP2

ADD A,(HL) Addiere die unteren Hälften von OP1 und OP2 LD (ADR3),A Speichere die untere Hälfte des Ergebnisses

LD A,(ADR1-1) Lade die obere Hälfte von OP1

DEC HL Adresse der oberen Hälfte von OP2 ADC A₁(HL) (OP1 + OP2) oben + Übertrag

LD (ADR3-1), A Speichere die obere Hälfte des Ergebnisses

Die ersten vier Befehle dieses Programms sind die gleichen, die auch für die Acht-Bit-Addition im vorhergehenden Abschnitt verwendet wurden. Sie bewirken die Addition der unteren Hälften (Bit 0-7) von OP1 und OP2. Die Summe genannt "RES" wird in der Speicherstelle ADR3 abgelegt (siehe Abb. 3.5).

Immer wenn eine Addition durchgeführt wurde, wird der Übertrag (egal ob "0" oder "1") im Übertragsbit C des Flagregisters (Register F) gespeichert. Erzeugen die beiden Zahlen einen Übertrag, dann ist C gleich "1" (der Übertrag ist gesetzt). Erzeugen die beiden Zahlen keinen Übertrag, dann hat das Übertragsbit den Wert "0".

Die nächsten vier Befehle des Programms sind im wesentlichen die gleichen, die im vorhergehenden Programm zur Addition von 8-Bit-Zahlen verwendet wurden. Diesmal addieren sie die oberen Hälften (d. h. Bit 8-15) von OP1 und OP2 sowie einen eventuellen Übertrag und speichern das Ergebnis in Adresse ADR3-1.

Nach der Ausführung dieses Programms aus acht Befehlen, ist das 16 Bit lange Ergebnis in den Speicherzellen ADR3 und ADR3-1 abgelegt. Beachten Sie aber, daß zwischen der ersten und der zweiten Hälfte des Programms ein Unterschied besteht. Der Additionsbefehl, der verwendet wurde, ist nicht der gleiche wie in der ersten Hälfte. In der ersten Hälfte des Programms hatten wir den Befehl "ADD" verwendet (in der dritten Zeile). Dieser Befehl addiert die beiden Operanden, ohne das Übertragsbit zu beachten. In der zweiten Hälfte verwenden wir den Befehl "ADC", der die beiden Operanden addiert und zusätzlich einen Übertrag, der eventuell erzeugt worden war. Dies ist notwendig, um das

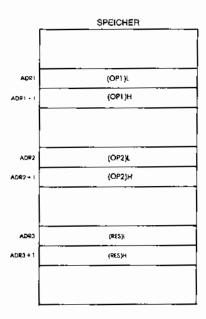


Abb. 3.6: Speicherung der Operanden in umgekehrter Reihenfolge

richtige Ergebnis zu erhalten. Wenn zuerst die unteren Hälften der Operanden addiert werden, kann ein Übertrag auftreten. Dieser eventuelle Übertrag muß bei der zweiten Hälfte der Addition berücksichtigt werden.

Jetzt ergibt sich natürlich folgende Frage: Was ist, wenn bei der Addition der oberen Hälften ebenfalls ein Übertrag auftritt? Es gibt zwei Möglichkeiten: Die erste ist, anzunehmen, daß dies ein Fehler ist. Dann ist das Programm dafür ausgelegt, Ergebnisse von bis zu 16 Bit, nicht aber 17 Bit zu verarbeiten. Die andere Möglichkeit ist es, zusätzliche Befehle anzuhängen, um ausdrücklich einen eventuellen Übertrag am Ende dieses Programms zu testen. Diese Entscheidung muß der Programmierer treffen, als erste von vielen Entscheidungen.

Beachten Sie: Wir haben hier angenommen, daß der obere (höherwertige) Teil des Operanden "über" dem unteren (niederwertigen) Teil gespeichert ist, d. h. bei der niedrigeren Speicheradresse. Dies braucht nicht notwendigerweise der Fall zu sein. Tatsächlich speichert der Z80 Adressen umgekehrt ab: Der untere Teil wird zuerst im Speicher abgelegt und der obere Teil dann in der nächsten Speicheradresse. Um sowohl für Daten als auch für Adressen eine gemeinsame Konvention zu verwenden, sei es empfohlen, auch bei den Daten den unteren Teil über dem oberen Teil abzulegen. Dies ist in Abb. 3.6 dargestellt.

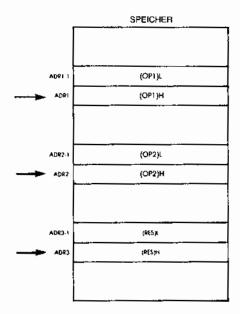


Abb. 3.7: Zeiger auf das obere Byte

Wenn man mit Operanden aus mehreren Bytes arbeitet, ist es wichtig, zwei wesentliche Vereinbarungen zu beachten:

- die Reihenfolge, in der die Daten im Speicher abgelegt werden,
- worauf die Datenzeiger zeigen, auf das obere oder das untere Byte.

Die Aufgaben 3.2 und 3.3 sollen diesen Punkt klären.

Aufgabe 3.2: Schreibe das obige Programm zur Addition von 16-Bit-Zahlen auf die Speicherbelegung um, die in Abb. 3.6 angegeben ist.

Aufgabe 3.3: Wir wollen annehmen, daß ADR1 nicht auf die untere Hälfte von OPR1 zeigt (wie in Abb. 3.5 und 3.6), sondern auf die obere Hälfte von OPR1. Dies ist in Abb. 3.7 veranschaulicht. Schreibe auch dazu das entsprechende Programm.

Der Programmierer muß entscheiden, wie 16-Bit-Zahlen gespeichert werden sollen (d. h. die untere oder die obere Hälfte zuerst) und ob die Zeiger auf die Adressen der unteren oder oberen Hälfte einer solchen Zahl zeigen sollen. Dies ist eine weitere Entscheidung, die Sie treffen müssen, wenn Sie Algorithmen oder Datenstrukturen entwerfen.

Die oben vorgestellten Programme sind herkömmliche Programme, die den Akkumulator benutzen. Wir werden jetzt ein anderes Programm zur 16-Bit-Addition vorstellen, das den Akkumulator nicht benutzt, statt dessen aber einige der speziellen 16-Bit-Befehle verwendet, die auf dem Z80 verfügbar sind. Es sei angenommen, daß die Operanden so abgespeichert sind, wie in Abb.3.6 gezeigt. Das Programm lautet:

LD HL,(ADR1) Lade HL mit OP1 LD BC,(ADR2) Lade BC mit OP2 ADD HL,BC Addiere 16 Bit

LD (ADR3), HL Speichere RES nach ADR3

Beachten Sie, wie viel kürzer dieses Programm im Vergleich mit unserem vorhergehenden Programm ist. Es ist "eleganter". Auf eingeschränkte Art und Weise kann man die Register H und L beim Z80 als 16-Bit-Akkumulator verwenden.

Aufgabe 3.4: Schreiben Sie unter Verwendung der 16-Bit-Befehle, die wir gerade eingeführt haben, ein Programm zur Addition von 32-Bit-Operanden. Die Operanden seien gespeichert wie in Abb. 3.8 dargestellt.

Lösung:

LD HL, (ADR1-1) LD BC, (ADR2-1) ADD HL,BC LD (ADR3-1), HL LD HL,(ADR1-3) LD BC,(ADR2-3) ADC HL,BC LD (ADR3-3),HL

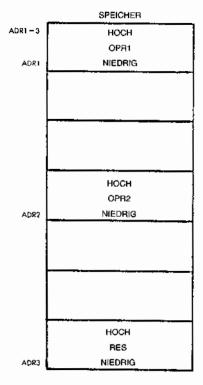


Abb. 3.8: Eine 32-Bit-Addition

Nachdem wir gelernt haben, wie man eine binäre Addition ausführt, wollen wir uns der Subtraktion zuwenden.

Subtraktion von 16-Bit-Zahlen

Eine 8-Bit-Subtraktion wäre zu einfach. Wir wollen sie als Übungsaufgabe aufheben und direkt eine 16-Bit-Subtraktion ausführen. Wie üblich sind unsere beiden Operanden OP1 und OP2 bei den Adressen ADR1 und ADR2 abgelegt. Es wird angenommen, daß die Speicherbelegung der nach Abb. 3.6 entspricht. Um zu subtrahieren, verwenden wir einen Subtraktionsbefehl (SBC) statt eines Additionsbefehls (ADD).

Aufgabe 3.5: Jetzt schreiben wir ein Subtraktionsprogramm.

Das Programm ist unten angegeben. Abb. 3.9 zeigt die Datenwege.

LD HL,(ADR1) OP1 nach HL LD DE,(ADR2) OP2 nach DE

AND A Lösche Übertragsbit

SBC HL,DE OP1 - OP2

LD (ADR3), HL RES nach ADR3

Das Programm entspricht im wesentlichen dem, das wir zur 16-Bit-Addition entwickelt haben. Es gibt zwar zwei verschiedene Additionsbefehle für Registerpaare im Z80-Befehlssatz, ADD und ADC, aber nur einen Subtraktionsbefehl: SBC.

Deshalb muß man zwei Unterschiede beachten.

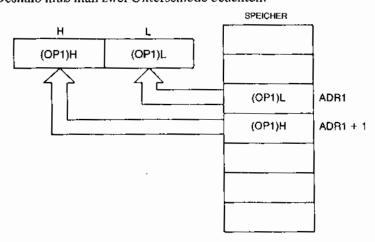


Abb. 3.9: 16-Bit-Ladebefehl - LD HL, (ADRI)

Die erste Veränderung ist die Verwendung von SBC statt ADD.

Der andere Unterschied ist der Befehl "AND A", der dazu dient, vor der Subtraktion das Übertragsbit zu löschen. Dieser Befehl verändert den Inhalt von A nicht.

Diese Vorsichtsmaßnahme ist nötig, da der Z80 auf zwei Arten in das Registerpaar HL addieren kann, nämlich mit und ohne Übertrag, aber nur auf eine Art vom Registerpaar HL subtrahieren kann, nämlich mit dem Befehl SBC "subtrahiere mit Übertrag". Da SBC automatisch auch das Übertragsbit subtrahiert, muß es vor der Subtraktion auf "0" gesetzt werden. Dies ist die Aufgabe des Befehls "AND A".

Aufgabe 3.6: Schreibe das Subtraktionsprogramm so um, daß keine speziellen 16-Bit-Befehle verwendet werden.

Aufgabe 3.7: Schreibe ein Subtraktionsprogramm für 8-Bit-Operanden.

Es sei daran erinnert, daß der endgültige Wert des Übertragsbits bei der Arithmetik von Zweierkomplementen ohne Bedeutung ist. Wenn bei der Subtraktion ein Überlauf auftritt, ist das Überlaufbit (Bit V) des Flagregisters gesetzt. Es kann dann getestet werden.

Die vorgestellten Beispiele sind einfache duale Additionen und Subtraktionen. Man kann jedoch auch einen anderen Typ von Arithmetik verwenden: die BCD-Arithmetik.

BCD-Arithmetik

8-Bit BCD Addition

Die Grundlagen der BCD-Arithmetik wurden in Kapitel 1 erläutert. Wir wollen uns ihre Eigenschaften nochmals ins Gedächtnis rufen. Sie wird im wesentlichen für kommerzielle Anwendungen verwendet, wo man alle signifikanten Stellen des Ergebnisses berücksichtigen muß. In der BCD-Darstellung wird ein 4-Bit-Nibble verwendet, um eine Dezimalziffer (0 bis 9) zu speichern. Deshalb kann jedes 8-Bit-Byte zwei BCD-Ziffern speichern. (Dies heißt gepackte BCD-Darstellung.) Wir wollen jetzt zwei Bytes addieren, von denen jedes zwei BCD-Ziffern enthält.

Um das Problem kennenzulernen, wollen wir zuerst einige Rechenbeispiele ausprobieren.

Wir wollen "01" und "02" addieren.

"01" wird dargestellt als: 0000 0001 "02" wird dargestellt als: 0000 0010

Das Ergebnis ist:

0000 0011

Dies ist die BCD-Darstellung von "03". (Wenn Sie in Bezug auf die BCD-Darstellung unsicher sind, verwenden Sie die Umwandlungstabelle am Ende des Buches.) In diesem Fall funktionierte alles sehr einfach. Wir wollen jetzt ein anderes Beispiel probieren.

"08" wird dargestellt als 0000 1000 "03" wird dargestellt als 0000 0011

Aufgabe 3.8: Berechne die Summe der beiden obigen Zahlen in BCD-Darstellung. Was kommt heraus? (Die Antwort folgt.)

Wenn Sie "0000 1011" erhielten, haben Sie die duale Summe von 8 und 3 berechnet. Dann haben Sie in der Tat dual 11 erhalten. Unglücklicherweise ist "1011" ein unzulässiger Kode in BCD. Es hätte sich die BCD-Darstellung von "11", d. h. "0001 0001" ergeben sollen!

Das erste Problem resultiert aus der Tatsache, daß die BCD-Darstellung nur die ersten zehn Kombinationen von vier Ziffern verwendet, um die Dezimalsymbole 0 bis 9 zu kodieren. Die restlichen sechs Kombinationen werden nicht verwendet, und die unzulässige "1011" ist eine dieser Kombinationen. Mit anderen Worten, immer wenn die Summe zweier BCD-Ziffern größer als 9 ist, muß man zum Ergebnis 6 addieren, um die 6 unbelegten Kodes zu überspringen.

Addiere die BCD-Darstellung von "6" zu 1011:

1011 (unzulässiger BCD-Kode) + 0110 (+6)

Das Ergebnis ist: 0001 0001

Dies ist in der Tat "11" in der BCD-Darstellung! Jetzt haben wir das richtige Ergebnis.

Dieses Beispiel zeigt eine der grundlegenden Schwierigkeiten des BCD-Modus. Man muß die sechs fehlenden Kodes ausgleichen. Man muß einen speziellen Befchl "DAA", genannt "dezimaler Abgleich", verwenden, um das Ergebnis der dualen Addition anzupassen. (Addiere 6, wenn das Ergebnis größer als 9 ist.)

Das nächste Problem wird am gleichen Beispiel dargestellt. In unserem Beispiel tritt ein Übertrag von der unteren BCD-Ziffer (der rechten) in die linke auf. Dieser interne Übertrag muß berücksichtigt und zur zweiten BCD-Ziffer addiert werden. Der Additionsbefehl macht dies automatisch. Es ist jedoch oft nützlich diesen internen Übertrag von Bit 3 nach Bit 4 (den "Halbübertrag") zu erkennen. Zu diesem Zweck gibt es das H-Flag.

Als Beispiel folgt hier ein Programm zur Addition der BCD-Zahlen "11" und "22":

LD A,11H ADD A,22H

DAA

Lade BCD-Zahl "11" Addiere BCD-Zahl "22"

Dezimalabgleich

LD (ADR),A

Speichere Ergebnis

In diesem Programm verwenden wir das neue Symbol "H". Im Operandenfeld eines Befehls bedeutet das Zeichen "H", daß die davor stehenden Daten in hexadezimaler Form angegeben sind. Für die Ziffern "0" bis "9" sind hexadezimale und BCD-Darstellung identisch. Hier wollen wir die Literals (oder Konstanten) "11" und "22" addieren. Das Ergebnis wird bei der Adresse ADR abgelegt. Ist der Operand Teil des Befehls, wie im obigen Beispiel, dann nennt man dies unmittelbare Adressierung (die verschiedenen Adressierungsarten werden im Kapitel 5 genau diskutiert.) Das Speichern des Ergebnisses an einer festgelegten Adresse, wie bei LD (ADR),A, nennt man absolute Adressierung, wobei ADR eine 16-Bit-Adresse darstellt.

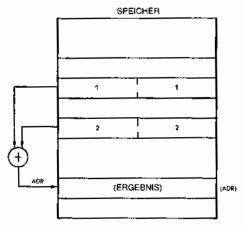


Abb. 3.10: Speicherung von BCD-Ziffern

Dieses Programm ähnelt dem für die duale 8-Bit-Addition, verwendet aber einen neuen Befehl: "DAA". Wir wollen seine Aufgabe an einem Beispiel veranschaulichen. Wir wollen zuerst "11" und "22" in BCD addieren:

$$\begin{array}{c}
00010001 & (11) \\
+ 00100010 & (22) \\
= 00110011 & (33)
\end{array}$$

Mit den Regeln der dualen Addition ergibt sich das richtige Ergebnis.

Wir wollen jetzt "22" und "39" addieren, indem wir die Regeln der dualen Addition verwenden:

$$\begin{array}{c}
00100010 & (22) \\
+ 00111001 & (39)
\end{array}$$

$$= \underbrace{01011011}_{5} ?$$

"1011" ist kein zulässiger BCD-Kode. Dies ist der Fall, weil BCD nur die ersten zehn Binärkodes benutzt und die nächsten sechs "überspringt". Wir müssen das gleiche tun, d. h. zum Ergebnis 6 addieren:

Dies ist das richtige Ergebnis in BCD.

Aufgabe 3.9: Könnten wir den Befehl DAA in dem Programm hinter dem Befehl LD (ADR), A ausführen?

BCD Subtraktion

Die Subtraktion in BCD sieht kompliziert aus. Um eine Substraktion in BCD durchzuführen, muß man das Zehnerkomplement der Zahl addieren, genau so, wie man das Zweierkomplement addierte, um dual zu subtrahieren. Das Zehnerkomplement erhält man, indem man das Komplement zu 9 bildet und dann "1" addiert. Auf einem Standardmikroprozessor nimmt das normalerweise drei bis vier Operationen in Anspruch. Der Z80 jedoch besitzt einen leistungsfähigen DAA-Befehl, der das Programm vereinfacht. Der Befehl DAA korrigiert den Wert des Ergebnisses im Akkumulator automatisch in Abhängigkeit von den Flags C und H vor Ausführung von DAA. (Weitere Einzelheiten von DAA folgen im nächsten Kapitel.)

16-Bit-BCD-Addition

Die Addition von 16-Bit-Zahlen wird genauso einfach durchgeführt wie bei Dualzahlen. Das Programm für eine solche Addition ist unten angegeben:

```
LD
     A,(ADR1)
                 Lade (OP1)L nach A
                 Lade ADR2 nach HL
ĽD
     HL,ADR2
                 (OP1 + OP2)L
ADD A,(HL)
DAA
                 Dezimalanpassung
LD
     (ADR3),A
                 Speichere unteres Ergebnis
LD
     A.(ADR+1)
                 Lade (OP1)H nach A
INC HL
                 Zeiger auf ADR2+1
ADC A,(HL)
                 (OP1 + OP2)H + Übertrag
DAA
                 Dezimalanpassung
LD
     (ADR3+1), A Speichere oberes Ergebnis
```

Gepackte BCD-Subtraktion

Die einfache Addition und Subtraktion von BCD-Zahlen haben wir beschrieben. Tatsächlich enthalten BCD-Zahlen aber eine beliebige Anzahl von Bytes. Als einfaches Beispiel für eine gepackte BCD-Subtraktion wollen wir annehmen, daß die beiden Zahlen, die in N1 und N2 zu finden sind, die gleiche Anzahl von BCD-Bytes enthalten. Die Zahl der Bytes wird COUNT genannt. Die Register und die Speicherbelegung ist in Abb. 3.11 dargestellt. Das Programm erscheint unten:

```
BCDPAK
           LD
                  B.COUNT
           LD
                  DE,N2
           LD
                  HL,N1
           AND
                              Lösche Übertrag
                  Α
MINUS
           LD
                  A_{\bullet}(DE)
                              Byte N2
           SBC
                  A_{\bullet}(HL)
           DAA
           LD
                  (HL),A
                              Speichere Ergebnis
           INC
                  DE
           INC
                  HL
           DJNZ MINUS
                              Dekrementiere B, Schleife bis B=0
```

N1 und N2 sind die Adressen, bei denen die BCD-Zahlen gespeichert sind. Diese Adressen werden in die Registerpaare DE und HL geladen:

```
BCDPAK LD B,COUNT
LD DE,N2
LD HL,N1
```

Im Gegensatz zur ersten Subtraktion muß dann das Übertragsbit gelöscht werden. Es wurde betont, daß das Übertragsbit auf verschiedene äquivalente Arten gelöscht werden kann. Hier benutzen wir beispielsweise:

AND A

Das erste Byte von N2 wird in den Akkumulator geladen, dann das erste

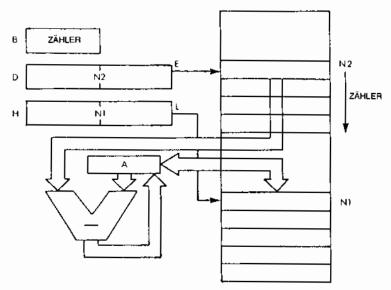


Abb. 3.11: Gepackte BCD-Subtraktion: N1 ← N2 - N1

Byte von N1 davon subtrahiert. Der Befehl DAA dient dann dazu, das richtige Ergebnis in BCD-Darstellung zu erhalten:

MINUS LD A,(DE) SBC A,(HL)

Das Ergebnis wird dann in N1 abgelegt:

LD (HL),A

Schließlich werden die Zeiger auf das aktuelle Byte inkrementiert:

INC DE

Dann wird der Zähler dekrementiert und die Subtraktionsschleife so lange wiederholt, bis er den Wert "0" erreicht:

DJNZ MINUS

Der Befehl DJNZ ist ein spezieller Z80-Befehl, der in einem einzigen Befehl das Register B dekrementiert und den Sprung ausführt, wenn das Register B nicht Null ist.

Aufgabe 3.10: Vergleiche das obige Programm mit dem für die duale 16-Bit-Addition. Wo liegt der Unterschied?

Aufgabe 3.11: Kann man die Rolle von DE und HL vertauschen? (Hinweis: Beachte SBC.)

Aufgabe 3.12: Schreibe ein Subtraktionsprogramm für 16-Bit-BCD-Zahlen.

BCD Flags

Bei der BCD-Arithmetik zeigt das Übertragsbit bei einer Addition an, daß das Ergebnis größer als 99 ist. Dies ist anders als bei Zweierkomplementen, weil BCD-Ziffern jeweils dual dargestellt sind. Umgekehrt kennzeichnet das Übertragsflag bei der Subtraktion ein "Borgen".

Befehlstypen

Wir haben jetzt zwei Typen von Mikroprozessorbefehlen verwendet. Wir haben den Befehl LD verwendet, der den Akkumulator von einer Speicherstelle lädt oder seinen Inhalt bei der festgelegten Adresse ablegt. Dies ist ein Befehl zur Datenübertragung.

Dann haben wir arithmetische Befehle wie ADD, ADC und SBC verwendet. Sie bewirken Additions- und Subtraktionsoperationen. Weitere ALU-Befehle werden bald in diesem Kapitel vorgestellt.

In dem Mikroprozessor Z80 gibt es weitere Typen von Befehlen, die wir bisher noch nicht verwendet haben. Teilweise sind dies "Sprungbefehle", die die Reihenfolge verändern, in der ein Programm abgearbeitet wird. Dieser neue Befehlstyp wird im nächsten Beispiel eingeführt. Beachten Sie, daß man Sprungbefehle oft "Verzweigungen" nennt, wenn sie an eine Bedingung geknüpft sind, d. h. wenn im Programm eine logische Auswahl besteht. Das Wort "Verzweigung" stammt von der Analogie zu einem Baum und bedeutet eine Gabelung in der Darstellung des Programms.

Multiplikation

Wir wollen jetzt ein komplizierteres arithmetisches Problem betrachten: die Multiplikation von Dualzahlen. Um den Algorithmus für eine duale Multiplikation zu entwickeln, wollen wir damit beginnen, eine gewöhnliche dezimale Multiplikation zu untersuchen. Wir wollen 12 und 23 multiplizieren.

Die Multiplikation wird ausgeführt, indem man die rechte Ziffer des Multiplikators mit dem Multiplikanden multipliziert, d. h. "3 × 12". Das Teilprodukt ergibt "36". Dann multipliziert man die nächste Ziffer des Multiplikators, d. h. "2" mit "12". Das Ergebnis "24" wird dann zu dem Teilprodukt addiert.

Es wird aber noch eine Operation durchgeführt: 24 ist um eine Stelle nach links versetzt. Wir sagen, daß 24 um eine Stelle nach links verschoben wird. Genauso hätten wir sagen können, das Teilprodukt (36) sei vor der Addition um eine Stelle nach rechts verschoben worden.

Dann werden die beiden richtig verschobenen Zahlen addiert und die Summe ergibt sich zu 276. Dies ist einfach. Die duale Multiplikation wird auf die gleiche Art ausgeführt.

Wir wollen uns ein Beispiel anschauen. Wir wollen 3 x 5 multiplizieren:

Um die Multiplikaton richtig durchzuführen, gehen wir genauso vor, wie wir es oben taten. Die formale Darstellung dieses Algorithmus erscheint in Abb. 3.12. Sie stellt ein Flußdiagramm für diesen Algorithmus dar, unser erstes Flußdiagramm. Wir wollen es näher untersuchen.

Dieses Flußdiagramm stellt den Algorithmus, den wir gerade vorgestellt haben, symbolisch dar. Jedes Rechteck stellt eine Anweisung dar, die ausgeführt werden soll. Es wird in einen oder mehrere Programmbefeh-

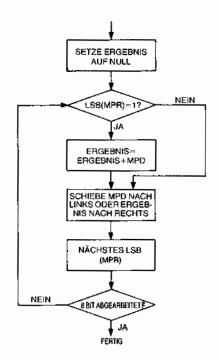


Abb. 3.12: Der grundlegende Algorithmus für die Multiplikation
– ein Fluβdiagramm

le übersetzt. Jede Raute stellt einen Test dar, der ausgeführt werden muß. Daraus wird im Programm eine Verzweigung. Fällt der Test positiv aus, führt die Verzweigung zu einer festgelegten Stelle. Hat der Test ein negatives Ergebnis, wird zu einer anderen Stelle verzweigt. Das Konzept der Verzweigung wird an späterer Stelle im Programm selbst erklärt. Der Leser sollte jetzt dieses Flußdiagramm selbst untersuchen und sich davon überzeugen, daß es den erläuterten Algorithmus wirklich genau beschreibt. Beachten Sie, daß aus der letzten Raute am unteren Ende des Flußdiagramms ein Pfeil herauskommt, der zur ersten Raute oben zurückführt. Der Grund dafür ist, daß der gleiche Teil des Flußdiagramms acht Mal ausgeführt wird, einmal für jedes Bit des Multiplikators. Einen solchen Vorgang, wo die Ausführung wieder an derselben Stelle beginnt, nennt man aus naheliegenden Gründen eine Programmschleife.

Aufgabe 3.13: Multiplizieren Sie "4" und "7" dual. Benutzen Sie dabei das Flußdiagramm und überprüfen Sie, ob Sie "28" erhalten. Versuchen Sie es nochmals, wenn dieses Ergebnis nicht herauskam. Nur wenn Sie das richtige Ergebnis erhalten, sind Sie in der Lage, das Flußdiagramm in ein Programm zu übersetzen.

8-mal-8-Bit Multiplikation

Wir wollen jetzt dieses Flußdiagramm in ein Programm für den Z80 umsetzen. Das vollständige Programm ist in Abbildung 3.13 wiedergegeben. Wir wollen es genau untersuchen. Wie Sie noch aus Kapitel 1 wissen werden, besteht Programmierung hier darin, das Flußdiagramm aus Abb. 3.12 in das Programm der Abb. 3.13 zu übersetzen. Jedes Kästchen des Flußdiagramms wird dabei in einen oder mehrere Befehle übersetzt.

Es wird angenommen, daß MPR und MPD schon eine Zahl enthalten.

MPY88	LD	BC,(MPRAD)	Lade Multiplikator nach C
	LD	B,8	B ist der Schleifenzähler
	LD	DE,(MPDAD)	Lade Multiplikand nach E
	LD	D,0	Lösche D
	LD	HL,0	Setze Ergebnis zu 0
MULT	SRL	C	Schiebe Multiplikatorbit ins
			Übertragsbit
	JR	NC,NOADD	Teste Übertragsbit
	ADD	HL,DE	Addiere MPD zum Ergebnis
NOADD	SLA	E	Schiebe MPD nach links
	RL	D	Speichere Bit in D
	DEC	В	Dekrementiere Schleifenzähler
	JP	NZ,MULT	Wiederhole, bis Schleifenzähler $= 0$
	LD	(RESAD),HL	Speichere Ergebnis

Abb. 3.13: 8 x 8 Bit Multiplikationsprogramm

Das erste Kästchen unseres Flußdiagramms dient zur *Initialisierung*. Es ist nötig, bestimmte Register oder Speicherplätze auf "0" zu setzen, weil das Programm sie benutzen wird. Die Register, die das Programm verwendet, erscheinen in Abb. 3.14.

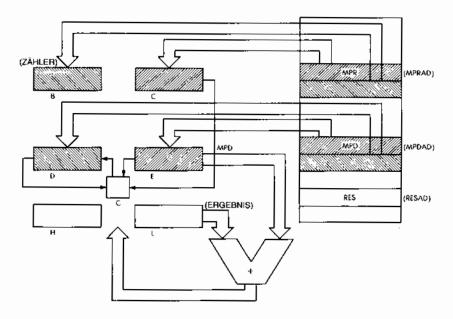


Abb. 3.14: 8 x 8 Bit Multiplikation - die Register

Für das Multiplikationsprogramm werden drei Registerpaare des Z80 verwendet. Der 8-Bit-Multiplikator stehe in der Speicherstelle MPRAD. Der Multiplikand sei bei der Speicheradresse MPDAD abgelegt. Multiplikator und Multiplikand werden jeweils in die Register C und E abgelegt (siehe Abb. 3.14). Das Register B wird als Zähler verwendet.

Die Register D und E enthalten den Multiplikanden, da er jeweils um ein Bit nach links geschoben wird.

Beachten Sie, daß man einen 16-Bit-Ladebefehl verwenden muß, obwohl anfangs nur C und E geladen werden müssen. Dadurch werden aber auch B und D aus dem Speicher geladen und müssen entsprechend auf "8" bzw. "0" zurückgsetzt werden.

Schließlich kann das Ergebnis einer 8-Bit x 8-Bit Multiplikation bis zu 16 Bit lang sein. Dies gilt, da 2^8 x $2^8 = 2^{16}$. Für das Ergebnis müssen deshalb zwei Register reserviert werden. Dies sind die Register H und L, wie in Abb. 3.14 dargestellt.

Als erster Schritt müssen die Register B, C und E mit dem entsprechenden Inhalt geladen und das Ergebnis (das Teilprodukt) auf den Wert "0" initialisiert werden, wie es in dem Flußdiagramm in Abb. 3.12 festgelegt wurde. Dies wird mit den folgenden Befehlen erledigt:

MPY88 LD BC,(MPRAD)
LD B,8
LD DE,(MPDAD)
LD D,0
LD HL,0

Die ersten drei Befehle laden MPR ins Registerpaar BC, den Wert "8" ins Register B und MPD ins Registerpaar DE. Da MPR und MPD 8-Bit-Worte sind, werden sie tatsächlich in die Register C bzw. E geladen, während die nächsten Worte im Speicher hinter MPR und MPD in die Register B und D geladen werden. Dies ist in Abb. 3.15 und 3.16 dargestellt. Der nächste Befehl setzt den Inhalt von D zu Null.

In diesem Multiplikationsprogramm wird der Multiplikand nach links verschoben, bevor er zum Ergebnis addiert wird (beachten Sie, daß es stattdessen wahlweise auch möglich wäre, das Ergebnis nach rechts zu verschieben, wie es im vierten Kästchen des Flußdiagramms Abb. 3.12 angegeben ist). Der Multiplikand MPD wird bei jedem Schritt in das Register D hineingeschoben. Das Register muß deshalb anfangs auf den Wert "0" gesetzt werden. Dies wird mit dem vierten Befchl erledigt. Schließlich setzt der fünfte Befehl die Register H und L in einem einzigen Befehl auf Null.

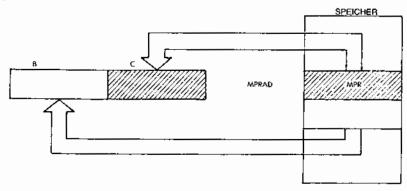


Abb. 3.15: LD BC, (MPRAD)

Wenn wir wieder das Flußdiagramm Abb. 3.12 betrachten, dann ist es der nächste Schritt, das niedrigste Bit (das Bit ganz rechts) des Multiplikators MPR zu testen. Ist dieses Bit eine "1", dann muß der Wert von MPD zum Zwischenergebnis addiert werden, sonst wird er nicht addiert. Dies wird mit den nächsten drei Befehlen durchgeführt:

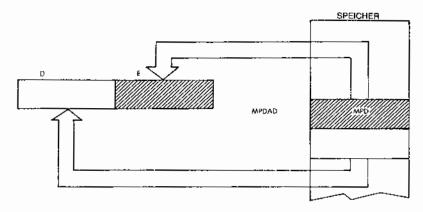


Abb. 3.16: LD DE, (MPDAD)

MULT SRL C JR NC,NOADD ADD HL,DE

Das erste Problem, das wir lösen müssen, besteht darin, das niedrigste Bit des Multiplikators im Register C zu testen. Wir können hier den Befehl BIT des Z80 verwenden, mit dem man ein beliebiges Bit in einem beliebigen Register testen kann. In diesem Fall jedoch wollten wir ein möglichst einfaches Programm entwerfen, indem wir eine Schleife verwenden. Würden wir hier den Befehl BIT verwenden, dann müßten wir zuerst Bit 0 testen, danach Bit 1 usw., bis wir Bit 7 erreichten. Dazu wäre aber jedesmal ein anderer Befehl nötig, und man könnte keine einfache Schleife verwenden. Um das Programm möglichst kurz zu halten, müssen wir einen anderen Befehl haben. Hier benutzen wir einen Schiebebefehl.

Anmerkung: Es gibt eine Möglichkeit, den Befehl BIT in einer Schleife zu verwenden, aber dann müßte das Programm sich selbst verändern, eine Methode, die wir vermeiden wollen..

SRL ist ein neuer Typ von Operationen in der Arithmetik- und Logikeinheit. Es bedeutet "Schiebe Rechts Logisch". Ein logisches Schieben wird dadurch charakterisiert, daß in die Position 7 eine Null nachgezogen wird. Im Gegensatz dazu ist das Bit, das beim arithmetischen Schieben in Position 7 gelangt, mit dem alten Wert von Bit 7 identisch. Die verschiedenen Arten von Schiebebefehlen werden im nächsten Kapitel beschrieben. Die Wirkungsweise des Befehls SRL C ist in Abb. 3.14 dargestellt, wo ein Pfeil aus dem Register C herauskommt und zu dem Quadrat führt, das das Übertragsbit (auch "C" genannt) darstellt. An dieser Stelle steht das rechte Bit von MPR im Übertragsbit C, wo es getestet werden kann.

Der nächste Befehl "JR NC,NOADD" ist ein Sprung. Er bedeutet "Springe, falls kein Übertrag (NC), zu der Adresse (Marke) NOADD". Ist der Inhalt des Übertragsbits eine "0" (kein Übertrag), dann springt das Programm zur Adresse NOADD. Enthält das Übertragsbit eine "1" (das Übertragsbit ist gesetzt), tritt keine Verzweigung ein und der nachfolgende Befehl, d. h. der Befehl "ADD HL,DE", wird ausgeführt.

Dieser Befehl legt fest, daß der Inhalt von D und E zum Inhalt von H und L addiert werden soll, mit dem Ergebnis in H und L. Da E den Multiplikanden MPD enthält (siehe Abb. 3.14), wird damit der Multiplikand zum Zwischenergebnis addiert.

An dieser Stelle muß der Multiplikand MPD nach links verschoben werden, unabhängig davon, ob er zum Zwischenergebnis addiert wurde oder nicht (dies entspricht dem vierten Kästchen im Fußdiagramm Abb. 3.12). Ausgeführt wird dies durch:

NOADD SLAE

SLA bedeutet "Schiebe Links Arithmetisch". Es ist gerade oben erklärt worden, daß es zwei verschiedene Schiebebefehle gibt, ein logisches Schieben und ein arithmetisches Schieben. Dies ist das arithmetische Schieben. Beim Linksschieben legt SLA fest, daß das Bit, das rechts in das Register hereinkommt (das niedrigste Bit) eine "0" ist (wie vorher entsprechend beim SRL).

Wir wollen beispielsweise annehmen, daß das Register E anfangs den Inhalt 00001001 hat. Nach dem Befehl SLA E ist der Inhalt von E 00010010, und das Übertragsbit enthält eine "0".

Wenn wir jedoch wieder die Abbildung 3.14 betrachten, sehen wir, daß wir in Wirklichkeit das höchste Bit (MSB genannt = englisch: most significant bit) von E direkt nach D schieben wollen (dies ist durch einen Pfeil veranschaulicht, der von E zu D führt). Es gibt jedoch keinen Befehl, der ein Doppelregister wie D und E in einer Operation schiebt. Sobald der Inhalt von E verschoben wurde, ist das linke Bit ins Übertragsbit "herausgefallen". Wir müssen dieses Bit aus dem Übertragsbit holen und ins Register D hineinschieben. Dies wird mit dem nächsten Befehl ausgeführt:

RL D

RL ist noch eine andere Art von Schiebeoperation. Sie bedeutet "Rotiere Links". Bei einer Rotieroperation ist das Bit, das in das Register hereinkommt, der Inhalt des Übertragsbits, im Gegensatz zu einer Schiebeoperation (siehe Abb. 3.17). Dies ist genau das, was wir wollen. Der Inhalt des Übertragsbits wird ganz rechts ins Register D geladen, und wir haben tatsächlich das linke Bit des Registers E übertragen.

Diese Folge von zwei Befehlen ist in Abb. 3.18 dargestellt. Man sieht, daß das höchstwertige Bit von E, das durch ein X gekennzeichnet ist, zuerst ins Übertragsbit und dann an die niedrigste Stelle von D übertragen wird. Tatsächlich wurde es von E nach D verschoben.

Wenn wir uns wieder auf das Flußdiagramm Abb. 3.12 beziehen, müssen wir an dieser Stelle zum nächsten Bit von MPR gehen und testen, ob es das achte Bit ist. Dies geschieht, indem wir den Bytezähler im Register B dekrementieren (siehe Abb. 3.14). Das Register wird dekrementiert durch:

DEC B

Dies ist ein Dekrementierbefehl, der die gewünschte Wirkung hat.

Schließlich müssen wir testen, ob der Zähler auf den Wert Null dekrementiert wurde. Dazu wird der Wert des Bits Z untersucht. Der Leser wird sich daran erinnern, daß das Flag Z (Nullflag) anzeigt, ob die vorangegangene arithmetische Operation (z. B. die Operation DEC) das Ergebnis Null ergeben hat. Man muß jedoch beachten, daß die Befehle DEC HL, DEC BC, DEC DE, DEC IX und DEC SP das Flag Z nicht beeinflussen. Ist der Zähler nicht "0", so ist die Operation noch nicht beendet, und wir müssen diese Programmschleife nochmals ausführen. Dies wird mit dem folgenden Befehl erledigt:

JP NZ,MULT

Hier handelt es sich um einen Sprungbefehl, der festlegt, daß immer dann, wenn das Z-Bit nicht gesetzt ist (NZ bedeutet nicht Null), zur Adresse MULT gesprungen wird. Dies ist die *Programmschleife*, die wiederholt ausgeführt wird, bis B auf den Wert 0 dekrementiert wird. Sobald B auf den Wert 0 dekrementiert wurde, wird das Z-Bit gesetzt, und der Befehl JP NZ wird nicht ausgeführt. Dann wird aber der nächste folgende Befehl abgearbeitet, nämlich:

LD (RESAD), HL

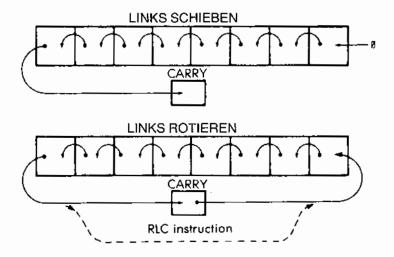


Abb. 3.17: Schieben und Rotieren

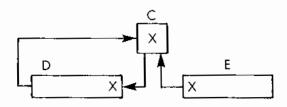


Abb. 3.18: von E nach D Schieben

Dieser Befehl speichert den Inhalt von H und L, d. h. das Ergebnis der Multiplikation, bei der Adresse RESAD, der Adresse, die für das Ergebnis festgelegt worden war. Beachten Sie, daß dieser Befehl den Inhalt der beiden Register H und L in zwei aufeinanderfolgende Speicherzellen transferiert, die den Adressen RESAD und RESAD + 1 entsprechen. Er speichert 16 Bit auf einmal ab.

Aufgabe 3.14: Können Sie das Multiplikationsprogramm so umschreiben, daß der Befehl BIT (Beschreibung im nächsten Kapitel) statt des Befehls SRL C verwendet wird? Was wäre der Nachteil davon?

Wir wollen das Programm wenn möglich verbessern:

Aufgabe 3.15: Kann der Befehl JP am Ende des Programms durch JR ersetzt werden? Wenn ja, welchen Vorteil würde dies bringen?

Aufgabe 3.16: Können Sie den Befehl DJNZ verwenden, um das Programm am Ende zu verkürzen?

Aufgabe 3.17: Überprüfen Sie die beiden Befchle "LD D,0" und "LD HL,0" am Anfang des Programms. Kann man sie ersetzen durch:

XOR A

LD D,A

LD H,A

LD L,A

Wenn ja, was ist der Gewinn an Länge (Anzahl der Bytes) und an Geschwindigkeit?

Es sei angemerkt, daß das Programm, das wir gerade entwickelt haben, meistens ein Unterprogramm sein wird, und daß der letzte Befehl in einem Unterprogramm RET (Return, d. h. Rücksprung) ist. Der Mechanismus von Unterprogrammen wird später in diesem Kapitel erklärt.

Wichtiger Selbsttest

Dies ist das erste wichtige Programm, mit dem wir uns bisher befaßt haben. Es enthält viele verschiedene Typen von Befehlen, so u. a. Transferbefehle (LD), arithmetische Operationen (ADD), logische Operationen (SRL, SLA, RL) und Sprünge (JP, JR). Es enthält außerdem eine Programmschleife, in der sieben Operationen, beginnend bei der

MARKE	BEFEHL	В	С	C (CARRY)	D	E	Н	L
			-					
								l

Abb. 3.19: Tabelle zur Multiplikationsaufgabe

Adresse MULT, wiederholt ausgeführt werden. Wenn man das Programmieren verstehen will, dann ist es wesentlich, die Arbeitsweise eines solchen Programms in allen Einzelheiten zu verstehen. Das Programm ist wesentlich länger als die vorhergehenden einfachen Arithmetikprogramme, die wir bisher entwickelt haben, und es sollte in allen Einzelheiten studiert werden. Jetzt wird eine wichtige Übungsaufgabe vorgeschlagen. Dem Leser sei es dringend empfohlen, diese Aufgabe vollständig und richtig durchzuführen, bevor er weitermacht. Dies alleine ist dann ein tatsächlicher Beweis, daß die Konzepte, die bisher vorgestellt wurden, auch verstanden sind. Wenn das richtige Ergebnis herauskommt, dann heißt das, daß Sie wirklich den Mechanismus verstanden haben, wie Befehle im Mikroprozessor Information verändern, zwischen Speicher und Registern transportieren und bearbeiten. Wenn Sie nicht das richtige Ergebnis erhalten, oder wenn Sie diese Aufgabe nicht

lösen, dann werden Sie wahrscheinlich später Schwierigkeiten haben, wenn Sie selbst Programme schreiben wollen. Um Programmieren zu lernen, muß man selbst üben. Bitte machen Sie jetzt eine Unterbrechung, nehmen Sie ein Blatt Papier oder verwenden Sie die Abbildung 3.19 und machen Sie die folgende Übungsaufgabe:

Aufgabe 3.18: Immer wenn man ein Programm geschrieben hat, sollte man es von Hand überprüfen, um sich davon zu überzeugen, daß es richtige Ergebnisse liefert. Genau das wollen wir jetzt tun: Das Ziel dieser Aufgabe ist es, die Tabelle in Abb. 3.19 vollständig und richtig auszufüllen.

Sie können direkt in die Abb. 3.19 schreiben, oder sie können eine Kopie des Formulars verwenden. Sie sollen den Inhalt aller wesentlichen Register im Z80 nach der Ausführung jedes Befehls in dem Programm angeben, vom Anfang bis zum Ende. In Abb. 3.19 sind alle Register angegeben. Von links nach rechts sind dies die Register B und C, die Register D, E, H und L. Auf der linken Seite der Tabelle soll die Marke, wenn vorhanden, und dann der Befehl, der ausgeführt wurde, angegeben werden. Rechts von dem Befehl soll der Inhalt aller Register nach der Ausführung des Befehls eingetragen werden. Wenn der Inhalt eines Registers nicht bekannt (oder nicht definiert) ist, können Sie das durch einen Strich kennzeichnen. Wir wollen gemeinsam anfangen, die Tabelle auszufüllen. Dann müssen Sie die Tabelle selbst bis zum Ende ausfüllen. Die erste Zeile ist unten angegeben:

	MARKE	BEFEHL	В	С	С	D	£	Н	Ĺ
			••		•		••		
ı	MPY88	LD BC, (0200)		03	-	•	i	~-	

Abb. 3.20: Multiplikation: Nach dem ersten Befehl

Wir wollen hier annehmen, daß wir "3" (MPR) und "5" (MPD) multiplizieren.

Der Befehl, der als erster ausgeführt werden muß, ist "LD BC,(MPRAD)". Der Inhalt der Speicherstelle MPRAD wird in die Register B und C geladen. Es wurde angenommen, daß MPR gleich 3 ist, d. h. gleich "00000011". Nach Ausführung dieses Befehls wurde der Inhalt des Registers auf "3" gesetzt. Beachten Sie, dieser Befehl bewirkt auch, daß das Register B mit dem Inhalt geladen, der im Speicher auf MPR folgt. Der nächste Befehl im Programm berücksichtigt das, indem er das Register B mit "8" lädt, wie in Abb. 3.21 gezeigt. Beachten Sie, daß an dieser Stelle der Inhalt der Register D, E, H und L noch undefi-

niert ist. Dies wird durch Striche markiert. Der Befehl LD legt das Übertragsbit nicht fest, so daß auch der Inhalt des Übertragsbits nicht definiert ist. Auch dies ist durch einen Strich kenntlich gemacht.

MARKE	BEFEHL	В	С	С	D	E	н	L
			••	-				
MPY88	LD BC, (0200)	00	03	-				
	LD B, 08	08	03	•				••

Abb. 3.21: Multiplikation: Nach zwei Befehlen

Die Situation nach Ausführung der ersten fünf Befehle (bis direkt vor MULT) ist in Abb. 3.22 gezeigt.

MARKE	BEFEHL B		С	С	D	E	Н	Ł
				•	••			
MPY88	LD BC, (0200)	00	03	-				
•	LD B, 08	80	03	•				
	LD DE, (0202)	80	03	-	00	05		
	LD D, 00	08	03	-	00	05		
	LD HL,0000	80	03	-	00	05	00	00

Abb. 3.22: Multiplikation: Nach fünf Befehlen

Der Befehl SRL führt ein logisches Rechtsschieben aus, und das rechte Bit von MPR gelangt in das Übertragsbit. In Abb. 3.23 können Sie sehen, daß MPR nach dem Schieben den Inhalt "0000 0001" hat. Das Übertragsbit C ist jetzt auf "1" gesetzt. Die anderen Register werden durch diese Operation nicht verändert. Bitte füllen Sie die Tabelle jetzt selbst weiter aus.

Ein zweiter Durchlauf durch die Schleife ist am Ende dieses Kapitels in Abb. 3.41 dargestellt.

Eine komplette Liste, die die Inhalte aller Z80-Register und Flags enthält, zeigt die Abbildung 3.39 am Ende des Kapitels für die vollständige Multiplikation. Abb. 3.40 zeigt eine Assemblerliste des Programms.

MARKE	BEFEHL	В	С	С	D	E	Н	Ĺ
				-		••		
MPY88	LD BC,(0200)	00	03	•				
•	LD B, 08	08	03	-		•		
]	LD DE, (0202)	08	03	-	00	05		
	LD D, 00	08	03	•	00	05	•	
	LD HL,0000	08	03	•	oo	05	00	00
MULT	SRL C	80	01	ı	00	05	00	00
	JR NC,0114	08	01	ŋ.	00	05	00	00
	ADD HL, DE	08	03	0	00	05	00	05
NOADD	SLA E	08	01	0	00	0A	00	05
	RL D	08	01	0	00	QA.	00	05
	DEC B	07	01	0	00	0A	00	05
	JP NZ,010F	07	01	0	00	0A	00	05

Abb. 3.23: Ein Durchlauf durch die Schleife

Andere Möglichkeiten der Programmierung

Das Programm, das wir eben entwickelt haben, hätte auch auf viele andere Arten geschrieben werden können. Es ist eine allgemeingültige Regel, daß normalerweise jeder Programmierer Wege finden kann, wie er ein Programm ändern, oft sogar verbessern kann. Beispielsweise haben wir den Multiplikanden vor der Addition nach links verschoben. Mathematisch wäre es äquivalent gewesen, das Zwischenergebnis vor der Addition des Multiplikanden um eine Position nach rechts zu verschieben. Dies ist tatsächlich eine interessante Übungsaufgabe!

Aufgabe 3.19: Schreiben Sie ein Programm zur 8 x 8 Bit Multiplikation, das den gleichen Algorithmus verwendet, aber das Ergebnis um eine Stelle nach rechts verschiebt, und nicht den Multiplikanden um eine Stelle nach links. Vergleichen Sie es mit dem vorhergehenden Programm und entscheiden Sie, ob diese andere Ausführung schneller oder langsamer als das alte Programm ist. Die Ausführungsgeschwindigkeiten der Z80-Befehle sind im nächsten Kapitel angegeben.

Verbessertes Multiplikationsprogramm

Das Programm, das wir gerade entwickelt haben, war eine direkte Übersetzung des Algorithmus in Kode. Effektives Programmieren erfordert jedoch eine genaue Beachtung der Einzelheiten, und oft kann man die

Länge eines Programms verkleinern oder die Ausführungszeit verkürzen. Wir wollen jetzt andere Möglichkeiten untersuchen, wie wir dieses grundlegende Programm verbessern können.

1. Schritt

Eine erste mögliche Verbesserung liegt in der besseren Ausnutzung des Z80-Befehlssatzes. Der zweitletzte Befehl und der vorhergehende können durch einen einzigen Befehl ersetzt werden:

Dies ist ein spezieller "automatischer Sprung" des Z80, der das Register B dekrementiert und zu einer festgelegten Adresse verzweigt, wenn es nicht "0" ist. Um ganz genau zu sein, der Befehl ist nicht völlig identisch mit den vorhergehenden beiden Befehlen:

da er eine Distanz angibt und man nur innerhalb eines Bereichs von -128 bis +127 springen kann. Hier müssen wir jedoch zu einer Stelle springen, die nur einige Byte entfernt ist, so daß diese Verbesserung zulässig ist. Das Programm, das sich daraus ergibt, ist unten in Abb. 3.24 aufgelistet:

```
MPY88B LD
             DE,(MPDAD)
             BC,(MPRAD)
       LD
       LD
             B.8
       LD
             D.0
       LD
             HL.0
MULT
       SRL
             C
             NC, NOADD
       JR
       ADD HL.DE
NOADD SLA
             \mathbf{E}
       RL
             Ð
       DJNZ MULT
       LD
             (RESAD),HL
       RET
```

Abb. 3.24: Verbesserte Multiplikation, Schritt 1

2. Schritt

Um dieses Multiplikationsprogramm weiter zu verbessern, wollen wir besonders beachten, daß in dem ursprünglichen Programm nach Abb. 3.13 drei verschiedene Schiebebefehle verwendet werden. Zuerst wird der Multiplikator nach rechts geschoben und dann in zwei verschiedenen Operationen der Multiplikand MPD nach links, indem zuerst das Register E nach links geschoben und dann das Register D nach links rotiert wird. Dies kostet Zeit. Ein üblicher "Trick" bei der Programmierung ba-

siert auf folgender Beobachtung: Jedesmal, wenn der Multiplikator um eine Position verschoben wird, wird eine weitere Bitposition im Multiplikatorregister frei. Wird der Multiplikator beispielweise nach rechts verschoben (wie im vorhergehenden Beispiel), wird links eine Stelle frei. Gleichzeitig kann man sehen, daß das erste Teilprodukt (oder Zwischenergebnis) höchstens neun Bit belegt. Wurde dem Ergebnis bei Beginn des Programms nur ein Byte zugewiesen, könnten wir jetzt die Stelle, die der Multiplikator frei macht, verwenden, um das Bit zu speichern, das aus dem Ergebnisbyte herausfällt.

Wird der MPR das nächste Mal verschoben, ist die Länge des Zwischenergebnisses wieder um höchstens ein Bit gewachsen. Mit anderen Worten, es genügt, für das Ergebnis anfangs nur ein Byte vorzusehen, und dann die Stellen zu benutzen, die frei werden, wenn der Multiplikator verschoben wird. Um das Programm zu verbessern, werden wir deshalb für MPR und RES ein gemeinsames Registerpaar vorsehen. Idealerweise sollten die beiden Register in einer Operation zusammen geschoben werden. Leider kann der Z80 immer nur 8 Bit auf einmal verschieben. Wie die meisten anderen 8-Bit-Mikroprozessoren besitzt er keine Befehle, die es erlauben, 16 Bit gleichzeitig zu verschieben.

Man kann jedoch einen anderen Trick anwenden. Der Z80 (wie auch der 8080) besitzt spezielle 16-Bit-Additionsbefehle, die wir schon benutzt haben. Vorausgesetzt, daß Multiplikator und Ergebnis im Registerpaar HL gespeichert sind, können wir folgenden Befehl verwenden:

ADD HL,HL,

der den Inhalt von HL mit sich selbst addiert. Eine Zahl mit sich selbst addieren heißt sie verdoppeln. Eine Zahl im Dualsystem verdoppeln

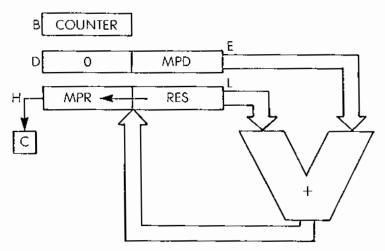


Abb. 3.25: Register zur verbesserten Multiplikation

heißt aber, sie nach links zu verschieben. Wir haben gerade ein 16-Bit-Schieben in einem einzigen Befehl gefunden. Leider wird nach links verschoben, während wir nach rechts schieben wollten. Dies ist aber kein Problem.

Prinzipiell kann der MPR nach links oder nach rechts verschoben werden. Wir haben einen Algorithmus verwendet, der nach rechts schiebt, weil man das bei der normalen Addition auch macht. Dies ist aber nicht zwingend. Die Additionsoperation ist kommutativ und die Reihenfolge kann vertauscht werden. Den MPR nach links zu verschieben ist also genauso richtig.

Um den Vorteil dieses simulierten 16-Bit-Schiebens zu nutzen, müssen wir den MPR nach links verschieben. Deshalb wird der MPR im Register H stehen und das Ergebnis im Register L. Daraus ergibt sich die Registerbelegung nach Abb. 3.25.

Der Rest des Programms ist im wesentlichen identisch mit der vorhergehenden Version. Es ergibt sich dann folgendes Programm:

```
MP488C LD
             HL,(MPRAD-1)
       LD
             L,0
       LD
             DE,(MPDAD)
       LD
             _{\rm D,0}
       LD
             B,8
       ADD HL,HL
MULT
       JR
             NC,NOADD
       ADD HL.DE
NOADD DJNZ MULT
       LD
             (RESAD),HL
       RET
```

Abb. 3.26: Verbesserte Multiplikation, Schritt 2

Wenn wir dieses Programm mit dem vorhergehenden vergleichen, dann sehen wir, daß sich die Länge der Multiplikationsschleife (die Zahl der Befehle zwischen MULT und dem Sprung) verringert hat. Dieses Programm wurde mit weniger Befehlen geschrieben und wird deshalb auch schneller ausgeführt werden. Dies zeigt, wie vorteilhaft es ist, die richtigen Register zum Speichern der Information zu wählen.

Ein direkter Entwurf führt im allgemeinen zu einem Programm, das funktioniert. Er wird aber nicht zu einem optimalen Programm führen. Deshalb ist es wichtig, die verfügbaren Register und Befehle zu verstehen und auf die bestmögliche Art einzusetzen. Diese Beispiele veranschaulichen einen vernünftigen Weg zu einer Auswahl von Registern und Befehlen für maximale Effizienz.

Aufgabe 3.20: Berechnen Sie die Geschwindigkeit einer Multiplikation unter Verwendung des letzten Programms. Nehmen Sie an, daß in 50% der Fälle eine Verzweigung auftritt. Schauen Sie nach, wie viele Zyklen jeder Befehl beansprucht. Nehmen Sie eine Taktfrequenz von 2 MHZ an (d. h. ein Taktzyklus = $0.5 \mu s$).

Aufgabe 3.21: Beachten Sie, daß wir für den Multiplikanden das Registerpaar DE verwendet haben. Wie müßte das Programm verändert werden, wenn wir statt dessen das Registerpaar BC verwendet hätten? (Hinweis: Dann wäre eine Veränderung am Ende nötig.)

Aufgabe 3.22: Warum müssen wir den Umstand auf uns nehmen, das Register D auf 0 zu setzen, nachdem wir MPD nach E geladen haben?

Zuletzt wollen wir noch eine Einzelheit besprechen, über die sich der Programmierer, der mit dem Befehlssatz des Z80 noch nicht vertraut ist, wahrscheinlich wundert. Der Leser hat bestimmt bemerkt, daß wir beide Register D und E gleichzeitig von einer Speicheradresse laden mußten, um MPD aus dem Speicher nach E zu laden. Dies liegt daran, daß es keine Möglichkeit gibt, ein einzelnes Byte direkt aus dem Speicher zu holen und ins Register E zu laden, außer wenn die Adresse in HL steht. Dies ist eine Eigenart, die von dem frühen 8008 übernommen wurde, der keine direkte Adressierung zuließ. Diese Eigenschaft wurde mit einigen Verbesserungen in den 8080 übernommen und noch weiter verbessert

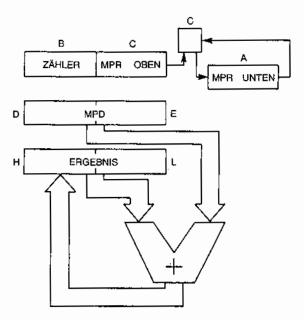


Abb. 3.27: 16 x 16 Bit Multiplikation - die Register

im Z80, bei dem man 16 Bit direkt von einer gegebenen Speicheradresse holen kann (jedoch keine 8 Bit).

Nachdem wir jetzt dieses mögliche Rätsel gelöst haben, wollen wir eine kompliziertere Multiplikation ausführen.

Eine 16 x 16 Bit Multiplikation

Um unsere neu erworbenen Fähigkeiten zu überprüfen, wollen wir zwei 16-Bit-Zahlen multiplizieren. Wir wollen jedoch annehmen, daß das Ergebnis nur 16 Bit einnimmt, so daß es in eines der Registerpaare paßt. Wie bei unserem ersten Beispiel einer Multiplikation, steht das Ergebnis in den Registern H und L (siehe Abb. 3.27). Der Multiplikand MPD steht in den Registern D und E.

Es wäre verlockend, den Multiplikator in den Registern B und C abzulegen. Wenn wir jedoch den Vorteil des Befehls DJNZ nutzen wollen, muß das Register B als Zähler verwendet werden. Deshalb wird die eine Hälfte des Multiplikators im Register C stehen und die andere im Register A (siehe Abb. 3.27). Das Multiplikationsprogramm ist unten angegeben:

MUL16	LD LD	A,(MPRAD+1) C,A	MPR, oben
	LD	A,(MPRAD)	MPR, unten
	LD	B,16D	Zähler
	LD	DE,(MPDAD)	MPD
	LD	HL,0	
MULT	SRL	C	MPR oben nach
			rechts schieben
	RRA		MPR unten
			rechts rotieren
	JR	NC,NOADD	Teste Übertrag
	ADD	HL,DE	Addiere MPD zum
			Ergebnis
NOADD	EX	DE,HL	Vertausche DE, HL
	ADD	HL,HL	Verdopplung –
			schiebe MPD links
	EX	DE,HL	
	DJNZ	MULT	
	RET		

Abb. 3.28: 16 x 16 Bit Mutiplikationsprogramm

Dieses Programm ist analog zu dem, das wir vorher entwickelt haben. Die ersten sechs Befehle (von der Marke MUL16 bis zur Marke MULT) initialisieren die Register mit den entsprechenden Inhalten. Eine neue

Schwierigkeit taucht hier dadurch auf, daß die beiden Hälften von MPR mit verschiedenen Operationen geladen werden müssen. Es wurde angenommen, daß MPRAD auf den unteren Teil von MPR im Speicher zeigt, auf den in der nächsten Speicherstelle der obere Teil folgt. (Beachten Sie, daß auch die umgekehrte Konvention benutzt werden kann.) Sobald der obere Teil von MPR nach A eingelesen wurde, muß er nach C übertragen werden:

LD A,(MPRAD+1) LD C.A

Schließlich kann der untere Teil von MPR direkt in den Akkumulator geladen werden:

LD A,(MPRAD)

Die restlichen Register B, D, E, H und L werden wie üblich initialisiert:

LD B,16D LD DE,(MPDAD) LD HL,0

Mit dem Multiplikator muß ein 16-Bit-Schieben ausgeführt werden. Es nimmt zwei getrennte Schiebe- oder Rotieroperationen mit den Registern C und A in Anspruch:

> MULT SRL C RRA

Nach dem 16-Bit-Schieben steht das rechte Bit von MPR, d. h. das LSB, im Übertragsbit C, wo es getestet werden kann:

JR NC, NOADD

Wie üblich wird der Multiplikand nicht zum Zwischenergebnis addiert, wenn das Übertragsbit "0" ist; der Multiplikand wird aber addiert, wenn es "1" ist:

ADD HL,DE

Dann muß der Multiplikand MPD um eine Position nach links geschoben werden.

Der Z80 hat aber keinen Befehl, der den Inhalt der Register D und E gleichzeitig um eine Position nach links verschiebt, und ebensowenig kann er den Inhalt von D und E mit sich selbst addieren. Der Inhalt von D und E wird deshalb nach H und L übertragen, dann verdoppelt und nach D und E zurückübertragen. Dies wird mit den drei folgenden Befehlen durchgeführt:

NOADD EX DE,HL ADD HL,HL EX DE,HL

Schließlich wird der Zähler B dekrementiert und ein Sprung zum Schleifenanfang ausgeführt, wenn er nicht auf "0" dekrementiert wurde:

DJNZ MULT

Wie üblich ist es möglich, die Register anders zu belegen, was eventuell (oder eventuell auch nicht) zu kürzerem Kode führen kann:

Aufgabe 3.23: Lade den Multiplikator in die Register B und C. Plaziere den Zähler in A. Schreibe das entsprechende Multiplikationsprogramm und diskutiere Vor- und Nachteile dieser Registerbelegung.

Aufgabe 3.24: Diese Aufgabe bezieht sich auf das ursprüngliche 16-Bit-Multiplikationsprogramm. Können Sie eine Möglichkeit angeben, den MPD zu schieben, der in den Registern D und E steht, ohne ihn in die Register H und L zu übertragen?

Aufgabe 3.25: Schreibe ein 16 mal 16 Bit Multiplikationsprogramm, das erkennt, wenn das Ergebnis länger als 16 Bit ist. Dies ist eine einfache Verbesserung unseres grundlegenden Programms.

Aufgabe 3.26: Schreibe ein 16 mal 16 Bit Multiplikationsprogramm mit einem 32-Bit-Ergebnis. In Abb. 3.29 ist dazu eine Registerbelegung vorgeschlagen. Beachten Sie, daß das Zwischenergebnis nach der ersten Addition in der Schleife nur 16 Bit einnimmt, und daß der Multiplikator für jeden weiteren Schritt ein Bit freimacht.

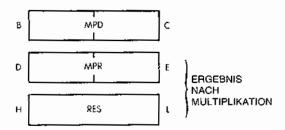


Abb. 3.29: 16 x 16 Bit Multiplikation mit 32-Bit-Ergebnis

Duale Division

Der Algorithmus für die duale Division ist analog zu dem, den wir für die Multiplikation verwendet haben. Der Divisor wird nacheinander von den Bits hoher Ordnung des Dividenden subtrahiert. Nach jeder Subtraktion wird statt des ursprünglichen Dividenden das Ergebnis benutzt. Der Wert des Quotienten wird gleichzeitig jedesmal um 1 inkrementiert. Eventuell wird das Ergebnis der Subtraktion negativ. Dies nennt man eine Überziehung. Dann muß man das Zwischenergebnis wiederherstellen, indem man den Divisor wieder addiert. Natürlich muß gleichzeitig der Quotient um 1 dekrementiert werden. Quotient und Dividend werden dann um eine Position nach links geschoben und der Algorithmus wird wiederholt. Abb. 3.30 zeigt das Flußdiagramm dazu.

Das eben beschriebene Verfahren nennt man wiederherstellendes Verfahren. Eine Variation dieses Verfahrens, die eine schnellere Ausführung bewirkt, heißt nicht-wiederherstellendes Verfahren.

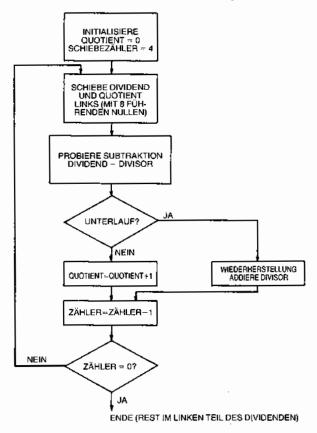


Abb. 3.30: Flußdiagramm für duale 8-Bit Division

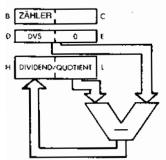


Abb. 3.31: 16/8 Bit Division - die Register

16/8 Bit Division

Als Beispiel wollen wir hier eine 16 durch 8 Bit Divison untersuchen, die einen 8-Bit-Quotienten und einen 8-Bit-Rest ergibt. Die Registerbelegung ist in Abb. 3.31 gezeigt.

Das Programm ist unten angegeben:

DIV168	LD	A,(DVSAD)	Lade Divisor
	LD	D,A	nach D
	LD	E,0	
	LD	HL,(DVDAD)	Lade 16-Bit-Dividend
	LD	B,9	Initialisiere Zähler
	JP	REIN	Springe zu REIN
DIV	ADD	HL,HL	Schiebe Dividend links
REIN	XOR	Α	Lösche Bit C
	SBC	HL,DE	Dividend - Divisor
	INC	HL	Quotient=Quotient+1
	JP	P,NOADD	Teste, ob Rest positiv
	ADD	HL,DE	Stelle wieder her,
		•	wenn nötig
	DEC	HL	Quotient=Quotient+1
NOADD	DJNZ	DIV	Schleife, bis B=1
	RET		

Abb. 3.32: 16/8 Bit Divisionsprogramm

Die ersten fünf Befehle des Programms laden den Divisor und den Dividenden in die vorgesehenen Register. Sie initialisieren außerdem den Zähler im Register B mit dem Wert 9. Beachten Sie wieder, daß das Register B ein bevorzugter Platz für einen Zähler ist, da man dann den speziellen Z80-Befehl DJNZ verwenden kann:

Dann wird der Divisor von dem Dividenden subtrahiert. Da man den Befehl SBC verwenden muß (es gibt keine 16-Bit-Subtraktion ohne Übertragsbit), muß das Übertragsbit vorher auf den Wert "0" gesetzt werden. Dieses kann auf verschiedene Arten durchgeführt werden. Das Übertragsbit kann man löschen durch Operationen wie:

XOR A AND A OR A

Hier wird ein XOR verwendet:

REIN XOR A

Dann kann die Subtraktion ausgeführt werden:

SBC HL,DE

Es wird erwartet, daß die Subtraktion erfolgreich ist, d. h. daß der Rest positiv ist. Diesen Schritt nennt man "Subtraktion auf Probe" (beachten Sie dabei das Flußdiagramm in Abb. 3.30). Deshalb wird der Quotient um eins inkrementiert. Schlug die Subtraktion tatsächlich aber fehl (d. h. der Rest ist negativ), muß der Quotient später um eins dekrementiert werden:

INC HL

Dann wird das Ergebnis der Subtraktion getestet:

JP P,NOADD

Ist der Rest positiv oder null, war die Subtraktion erfolgreich, und es ist nicht nötig, sie rückgängig zu machen. Das Programm springt zur Adresse NOADD. Sonst muß der alte Wert des Dividenden wiederhergestellt werden, indem der Divisor wieder addiert wird, und der Quotient muß dekrementiert werden. Dies wird mit den nächsten Befehlen ausgeführt:

ADD HL,DE DEC HL

Dann wird der Zähler B dekrementiert und auf den Wert "0" getestet. Solange B nicht Null ist, wird die Schleife weiter ausgeführt.

NOADD DJNZ DIV RET

Der resultierende Dividend wird links geschoben und der nächste Subtraktionsversuch erwartet.

DIV ADD HL.HL

Aufgabe 3.27: Überprüfen Sie die Arbeitsweise dieses Divisionsprogramms von Hand, indem sie die Tabelle in Abb. 3.33 ausfüllen, wie bei der Multiplikation in Aufgabe 3.18. Beachten Sie, daß der Inhalt von D nicht in Abb. 3.33 eingetragen werden muß, da er nirgends geändert wird.

MARKE	BEFEHL	В	В	L
	1 1			
]]			
]			:

Abh. 3.33: Formular für das Divisionsprogramm

8-Bit-Division

Das folgende Programm wendet ein wiederherstellendes Verfahren an und ergibt einen komplementierten Quotienten in A. Es dividiert 8 Bit durch 8 Bit (ohne Vorzeichen).

E ist der Dividend C ist der Divisor A ist der Ouotient B ist der Rest DIV88 XOR A Lösche Akkumulator LD B.8 Schleifenzähler LOOP88 RL Rotiere Übertragsbit in Akku - Dividend RLA Übertragsbit wird Null sein SUB C Versuche den Divisor zu subtrahieren JR NC,\$+3 Subtraktion ok ADD A,C Stelle Akkumulator wieder her, setze Übertragsbit DJNZ LOOP88 LD B,ARest nach B LD A,EQuotient RLA Schiebe das letzte Ergebnisbit hinein CPL Komplementiere die Bits RET

Beachten Sie: Das Symbol "\$" im sechsten Befehl stellt den Wert des Befehlszählers dar.

Nicht-wiederherstellende Division

Das folgende Programm führt eine ganzzahlige 16 Bit durch 15 Bit Division durch und wendet dabei ein nicht-wiederherstellendes Verfahren an. IX zeigt auf den Dividenden, IY auf den Divisor (von Null verschieden). Das Ergebnis steht dann in IX (siehe Abb. 3.34).

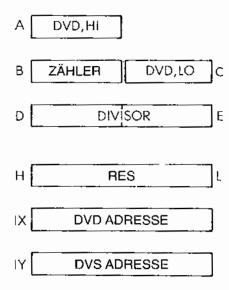


Abb. 3.34: Nicht-wiederherstellende Division - die Register

Register B wird als Zähler verwendet und anfangs auf 16 gesetzt.

A und C enthalten den Dividenden

D und E enthalten den Divisor

H und L enthalten das Ergebnis

Der 16-Bit-Dividend wird nach links geschoben durch:

RL C RLA

Der Rest wird nach links geschoben durch:

ADC HL,HL

Der Quotient steht dann schließlich in B und C, der Rest in HL. Das Programm folgt.

DIV16	LD	B,(IX+1) C,(IX)	
	LD LD	D,(IY+1)	
	LD	E,(IY)	
	LD	A,D	
	OR	E,D	Divisor oben oder Divisor unten
	JR	_	Test, ob Divisor Null
	LD	A,B	DVD oben
	LD	HL,0	Lösche Ergebnis
	LD	B,16D	Zähler
TRIALSB		C	Rotiere Ergebnis und Akkumulator
IKIALSD	XL.	C	links
	RLA		
	ADC	HL,HL	Links Schieben, Übertragsbit wird nie gesetzt
	SBC	HL,DE	Minus Divisor
NULL	CCF		Ergebnisbit
	JR	NC,NGV	Akkumulator negativ?
PTV	DJNZ	TRIALSB	Zähler Null?
	JP	DONE	
RESTOR	RL	С	Rotiere Ergebnis und Akkumulator links
	RLA		
	ADC	HL,HL	Siehe oben
	AND	Α	
	ADC	HL,HL	Wiederherstellung durch Addition des Divisors
	JR	C,PTV	Ergebnis positiv
	JR	Z,NULL	Ergebnis Null
NGV	DJNZ	RESTOR	Zähler Null?
DONE	RL	C	Schiebe Ergebnisbit ein
	RLA		9
	ADD	HL,DE	Korrigiere Rest
	LD	B,A	Quotient in BC
	RET		

Aufgabe 3.28: Vergleiche das vorhergehende Programm mit dem folgenden, das ein wiederherstellendes Verfahren benutzt:

	Divis Quot	lend in AC or in DE ient in AC in HL	
DIV16	LD	HL,0	Lösche Akkumulator
	LD	B,16D	Setze Zähler
LOOP16	RL	C	Rotiere Akkumulator - Ergebnis links
	RLA		_
	ADC	HL,HL	Links Schieben
	SBC	HL,DE	Versuch, den Divisor zu subtrahieren
	JR	NC,\$+3	Subtraktion war ok
	ADD	HL,DE	Stelle Akkumulator wieder her
	CCF	•	Berechne Ergebnisbit
	DJNZ	LOOP16	Zähler nicht Null
	RL	C	Schiebe letztes Ergebnisbit ein
	RET		

Achtung: Das Symbol \$ bedeutet "momentane Adresse" (im siebten Befehl).

Logische Operationen

Eine andere Klasse von Befehlen, die von der ALU im Mikroprozessor ausgeführt werden können, ist der Satz der logischen Befehle. Diese enthalten: AND, OR und exklusives OR (XOR). Zusätzlich kann man hier die Schiebe- und Rotieroperationen einschließen, die schon verwendet wurden, sowie die Vergleichsbefehle, die beim Z80 CP genannt werden. Der Gebrauch von AND, OR und XOR wird im Kapitel 4 bei dem Befehlssatz beschrieben.

Wir wollen jetzt ein kurzes Programm entwerfen, das überprüft, ob eine gegebene Speicherstelle, genannt LOC, den Wert "0", den Wert "1" oder etwas anderes enthält.

Das Programm führt die Vergleichsoperation ein und führt eine Reihe logischer Tests aus. Abhängig von dem Ergebnis des Vergleichs wird der eine oder der andere Programmteil ausgeführt.

Das Programm ist unten angegeben:

LD	A,(LOC)	Lies Zeichen in LOC
CP	00H	Vergleich mit Null
JP	Z,ZERO	Ist es eine 0?
CP	01H	Vergleich mit Eins
JP	Z,ONE	
`	W-Jankin	II waah Tiina safundan

NONEFOUND ... Weder Null noch Eins gefunden

ZERO ...

Der erste Befehl "LD A, (LOC)" liest den Inhalt der Speicherstelle LOC und lädt ihn in den Akkumulator. Dies ist das Zeichen, das wir testen wollen. Mit dem folgenden Befehl wird es mit dem Wert Null verglichen:

CP 00H

Dieser Befehl vergleicht den Inhalt des Akkumulators mit dem hexadezimalen Wert "00", d. h. mit dem Bitmuster "0000 0000". Dieser Vergleichsbefehl setzt das Bit Z im Flagregister auf den Wert "1", wenn der Vergleich zutrifft. Dieses Bit wird von dem nächsten Befehl getestet:

JP Z,ZERO

Der Sprungbefehl testet den Wert des Bits Z. Ist der Vergleich zutreffend, dann wird das Bit Z auf Eins gesetzt und der Sprung wird ausgführt. Das Programm springt dann zur Adresse ZERO. Trifft der Vergleich nicht zu, wird der nächste folgende Befehl ausgeführt:

CP 01H

Der folgende Sprungbefehl wird entsprechend zur Adresse ONE verzweigen, wenn der Vergleich zutrifft. Ist keiner der Vergleiche zutreffend, wird der Befehl an der Adresse NONEFOUND ausgeführt.

JP Z,ONE

Dieses Programm wurde vorgestellt, um die Nützlichkeit des Vergleichsbefehls, auf den ein Sprung folgt, zu zeigen. Diese Kombination wird in den folgenden Programmen oft verwendet werden.

Aufgabe 3.29: Verwende die Definition des Befehls LD A,(LOC) aus dem nächsten Kapitel. Untersuche die Wirkung dieses Befehls auf die Flags, falls diese beeinflußt werden. Ist der zweite Befehl des Programms notwendig (CP 00H)?

Aufgabe 3.30: Schreibe ein Programm, das den Inhalt der Speicherzelle "24" liest und zu einer "STERN" genannten Adresse verzweigt, wenn in der Speicherzelle 24 das Zeichen "*" stand. Die Bitfolge für das Zeichen "*" in Binärdarstellung ist "00101010".

Zusammenfassung der Befehle

Wir haben jetzt die meisten wichtigen Befehle des Z80 studiert, indem wir sie verwendet haben. Wir haben Werte zwischen dem Speicher und den Registern übertragen. Wir haben mit solchen Daten arithmetische und logische Operationen ausgeführt. Wir haben sie getestet und haben abhängig vom Ergebnis der Tests verschiedene Programmteile ausgeführt. Teilweise haben wir spezielle "automatische" Z80-Befehle wie DJNZ verwendet, um Programme zu verkürzen. Andere automatische Befehle wie LDDR, CPIR, INIR werden im weiteren eingeführt werden.

Spezielle Vorzüge des Z80 haben wir voll genutzt, um die Programme zu vereinfachen (z. B. die Befehle für 16-Bit-Register), und der Leser sollte darauf achten, diese Programme nicht auf einem 8080 zu verwenden; sie wurden für den Z80 optimiert.

Wir haben auch eine Programmstruktur, eine sogen. Schleife, eingeführt. Eine andere wichtige Struktur wird jetzt vorgestellt: das Unterprogramm.

Unterprogramme

Im Prinzip ist ein Unterprogramm einfach ein Block von Befehlen, dem der Programmierer einen Namen gegeben hat. In der Praxis muß ein Unterprogramm mit einem speziellen Befehl beginnen, Unterprogramm-Eröffnung genannt, der es für den Assembler als Unterprogramm identifiziert. Es muß auch mit einem speziellen Befehl enden, der Return (Rücksprung) genannt wird. Wir wollen zuerst die Verwendung eines Unterprogramms veranschaulichen, um seine Bedeutung zu zeigen. Dann werden wir untersuchen, wie es tatsächlich ausgeführt wird.

Der Gebrauch eines Unterprogramms ist in Abb. 3.35 veranschaulicht. Das Hauptprogramm erscheint auf der linken Seite der Abbildung. Rechts ist das Unterprogramm symbolisch dargestellt.

Wir wollen nun den Mechanismus des Unterprogramms untersuchen. Die Zeilen des Hauptprogramms werden nacheinander abgearbeitet, bis ein neuer Befehl auftritt: CALL SUB. Dieser Befehl ist der *Unterprogrammaufruf* und bewirkt einen Sprung zum Unterprogramm. Dies

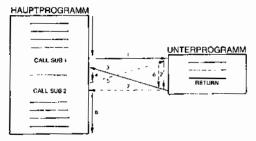


Abb. 3.35: Unterprogrammaufrufe

heißt, daß nach dem Befehl CALL SUB der erste Befehl innerhalb des Unterprogramms ausgeführt wird. Dies macht der Pfeil Nr. 1 in Abb. 3.35 deutlich.

Dann wird das Unterprogramm genau wie jedes andere Programm auch ausgeführt. Wir wollen annehmen, daß das Unterprogramm keine Calls enthält. Der letzte Befehl dieses Unterprogramms ist ein RETURN. Dies ist ein Befehl, der einen Rücksprung ins Hauptprogramm bewirkt. Der Befehl, der nach dem RETURN als nächster ausgeführt wird, ist der Befehl, der im Hauptprogramm dem Befehl CALL SUB folgt. Dies verdeutlicht der Pfeil Nr. 3 in der Abb. 3.35. Das Programm wird dann weiter ausgeführt, wie es der Pfeil Nr. 4 anzeigt.

Innerhalb des Hauptprogramms erscheint dann ein zweiter Aufruf CALL SUB. Es wird wieder ein Sprung ausgeführt, wie es der Pfeil Nr. 5 zeigt. Dies heißt, daß nach dem zweiten Befehl CALL SUB wiederum das Unterprogramm ausgeführt wird.

Wann immer innerhalb des Unterprogramms der Befehl RETURN erreicht wird, tritt ein Rücksprung zu dem nächsten Befehl nach den betreffenden CALL SUB auf. Dies ist mit Pfeil Nr. 7 veranschaulicht. Nach der Rückkehr ins Hauptprogramm wird dort die Ausführung normal fortgesetzt, wie es der Pfeil Nr. 8 zeigt.

Die Wirkungsweise der beiden speziellen Befehle CALL SUB und RE-TURN sollte jetzt klar sein. Das ist der Vorteil des Unterprogrammverfahrens.

Der wesentliche Vorzug eines Unterprogramms ist es, daß es von beliebig vielen Stellen im Hauptprogramm aus aufgerufen und wiederholt ausgeführt werden kann, ohne daß man es mehrfach schreiben muß. Ein erster Vorteil ist, daß dieses Verfahren Speicherplatz spart, weil man das Unterprogramm nicht jedesmal neu einfügen muß. Ein zweiter Vorteil ist, daß der Programmierer ein spezielles Unterprogramm nur einmal entwerfen braucht, und es dann wiederholt verwenden kann. Dies ist eine wesentliche Vereinfachung für den Programmentwurf.

Aufgabe 3.31: Was ist der hauptsächliche Nachteil eines Unterprogramms? (die Antwort folgt.)

Der Nachteil eines Unterprogramms sollte schon klar werden, wenn man nur den Ablauf der Ausführung von Hauptprogramm und Unterprogramm verfolgt. Ein Unterprogramm führt zu einer verlangsamten Ausführung, weil zusätzliche Befehle abgearbeitet werden müssen: CALL SUB und RETURN.

Ablauf des Unterprogramm-Mechanismus

Wir wollen hier untersuchen, wie die beiden Befehle CALL SUB und RETURN innerhalb des Mikroprozessors ausgeführt werden. Die Folge des Befehls CALL SUB ist es, daß der nächste Befehl von einer neuen Adresse geholt wird. Sie werden sich erinnern (oder sonst im Kapitel 1 nachlesen), daß die Adresse des Befehls, der in einem Computer als nächster ausgeführt werden soll, im Befehlszähler (PC) steht. Dies heißt, der Befehl CALL SUB bewirkt, daß in das Register PC ein neuer Inhalt geladen wird. Er bewirkt, daß die Anfangsadresse des Unterprogramms in den Befehlszähler geladen wird. Reicht das aber wirklich aus? Um diese Frage zu beantworten, wollen wir den anderen Befehl betrachten, der eingebaut werden muß: RETURN. Wie der Name sagt, muß der Befehl RETURN einen Rücksprung zu dem Befehl bewirken, der auf den CALL SUB folgt. Dies ist aber nur möglich, wenn diese Adresse irgendwo gespeichert wurde. Diese Adresse war der Inhalt des Befehlszählers, als der Befehl CALL SUB auftrat. Dies ist der Fall, weil der Befehlszähler immer dann automatisch inkrementiert wird, wenn er benutzt wurde (siehe Kapitel 1). Genau das ist die Adresse, die wir aufbewahren wollen, so daß wir später den RETURN ausführen können.

Das nächste Problem ist: Wo können wir die Rücksprungadresse aufbewahren? Diese Adresse muß an einer Stelle gespeichert werden, wo sichergestellt ist, daß sie nicht gelöscht wird.

Wir wollen jedoch die folgende Situation betrachten, die in Abb. 3.36 veranschaulicht ist. In diesem Beispiel enthält das Unterprogramm 1 einen Call (Aufruf) des Unterprogramms 2. Unser Verfahren sollte auch in diesem Fall funktionieren. Natürlich kann es auch mehr als zwei Unterprogramme mit allgemein N "verschachtelten" Aufrufen geben. Deshalb muß das Verfahren den Befehlszähler immer wieder abspeichern, wenn ein neuer CALL erreicht wird. Dies setzt voraus, daß uns wenigstens 2N Speicherplätze für dieses Verfahren zur Verfügung stehen. Außerdem müssen wir zuerst aus dem Unterprogramm SUB2 und danach aus dem Unterprogramm SUB1 zurückspringen. Mit anderen Worten, wir brauchen eine Struktur, die die zeitliche Reihenfolge aufbewahrt, in der die Adressen gespeichert wurden.

Diese Struktur hat einen Namen, und sie wurde bereits eingeführt. Es ist der Stapel. Abb. 3.38 zeigt den jeweiligen Inhalt des Stapels während aufeinanderfolgender Unterprogrammaufrufe. Wir wollen uns zuerst das Hauptprogramm anschauen. Bei der Adresse 100 wird der erste CALL erreicht: CALL SUB1. Wir wollen annehmen, daß der Unter-

programmaufruf in diesem Mikroprozessor drei Byte belegt (RST ist eine Ausnahme davon). Die nächste folgende Adresse ist deshalb nicht "101" sondern "103". Der Befehl CALL belegt die Adressen "100", "101" und "102". Da das Steuerwerk des Z80 "weiß", daß dies ein Dreibytebefehl ist, hat der Befchlszähler den Inhalt "103", sobald der Befehl dekodiert ist. Die Wirkung des Call ist es, den Wert "280" in den Befehlszähler zu laden. "280" ist die Startadresse von SUB1.

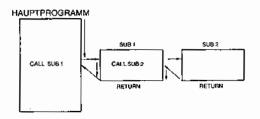


Abb. 3.36: Verschachtelte Aufrufe

Jetzt sind wir in der Lage, die Wirkung des Befehls RETURN und die korrekte Arbeitsweise unseres Stapelverfahrens zu demonstrieren. Die Ausführung wird innerhalb von SUB2 fortgesetzt, bis zum Zeitpunkt Time3 der Befehl RETURN erreicht wird. Die Wirkungsweise des Befehls RETURN besteht darin, das oberste Element des Stapels in den Befehlszähler zu holen (Pop). Mit anderen Worten, der Befehlszähler wird auf seinen Wert vor dem Eintritt in das Unterprogramm zurückgesetzt. Das oberste Stapelelement ist in unserem Beispiel "303". Abb. 3.38 zeigt, daß zum Zeitpunkt Time3 der Wert "303" vom Stapel entfernt und in den Befehlszähler zurückgeholt wurde. Deshalb wird die Befehlsausführung bei der Adresse "303" fortgesetzt. Zum Zeitpunkt Time4 wird der RETURN von SUB1 erreicht. Das oberste Element des Stapels enthält den Wert "103". Es wird vom Stapel geholt (Pop) und in den Befehlszähler gebracht. Deshalb wird die Ausführung bei der Adresse "103" innerhalb des Hauptprogramms fortgesetzt. Dies ist in der Tat die gewünschte Arbeitsweise. Abb. 3.38 zeigt, daß der Stapel zum Zeitpunkt Time4 wieder leer ist. Das Verfahren funktioniert.

Das Verfahren des Unterprogrammaufrufs funktioniert bis zur maximalen Länge des Stapels. Deshalb waren frühere Mikroprozessoren, die einen Stapel aus vier oder acht Registern hatten, prinzipiell auf vier oder acht Unterprogrammebenen beschränkt.

Beachten Sie, daß die Unterprogramme in den Abbildungen 3.36 und 3.37 rechts vom Hauptprogramm gezeichnet sind. Dies geschah nur wegen der Übersichtlichkeit des Programms. In Wirklichkeit gibt der Benutzer die Unterprogramme als normale Befehle des Programms ein. Wenn man die Liste des vollständigen Programms auf einem Blatt Papier zusammenstellt, können die Unterprogramme am Anfang des

Texts, mittendrin oder am Ende stehen. Deshalb wird ihnen eine Unterprogrammeröffnung vorangestellt: sie müssen identifiziert werden. Die speziellen Befehle sagen dem Assembler, daß das Folgende als Unterprogramm behandelt werden soll. Solche Assemblerdirektiven werden in Kapitel 10 diskutiert.

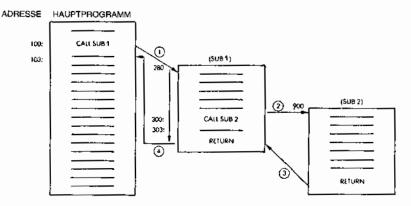


Abb. 3.37: Die Unterprogrammaufrufe

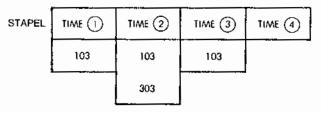


Abb. 3.38: Der Stapel zu verschiedenen Zeitpunkten

Unterprogramme beim Z80

Die Grundkonzepte von Unterprogrammen wurden jetzt vorgestellt. Es wurde gezeigt, daß zur Ausführung dieses Verfahrens ein Stapel nötig ist. Der Z80 ist mit einem 16-Bit-Stapelanzeiger ausgestattet. Der Stapel kann deshalb an einer beliebigen Stelle im Speicher stehen und er kann bis zu 64k Byte lang sein (1k = 1024), wenn wir annehmen, daß sie für diesen Zweck zur Verfügung stehen. In der Praxis wird der Programmierer die Anfangsadresse des Stapels und seine maximale Ausdehnung festlegen, bevor er das Programm schreibt. Dann ist ein Speicherbereich für den Stapel reserviert.

Der Befehl zum Unterprogrammaufruf heißt beim Z80 CALL und kommt in zwei Versionen vor: den direkten oder unbedingten Aufruf wie CALL ADRESSE haben wir schon beschrieben. Zusätzlich ist der Z80 mit bedingten Aufrufen ausgestattet, die ein Unterprogramm aufrufen, falls eine Bedingung erfüllt ist. Beispiel: CALL NZ,SUB1 ruft dann das Unterprogramm SUB1 auf, wenn das Ergebnis der vorhergehenden Operationen nicht Null war. Dies ist eine nützliche Möglichkeit, da viele Unterprogrammaufrufe bedingt sind, d. h. nur dann auftreten, wenn bestimmte Bedingungen erfüllt sind.

CALL CC,NN wird nur dann ausgeführt, wenn die Bedingung, die durch "CC" festgelegt wird, erfüllt ist. CC ist ein Satz von drei Bit (Bit 4, 5 und 6 des Opcodes), die bis zu acht Bedingungen festlegen können. Diese entsprechen den vier Flags "Z", "C", "P/U" und "S", die entweder Null oder nicht Null sein können.

Entsprechend gibt es zwei Arten von Return-Befehlen: RET und RET CC.

RET ist der grundsätzliche Rücksprungbefehl. Er belegt nur ein Byte und bewirkt, daß die oberen beiden Byte des Stapels wieder in den Befehlszähler geladen werden. Er ist nicht bedingt.

RET CC hat die gleiche Wirkung, mit der Ausnahme, daß er nur ausgeführt wird, wenn die durch CC festgelegte Bedingung erfüllt ist. Die Bedingungsbits sind die gleichen, wie bei dem eben beschriebenen Befehl CALL CC.

Zusätzlich gibt es zwei spezielle Arten von Rücksprungbefehlen, mit denen Interruptroutinen abgeschlossen werden: RETI und RETN. Sie werden in dem Kapitel über Z80-Befehle und in dem Kapitel über Interrupts beschrieben.

Schließlich gibt es noch einen speziellen Befehl, der einem Unterprogrammaufruf entspricht, der aber Verzweigungen nur zu einer von acht Adressen in der Seite Null zuläßt. Dies ist der Befehl RST P. Er ist ein Einbytebefehl, der automatisch den Befehlszähler auf dem Stapel ablegt und eine Verzweigung zu der Dreibitadresse ausführt, die im Feld P festgelegt ist. Das Feld P entspricht den Bits 4,5 und 6 des Befehls, multipliziert mit acht.

Mit anderen Worten, wenn die Bits 4, 5 und 6 "000" sind, wird die Adresse 00H angesprungen. Sind diese Bits "001", wird zur Adresse 08H verzweigt, usw. bis zu 111, das einen Sprung zur Adresse 38H bewirkt. Der Befehl RST ist in bezug auf die Geschwindigkeit sehr effizient, da er ein Einbytebefehl ist. Er kann jedoch nur acht Adressen in der Seite Null anspringen. Zusätzlich liegen diese Adressen nur acht Byte auseinander. Dieser Befehl wurde vom 8080 übernommen und wurde dort weitgehend für Interrupts verwendet. Dies wird im Kapitel über Interrupts beschrieben werden. Der Programmierer kann diesen Befehl jedoch für beliebige andere Zwecke benutzen und er sollte als möglicher spezieller Unterprogrammaufruf betrachtet werden.

Beispiele für Unterprogramme

Die meisten Programme, die wir entwickelt haben und die wir noch entwickeln werden, würden normalerweise als Unterprogramm entwickelt. Das Multiplikationsprogramm zum Beispiel wird normalerweise von vielen Programmbereichen verwendet. Um die Programmentwicklung zu vereinfachen und übersichtlicher zu gestalten, ist es daher angebracht, ein Unterprogramm zu definieren, das beispielsweise den Namen MULT erhält. Am Ende dieses Unterprogramms würden wir einfach den Befehl RET anfügen.

Aufgabe 3.32: Wenn "MULT" als Unterprogramm verwendet wird, zerstört es dann irgendwelche internen Flags oder Register?

Rekursion

Die Bezeichnung Rekursion wird verwendet, um anzuzeigen, daß sich ein Programm selbst aufruft. Wenn Sie das Konzept des Unterprogramms verstanden haben, sollten Sie folgende Frage beantworten können.

Aufgabe 3.33: Ist es zulässig, daß sich ein Unterprogramm selbst aufruft? (Mit anderen Worten: funktioniert alles, auch wenn sich ein Unterprogramm selbst aufruft?) Wenn Sie nicht sicher sind, zeichnen Sie den Stapel und füllen Sie ihn der Reihe nach mit Adressen. Betrachten Sie dann Register und Speicher (siehe Abb. 3.18) und entscheiden Sie, ob ein Problem auftritt.

Interrupts werden im Kapitel Ein-/Ausgabe (Kapitel 6) diskutiert. Alle Rücksprünge sind Einbytebefehle, alle Unterprogrammaufrufe sind Dreibytebefehle (außer RST).

Aufgabe 3.34: Schlagen Sie im nächsten Kapitel die Ausführungszeiten von den Befehlen CALL und RET nach. Warum ist der Rücksprung von einem Unterprogramm um so viel schneller als der Aufruf? (Hinweis: Wenn die Antwort nicht klar ist, dann betrachten Sie nochmals das Unterprogrammverfahren, und analysieren Sie, welche internen Schritte ausgeführt werden müssen.)

Unterprogrammparameter

Wenn ein Unterprogramm aufgerufen wird, dann erwartet man normalerweise, daß das Unterprogramm irgendwelche Daten bearbeitet. Im Fall der Multiplikation will man beispielsweise zwei Zahlen an das Unterprogramm übergeben, die multipliziert werden sollen. Bei dem Multiplikationsprogramm sahen wir, daß dieses Unterprogramm den Multiplikator und den Multiplikanden in bestimmten Speicherzellen erwartete. Dies veranschaulicht eine Methode der Parameterübergabe: im Speicher. Zwei andere Techniken werden noch verwendet, so daß wir drei Arten der Parameterübergabe haben:

- 1 in Registern
- 2 im Speicher
- 3 im Stapel

Register können zur Parameterübergabe dienen. Wenn die Register frei sind, ist dies eine günstige Methode, da man keine Speicheradresse festlegen muß: Das Unterprogramm bleibt unabhängig vom Speicher verwendbar. Wird eine feste Speicheradresse verwendet, so muß jeder andere Benutzer des Unterprogramms sorgfältig darauf achten, daß er die gleiche Vereinbarung verwendet und daß die Speicherstelle auch frei ist (beachten Sie Aufgabe 3.19 oben). Deshalb wird in vielen Fällen einfach ein Speicherblock reserviert, in dem die Parameter an die verschiedenen Unterprogramme übergeben werden.

Die Verwendung des Speichers hat den Vorteil größerer Flexibilität (mehr Daten), bewirkt aber eine geringere Universalität und legt das Unterprogramm auf einen vorgegebenen Speicherbereich fest.

Die Parameter im Stapel abzulegen, hat den gleichen Vorteil wie die Verwendung der Register: man ist vom Speicher unabhängig. Das Unterprogramm weiß einfach, daß ihm sagen wir zwei Parameter übergeben werden, die oben auf dem Stapel liegen. Natürlich hat dies Nachteile: Es bringt im Stapel hintereinander Daten und Adressen und vermindert deshalb die zulässige Anzahl von Unterprogrammebenen. Auch macht es die Verwendung des Stapels erheblich komplizierter, und es kann mehrere Stapel erforderlich machen.

Die Auswahl liegt beim Programmierer. Im allgemeinen will man so lange wie möglich von tatsächlichen Speicheradressen unabhängig bleiben. Stehen keine Register zur Verfügung, dann ist der Stapel eine mögliche Lösung. Wenn jedoch eine große Menge Information an das Unterprogramm übergeben werden muß, dann wird diese Information direkt im Speicher stehen müssen. Eine elegante Methode, einen Block von Daten zu übergeben, ist es, einfach einen Zeiger auf die Information zu übergeben. Ein Zeiger ist die Adresse des Blockanfangs. Ein Zeiger kann in einem Register, auf dem Stapel (zum Speichern einer 16-Bit-Adresse kann man zwei Plätze im Stapel verwenden) oder in einer festgelegten Speichzerzelle übergeben werden.

Ist schließlich keine der beiden Möglichkeiten anwendbar, kann man mit dem Unterprogramm vereinbaren, daß die Daten bei irgendeiner festen Speicheradresse stehen (dem "Briefkasten").

Aufgabe 3.35: Welche der drei Methoden ist zur Rekursion am besten geeignet?

Unterprogrammbibliothek

Es gibt einen entscheidenden Vorteil, Programme in unterscheidbare Unterprogramme zu strukturieren: Sie können unabhängig voneinander korrigiert werden, und sie können einen Namen haben. Vorausgesetzt,

daß sie in getrennten Bereichen des Programms stehen, kann man sie herausnehmen und so eine Bibliothek nützlicher Unterprogramme aufbauen. Allerdings gibt es bei der Computerprogrammierung keine universellen Heilmittel. Die systematische Verwendung von Unterprogrammen, die nach ihrer Funktion zusammengefaßt sind, kann auch zu schlechter Effektivität führen.

Der geschickte Programmierer muß die Vorteile gegen die Nachteile abwägen.

Zusammenfassung

In diesem Kapitel wurde dargestellt, auf welche Art Information innerhalb des Z80 durch Befehle verarbeitet wird. Algorithmen von wachsender Komplexität wurden eingeführt und in Programme übersetzt. Die hauptsächlichen Arten von Befehlen wurden verwendet und erklärt.

Wichtige Strukturen wie Schleifen, Stapel und Unterprogramme wurden definiert.

Sie sollten jetzt ein grundlegendes Verständnis vom Programmieren und von den wichtigeren Techniken, die man in Standardanwendungen benutzt, erworben haben. Jetzt wollen wir die verfügbaren Befehle studieren.

```
A::00 BC: 0000 DE::0000 HL::0000 S::0300 P:=0100 01001 LD
                                                               BC+ (0200)
      A'=00 H'=0000 I'=0000 H'=0000 X-0000 Y=0000 I=00
                                                               (02007)
      A=00 BC=0003 DE=0000 HL=0000 S=0300 P=0104 01041
                                                               B.08
      A'-00 B'-0000 B'-0000 H'-0000 X-0000 Y-0000 I-00
       A=00 BC=0803 DE=0000 HL=0000 S=0300 P=0106 01064
                                                               BE: (0202)
      A1#00 B1#0000 D1#0000 H1#0000 X#0000 Y#0000 1#00
                                                               (02027)
       A=00 BC=0803 BE=0005 HL=0000 S=0300 P=010A 010A' LD
      A4-00 B4-0000 D4-0000 H4-0000 X=0000 Y=0000 E-00
       AHOO BC=0803 DEH0005 HEH0000 SH0300 P=0100 01001
                                                               HE. + 0000
      A'-00 B'=0000 D'=0000 H'=0000 X-0000 Y=0000 I=00
                                                               (000001)
       A=00 BC=0803 DE=0005 HL=0000 S-0300 P=010F 010F'
      A4000 B4=0000 B4=0000 H4=0000 X=0000 Y=0000 I=00
      Anno RC=0801 DE=0005 HL=0000 S=0300 P=0111 0111'
                                                               NC+0114
      8'::00 B'-:0000 D'::0000 H'::0000 X::0000 Y::0000 I::00
                                                               (01142)
      A=00 BC=0801 BE=0005 HL=0000 S=0300 P=0113 0113' ADD
                                                               HE & DE
      0,400 B,40000 B,40000 H,40000 X40000 A40000 I400
       A=00 BC-0801 DE-0005 HL-0005 S=0300 P=0114 01141 SLA
      A'=00 B'=0000 D'=0000 H'=0000 X=0000 Y=0000 1-00
      A: 00 RC=0801 DE::000A HL::0005 S=0300 P=0116 01161
      A1800 B1-0000 B1-0000 H1-0000 X-0000 Y-0000 I-00
ZΨ
      A=00 BC=0801 DE=000A HL=0005 S=0300 P=0118 0118' DEC
      U. #00 B. #0000 D. #0000 H. #0000 X#0000 A#0000 I-00
      A=00 BC-0701 DE=000A BE=0005 S=0300 F=0119 01191
                                                               NZ # 010F
      0,-00 B,:0000 D,:-0000 H,:0000 X:0000 A-0000 [:00
                                                               (01007)
      0.000 DC:0201 DE:0000 HE:0005 S:0300 F:010F 010F1 SRI
      A' '00 B'=0000 B' 0000 H'=0000 X 0000 Y 0000 I=00
      A 00 BC-0700 DE :000A HL:0005 S=0300 P=0111 OL11' JR
                                                               NC+0114
      A1-00 B1#0000 B1#00000 H1#0000 X#0000 Y#0000 T :00
                                                               (CEL41)
2 V C
      0-00 BE=0700 BE=000A HE-0005 S-0300 F-0113 01134 And
                                                               ML • DE
      A' '00 R': 0000 D': 0000 H': 0000 X#0000 Y 0000 I: 00
      A:00 BC-0/00 DE=000A HE=000F S:0300 P:0114 0:114' SIA
      A -00 B' -0000 D'=0000 H'+0000 X-0000 Y 0000 E-00
       0:00 BC:0700 DE=0014 HL::000F S:0300 F=0115 0116' RL
      V.-00 H.-0000 D.-0000 H. 0000 X=0000 A=0000 T-00
      Am00 RC: 0700 DE=0014 RE=000F S=0300 P=0118 01187 BEC
      A4-00 B1:0000 B4:0000 B4:0000 X:0000 Y:0000 I:00
      A:00 BC-0600 DE-0014 HL:000F S=0300 P:0119 01191
                                                               NZ < Q10F
      U.-00 Bt 0000 It =0000 Ht =0000 X 0000 Y==0000 I=00
                                                               (010F 1)
      A=00 BC=0600 DE=0014 HL=000F S: 0300 P=010F 010F
      U. 00 B. 0000 D. 0000 H. 0000 X=0000 X=000 F=00
      Am00 BC+0600 BEm0014 BEm000F SH0300 Fm0111 01111 JR
V S
                                                               NG/OTT4
      A'-00 R'-0000 D'-0000 H'-0000 X-0000 Y 0000 T-00
                                                               (01140)
      A:00 RC::0600 BE: 0014 HI: 000F S::0500 P 0114 01144
      A'-00 B'-0000 H'-0000 H'-0000 X-0000 Y-0000 1-00
      A:00 BC-0500 DE=0028 HL:000F S=0300 P=0115 0116' RL
      9,4-00 B, :0000 D, :0000 H, :0000 X=0000 A=0000 E=00
      A=00 BC 0600 DE=0028 BE=000F S=0300 P=0118 0118' DEC
      A' 00 B':::0000 B':::0000 B':::0000 X:::0000 Y::0000 I:::00
      A :00 BC: 0500 DE::0028 HI : 000F S 0300 F::0119 01197
                                                               NZ+010F
      6'"00 B':0000 H':0000 H':0000 X:0000 Y:0000 I:00
                                                               (0.101.0)
      A:00 BC=0500 DE=0028 HL:000F S=0300 F=010[ 010F' GRE
      A' -00 B' -0000 D' -0000 H' -0000 X--0000 Y--0000 E -00
ΖV
       0:00 BC:0500 BE=0029 BE-000E S=0300 F=0111 01(1/ JR
                                                               NC+QII14
      A'=00 B'=0000 B'=0000 H' -0000 X=0000 Y=0000 I -00
                                                               (0) 14(1)
7. 9
      A 900 BC 0500 HI =0028 HI =0001 S -0300 F=0114 0114' SLA
      A1-00 B1-0000 B1-0000 H1-0000 X-0000 Y-0000 T-60
      A 90 BC 0500 DE 0050 HL 000F S=0300 F=0116 0116' RE
      A'-00 B':0000 B'+0000 H'-0000 X-0000 Y-0000 I-00
Z V
      A-00 RE-0500 RE-0050 RE-0001 S-0300 F-0113 01181 DEC
      00 H '-0000 B' -0000 H' 0000 Y-0000 Y 0000 I 00
      A-00 RC: 0400 RE-0050 HE-000F S 0300 P 0119 01191
                                                               ध्रहण्याम्
      A' -00 It'=0000 B' :0000 H' :0000 X: 0000 Y: 0000 I=00
                                                               010170
      A 000 BC 0400 DL 0050 HL 0001 S 0300 PHOTOL OLOL SRI
      04-00 B4-0000 04-0000 H4-0000 X-0000 Y-0000 1:00
```

Abb. 3.39: Multiplikation: eine vollständige Aufzeichnung

```
6*00 BC=0400 DL=0050 HL=000F S=0300 F=0111 01111 JR
                                                                NC+0114
       00ml 00000 Y 0000 X 0000 Hre 0000 X 0000 Y 0000 Imob
                                                                (01140)
       0.000 BC:0400 BE:0050 HL:000F S:0300 F:0114 01145
       A(#00 R(#0000 B(#0000 H(#0000 X#0000 Y 0000 I #00
       A=00 BC=0400 DE=00A0 HL=000F S=0300 f=0116 0116'
S
       A/=00 B/=0000 D/=0000 H/=0000 X=0000 Y=0000 I=00
 z. v
        A-00 BC-0400 DF=00A0 HL-000F S=0300 P=0118 01181 DEC
       A'=00 B'=0000 b'=0000 H'=0000 X=0000 Y-0000 In 00
        A:00 BC::0300 Df.:00A0 HL::000F S::0300 F::0119 0119'
                                                                NZyelor
       A'=00 B'=0000 D'=0000 H'=0000 X:0000 Y=0000 E=00
                                                                COLOT 13
       A=00 BC=0300 BE=00A0 HL=000F S=0300 P=010F 010F'
       A1000 B100000 D1-0000 H100000 X00000 Y00000 I000
 Z V
        A=00 BC=0300 DE=00A0 HL=000F S=0300 F=0111 01111
                                                                NC-0114
       A1=00 B1=0000 D1=0000 H1=0000 X=0000 Y=0000 I 00
                                                                (01141)
       A=00 BC=0300 DE=00A0 HE-000F S=0300 P=0114 OE14
       A'=00 B'=0000 B'=0000 H'=0000 X=0000 Y-0000 1:00
       A-00 BC=0300 DE=0040 HL=000F S=0300 P=0116 0116'
       A'=00 B'=0000 D'=0000 H'=0000 X=0000 Y=0000 In00
       A-00 BC=0300 DE=0140 HL=000F S<0300 F=0118 01187 BLC
       A'-00 B'=0000 B'=0000 H'=0000 X-0000 Y=0000 I 00
                                                                NZ vO LOI
       A-00 BC=0200 DE=0140 HL: 0001 S-0300 F=0119 01191
       A = 00 B = 0000 B = 0000 H = 0000 X = 0000 Y = 0000 I = 00
                                                                (010|1)
       A=00 BC=0200 DE=0140 HL=000F S=0300 F=010F OLOF?
       A'=00 B'=0000 D'=0000 H'=0000 X=0000 Y-0000 I=00
       A=00 BC=0200 DE=0140 HL=000F S=0300 F=0111 01111
                                                                NC+OIL4
       A'=00 B'=0000 JI'=0000 H'=0000 X=0000 Y=0000 I 00
                                                                (01141)
       A-00 BC:0200 DE:0140 HL:000F S:0300 P:0114 01141
       U.=00 B.=0000 B.=0000 H.=0000 X=0000 A=0000 T.=00
       A=00 DG=0200 DE=0180 HL=000F S=0300 P=0116 0116'
8
       A'=00 B'=0000 D'=0000 H'=0000 X-0000 Y:0000 I=00
       A=00 DE=0200 DE=0280 III: 000F S=0300 P=0118 01181
       A4m00 B4m0000 B4w0000 R4w0000 Xm0000 Y-0000 Iw00
       Ando BC -0100 DE=0280 Ht -000F S=0300 F -0119 01191
                                                                NZ + 0 LOD
       A'- 00 B'=0000 D'=0000 H'=0000 X:0000 Y=0000 T-00
                                                                (0101/0)
       A=00 BC=0100 BE=0280 BL=0008 S=0300 F=0101 0101 '
       A'=00 B'=0000 B'=0000 H'-0000 X-0000 Y:-0000 1=00
       A=00 BC=0100 DE=0280 HL=000F S=0300 F=0111 0111'
                                                                NCz0114
       A'=00 B'=0000 D'=0000 H'=0000 X=0000 Y=0000 I:00
                                                                (01110)
        A=00 BC=0100 DE=0280 HE=000F S=0300 F=0114 0114'
       A'=00 B'::0000 D'=0000 H'::0000 X=0000 Y=:0000 I::00
 2 V C
       A=00 BC=0100 DE=0200 RL=000F S=0300 P=0116 0116'
       A'=00 B'=0000 B'=0000 H'=0000 X=0000 Y=0000 I=00
       A=00 BC=0100 DE=0500 HL=000F S=0300 F=0118 0118'
       A'=00 B'=0000 B'=0000 H'=0000 X:0000 Y:0000 I=00
        Am00 BC=0000 DF=0500 HE=000F S=0300 F=0119 01191
                                                                NZ y O LOF
       A'-00 B'-0000 D'-0000 H'-0000 X-0000 Y-0000 T-00
                                                                COLOF (1)
                                                                (02041+IR.
 7
       A=00 BC=0000 DE=0500 HL=000F S=0300 P=011C 011C1
       A'=00 B'=0000 B'=0000 H'=0000 X=0000 Y=0000 I=00
                                                                (02041)
 7
       A=00 BC=0000 DE=0500 HL=000F S=0300 F=011F 011F /
       A1=00 B1=0000 B1=0000 H1=0000 X=0000 Y: 0000 1=00
```

Abb. 3.39: Multiplikation: eine vollständige Aufzeichnung (Fortsetzung)

Antworten zu Aufgabe 3.18 (Multiplikation):

00001		0001	DEG	0100H	
	(0200)	0002 MPRAII	TIL.	050011	
	(0202)	9003 MPUAL	DL	020311	
	(0204)	0004 RESAU 0005 ÷	F11	020 411	
0010	1 1/4B000;	0005 T	1.6	Bus (Missolo)	REGAD MORE LITTLE REPORT OF
0104	040B	0007	1.0	14,53	TR 15 REL COUNTER
0106	f.D580202	13000	1.10	DEF CREDARY	REDAM MULTICIONE INTO E
0100	1600	0009	LD	0.0	FOLEAR ID
010C	210000	0010	LD	111 .0	#0(,1 (/1901),) 100 0
OTOL	0339	OOST MUET	Siki	1;	PREDICT MUSICIPATIFE BOT TRAIN CARR
0111	3001	0012	JK.	ML - NUMBER	FILST CARRY
6110	19	0013	ODE	111, 510	ANDROMED TO RESULT
0114	0823	OOLA NOADD	SLA	f'	ASSIST MOTO COLUM
0114	CB1:	0015	RL	D	FSAME BIR IN D
0118	00	0016	04 C	Į c	FOLGRI MERLE SHOLLE COUNTER
0119	020101	0017	11.	MZ = MUE, 1	200 FL AGAIN 15 COUNTER 17 0
OFIC	2210402	8100	1. 10	CRESARO VIII.	4 G (1984 - 181, GFQ)
011F	(0000)	0019	1.60		

Abb. 3.40: Das Multiplikationsprogramm (hexadezimal)

LABEL	INSTRUCTION	В	С	C (CARRY)	D	E	Н	L
		00	00	0	00	00	00	00
MPY88	LD BC,(0200)	00	03	0	00	00	00	00
	LD B, 08	08	03	0	00	00	00	00
	LD DE, (0202)	80	03	0	00	05	00	00
	LD D, 00	08	03	0	00	05	00	00
	LD HL,0000	08	03	0	00	05	00	00
MULT	SRL C	08	01	ן ו	00	05	00	00
	JR NC,0114	08	01	, ;	00	05	00	00
	ADD HL,DE	80	01	0	00	05	00	05
NOADD	SLA E	08	01	0	00	0A	00	05
	RL D	08	01	0	00	0A	00	05
	DEC B	07	01	0	00	0A	00	05
j	JP NZ,010F	07	01	0	00	0A	00	05
MULT	SRLC	07	00	,	00	0A	00	05
İ	JR NC,0114	07	00] 1]	00	0A	00	05
	ADD HL, DE	07	00	0	00	0A	00	OF
NOADD	SLA E	07	00	0	00	14	00	OF
	RLD	07	00	0	00	14	00	OF
	DEC B	06	00	0	00	14	00	OF
	JP NZ,010F	06	00	0	00	14	00	OF

Abb. 3.41: Zwei Durchläufe durch die Schleife

4

Der Befehlssatz des Z80

Einführung

In diesem Kapitel werden wir zunächst die verschiedenen Klassen von Befehlen untersuchen, die in einem universellen Computer verfügbar sein sollten. Danach werden nacheinander alle Befehle, die im Z80 verfügbar sind, analysiert, und ihre Wirkung und die Art und Weise, wie sie Flags beeinflussen oder wie sie mit verschiedenen Adressierungsarten verwendet werden können, erklärt. Eine eingehende Diskussion von Adressierungstechniken folgt dann in Kapitel 5.

Klassen von Befehlen

Befehle kann man nach verschiedenen Gesichtspunkten sortieren und es gibt dafür keine Norm. Wir werden hier fünf Hauptgruppen von Befehlen unterscheiden:

- 1 Transfer von Daten
- 2 Bearbeitung von Daten
- 3 Tests und Sprünge
- 4 Eingabe und Ausgabe
- 5 Steuerbefehle

Wir wollen jetzt nacheinander jede dieser Gruppen besprechen.

Transfer von Daten

Transferbefehle übertragen Daten zwischen Registern, zwischen einem Register und dem Speicher oder zwischen einem Register und einem Ein-/Ausgabe-Gerät. Für Register mit spezieller Funktion können spezielle Transferbefehle existieren. Beispielsweise sind Befehle wie Push und Pop für eine wirkungsvolle Arbeit mit dem Stack vorgesehen. Mit einem einzigen Befehl übertragen sie ein Datenwort zwischen Stack und Akku und ändern automatisch den Stackpointer.

Bearbeitung von Daten

Die Befehle zur Bearbeitung von Daten sind in fünf Klassen eingeteilt:

- 1 Arithmetische Operationen (wie Plus/Minus)
- 2 Manipulation einzelner Bits (Set und Reset)
- 3 Inkrementieren und Dekrementieren
- 4 logische Operationen (wie AND, OR, exklusives OR)
- 5 Befehle zum Vertauschen und Schieben (wie Shift, Rotate)

Man sollte beachten, daß zur rationellen Bearbeitung von Daten leistungsfähige arithmetische Befehle wie Multiplikation und Division, von Nutzen sind. Leider sind diese auf den meisten Mikroprozessoren nicht verfügbar. Wünschenswert sind außerdem leistungsfähige Befehle zum Schieben und Vertauschen, wie Schieben von n Bit oder Vertauschen der Nibble, wobei die linke und die rechte Hälfte eines Bytes vertauscht werden. Auf den meisten Mikroprozessoren sind auch diese üblicherweise nicht verfügbar.

Bevor wir die eigentlichen Befehle des Z80 untersuchen, wollen wir den Unterschied zwischen Schieben und Rotieren diskutieren. Beim Schieben wird der Inhalt eines Registers oder einer Speicherzelle um ein Bit nach links oder nach rechts verschoben. Das Bit, das aus dem Register herausfällt, kommt in das Übertragsbit (Carrybit). Das Bit, das auf der anderen Seite hereinkommt, ist eine "0", außer beim "Arithmetischen-Rechts-Schieben", bei dem das MSB dupliziert wird.

Beim Rotieren gelangt das Bit, das herauskommt, ebenfalls ins Carry. Das Bit, das neu hereinkommt, ist der alte Inhalt des Carry. Dies entspricht einem 9-Bit-Rotieren. Oft wünscht man sich auch ein echtes 8-Bit-Rotieren, bei dem das Bit, das auf der einen Seite herausfällt, auf der

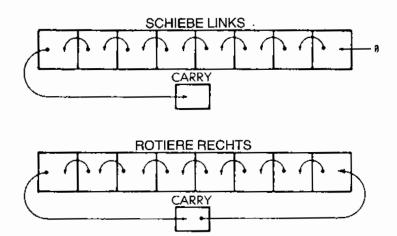


Abb. 4.1: Schieben und Rotieren

anderen Seite hereinkommt. Bei den meisten Mikroprozessoren ist dies nicht vorgesehen, es ist jedoch beim Z80 verfügbar (siehe Abb. 4.1).

Wenn man ein Wort nach rechts schieben will, ist es schließlich von Vorteil, wenn es eine weitere Art von Schieben gibt, die sich Vorzeichenstreckung oder "Arithmetisches-Rechts-Schieben" nennt. Bearbeitet man Zweierkomplemente, speziell bei der Durchführung von Gleitkommaroutinen, muß man oft negative Zahlen nach rechts schieben. Schiebt man ein Zweierkomplement nach rechts, sollte auf der linken Seite eine "1" hereinkommen (das Vorzeichen sollte beim mehrfachen Schieben so oft wie nötig reproduziert werden). Dies ist ein "Arithmetisches-Rechts-Schieben".

Tests und Sprünge

Der Testbefehl testet Bits in dem spezifizierten Register auf "0", auf "1" oder auf Kombinationen. Es muß mindestens möglich sein, das Flag-Register zu testen. Dazu ist es wünschenswert, möglichst viele Flags in diesem Register zu haben. Zusätzlich ist es vorteilhaft, wenn man mit einem Befehl Kombinationen solcher Bits testen kann. Schließlich ist es nützlich, wenn man jedes Bit in jedem Register testen kann, und wenn man die Inhalte zweier beliebiger Register vergleichen kann (größer, kleiner oder gleich). Üblicherweise beschränken sich die Testbefehle bei Mikroprozessoren auf das Testen einzelner Bits im Flag-Register. Der Z80 jedoch bietet weitergehende Möglichkeiten als die meisten anderen Mikroprozessoren.

Die Sprungbefehle, die üblicherweise verfügbar sind, zerfallen in drei Gruppen:

- 1 den Sprung auf eine vollständige 16-Bit-Adresse
- 2 den relativen Sprung, der oft auf eine 8-Bit-Distanz beschränkt ist
- 3 den Aufruf von Unterprogrammen

Nützlich ist es, wenn es Sprünge nach zwei oder gar drei Zielen gibt, z. B. abhängig davon, ob das Ergebnis eines Vergleichs "größer", "kleiner" oder "gleich" ist. Günstig ist auch, wenn es kleine Sprünge gibt, die um nur wenige Befehle vorwärts oder rückwärts springen. Allerdings ist ein "kleiner Sprung" einem "Sprung" äquivalent. Bei den meisten Schleisen schließlich ist am Ende ein Dekrementier- oder ein Inkrementierbefehl, gefolgt von einem Test und einem Sprung. Wenn es einen einzelnen Befehl gibt, der inkrementiert oder dekrementiert, vergleicht und springt, dann ist das ein wesentlicher Vorteil, wenn man leistungsfähige Schleisen programmieren will. Auf den meisten Mikroprozessoren gibt es so etwas nicht. Nur einfache Verzweigungen kombiniert mit einfachen Tests sind möglich. Das erschwert natürlich die Programmierung und verringert die Leistungsfähigkeit. Beim Z80 gibt es einen Befehl "dekrementiere und springe", der allerdings nur ein spezielles Register (B) auf Null testet.

Eingabe und Ausgabe

Eingabe- und Ausgabebefehle sind spezielle Anweisungen zum Bedienen von Ein-/Ausgabegeräten. Tatsächlich betreibt die Mehrheit der 8-Bit-Mikroprozessoren "memory mapped I/O": die Ein-/Ausgabegeräte werden wie Speicherbausteine an den Adreßbus angeschlossen und adressiert. Dem Programmierer erscheinen sie wie Speicherplätze. Normalerweise benötigen alle Operationen mit dem Speicher 3 Byte und sind deshalb langsam. Unter diesen Umständen ist es für eine wirksame Behandlung der Ein-und Ausgaben günstig, wenn es spezielle Techniken der kurzen Adressierung gibt, so daß Ein-/Ausgabegeräte, deren Bearbeitungszeiten kurz sein sollen, in Seite 0 liegen können. Wenn es eine spezielle Adressierung für die Seite 0 gibt, dann verwendet man diese jedoch normalerweise für RAM-Speicher, was der Verwendung für Ein-/Ausgabegeräte entgegensteht. Wie der 8080 ist auch der Z80 mit speziellen Ein-/Ausgabebefehlen ausgestattet. So hat der Entwickler im Falle des Z80 die Auswahl zwischen beiden Methoden: Ein-/Ausgabegeräte können wie Speicher adressiert werden oder aber als Ein-/Ausgabegeräte mit den speziellen Ein-/Ausgabebefehlen. Ein-/Ausgabebefehle werden an späterer Stelle in diesem Kapitel beschrieben.

Steuerbefehle

Steuerbefehle liefern Signale zur Synchronisation und können ein Programm anhalten oder unterbrechen. Sie können wie ein Zwischenstopp (englisch: break) oder als simulierter Interrupt funktionieren. (Interrupts werden in Kapitel 6 unter Ein-/Ausgabetechniken beschrieben.)

Der Befehlssatz des Z80

Einführung

Der Mikroprozessor Z80 wurde entwickelt, um den 8080 zu ersetzen und um zusätzliche Möglichkeiten zu bieten. Als Ergebnis dieser Philosophie besitzt der Z80 alle Befehle des 8080 sowie zusätzliche Befehle. Mit Blick auf die begrenzte Zahl von Bits, die in einem 8-Bit-Opcode zur Verfügung stehen, mag man sich darüber wundern, wie es die Entwickler des Z80 schafften, viele zusätzliche Befehle einzubauen. Sie taten dies, indem sie einige wenige unbelegte 8080-Opcodes verwendeten, und indem sie für die indizierten Befehle den Opcode um ein zusätzliches Byte erweiterten. Deshalb belegen manche Z80-Befehle im Speicher bis zu vier Byte.

Es ist wichtig, sich daran zu erinnern, daß man ein Programm auf viele verschiedene Arten schreiben kann. Wenn man effiziente Programmierung zustande bringen will, dann ist es unerläßlich, den Befehlssatz vollständig zu kennen und zu verstehen. Wenn man jedoch die Programmierung erlernen will, dann ist es nicht wesentlich, optimierte Programme zu schreiben. Wenn man dieses Kapitel zum ersten Mal liest, ist es unnötig, sich alle verschiedenen Befehle sofort zu merken. Es ist wichtig, daß

man die verschiedenen Arten von Befehlen einfach kennenlernt und typische Beispiele studiert. Wenn der Leser dann Programme schreibt, sollte er die Beschreibung des Z80-Befehlssatzes zu Rate zichen und die Befehle auswählen, die sich für sein Problem am besten eignen. Deshalb wird in diesem Abschnitt ein Überblick über die verschiedenen Befehle gegeben, mit der Absicht, sie vereinfacht darzustellen und in logische Einheiten zu gruppieren. Der Leser, der die Möglichkeiten der verschiedenen Befehle erfahren will, sei auf die Einzelbeschreibungen der Befehle verwiesen.

Wir werden jetzt die Möglichkeiten, die der Z80 bietet, aus der Sicht der fünf Befehlsklassen untersuchen, die am Anfang dieses Kapitels definiert wurden.

Befehle zum Transfer von Daten

Befehle zum Datentransfer kann man auf dem Z80 in vier Gruppen einteilen: 8-Bit-Transfer, 16-Bit-Transfer, Stapelbefehle und Blocktransfer. Wir wollen sie untersuchen.

Acht-Bit-Transfer

Jeder Transfer von 8-Bit-Daten wird mit einem Ladebefehl ausgeführt. Ladebefehle haben folgendes Format:

LD Ziel, Quelle

Beispielsweise kann man den Akkumulator mit folgendem Befehl aus dem Register B laden:

LD A,B

Direkte Übertragungen können zwischen beliebigen Arbeitsregistern (ABCDEHL) vorgenommen werden.

Um irgendeines der Arbeitsregister, mit Ausnahme des Akkumulators, aus einer Speicherstelle zu laden, muß die Speicheradresse zuerst in ein beliebiges Registerpaar geladen werden, z. B. nach HL.

Um beispielsweise das Register C aus der Speicherstelle 1234 zu laden, muß man zuerst die Register H und L mit dem Wert "1234" laden. (Dazu wird ein 16-Bit-Ladebefehl verwendet. Dies wird im nächsten Abschnitt beschrieben.)

Dann wird der Befchl LD C,(HL) verwendet und liefert das gewünschte Ergebnis.

Der Akkumulator bildet eine Ausnahme. Er kann aus jeder ausgewählten Speicherstelle direkt geladen werden. Dies nennt man erweiterte Adressierung. Um beispielsweise den Akkumulator aus der Speicherzelle 1234 zu laden, verwendet man folgenden Befehl:

LD A,(1234H) (Beachten Sie: Die Verwendung von "()" bedeutet "Inhalt von".)

Dieser Befehl wird folgendermaßen im Speicher abgelegt:

Adresse PC : 3A (Opcode)

PC + 1: 34 (untere Hälfte der Adresse) PC + 2: 12 (obere Hälfte der Adresse)

Beachten Sie, daß die Adresse innerhalb des Befehls in "umgekehrter Reihenfolge" gespeichert wird:

3.A	untara A	dr. obere	A dr
.5/4	umere A	ar, obere i	Aui.

Alle Arbeitsregister können auch mit einem beliebigen festgelegten 8-Bit-Wert oder "Literal" geladen werden, der im zweiten Byte des Befehls steht (dies nennt man unmittelbare Adressierung). Ein Beispiel ist:

das den hexadezimalen Wert 12 ins Register E lädt.

Im Speicher steht der Befehl als:

PC: 1E (Opcode)

PC + 1: 12 (Unmittelbarer Operand: Literal)

Als Ergebnis dieses Befehls steht der unmittelbare Operand in dem Register E.

	ſ	_		_							$\overline{}$			Π.		€xr.	$\overline{}$
	-	HIAG	R	_	6		EGISTE D	F -	н	ı	HLI-	INDIR			(IY + d)	ÉXT, ADDR	19604
	^	60	£0 5£	7#	79	79	7A	79	70	70	76	94	14	00 7E	FD 7t d	3A	3E
i	8			47	*	41	4	49	44	4	4			DD 46 d	F0 46 8		00
	c			ir.	. #	*	44	44	4C	40	4B			D() 4E 6	FD 4É		DE
REGISTER	0			87	86	B 1	62 -	44	54	66	4			56 4	1 20 10	_	*
	E			*	ja	*	84	10	8	\$	\$£			110 5£	4 2E 10		¥e
	н			e t .	80	47		6 2	*	8	60			66 4	FD 65 d		24
	ι			•	**	*	•	*	8 6	#	u			64 6	66 66 d		35
	IHL)			n	, 7o .	77	72	, R	74	75							36
REG INDIRECT	teci			02													
	(DE)			12										L.			
INDEXED	(tX+d)			37 37 8	10 d) i	1 15 00	00 73	DD 74	45 00							00 36 d
MOEXED	લજન્સા			FD 27 d	FO 70 4	₽D 21 4	77 10	f D 73 d	FIT 14 d	FD 15 4							76 d
EXT ADDR	(m)			*													
IMPLIED	,			60 47													
	Ř			€U 4F										_			

Abb. 4.2: Acht-Bit-Ladebefehle - LD

Zum Laden von Registerinhalten steht auch die indizierte Adressierung zur Verfügung, und sie wird im nächsten Kapitel über Adressierungstechniken vollständig beschrieben. Zum Laden spezieller Register gibt es verschiedene andere Möglichkeiten. Die Tabelle Abb. 4.2 zeigt alle Möglichkeiten (die Tabelle wurde von Zilog veröffentlicht). Die Befchle, die auch auf dem 8080 verfügbar sind, sind grau unterlegt.

16-Bit-Transfer

Grundsätzlich kann man jedes der 16-Bit-Registerpaare BC, DE, HL, SP, IX und IY mit einem direkten 16-Bit-Operanden, von einer festgelegten Speicheradresse (erweiterte Adressierung) oder von dem obersten Stapeleiement, d. h. von der Adresse in SP geladen werden. Umgekehrt kann man den Inhalt dieser Registerpaare auf die gleiche Art und Weise bei einer festgelegten Speicheradresse oder auf dem Stapel ablegen. Zusätzlich kann man das Register SP aus HL, IX oder IY laden. Dies erleichtert den Umfang mit mehreren Stapeln. Das Registerpaar AF kann man auch auf dem Stapel ablegen.

Die Tabelle in Abb. 4.3 listet alle Möglichkeiten auf. Die Stapeloperationen Push und Pop sind als 16-Bit-Datentransfers mit eingeschlossen.

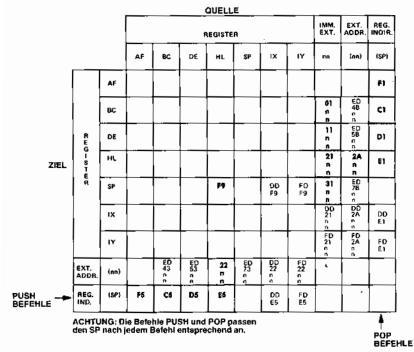


Abb. 4.3: 16-Bit-Ladebefehle - 'LD, 'PUSH' und 'POP'

Alle Stapeloperationen übertragen den Inhalt eines Registerpaares zum oder vom Stapel. Beachten Sie, daß es keine Push- und Pop-Befehle gibt, mit denen man Acht-Bit-Register einzeln ablegen kann.

Ein Push oder Pop von zwei Bytes wird immer mit einem Registerpaar durchgeführt: mit AF, BC, DE, HL, IX oder IY (siehe die untere Zeile und die rechte Spalte der Abbildung 4.3).

Wenn man mit den Registerpaaren AF, BC, DE oder HL arbeitet, besteht der Befehl aus einem Byte, wodurch eine gute Effizienz erreicht wird. Als Beispiel wollen wir annehmen, daß der Stapelzeiger SP den Wert "0100" enthält. Dann wird der folgende Befehl ausgeführt:

PUSH AF

Wenn der Inhalt dieses Registerpaares auf den Stapel abgelegt wird, wird zuerst der Stapelzeiger dekrementiert und dann der Inhalt des Registers A auf dem Stapel abgelegt. Dann wird SP wieder dekrementiert und der Inhalt von F auf dem Stapel abgelegt. Am Ende der Übertragung zum Stapel zeigt SP auf das oberste Element des Stapels, in unserem Beispiel steht dort der Inhalt von F.

Es ist wichtig, sich daran zu erinnern, daß der SP beim Z80 auf das oberste Stapelelement zeigt, und daß der SP immer dekremiert wird, wenn ein Registerpaar abgelegt wird. Oft werden andere Vereinbarungen verwendet, und das kann zu Unklarheiten führen.

Austauschbefehle

Zusätzlich wurde eine spezielle Abkürzung EX für Austauschoperationen reserviert. EX ist keine einfache Datenübertragung. Es vertauscht tatsächlich den Inhalt zweier festgelegter Plätze. EX kann z. B. verwen-

		·	IMPLIZIERTE ADRESSIERUNG								
		AF'	BC, DE & HL	HL	JX	ΙΥ					
	AF	80									
IMPLI- ZIERT	BC, DE & HL		D9								
	DE			Eβ							
REG. INDIR.	(SP)			E3	DD E3	FD E3					

Abb. 4.4: Austausch 'EX' und 'EXX'

det werden, um das oberste Stapelelement mit HL, IX oder IY zu vertauschen oder auch den Inhalt von DE und HL bzw. von AF und AF' (AF' bedeutet das zweite AF-Registerpaar im Z80).

Schließlich gibt es einen speziellen Befehl EXX, der den Inhalt von BC, DE und HL mit dem Inhalt der entsprechenden Zweitregister im Z80 vertauscht.

Die möglichen Vertauschungen zeigt Abb. 4.4

			QUELLE	
			REG. INDIR.	
			(HL)	
	REG.		ED A0	'LDI' — Load (DE)→ (HL) Inkr HL & DE, Dekr BC
<i>Z</i> IEL		(DE)	80 80	'LDIR,' - Load (DE) - (HL) Inkr HL & DE, Dekr BC, wiederhole, bis BC = 0
2166	INDIR.		ED A8	'LDD' - Load (DE)- (HL) Dec HL & DE, Oec BC
			ED 88	'LDDR' Load (DE) (HL) Dekr HL & DE, Dekr BC, wiederhole, bis BC = 0

Reg HL zeigt auf die Quelle Reg DE zeigt auf das Ziel Reg BC ist der Bytezähler

Abb. 4.5: Blocktransferbefehle

Blocktransferbefehle

Blocktransferbefehle sind Befehle, die einen ganzen Block von Daten übertragen und nicht nur ein oder zwei Bytes. Für den Hersteller sind Blocktransferbefehle schwieriger einzubauen, als die meisten anderen Befehle und sie sind üblicherweise in Mikroprozessoren nicht verfügbar. Sie sind bei der Programmierung nützlich und können die Leistungsfähigkeit eines Programms erhöhen, speziell bei Ein-/Ausgabebefehlen. Ihre Verwendung und ihre Vorteile werden überall in diesem Buch demonstriert. Beim Z80 sind einige spezielle Blocktransferbefehle verfügbar. Sie verwenden spezielle Vereinbarungen.

Alle Blocktransferbefehle verlangen die Verwendung von drei Registerpaaren: BC, DE und HL.

BC wird als 16-Bit-Zähler verwendet. Dies heißt, daß bis zu $2^{16} = 64k$ Byte automatisch übertragen werden können. HL wird als Zeiger auf die Quelle benutzt. Es kann auf eine beliebige Stelle im Speicher zeigen. DE

dient als Zeiger auf das Ziel und kann ebenfalls auf eine beliebige Stelle im Speicher zeigen.

Es gibt vier Blocktransferbefehle:

LDD, LDDR, LDI und LDIR.

Jeder dieser Befehle dekrementiert den Zähler BC bei jedem Transfer. Zwei von ihnen, LDD und LDDR, dekrementieren die Zeiger DE und HL, während die beiden anderen Befehle (LDI und LDIR) DE und HL inkrementieren. Bei jeder der beiden Gruppen von Befehlen bedeutet der Buchstabe R am Ende der Abkürzung eine automatische Wiederholung. Wir wollen diese Befehle näher untersuchen.

LDI bedeutet "Lade und inkrementiere". Er überträgt ein Byte von der Speicherstelle, auf die H und L zeigt, zu dem Ziel im Speicher, auf das D und E zeigen. Er dekrementiert dann BC. HL und DE werden automatisch inkrementiert, so daß alle Register für eine eventuelle weitere Übertragung richtig vorbereitet sind.

LDIR heißt: "Lade, inkrementiere und wiederhole", d. h. führe LDI wiederholt aus, bis das Zählerregister BC den Wert "0" erreicht. Er wird verwendet, um einen fortlaufenden Block von Daten aus einem Speicherbereich automatisch in einen anderen zu übertragen.

LDD und LDDR arbeiten auf die gleiche Weise, außer daß die Adreßzeiger dekrementiert und nicht inkrementiert werden. Der Transfer beginnt deshalb bei der höchsten Adresse des Blocks und nicht bei der niedrigsten. Die Wirkungsweise der vier Befehle ist in Abb. 4.5 zusammengefaßt.

Ähnliche automatische Befehle gibt es auch für CP (Vergleiche). Sie sind in Abb. 4.6 zusammengefaßt.

SUCHADRESSE								
REG. INDIR,								
(HL)								
ED A1	'CPI' Inkr HL, Dekr BC							
ED B1	'CPIR', inkr HL, Dekr BC wiederhole, bis BC = 0 oder Gleichheit gefunden							
ED A9	'CPD' Dekr HL & BC							
ED 89	'CPDR' Dekr HL & BC wiederhole, bis BC = 0 oder Gleichheit gefunden							

HL zeigt auf die Speicherstelle, deren Inhalt mit dem Akkumulator verglichen werden soll. BC ist der Bytezähler

Befehle zur Datenverarbeitung Arithmetik

Zwei hauptsächliche Arithmetikbefehle stehen zur Verfügung: Addition und Subtraktion. Sie wurden im vorhergehenden Kapitel ausgiebig angewendet. Es gibt zwei Typen der Additon, mit und ohne Übertrag: ADC und ADD. Ebenso stehen zwei Subtraktionsbefehle zur Verfügung, mit und ohne Übertrag. Diese sind SBC und SUB.

Zusätzlich gibt es drei Spezialbefehle: DAA, CPL und NEG. Der Befehl Dezimalanpassung (DAA) wurde dazu verwendet, die BCD-Operationen einzubauen. Er wird normalerweise bei jeder BCD-Addition oder -Subtraktion benutzt. Außerdem gibt es zwei Befehle zur Komplementbildung. CPL bildet das Einerkomplement des Akkumulators und NEG wandelt den Akkumulator in sein Zweierkomplement um.

Alle bisherigen Befehle rechnen mit Acht-Bit-Daten. 16-Bit-Befehle sind eingeschränkter. ADD, ADC und SBC sind für bestimmte Register verfügbar, wie Abb. 4.8 zeigt.

,				QUELL	.E						
			REGIST	ER ADI	PESSIN	G		REG. INDIR.	INDEXED		IMMED.
	A	8	С	D	E	н	L	(HL)	(1X+d)	(1Y+d)	,
'ADD'	87	80	81	62	83	84	\$ 5	86	DD 86 d	F() 86 d	C# n
ADD w CARRY	8F	88	89	BA	88	8C	8 D	8E	OD 8E d	FD 8E d	CE n
SUBTRACT 'SUB'	97	90	91	92	93	94	96	98	DD 96 d	FD 96 d	D6
SUB w CARRY	9F	99	99	94	98	9C	90	96	OD 9E d	FD 9E d	DE
'AND'	A7	AO	A1	A2	A3	м	A5	A6	DD A6 d	FD A6 d	E6
'XOR'	AF	A8	AS	AA	AB	AC	AD	AE	DD AE d	FD AE d	EE n
'OR'	87	80	B 1	B2	B3	B4	85	96	OD 86 d	FD B6 d	F6
COMPARE 'CP'	BF	88	B9	BA .	88	BC	90	B€	DD B€ d	FD BE d	FE
INCREMENT	3C	04	OC.	14	10	24	2C	34	DD 34 d	FD 34 d	
DECREMENT 'DEC'	3D	05	0D 40/50/14	15 110 Ma	1D	25 9:00.000	2 D	35	DD . 35 d	FD 35 d	

Abb. 4.7: Acht-Bit Arithmetik und Logik

Schließlich gibt es für alle Register Befehle zum Inkrementieren und Dekrementieren, sowohl für das Acht-Bit- als auch für das 16-Bit-Format. Sie sind in Abb. 4.7 (Acht-Bit-Befehle) und in Abb. 4.8 (16-Bit-Befehle) angegeben.

Beachten Sie, daß im allgemeinen alle arithemtischen Operationen einige Flags beeinflussen. Ihre Wirkungsweise ist bei der Beschreibung der Befehle an späterer Stelle in diesem Kapitel im einzelnen erklärt. Es ist jedoch wichtig zu wissen, daß die Befehle INC und DEC keine Flags beeinflussen, wenn sie auf Registerpaare angewendet werden. Es ist wichtig, sich diese Einzelheit zu merken. Das bedeutet, daß das Z-Bit im Flagregister nicht gesetzt wird, wenn eines der Registerpaare auf den Wert "0" dekrementiert oder inkrementiert wird. Der Inhalt des Registerpaares muß in dem Programm ausdrücklich auf den Wert Null getestet werden.

Es ist auch wichtig zu wissen, daß die Befehle ADC und SBC immer auf alle Flags wirken. Dies heißt nicht, daß nach der Ausführung unbedingt alle Flags geändert sein müssen. Sie können aber verändert sein.

Logik

Drei logische Befehle sind vorgesehen: AND, OR (inklusiv) und XOR (exklusiv), sowie ein Vergleichsbefehl CP. Sie arbeiten alle nur mit 8-

	QUELLE									
			вс	DE	HL	SP	ıx	IY		
		HL	09	19	20	39				
	'ADD'	ΙX	DD 09	DD 19		DD 39	DD 29			
ы Н		¥	FD 09	FD 19		FD 39		FD 29		
ZIEL	ADD WITH CARRY AND SET FLAGS 'ADC'	HL	ED 4A	ED 5A	ED 6A	ED 7A				
	SUB WITH CARRY AND SET FLAGS 'SBC'	HL	ED 42	ED 52	ED 62	ED 72				
	INCREMENT 'INC	03	13	23	33	DD 23	FD 23			
	DECREMENT 'DE	(#8	18	28	38	DD 2B	FD 28			

Abb. 4.8: 16-Bit Arithmetik und Logik

Bit-Daten. Wir wollen sie der Reihe nach untersuchen. (Eine Tabelle, die alle Möglichkeiten und die Opcodes für diese Befehle angibt, ist in Abb. 4.7 enthalten.)

AND

Jede logische Operation wird durch eine Wahrheitstabelle charakterisiert, die den logischen Wert des Ergebnisses als Funktion der Eingaben ausdrückt. Die Wahrheitstabelle für AND erscheint unten:

0 AND 0 = 0		AND	0	1
0 AND 1 = 0 1 AND 0 = 0	oder	0	0	0
1 AND 1 = 1		1	0	1

Die Operation "AND" wird dadurch festgelegt, daß der Ausgang nur dann "1" ist, wenn beide Eingänge "1" sind. Mit anderen Worten, wenn einer der Eingänge "0" ist, dann ist garantiert, daß das Ergebnis "0" ist. Diese Eigenschaft wendet man an, um ein Bit in einem Wort auf Null zu setzen. Man nennt dies "Maskieren".

Eine der wesentlichen Anwendungen des Befehls AND ist es, eine oder mehrere festgelegte Stellen in einem Wort zu löschen oder auszublenden. Wir wollen beispielsweise annehmen, daß wir die vier rechten Bits eines Worts zu Null setzen wollen. Dies erledigt das folgende Programm:

Wir wollen annehmen, daß WORT gleich "10101010" ist. Als Ergebnis dieses Programms steht "10100000" im Akkumulator. "B" kennzeichnet eine Dualzahl.

Aufgabe 4.1: Schreibe ein dreizeiliges Programm, das die Bits 1 und 6 von WORT auf Null setzt.

Aufgabe 4.2: Was passiert mit der Maske "11111111"?

OR

Dieser Befehl ist das inklusive OR. Er wird durch folgende Wahrheitstabelle charakterisiert:

0 OR 0 = 0	OR	0	1
0 OR 1 = 1 oder 1 OR 0 = 1	0	0	1
1 OR 1 = 1	1	1	1

Das logische OR wird dadurch charakterisiert, daß das Ergebnis immer "1" ist, wenn irgendeiner der Eingänge "1" ist. Eine Anwendung, die auf der Hand liegt, ist es, Bits in einem Wort auf "1" zu setzen.

Wir wollen die rechten vier Bits von WORT zu Einsen machen. Das Programm dafür ist:

LD A,WORT OR 00001111B

Wir wollen annehmen, daß WORT "10101010" enthielt. Im Akkumulator steht dann das Ergebnis "10101111".

Aufgabe 4.3: Was würde passieren, wenn wir den Befehl OR 10101010B verwenden würden?

Aufgabe 4.4: Was bewirkt ein OR mit hexadezimal "FF"?

XOR

XOR bedeutet "exklusives OR". Das exklusive OR unterscheidet sich vom inklusiven OR, das wir gerade beschrieben haben, in einem Punkt: Das Ergebnis ist "1", wenn einer und nur einer der Operanden "1" ist. Sind beide Operanden "1", dann ergibt das normale OR das Ergebnis "1". Das exklusive OR ergibt eine "0". Die Wahrheitstabelle ist:

0

0

1

1

1

0

0 XOR 0 = 0		XOR
0 XOR 1 = 1 1 XOR 0 = 1	oder	0
1 XOR 1 = 0		1

Das exklusive OR verwendet man für Vergleiche. Das XOR zweier Worte ist nicht Null, wenn irgendein Bit verschieden ist.

Außerdem kann man mit dem exklusiven OR den Akkumulator oder einzelne Stellen im Akkumulator komplementieren. Das Programm

liefert im Akkumulator das Komplement von WORT.

Aufgabe 4.5: Welches Ergebnis liefert XOR, wenn WORT hexadezimal "00" enthält?

Schieben und Rotieren

Zuerst wollen wir zwischen den Operationen Schieben und Rotieren unterscheiden, die in Abb. 4.9 veranschaulicht sind. Beim Schieben wird der Inhalt des Registers um eine Stelle nach links oder nach rechts geschoben. Das Bit, das herausfällt, kommt ins Übertragsbit und das Bit, das hereinkommt, ist Null. Dies wurde im vorhergehenden Kapitel erklärt.

Es gibt eine Ausnahme: Das Arithmetische-Rechts-Schieben. Wenn man mit negativen Zahlen in der Darstellung als Zweierkomplement rechnet, dann ist das linke Bit das Vorzeichenbit. Bei negativen Zahlen ist

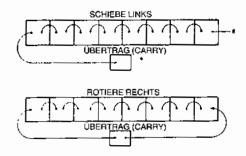


Abb. 4.9: Schieben und Rotieren

dies "1". Dividiert man eine negative Zahl durch "2", indem man sie nach rechts schiebt, so sollte das Ergebnis negativ bleiben, d. h. das linke Bit sollte "1" bleiben. Dies macht der Befehl SRA oder "Schiebe Rechts Arithmetisch". Bei diesem arithmetischen Rechts-Schieben ist das Bit, das links hereinkommt, mit dem Vorzeichenbit identisch. Es ist "0", wenn das linke Bit eine "0" war, und es ist "1", wenn das linke Bit eine "1" war. Dies wird in der Abb. 4.10 rechts dargestellt, die die möglichen Schiebe- und Rotieroperationen zeigt.

Rotationen

Eine Rotation unterscheidet sich von einem Schieben dadurch, daß das hereinkommende Bit entweder das ist, das auf der anderen Seite herausfällt, oder das Übertragsbit. Beim Z80 gibt es zwei Arten von Rotationen: eine Acht-Bit-Rotation und eine Neun-Bit-Rotation.

Das Neun-Bit-Rotieren ist in Abb.4.11 dargestellt. Bei einer Rotation nach rechts werden die acht Bits des Registers beispielsweise um eine

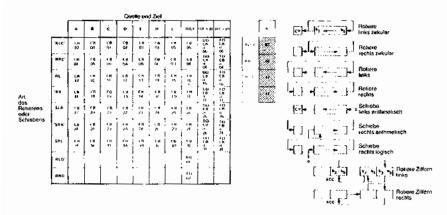


Abb. 4.10: Rotieren und Schieben

Stelle nach rechts verschoben. Das Bit, das rechts herausfällt, kommt wie üblich ins Übertragsbit. Das Bit, das jetzt links hereinkommt ist das alte Übertragungsbit (bevor es von dem herausfallenden Bit überschrieben wurde). Mathematisch nennt man das eine Neun-Bit-Rotation, da die acht Bit des Registers und das neunte Bit (das Übertragsbit) um eine Stelle nach rechts rotiert wurden. Eine Rotation nach links liefert entsprechend das gleiche Ergebnis in umgekehrter Richtung.

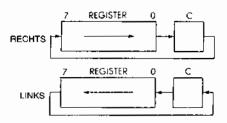


Abb. 4.11: Neun-Bit-Rotation

Die Acht-Bit-Rotation funktioniert ähnlich. Abhängig von der Rotationsrichtung wird Bit 0 nach Bit 7 oder Bit 7 nach Bit 0 kopiert. Zusätzlich wird das herausfallende Bit auch ins Übertragsbit kopiert. In Abbildung 4.12 ist dies veranschaulicht.

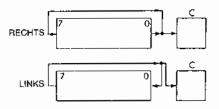


Abb. 4.12: Acht-Bit-Rotation

Spezielle Befehle für Ziffern

Um das Rechnen mit BCD-Zahlen zu erleichtern, sind zwei spezielle Rotierbefehle für (BCD-) Ziffern vorgesehen. Das Ergebnis ist eine Rotation um vier Bit zwischen zwei Ziffern in der Speicherstelle, auf die die Register HL zeigen, und einer Ziffer in der unteren Hälfte des Akkumulators. Abbildung 4.13 veranschaulicht das.

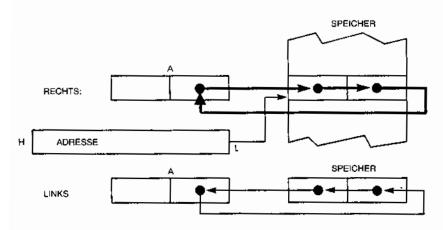


Abb. 4.13: Rotieren von Ziffern

Bit-Verarbeitung

Oben wurde gezeigt, wie man die logischen Operationen dazu verwenden kann, um einzelne Bits oder Gruppen von Bits im Akkumulator zu setzen oder zurückzusetzen. Es ist jedoch nützlich, wenn man mit einem Befehl ein beliebiges Bit in einem beliebigen Register oder einer Speicherzelle setzen oder zurücksetzen kann. Diese Möglichkeit beansprucht eine erhebliche Zahl von Opcodes und steht deshalb bei den meisten Mikroprozessoren nicht zur Verfügung. Der Z80 ist jedoch mit ausgiebigen Möglichkeiten zur Bitmanipulation ausgerüstet. Diese werden in Abb. 4.14 gezeigt. Diese Tabelle enthält auch die Testbefehle, die im nächsten Abschnitt beschrieben werden.

Zur Operation mit dem Übertragsflag gibt es zwei spezielle Befehle: CCF (Komplementiere das Übertragsflag) und SCF (Setze das Übertragsflag). Sie sind in Abb. 4.15 gezeigt.

Tests und Sprünge

Da sich Testbefehle hauptsächlich auf das Flagregister beziehen, werden wir hier die Rolle jedes einzelnen Flags genau beschreiben. Der Inhalt des Flagregisters erscheint in Abb. 4.16.

C ist der Übertrag, N ist Addition oder Subtraktion, P/V ist Parität oder Überlauf, H ist der Halbübertrag, Z ist Null und S ist das Vorzeichen. Bit 3 und 5 des Flagregisters werden nicht benutzt ("0"). Die beiden Flags H und N werden für die BCD-Arithmetik verwendet und können nicht getestet werden. Die anderen vier Flags (C, P/V, Z, S) können bei einem bedingten Sprung oder Unterprogrammaufruf getestet werden.

				REG. INDIR,	INDS	XED					
	ВІТ	А	В	C	D	£	н	L	(311.)	{IX*d]	(IY+d)
	0	CB 47	C8 40	CB 41	CB 42	C8 43	CB 44	CB 45	CB 46	DB 46	FD C8 d
	-	C8. 4F	CB 48	CB 49	CB 4A	CB 4B	C8 4C	¢8 4D	CB 4E	DD CB d 4€	FD CB 4E
	2	C8 57	C8 50	C8 51	CØ 52	CB 53	B 54	CB \$5	CB 56	DO C8 d 56	FD CB d 55
TEST TEST	3	08 5F	C8 58	CB 59	CB 5A	CB 5B	CB 5C	C8 50	CB 5€	00 68 58	FD CB d SE
Tell's	4	CB 67	CB 60	61 61	CB 62	CB 63	64 C8	CB 65	CB 66	00 CB 4 66	FD CB d 55
	5	CB 8₽	C8 68	69 69	CØ 6A	C6	6C 6C	eD CB	C0 6E	DD CB d 6E	FD 0
	6	CB 77	CB 70	CB 71	CB 72	CB 73	CB 74	68 75	CB 76	00 CB d 76	FD C9 d
	,	ĆB 7F	CB 78	CB 79	CB 7A	CB 7B	76 76	CB	CB J€	DD CB d 7€	FD CB d
	0	CB B7	C8 80	CB 81	82 83	8 3	CB 84	CB 85	CB 86	0D cg 66	FO C# 6 86
	1	CB BF	CB 88	C8 89	CB 9A	C8 88	Ce BC	C8 80	CØ 8E	Cé d DD	₽E CB CB
	2	CB 97	CB 90	CB 91	95 CB	CB 93	CB 94	СВ 95	CB 96	00 08 0 96	FD CB d 96
AESET BIT	3	ÇB 9F	C8 98	¢6 99	C8 AR	68 98	¢8 90	90 90	Ç8 9€	OD CB d	FD ÇB d
'RES'	4	CB A7	C8 A0	CB Al	CØ A2	C8 A3	C8 A4	CB A5	CB A6	DD CB d A5	FD CB AG
	5	CB AF	CB AB	68 A9	CØ AA	CB AB	CR AC	CØ AD	CB AE	DD CB d AE	ÇB d AE
	6	CB B7	60 60	CØ B1	CB B2	C8 83	CB B4	C8 85	CB 86	00 08 4 86	FD CB d B6
	7	CØ ØF	es Ce	CB B9	82 AB	CB BB	CB BC	BD BD	CB BE	DD CB 4	FD. CB d
	0	CB C7	C8 C8	CB C1	CS CB	CB C3	CB C4	C8 C5	CB C6	C6 C6	FD CB d C6
	1	CB CF	CB Ca	C8 C8	CB CA	CB CB	C6 C6	CD CB	CB CE	DD CB d CE	ED CE
i	2	C8 D7	CB D0	CB D1	CB 02	CB D3	CB D4	CB D5	CB D6	DD 68 6 06	FO Ce d De
SET	3	ÇB DF	CB D8	Ce De	CB DA	Ç8 DB	Ce DC	CB OD	CB DE	CB d De	FO CB DE
SET.	4	CB E7	CB E0	CB E1	€2 €2	CB E3	C6 E4	C8 €5	CØ €5	E6 CB DD	6 8 8 9 4 8 9 4 8 9 4 8 9 4 8 9 9 4 8 9 9 4 8 9 9 9 9
	5	CB EF	Ç0 €B	E9	CB EA	CB EB	ĆB EC	FO C8	€€ 8.6	CO d EE	ED & E
	6	CB F7	C8 FD	CB F1	CB F2	CB F3	CB F4	C8 F5	CØ F6	OD CB d F6	FD d F6
	,	CB FF	CB FB	CA F9	CB FA	CØ F8	CB FC	CB FD	CB F€	DD CB d FE	FD CD f

Abb. 4.14: Bitmanipulationen

Dezimaler Abgleich, 'DAA'	27
Komplementiere Akk., 'CPL'	25
Negiere Akk., 'NEG' (Zweierkomplement)	ED 44
Komplementiere Carry-Flag, 'CCF'	3F
Setze Carry-Flag, 'SCF'	37

Abb. 4.15: Universelle Operationen mit AF

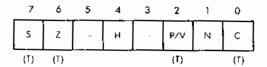


Abb. 4.16: Das Flagregister

Übertrag (Carry, C)

Bei fast allen Mikroprozessoren und speziell beim Z80 hat das Übertragsbit zwei Funktionen. Zum einen gibt es an, ob bei einer Addition oder Subtraktion ein Übertrag auftrat. Zum anderen wird es bei Schiebe- und Rotieroperationen als neuntes Bit verwendet. Die Verwendung eines einzelnen Bits für beide Aufgaben erleichtert einige Operationen, z. B. die Multiplikation. Dies sollte nach der Erklärung der Multiplikation im letzten Kapitel klar sein.

Wenn man lernt, das Übertragsbit zu verwenden, dann ist es wichtig, sich daran zu erinnern, daß es alle arithmetischen Operationen abhängig vom Ergebnis setzt oder rücksetzt. Auch alle Schiebe- und Rotierbefehle benutzen das Übertragsbit und setzen es oder setzen es zurück, abhängig von dem Bit, das aus dem Register herauskommt.

Die logischen Operationen (AND, OR, XOR) setzen das Übertragsbit immer zurück. Man kann sie dazu verwenden, um das Übertragsbit zu löschen.

Folgende Befehle beeinflussen das Übertragsbit: ADD A,s; ADC A,s; SUB s; SBC A,s; CP s; NEG; AND s; OR s; XOR s; ADD DD,ss; ADC HL,ss; SBC HL,ss; RLA; RLCA; RRA; RRCA; RL m; RLC m; RR m; RRC m; SLA m; SRA m; SRL m; DAA; SCF; CCF.

Subtraktion (N)

Dieses Flag wird normalerweise vom Programmierer nicht benutzt, sondern vom Z80 selbst bei BCD-Befehlen. Der Leser wird sich aus dem letzten Kapitel daran erinnern, daß man nach einer BCD Addition oder Subtraktion den Befehl DAA (Dezimalabgleich) ausführt, um das richtige Ergebnis zu erhalten. Der "Abgleich" funktioniert jedoch nach einer Addition anders als nach einer Subtraktion. Der Befehl DAA wirkt deshalb unterschiedlich, abhängig von dem Flag N. Nach einer Addition wird das Flag N auf "0" gesetzt, nach einer Subtraktion auf "1".

Das Zeichen, das für dieses Flag verwendet wird, "N", ist vielleicht für den Programmierer verwirrend, der mit anderen Prozessoren gearbeitet hat, weil man es mit dem Vorzeichenbit verwechseln kann. Es ist ein internes Vorzeichenbit.

N wird auf "0" gesetzt durch: ADD A,s; ADC A,s; AND s; OR s; XOR s; INC s; ADD DD,ss; ADC HL,ss; RLA; RLCA; RRA; RRCA; RL m; RLC m; RR m; RRC m; SLA m; SRA m; SRL m; RLD; RRD; SCF; CCF; IN r,(C); LDI; LDD; LDIR; LDDR; LD A,I; LD A,R; BIT b,s. N wird auf "1" gesetzt durch SUB s; SBC A,s; CP s; NEG; DEC m; SBC HL,ss; CPL; INI; IND; OUTI; OUTD; INIR; INDR; OTIR; OTDR; CPI; CPIR; CPD; CPDR.

Parität/Überlauf (P/V)

Das Flag Parität/Überlauf erfüllt zwei verschiedene Funktionen. Bestimmte Befehle setzen dieses Flag in Abhängigkeit von der Parität des Ergebnisses. Die Parität bestimmt man, indem man die Einsen im Ergebnis zählt. Ist diese Anzahl ungerade, wird das Paritätsbit auf "0" gesetzt (ungerade Parität). Ist sie gerade, wird das Paritätsbit auf "1" gesetzt (gerade Parität). Die Parität verwendet man meistens für Blöcke von Zeichen (üblicherweise im ASCII-Format). Das Paritätsbit ist ein zusätzliches Bit, das an den 7-Bit-Kode, der das Zeichen bestimmt, angehängt wird, um festzustellen, ob die gespeicherten Daten unversehrt sind. Wurde beispielsweise ein Bit des Kodes, der das Zeichen darstellt, wegen eines Speicherfehlers (z. B. bei einem Plattenfehler oder einem Fehler im RAM-Speicher) oder bei der Übertragung verfälscht, dann hat sich die Zahl der Einsen in dem Sieben-Bit-Kode geändert. Wenn man das Paritätsbit überprüft, wird die Abweichung erkannt und ein Fehler angezeigt. Teilweise wird das Flag bei logischen und Rotieroperationen benutzt. Außerdem zeigt das Paritätsbit bei manchen Eingabeoperationen von einem Ein-/Ausgabegerät die Parität der gelesenen Daten an.

Der Leser, der sich mit dem 8080 auskennt, möge beachten, daß das Paritätsflag beim 8080 nur als solches verwendet wird. Beim Z80 wird es für verschiedene zusätzliche Funktionen benutzt. Wenn man von einem dieser Mikroprozessoren zum anderen übergeht, sollte man dieses Flag deshalb mit Vorsicht behandeln.

Beim Z80 ist die zweite wesentliche Funktion dieses Flags die eines Überlauf-Flags (das gibt es beim 8080 nicht). Das Überlauf-Flag wurde in Kapitel 1 beschrieben, als das Zweierkomplement eingeführt wurde. Es zeigt an, wenn bei einer Addition oder Subtraktion das Vorzeichenbit "fälschlicherweise" verändert wurde, da das Ergebnis in das Vorzeichenbit überlief. (Erinnern Sie sich daran, daß die größte positive Zahl +127 und die kleinste negative Zahl -128 ist, wenn man eine acht Bit lange Zweierkomplement-Darstellung verwendet.)

Letztlich wird dieses Bit beim Z80 noch für zwei andere Funktionen benutzt.

Bei den Blocktransferbefehlen (LDD, LDDR, LDI, LDIR) und den Suchbefehlen (CPD, CPDR, CPI, CPIR) wird dieses Flag verwendet, um anzuzeigen, ob das Zählerregister B den Wert "0" erreicht hat. Das Flag wird auf "0" zurückgesetzt, wenn das Register BC auf "0" dekrementiert wurde, sonst wird es auf "1" gesetzt.

Wenn man die beiden Spezialbefehle LD A,I und LD A,R ausführt, dann enthält das P/V-Flag den Wert des Interrupt-Enable-Flip-Flops (IFF2). Diese Eigenschaft kann man verwenden, um den Inhalt dieses Flip-Flops zu retten oder zu testen.

Das P-Flag wird beeinflußt von: AND s; OR s; XOR s; RL m; RLC m; RR m; RRC m; SLAm; SRA m; SRL m; RLD; RRD; DAA; IN r,(C). Das V-Flag wird beeinflußt von: ADD A,s; ADC A,s; SUB s; SBC A,s; CP s; NEG; INC s; DEC m; ADC HL,ss; SBC HL,ss; NEG.

Außerdem wird es verwendet von: LDIR; LDDR (auf "0" gesetzt); LDI; LDD; CPI; CPIR; CPD; CPDR.

Das Halbübertrag-Flag (H)

Dieses Flag zeigt einen eventuellen Übertrag von Bit 3 nach Bit 4 bei arithmetischen Operationen an. Mit anderen Worten, es stellt den Übertrag vom unteren Nibble (Gruppe von vier Bit) in den oberen dar. Natürlich wird es vorwiegend für BCD-Operationen verwendet. Beim Befehl Dezimalabgleich (DAA) wird es innerhalb des Mikroprozessors verwendet, um das Ergebnis auf den richtigen Wert anzupassen.

Bei einer Addition wird das Flag gesetzt, wenn ein Übertrag von Bit 3 nach Bit 4 auftritt, sonst wird es zurückgesetzt. Entsprechend wird es bei einer Subtraktion gesetzt, wenn ein Bit von Bit 4 nach Bit 3 "geborgt" wird, sonst wird es zurückgesetzt.

Das Flag wird beeinflußt beim Addieren, Subtrahieren, Inkrementieren, Dekrementieren, Vergleichen und bei logischen Operationen.

Folgende Befehle beeinflußen das H-Bit: ADD A,r; ADC A,s; SUB s; SBC A,s; CP s; NEG; AND s; OR s; XOR s; INC s; DEC m; RLA; RLCA; RRA; RRCA; RL m; RLC m; RR m; RRC m; SLA m; SR m; SRL m; RLD; RRD; DAA; CPL; SCF; IN r,(C); LDI; LDD; LDIR; LDDR; LD A,I; LD A,R; BIT b,r; CPI; CPIR; CPD; CPDR.

Beachten Sie, daß das H-Bit von 16-Bit Additionen und Subtraktionen nicht beeinflußt wird.

Null (Zero, Z)

Das Flag Z verwendet man zur Anzeige, ob der Wert eines Bytes, das berechnet oder übertragen wurde, Null ist. Es wird auch bei Vergleichsoperationen verwendet, um Gleichheit anzuzeigen, und bei verschiedenen anderen Operationen.

Bei einer Operation oder einer Datenübertragung mit dem Ergebnis Null wird das Bit Z auf "1" gesetzt. Sonst wird Z auf "0" zurückgesetzt.

Bei Vergleichsbefehlen wird das Bit Z auf "1" gesetzt, wenn der Vergleich Gleichheit ergibt, sonst auf "0".

Beim Z80 wird es zusätzlich für drei weitere Funktionen verwendet: Beim Befehl BIT dient es zur Anzeige des getesteten Bits. Es wird auf "1" gesetzt, wenn das getestete Bit "0" ist, sonst zurückgesetzt.

Bei den speziellen "Block-Ein/Ausgabebefehlen" (INI, IND, INIR, INDR) wird das Z-Flag gesetzt, wenn B-1=0 (vor der Befehlsausführung) und sonst zurückgesetzt. Es ist gesetzt, wenn der Bytezähler auf "0" dekrementiert wird.

Schließich wird das Z-Flag bei dem speziellen Befehl IN r,(C) auf "1" gesetzt, um anzuzeigen, daß das eingegebene Byte den Wert "0" hat.

Zusammenfassend beeinflussen folgende Befehle den Wert des Bits Z: ADD A,s; ADC A,s; SUB s; SBC A,s; CP s; NEG; AND s; OR s; XOR s; INC s; DEC m; ADC HL,ss; SBC HL,ss; RL m; RLC m; RR m; RRC m; SLA m; SRA m; RLD; RRD; DAA; IN r,(C); INI; IND; INIR; INDR; OUTI; OUTD; OTIR; OTDR; CPI; CPIR; CPD; CPDR; LD A,I; LD A,R; BIT b,s; NEG.

Gebräuchliche Befehle, die das Bit Z nicht beeinflussen, sind: ADD DD,ss; RLA; RLCA; RRA; RRCA; CPL; SCF; CCF; LDI; LDD; LDIR; LDDR; INC DD; DEC DD.

Vorzeichen (Sign, S)

Dieses Flag gibt den Wert des höchsten Bits eines Ergebnisses oder eines übertragenen Bytes an (Bit sieben). In der Darstellung als Zweierkomplement wird das höchste Bit zur Angabe des Vorzeichens verwendet. "0" zeigt eine positive Zahl und "1" eine negative Zahl an. Deshalb wird Bit 7 das Vorzeichenbit genannt.

Bei den meisten Mikroprozessoren spielt das Vorzeichenbit eine wichtige Rolle, wenn man mit Ein-/Ausgabegeräten kommuniziert. Die meisten Mikroprozessoren sind nicht mit einem Befehl BIT ausgestattet, der den Inhalt eines beliebigen Bits in einem Register oder im Speicher testet. Deshalb ist das Vorzeichenbit üblicherweise am besten zum Testen geeignet. Wenn man den Status eines Ein-/Ausgabegerätes überprüft, setzt das Lesen des Statusregisters automatisch das Vorzeichen-

bit, das auf den Wert von Bit sieben des Statusregisters gesetzt wird. Es kann wie üblich im Programm getestet werden. Deshalb liegt der wichtigste Indikator (normalerweise bereit/nicht bereit) im Statusregister eines Ein-/Ausgabegerätes für Mikroprozessoren normalerweise in Bit 7. Beim Z80 steht ein spezieller Befehl BIT zur Verfügung. Um jedoch eine Speicherstelle zu testen in der ein Ein-/Ausgabestatusregister liegen kann), muß zuerst deren Adresse in Register HL, IX oder IY geladen werden. Es gibt keinen Befehl, mit dem man ein Bit in einer festgelegten Speicherstelle direkt testen kann (d. h. keine direkte Adressierung für diesen Befehl). Die Positionierung des Flags "bereit" im Bit 7 bei Ein-/

Schließlich wird das Flag von dem Befehl IN r,(C) verwendet, um das Vorzeichen der eingegebenen Daten anzuzeigen.

Ausgabegeräten bleibt deshalb auch beim Z80 bedeutsam.

Folgende Befehle beeinflussen das Vorzeichenbit: ADD A,s; SUB s; SBC A,s; CP s; NEG; AND s; OR s; XOR s; INC s; DEC m; ADC HL,ss; SBC HL,ss; RL m; RLC m; RR m; RRC m; SLA m; SRA m; SRL m; RLD; RRD; DAA; IN r,(C); CPI; CPIR; CPD; CPDR; LD A,I; LD A,R; NEG; ADC A,s.

Zusammenfassung der Flags

Die Flagbits werden dazu verwendet, spezielle Zustände innerhalb der ALU des Mikroprozessors automatisch anzuzeigen. Sie können üblicherweise mit besonderen Befehlen getestet werden, so daß abhängig von dem festgestellten Zustand bestimmte Maßnahmen ergriffen werden können. Es ist wichtig, die Funktion der verschiedenen verfügbaren Anzeiger zu verstehen, weil die meisten Entscheidungen innerhalb des Programms in Abhängigkeit vom Zustand dieser Flags getroffen werden. Alle Sprünge, die in einem Programm ausgeführt werden, werden abhängig vom Zustand dieser Flags zu bestimmten Adressen ausgeführt.

Die einzige Ausnahme bildet der Interruptmechanismus, der im Kapitel über Ein-/Ausgaben beschrieben wird, und der einen Sprung zu einer festgelegten Adresse auslösen kann, immer wenn ein Hardwaresignal an bestimmten Anschlüssen des Z80 anliegt.

An dieser Stelle ist es nur notwendig, sich die hauptsächliche Funktion der einzelnen Bits zu merken. Beim Programmieren kann der Leser die Beschreibungen der einzelnen Befehle an späterer Stelle in diesem Kapitel verwenden, um die Wirkung jedes einzelnen Befehls auf die verschiedenen Flags zu überprüfen. Meistens braucht man fast alle Flags nicht zu beachten, und der Leser, der damit noch nicht vertraut ist, braucht sich wegen der scheinbaren Kompliziertheit nicht bange machen zu lassen. Ihre Verwendung wird klarer werden, sobald wir mehr Programmanwendungen untersucht haben.

Eine Zusammenstellung der sechs Flags und die Art und Weise, wie sie von den verschiedenen Befehlen gesetzt oder zurückgesetzt werden, ist in Abbildung 4.17 gezeigt.

BEFEHL	С	z	₹,	s	N	н	KOMMENTAR	
ADD A, 1; ADC A, 1	1	1	v	;	0	ī	8-Bit-Addriga oder Addition mil Carry	l
SUB 1: \$8C A, 1, CP 1, NEG	1:	1] v	:	1	:	8-Bit-Subtraktion, Subtraktion mit	ı
1	İ]	l		!	ı	Carry, vergleiche und	•
	١.	Ì	l]	İ	ı	neglero Akkumulator	ł
AND s	0	l :	P	١:	0	1	Logische Operationen	
OR 1; XOR 1	0	;	ρ	:	٥	0	AND selet verschiedene Flags	ı
INC I	٠.	l :	I۷	;	0	:	Inkrementione 8 Bit	ı
DEC m	٠ ا	;	V	:	1	١:	Dakramentievo 8 Bit	ı
ADO 00, ss	;	۱.	•	•	0	×	Addiore 16 Bit	ı
ADC HL, 51	;	1:	V	;	0	×	Address 16 Bit mit Carry	ı
SBC HL, st	1	:	v	[:	ı	×	Subtrahioro 16 Sitma Comy	ı
RLA; FILCA, ARA, RRCA	:	•	•	٠	0	0	Rotiere Akkumutator	ı
RL m; RLC m; AR m; RRC m	:	;	Р	:	0	0	Rolliere und schleba Stelle m	ı
SLA m; SRA m, SRL m		ı	ı			l	1	
RLD, RRD	•	:	ρ	:	0	0	Rotiere Zitter links und rechts	ı
DAA	;	:	P	 :	•	:	Gleiche Akkumufator dezimal ab	l
CPL	٠	•		•	1	1	Komplementiere Akkumulator	ŀ
SCF	1	٠	•	•	٥	0	Solze Carry	
CCF	:	•	•	•	0	х	Komplementions Carry	
IN r. ICI	•	: .	P	۱: ا	0	0	Register-indirekte Eingabe	
INI. IND; OUTI; OUTD	•	1	x	x	1	x	Block-Eingabe und -Ausgabe	
INIR; INDR; QTIR; QTOR	•	1	×	x	1	x	Z = 0, falls B = 0, sonst Z = 1	
LDI, LDD	•	х	1: 1	x	0	0	Clocktransferbelishte	
LDIR, LODA	•	×	0	x	O-	ò	P/V = 1, Jalls BC = 0, sonst P/V = 0	
l							Blocksuchbefehle	
CPI, CPIR, CPD, CPDR	•	:	;	:	1	X	Z - 1, wenn A - (HL), sonst Z = 0	
l i				Ш			P/V ≈ 1, wen⊓ 8C = 0, sonst P/V ≈ 0	Ł
				Ш				i.
	1							È
LD A.1: LD A.R	.	.	t F F	i:	0	a	Der Inhalt des Interrupt-Freigabe-Flip-	0
20 71, 1, 25 12, 11	- 1	١.١		١. ١	ď	٠	Flops (IFF) wird ins Flag	-2
			ı				P/V kopint	7
81T b, s	•	;	x	х	0	ı	Das Komplement von Bit til dez	0
							Stelle s wird ins Flag Z koplan	ş
NEG	:	:	٧	:	1	:		ourtesy of Zilog, Inc
							Negiere Akkumutator	ပြ

In dieser Tabelle wurden die folgenden Abkürzungen verwendel:

SYMBOL

OPERATION

Übertragsflag. C=1 wenn die Operation einen Übertrag vom MSB des Operanden oder des Ergebnisses erzeugte.

Nullilag. Z=1 wenn das Ergebnis der Operation Null ist.

Vorzeichenflag, S=1 wenn das MSB des Ergebnisses Eins ist.

- P/V Paritas- oder Überlaufflag. Parität (P) und Überlauf (V) beeinflussen das gleiche Flag. Logische Operationen beeinflussen dieses Flag durch die Parität des Ergebnisses, während arithmetische Operationen einen Überlauf anzeigen. Enthält P/V die Parilät, so ist P/V=1 bei ungerader, P/V=0 bei gerader Parilät. Enthält P/V den Überlauf, so ist P/V = 1, wenn ein Überlauf auftrat.
- Halbübertragsflag. H=1 wenn Addition oder Subtraktion einen Übertrag nach Bit 4 ergaben.
- Additions-/Subtraktionsflag. N=1 wenn die letzte Operation eine Subtraktion war. Die Flags H und N werden von dem Befehl DAA (Dezimalanpassung) verwendet, um das Ergebnis bei gepackter BCD-Darstellung nach Addition oder Subtraktion entsprechend zu komigieren.
- Flag wird entsprechend dem Ergebnis der Operation beeinflußt.
- Flag wird durch die Operation nicht beeinflußt.
- Flag wird durch die Operation zurückgesetzt.
- Flag wird durch die Operation gesetzt.
- Flag ist willkürlich gesetzt. Flag wird von einem Überlauf beeinflußt.
- Flag wird durch die Parität des Ergebnisses beeinflußt.
- Beliebiges der CPU-Register A, B, C, D, E, H, L
- Beliebige 8-Bit-Adresse für alle bei diesem Befehl zulässigen Adressierungsarten. Beliebige 16-Bit-Adresse für alle bei diesem Betehl zulässigen Adressierungsarten. SS
- Beliebiges Indexregister IX oder IY.
- R Auffrischzähler.
- 8-Bit-Zahl im Bereich 0 bis 255.
- 16-Bit-Zahl Im Bereich 0 bis 65535
- Beliebige 8-Bit-Zahl für alle bei der Operation zulässigen Adressierungsarten.

Die Sprungbefehle

Eine Verzweigung ist ein Befehl, der einen Sprung zu einer festgelegten Adresse erzwingt. Er verändert den normalen Ablauf des Programms, d. h. die sequentielle Abarbeitung so, daß plötzlich ein anderer Abschnitt des Programms ausgeführt wird. Sprünge können unbedingt oder bedingt sein. Bei einem unbedingten Sprung wird unabhängig von irgendeiner anderen Bedingung zu einer festgelegten Adresse verzweigt.

Ein bedingter Sprung wird nur dann zu einer festgelegten Adresse ausgeführt, wenn eine oder mehrere Bedingungen erfüllt sind. Mit dieser Art von Sprung werden Entscheidungen in Abhängigkeit von Daten oder berechneten Ergebnisse gefällt.

Um die bedingten Sprungbefehle zu erklären, muß die Funktion der Flagregister verstanden sein, da alle Entscheidungen über Verzweigungen auf diesen Registern basieren. Dies war die Aufgabe des vorhergehenden Abschnitts. Wir können jetzt die Sprungbefehle, über die der Z80 verfügt, genauer untersuchen.

Es gibt zwei Haupttypen von Sprungbefehlen: Sprünge innerhalb des Hauptprogramms ("JUMP" genannt) und die speziellen Verzweigungsbefehle, mit denen man Unterprogramme anspringt und von dort zurückkehrt ("CALL" und "RETURN"). Als Ergebnis eines Sprungbefehls wird der Befehlszähler mit einer neuen Adresse geladen, und an dieser Stelle geht dann die normale Programmausführung weiter. Die ganze Leistungsfähigkeit der verschiedenen Sprungbefehle kann nur im Zusammenhang mit den verschiedenen Adressierungsarten verstanden werden, die im Mikroprozessor zur Verfügung stehen. Deshalb wird dieser Teil der Diskussion bis zum nächsten Kapitel verschoben, wo die Adressierungsarten besprochen werden. Hier wollen wir uns nur mit den anderen Gesichtspunkten dieser Befehle befassen.

Sprünge können unbedingt sein (zu einer festgelegten Speicheradresse verzweigen) oder bedingt. Bei bedingten Sprüngen kann eines von vier Flagbits getestet werden. Dies sind die Flags Z, C, P/V und S. Jedes kann auf den Wert "0" oder "1" getestet werden.

Die entsprechenden Abkürzungen sind:

Z = Null (Z=1)
NZ = nicht Null (Z=0)
C = Übertrag (C=1)
NC = kein Übertrag (C=0)
PO = ungerade Parität
PE = gerade Parität
P = plus (S=0)
M = minus (S=1)

Zusätzlich steht beim Z80 ein spezieller Kombinationsbefehl zur Verfügung, der das Register B dekrementiert und zu einer festgelegten Speicheradresse springt, solange es nicht Null ist. Dies ist ein leistungsfähiger

Befehl am Ende einer Schleife und er wurde im letzten Kapitel schon mehrfach verwendet: Es ist der Befehl DJNZ.

Entsprechend können auch die Befehle CALL und RET (RETURN) bedingt oder unbedingt sein. Sie testen die gleichen Flags wie der Sprungbefehl, den wir schon besprochen haben.

Bedingte Sprünge stellen eine sehr leistungsfähige Eigenschaft dar, über die nicht alle 8-Bit-Mikroprozessoren verfügen. Sie verbessert die Effektivität eines Programms, weil in einem Befehl untergebracht ist, wofür sonst zwei Befehle belegt werden.

Schließlich gibt es für Interruptprogramme zwei Spezialbefehle. Dies sind RETI und RETN. Sie werden in Kapitel 6 bei den Interrupts beschrieben.

Die Adressierungsarten und die Opcodes für die verschiedenen verfügbaren Verzweigungen zeigt Abb. 4.18.

Eine detaillierte Beschreibung der verschiedenen Adressierungsarten wird in Kapitel 5 gegeben.

Wenn wir Abb. 4.18 untersuchen, dann wird es offensichtlich, daß viele Adressierungsarten beschränkt sind. Der absolute Sprung JP nn kann beispielsweise vier Flags testen, während der relative Sprung JR nn nur zwei Flags testen kann.

8EOINGUNG												
			UN. COND	CAHRY	NON CARRY	21.80	NON 26 HD	PARITY EVEN	PARITY	SIGN NEG	SIGN POS	REG B≠0
JUMP JP.	IMMED.	nn n	C3 n	DA n	02	CA n	C2 n	EA n	E2 n	FA n	F2 n	
JUMP 'JR'	RELATIVE	PC++	18 +2	38 ~ 2	30 + 2	28 F 2	€ 2 € 2					
JUMP 'JP'		(HL)	E9									
JUMP 'JP'	HEG. INDIR,	(IX)	DD E9									
JUMP 'JP'		((Y)	FD E9									
'CALL'	IMMED.	An	CD n	DC n	D4 0 0	CC n	C4 n	EC n	E4 n	FC n	F4 .n.	
DEKREMENTIERE B, SPRINGE FALLS NICHT NULL 'DJNZ'	RELATIVE	PC++										10 +2
RETUAN 'RET'	REGISTER INDIR,	(SP) (\$P+1)	C9	D8	00	8	ĊO	E\$	EO	F8	FO	
RETURN FROM INT 'RETI'	REG.	(SP) (SP+1)	€D 4D									
RETURN FROM NON MASKABLE INT 'RETN'	REG. INDIR.	(SP) (SP+1)	ED 45									

Abb. 4.18: Sprungbefehle

Beachten Sie eine wichtige Anmerkung: Man verwendet JR fast immer dann, wenn es möglich ist, da er kürzer ist als JP (ein Byte weniger) und das Verschieben von Programmen erleichtert. JR und JP sind jedoch nicht austauschbar: JR kann die Flags Parität und Vorzeichen nicht testen.

Ein weiterer spezieller Typ von Verzweigungsbefehlen steht zur Verfügung: Der Befehl Restart oder RST. Er ist ein Einbytebefehl, der den Sprung zu einer von acht Adressen im unteren Teil des Speichers erlaubt. Seine Startadressen sind dezimal 0, 8, 16, 24, 32, 40, 48 und 56. Er ist ein leistungsfähiger Befehl, weil er nur aus einem Byte besteht. Er ist die schnellste Verzweigung, die zur Verfügung steht, und er ist aus diesem Grund für die Reaktion auf Interrupts wichtig. Er kann vom Programmierer aber auch zu anderen Zwecken verwendet werden. Abb. 4.19 zeigt eine Zusammenstellung der Opcodes für diesen Befehl.

		OP CODE	
	0000 _H	C7	'RST 0'
	0008 _H	CF	'RST 8'
CALL	0010 _H	D7	'RST 16'
	0018 _H	DF	'RST 24'
ADD##%%	0020 _H	E7	'RST 32'
s	0028 _H	EF	'RST 40'
	0030 _H	F7	'R\$T 48'
	0038 _H	F #	'R\$T 56'

H kennzelchnet eine Hexadezimalzahl

Abb. 4.19: Restart-Befehle

Ein-/Ausgabebefehle

Die Ein-/Ausgabetechniken werden in Kapitel 6 im einzelnen beschrieben. Vereinfacht gesagt kann man ein Ein-/Ausgabegerät auf zwei Ar-

ten adressieren: Als Speicherplatz, wobei man dann einen der Befehle verwendet, die schon beschrieben wurden, oder mit speziellen Ein-/Ausgabebefehlen. Die normalen Befehle zur Speicheradressierung belegen drei Byte: ein Byte für den Opcode und zwei Byte für die Adresse. Deshalb werden sie langsam ausgeführt, weil sie drei Speicheradressen benötigen. Der hauptsächliche Zweck spezieller Ein-/Ausgabebefehle ist es, kürzere und damit schnellere Befehle zu liefern. Ein-/Ausgabebefehle haben jedoch zwei Nachteile.

Erstens "verbrauchen" sie mehrere der wenigen verfügbaren Opcodes (da normalerweise nur 8 Bit für alle Opcodes zur Verfügung stehen, die in einem Mikroprozessor benötigt werden). Zweitens machen sie die Erzeugung eines oder mehrere spezieller Ein-/Ausgabesignale nötig und "verbrauchen" einen oder mehrere der wenigen Anschlüsse, die der Mikroprozessor besitzt. Die Zahl der Anschlüsse ist normalerweise auf 40 begrenzt. Wegen dieser möglichen Nachteile gibt es bei den meisten Mikroprozessoren keine speziellen Ein-/Ausgabebefehle. Es gibt sie jedoch beim 8080 (der als erster eingeführte universelle 8-Bit-Mikroprozessor) und beim Z80, der, wie wir wissen, zum 8080 kompatibel ist.

Der Vorteil von Ein-/Ausgabebefehlen ist es, daß sie schneller arbeiten, da sie nur zwei Byte belegen. Ein ähnliches Ergebnis erhält man jedoch, wenn eine spezielle Adressierungsart zur Verfügung steht, die man Adressierung in der "Seite 0" nennt, und bei der das Adressfeld auf 8 Bit begrenzt ist. Diese Lösung wurde oft bei anderen Mikroprozessoren gewählt.

Die beiden grundsätzlichen Ein-/Ausgabebefehle sind IN und OUT. Sie übertragen entweder den Inhalt einer festgelegten Eingabeadresse in eines der Arbeitsregister oder den Inhalt eines Registers zu dem Ausgabegerät. Sie sind natürlich zwei Byte lang. Das erste Byte ist für den Opcode reserviert, das zweite Byte des Befehls bildet den unteren Teil der Adresse. Auf der oberen Hälfte des Adreßbusses wird der Akkumulator ausgegeben. So könnte man eines von 64K Geräten auswählen. Da dies jedoch Zeit kostet (der Akkumulator muß geladen werden) und außerdem der Akkumulator normalerweise Daten enthält, die ein- bzw. ausgegeben werden, selektiert man mit den Ein-/Ausgabebefehlen üblicherweise nur 256 Geräte.

Zusätzlich verfügt der Z80 über eine Register-indirekte Betriebsart und über vier spezielle Befehle zur Ein-/Ausgabe von Blöcken.

Bei dem Befehl Registereingabe, der das Format IN r,(C) hat, dient das Registerpaar BC (bzw. das Register C, wenn man wie üblich maximal 256 Geräte adressiert) als Zeiger auf das Ein-/Ausgabegerät. Der Inhalt des Registers B wird auf dem oberen Teil des Adreßbusses ausgegeben. Der Inhalt des ausgewählten Ein-/Ausgabegerätes wird dann in das mit r festgelegte Register geladen.

Das gleiche gilt auch für den Befehl OUT.

Die vier Blocktransferbefehle sind für die Eingabe: INI, INIR (INI wiederholt), IND und INDR (IND wiederholt). Für die Ausgabe sind dies entsprechend: OUTI, OTIR, OUTD und OTDR.

Bei diesem automatischen Blocktransfer dient HL als Zeiger in den Speicher. Das Register C selektiert das Ein-/Ausgabegerät (eines von 256). Bei einem Ausgabebefehl zeigen H und L auf die Quelle. Das Register B dient als Zähler und wird dekrementiert. Bei der Eingabe sind die entsprechenden Befehle INI, wobei HL inkrementiert wird, und IND, wobei HL dekrementiert wird.

INI ist ein automatischer Einbytetransfer. Register Cselektiert das Ein-/Ausgabegerät. Es wird ein Byte aus dem Ein-/Ausgabebaustein gelesen und in der Speicherstelle abgelegt, auf die H und L zeigen. Dann werden H und L um 1 inkrementiert und B um 1 dekrementiert.

INIR ist der gleiche Befehl, aber automatisiert. Er wird wiederholt ausgeführt, bis der Zähler B auf Null dekrementiert wird. So können bis zu 256 Byte automatisch übertragen werden. Beachten Sie, daß man vor der Ausführung des Befehls das Register B auf "0" setzen muß, wenn man genau 256 Byte übertragen will.

Die Opcodes für die Ein-/Ausgabebefehle sind in Abb. 4.20 und 4.21 zusammengefaßt.

			_		REG. IND,						
			A	В	С	D	E	н	L	(HL)	
	IMMED.	·(n)	n D3						-		
'001'	AEG.	{C}	ED 79	ED 41	ED 49	ED 51	€D 59	E0 61	ED 69		
'OUTI' - OUTPUT Inc HL, Dec b	RÉG. IND.	ίĊΙ	_ · _			-				60 A3	
'OTIR' - OUTPUT, Inc HL, Oec B, REPEAT IF B≠0	REG.	(C)		i						ED B3	BLOC
'OUTO' - OUTPUT Dec HL & B	REG. IND.	(C)		_						ED A8	AUSG BEFE
OTOR" - OUTPUT, Dec HL	REG.	(C)								ED BB	

Abb. 4.20: Die Ausgabebefehle

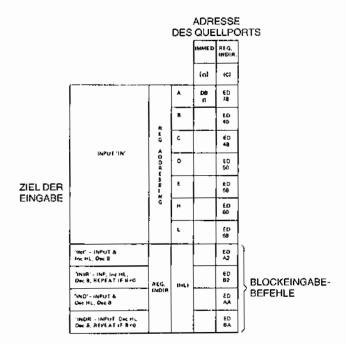


Abb. 4.21: Die Eingabebefehle

Steuerbefehle

Steuerbefehle sind Befehle, die die Betriebsart der CPU verändern oder ihre interne Statusinformation beeinflussen. Es gibt sieben solche Befehle.

Der Befehl NOP ist ein funktionsloser Befehl, der einen Zyklus lang nichts tut. Er wird typischerweise benutzt, um eine beabsichtigte Verzögerung (4 Zustände = 2 Mikrosekunden bei 2 MHz Takt) zu bewirken, oder um die Löcher zu füllen, die bei der Fehlersuche und Korrektur entstehen. Um die Fehlersuche in einem Programm zu erleichtern, besteht der Opcode für NOP traditionell aus lauter Nullen. Dies ist der Fall, weil zur Ausführungszeit der Speicher oft gelöscht ist, d. h. lauter Nullen enthält. Werden NOPs ausgeführt, dann wird weder etwas zerstört noch die Programmausführung gestoppt.

Der Befehl HALT wird in Verbindung mit Interrupts oder einem Reset benutzt. Er unterbricht tatsächlich die Operation der CPU. Die CPU wird die Arbeit wieder aufnehmen, sobald ein Interrupt oder ein Reset auftritt. In dieser Betriebsart führt die CPU ständig NOPs aus. Während der Fehlersuche plaziert man oft ein HALT am Ende des Programms, da das Hauptprogramm üblicherweise nichts anderes tun muß. Das Programm muß dann ausdrücklich neu gestartet werden.

Zwei spezielle Befehle dienen dazu, das Interruptflag ein- bzw. auszuschalten. Dies sind EI und DI. Interrupts werden im Kapitel 6 beschrieben. Das Interruptflag dient dazu, Interrupts zuzulassen oder zu sperren. Wenn man verhindern will, daß Interrupts während spezieller Teile eines Programms auftreten, kann man das Interrupt-Flip-Flop mit diesem Befehl sperren. Er wird in Kapitel 6 angewendet. Diese Befehle zeigt Abb. 4.22.

'NOP'	00
'HALT'	76
DISABLE INT '(DI)'	2
ENABLE INT '(EI)'	FB
SET INT MODE 0	ED 46
SET INT MODE 1	ED 56
SET INT MODE 2 'IM2'	ED 5É

8080 MODUS

AUFRUF ZUR ADRESSE 0038H

INDIREKTER AUFRUF MIT DEM REGISTER I und 8 BITS VOM UNTERBRECHENDEN GERÄT ALS ZEIGER

Abb. 4.22: Verschiedene CPU Steuerbefehle

Schließlich besitzt der Z80 drei verschiedene Interrupt-Betriebsarten. (Beim 8080 gibt es nur eine.) Die Interrupt-Betriebsart 0 ist die Betriebsart des 8080, die Betriebsart 1 ist ein Call auf die Adresse 038H und die Betriebsart 2 ist ein indirekter Aufruf, der den Inhalt des Spezialregisters I sowie 8 Bit, die das Gerät liefert, das den Interrupt auslöst, als Zeiger auf die Interrupt-Routine im Speicher verwendet. Diese Betriebsarten werden in Kapitel 6 erklärt.

Schließlich wird der Interrupt-Mechanismus beim Z80 über zwei spezielle Anschlüsse ausgelöst, die auch im Kapitel 6 erklärt werden. Dies sind die Anschlüsse INT und NMI.

Zusammenfassung

Die fünf Befehlsklassen, die beim Z80 verfügbar sind, wurden jetzt beschrieben. Die Einzelheiten der speziellen Befehle werden im folgenden Abschnitt des Buchs beschrieben. Es ist nicht notwendig, die Funktion

jedes einzelnen Befehls zu kennen, wenn man mit dem Programmieren beginnt. Am Anfang genügt die Kenntnis einiger weniger Befehle aus jeder Gruppe. Wenn Sie jedoch eigene Programme schreiben, sollten Sie alle Z80-Befehle kennen, um gute Programme zu schreiben. Am Anfang ist natürlich die Effektivität nicht so wichtig und deshalb kann man die meisten Befehle noch übergehen.

Ein wichtiger Gesichtspunkt ist noch nicht beschrieben worden. Dies ist der Satz Adressierungsarten, die im Z80 eingebaut sind, um die Verwaltung der Daten im Speicherbereich zu erleichtern. Diese Adressierungstechniken werden im nächsten Kapitel beschrieben.

Die Z80-Befehle: Einzelbeschreibungen

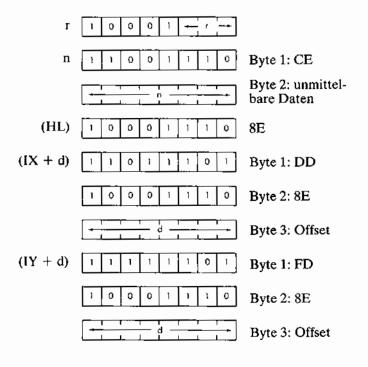
Abkürzungen

FLAG	EIN	AUS
Übertrag Vorzeichen Null Parity	C (carry) M (minus) Z (zero) PE (even, gerade)	NC (no carry) P (plus) NZ (non zero) PO (odd, ungerade)

- Flag wurde entsprechend der Operation geändert.
- Flag ist Nuli.
- Flag istEins. 1
- Flag ist nach der Operation unbestimmt. Spezialfall, siehe Anmerkung auf dieser Seite. X

Die Stellen 3 und 5 sind immer zufällig.

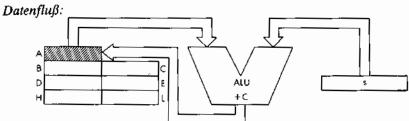
ADC A, s


Addiere den Akkumulator und den testgelegten Operanden mit Übertrag (Carry).

Funktion:

$$A \leftarrow A + s + C$$

Format:


s: kann sein r, n, (HL), (IX + d), oder (IY + d)

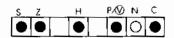
r kann sein:

Beschreibung:

Der Operand s und das Übertragsflag C aus dem Statusregister werden zum Akkumulator addiert und das Ergebnis im Akkumulator gespeichert. s ist bei der Beschreibung des ähnlichen Befehls ADD definiert.

Befehls-
ausführung:

s:	M Zyklen	T Zustände	μsek @ 2 MHz:
r	1	4	2
n	2	7	3.5
(HL)	2	7	3.5
(1X + d)	5	19	9.5
(IY + d)	5	19	9.5


Adressierungsart:

r: implizit; n: unmittelbar; (HL): indirekt; (IX + d),(IY + d): indiziert.

Byte Kode:

ADC A,r (: A B C D E H L 8F 88 89 8A 8B 8C 8D

Beispiel:

ADC A, 1A

Vorher:

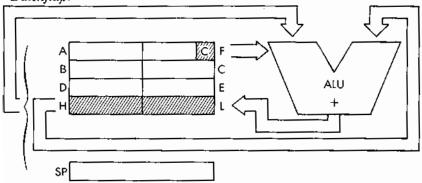
А	06	13	F
_			_

ADC HL, ss

Addiere HL und das Registerpaar ss mit Übertrag (Carry).

Funktion:

HL + HL + ss + C


Format:

1 1	1 0 1 1 0 1	Byte 1: ED
0 1	s s 1 0 1 0	Byte 2

Beschreibung:

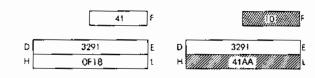
Der Inhalt des Registerpaares HL und der Inhalt des angegebenen Registerpaares werden addiert, dann wird noch der Inhalt des Übertragsflags addiert. Das Endergebnis wird wieder in HL gespeichert. ss kann sein:

Befehlsausführung: 4 M Zyklen; 15 T Zustände: 7,5 μsek @ 2 MHz

Adressierungsart: Implizit.

Byte Kode: SS: BC DE HL SP ED- 4A 5A 6A 7A

S	 Z	н	PN	N	C
1		•	•	0	lacktriangle


Hist gesetzt, wenn ein Übertrag von Bit 11 auftritt.

Beispiel:

ADC HL, DE

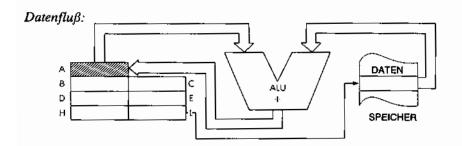
Vorher:

ADD A, (HL)

Addiere den Akkumulator mit der indirekt adres-

sierten Speicherstelle (HL).

Funktion:


 $A \leftarrow A + (HL)$

Format:

1 0 0 0 0 1 1 0 86

Beschreibung:

Der Inhalt des Akkumulators wird mit dem Inhalt der Speicherstelle addiert, deren Adresse im Registerpaar HL steht. Das Ergebnis wird im Akkumulator gespeichert.

Befehlsablauf:

2 M Zyklen; 7 T Zustände: 3,5 μsek @ 2 MHz

Adressierungsart:

Indirekt.

Flags:

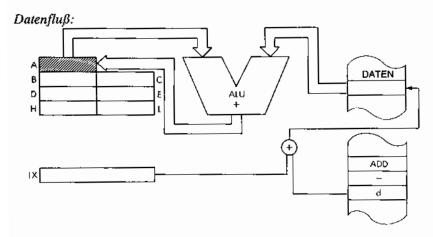
S	Z	H	Ρ/ℚ	N	C
	•			0	•

OBJEKT-KODE

Beispiel:	ADD A, (HL)	
	Vorher:	Nachher:
	A 02 H 9620	A 9620
86	9620 B1	9620 B1

ADD A, (IX + d)Addiere den Akkumulator mit der indiziert adressierten Speicherstelle (IX + d)

Funktion:


 $A \leftarrow A + (IX + d)$

Format:

Beschreibung:

Der Inhalt des Akkumulators und der Inhalt der Speicherstelle werden addiert, die durch den Inhalt des Registers IX plus den unmittelbaren Offset adressiert wird. Das Ergebnis wird im Akkumulator gespeichert.

Befehlsablauf:

5 M Zyklen; 19 T Zustände: 9,5 μsek @ 2 MHz

Adressierungsart:

Indiziert.

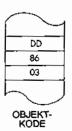
Flags:

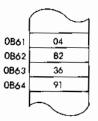
5	Z	н	 PAV,	Ŋ	C
lacksquare	•		•	0	

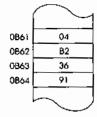
Beis	

ADD A, (IX + 3)

Vorher:


A	11
~	

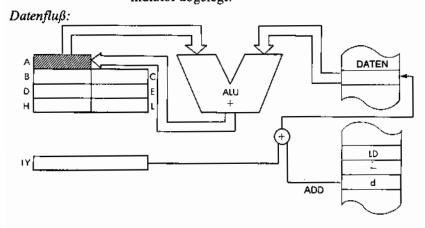

١X	OB61


Nachher:

0861

ADD A, (IY + d) Addiere den Akkumulator mit der indiziert adressierten Speicherstelle (IY + d)

Funktion:

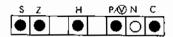

 $A \leftarrow A + (IY + d)$

Format:

1	1	1	1	1	1	0	1	Byte 1: FD
1	٥	0	0	0	1	1	0	Byte 2: 86
	_:			- L	_		<u></u>	Byte 3: Offset

Beschreibung:

Der Inhalt des Akkumulators und der Inhalt der Speicherstelle werden addiert, die durch den Inhalt des Registers IY plus den unmittelbaren Offset adressiert wird. Das Ergebnis wird im Akkumulator abgelegt.

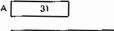


Befehlsablauf:

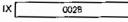
5 M Zyklen; 19 T Zustände: 9,5 μsek @ 2 MHz

Adressierungsart: Indiziert.

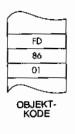
Flags:



Beispiel:


ADD A, (1Y + 1)

Vorher:


Nachher:

A CB

IX 002B

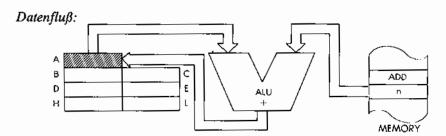
ADD A, n


Addiere den Akkumulator mit den unmittelbaren

Daten n.

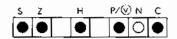
Funktion:

 $A \leftarrow A + n$


Format:

Beschreibung:

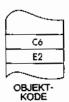
Der Inhalt des Akkumulators und der Inhalt der Speicherzelle, die unmittelbar auf den Opcode folgt, werden addiert. Das Ergebnis wird im Akkumulator abgelegt.


Befehlsablauf:

2 M Zyklen; 7 T Zustände: 3,5 μsek @ 2 MHz

Adressierungsart:

Unmittelbar.


Flags:

Beispiel:

ADD A, E2

Vorher:

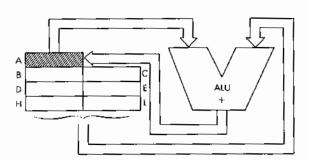
Α	43

ADD A, r Addiere den Akkumulator mit dem Register r.

Funktion:

 $A \leftarrow A + r$

Format:


1 0 0 0 0

Beschreibung:

Der Inhalt des Akkumulators wird mit dem Inhalt des angegebenen Registers addiert. Das Ergebnis wird im Akkumulator abgelegt. r kann sein:

A	_	111	Е	-	011
В		000	Н	-	100
\mathbf{C}	-	001	L	-	101
D	_	010			

Datenfluß:

Befehlsablauf: 1 M Zyklen; 4 T Zustände: 2 μsek @ 2 MHz

Adressierungsart: Implizit.

Byte Kode: r: A B C D E H L 87 80 81 82 83 84 85

Flags: S Z H P/♥ N C

Beispiel:

ADD A, B

Vorher:

Nachher:

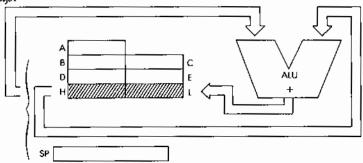
A 3D B 02 A 3F

02

ADD HL, ss Addiere HL und das Registerpaar ss.

Funktion:

HL ← HL + ss


Format:

0 0 8 8	1 0	0 1
---------	-----	-----

Beschreibung:

Der Inhalt des angegebenen Registerpaares wird zum Inhalt des Registerpaares HL addiert und das Ergebnis in HL gespeichert. ss kann sein:

Datenfluß:

Befehlsablauf:

3 M Zyklen; 11 T Zustände: 5,5 μsek @ 2 MHz

Adressierungsart:

Implizit.

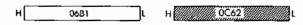
Byte Kode:

SS:

BC	ÐΕ	HL	SP
09	19	29	39

Flags:

5_	Z	н	P/V	P/V N		
				0		


C wird durch einen Übertrag vom Bit 15 gesetzt, sonst zurückgesetzt. H wird durch einen Übertrag von Bit 11 gesetzt.

Beispiel:

ADD HL, HL

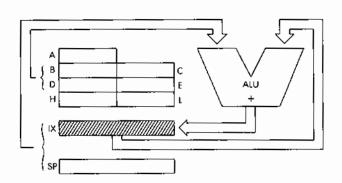
Vorher:

ADD IX, rr

Addiere IX mit dem Registerpaar rr.

Funktion:

 $IX \leftarrow IX + rr$


Format:

1	ì	0	ı	1	1	0	1	Byte 1: DD
0	0	ſ		1	0	0	1	Byte 2

Beschreibung:

Der Inhalt des Registers IX wird mit dem Inhalt des angegebenen Registerpaares addiert und das Ergebnis in IX abgelegt. rr kann sein:

Datenfluß:

Befehlsablauf:

4 M Zyklen; 15 T Zustände: 7,5 μsek @ 2 MHz

Adressierungsart:

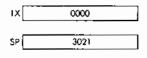
Implizit.

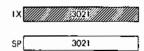
Byte Kode:

S	Z	н	P/V	N	C
		•		0	•

H wird gesetzt durch einen Übertrag von Bit 11. C wird gesetzt durch einen Übertrag von Bit 15.

Beispiel:


ADD IX, SP


Vorher:

Nachher:

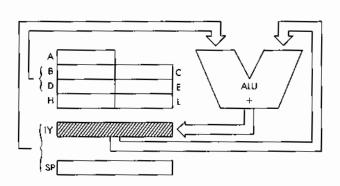
OBJEKT-KÖDE

ADD IY, rr

Addiere IY und das Registerpaar rr.

Funktion:

IY ← IY + rr


Format:

١	l	ı	١	ì	1	0	1	Byte 1: FD
0	0	r	r	1	0	0	1	Byte 2

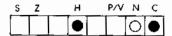
Beschreibung:

Der Inhalt des Registers IY wird mit dem Inhalt des angegebenen Registerpaares addiert und das Ergebnis in IY abgelegt. rr kann sein:

Datenfluß:

Befehlsablauf:

4 M Zyklen; 15 T Zustände: 7,5 μsek @ 2 MHz

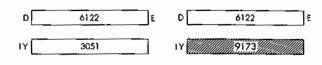

Adressierungsart:

Implizit.

Byte Kode:

rr: BC DE IY SP FD- 09 19 29 39




H wird durch einen Übertrag von Bit 11 gesetzt. C wird durch einen Übertrag von Bit 15 gesetzt.

Beispiel:

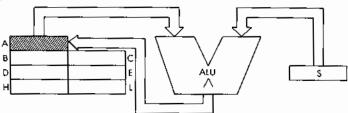
ADD IY, DE

AND s	Akkumulator und Operand s werden durch die logische Funktion "UND" verknüpft.			
Funktion:	A ← A ∧ s			
Format:	s: kann sein r,n,(HL),(IX +	d) oder (IY + d)		
r	1 0 1 0 0 + 7			
n	1 1 1 0 0 1 1 0	Byte 1: E6		
	n	Byte 2: unmittel- bare Daten		
(HL)	1 0 1 0 0 1 1 0	A6		
(IX + d)	1 1 0 1 1 0 1	Byte 1: DD		
	1 0 1 0 0 1 1 0	Byte 2: A6		
	d	Byte 3: Offset		

r kann sein:

(IY + d)

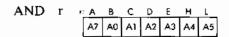
Beschreibung:


Der Akkumulator und der angegebene Operand werden logisch "UND" verknüpft und das Ergebnis im Akkumulator abgelegt. s ist bei der Beschreibung des ähnlichen Befehls ADD definiert.

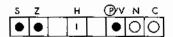
Byte 1: FD

Byte 2: A6

Byte 3: Offset


Befehlsablauf:

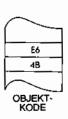
s:	M Zyklen:	T Zustände:	μsek @ 2 MHz:
r	1	4	2
n	2	7	3.5
(HL)	2	7	3.5
(IX + d)	5	19	9.5
(IY + d)	5	19	9.5


Adressierungsart:

r: implizit; n: unmittelbar; (HL): indirekt; (IX + d), (IY + d): indiziert.

Byte Kode:

Flags:


Beispiel:

AND 4B

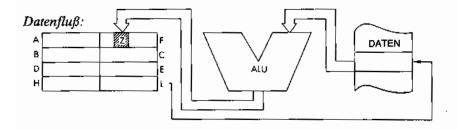
Vorher:

BIT b, (HL)

Teste Bit b der indirekt adressierten Speicherzelle

(HL)

Funktion:


 $Z \leftarrow \overline{(HL)}_b$

Format:

1_	١	Q	0	ì	0	1	ì	Byte 1: CB
0	1	-			1	1	0	Byte 2

Beschreibung:

Das angegebene Bit der Speicherstelle, die durch den Inhalt des Registerpaares HL adressiert wird, wird getestet, und das Flag Z entsprechend dem Ergebnis gesetzt. b kann sein:

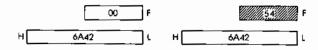
Befehlsablauf:

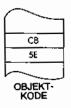
3 M Zyklen; 12 T Zustände: 6 µsek @ 2 MHz

Adressierungsart:

Indirekt.

Flags:


S	Z	Н	P/V	N	C
?	•	1	 ?	0	



Beispiel:

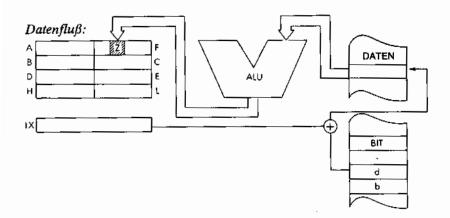
BIT 3, (HL)

Vorher:

BIT b, (IX + d) Teste Bit b der indiziert adressierten Speicherzelle (IX + d)

Funktion:

$$Z \leftarrow (IX + d)_b$$


Format:

1 1 0 1 1 1 0 1	Byte 1: DD
1 1 0 0 1 0 1 1	Byte 2: CB
d	Byte 3: Offset
0 1 + b 1 1 0	Byte 4

Beschreibung:

Das angegebene Bit der Speicherzelle, die durch den Inhalt des Registers IX plus einem gegebenen Offset adressiert wird, wird getestet, und das Flag Zentsprechend dem Ergebnis gesetzt. b kann sein:

$$\begin{array}{rrrrr}
 0 & -000 & 5 & -101 \\
 1 & -001 & 6 & -110 \\
 2 & -010 & 7 & -111 \\
 3 & -011 & & & & & \\
 4 & -100 & & & & & & \\
 \end{array}$$

Befehlsablauf:

5 M Zyklen; 20 T Zustände: 10 μsek @ 2 MHz

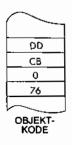
Adressierungsart:

Indiziert.

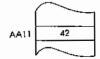
Byte Kode:

b:	0		-	-	4	_ -		7
DD-CB-d-	46	4E	56	5E	66	óЕ	76	7 E


Flags:


\$	Z	Н	P/V	N	_ C
?	•	1	?	0	

Beispiel:

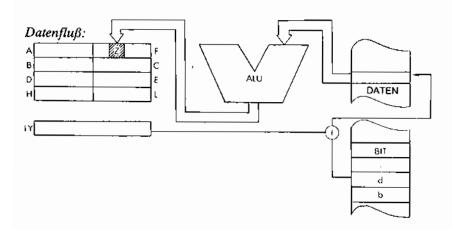

BIT 6, (IX + 0)

Vorher:

BIT b, (IY + d) Teste Bit b der indiziert adressierten Speicherstelle (IY + d)

Funktion:

$$Z \leftarrow \overline{(1Y + d)}_b$$


Format:

1 1 1 1 1 0 1	Byte 1: FD
1 1 0 0 1 0 1 1	Byte 2: CB
	Byte 3: Offset
0 1 + 1 1 0	Byte 4

Beschreibung:

Das angegebene Bit der Speicherstelle, die durch den Inhalt des Registers IY plus einem gegebenen Offset adressiert wird, wird getestet, und das Flag Zentsprechend dem Ergebnis gesetzt. b kann sein:

$$0 - 000$$
 $4 - 100$
 $1 - 001$ $5 - 101$
 $2 - 010$ $6 - 110$
 $3 - 011$

Befehlsablauf:

5 M Zyklen; 20 T Zustände: $10 \mu sek @ 2 MHz$

Adressierungsart:

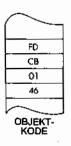
Indiziert.

Byte Kode: b:

0	1	2	3	4	5	6	7
46	4E	56	5 £	66	δE	76	7 E

Flags:

S	Z	н	P/V	N	Ç
?	•	1	?	0	


Beispiel:

BIT 0, (IY + 1)

BIT b, r

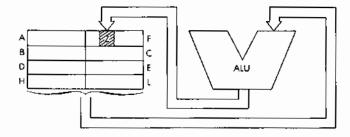
Teste Bit b des Registers r.

Funktion:

 $Z \leftarrow r_b$

Format:

1	1	0	0	1	0	1	1	Byte 1: CB
_								


0 1 + b + r Byte 2

Beschreibung:

Das angegebene Bit des festgelegten Registers wird getestet und das Flag Z entsprechend dem Ergebnis gesetzt. b und r können sein:

b:	0 - 000 $1 - 001$ $2 - 010$	4 - 100 5 - 101
	3 - 011	6 - 110 7 - 111
r:	A - 111 B - 000 C - 001 D - 010	E - 011 H - 100 L - 101

Datenfluß:

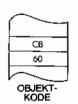
Befehlsablauf:

2 M Zyklen; 8 T Zustände: 4 μsek @ 2 MHz

Adressierungsart:

Implizit.

Byte Kode:


þ;	r: A	В	С	D	Ę	н	L
0	47	40	41	42	43	44	45
١	4F	48	49	4A	48	4C	40
2	57	50	51	52	53	54	55
3	5F	58	59	5A	5B	5C	5D
4	67	60	61	62	63	64	65
5	6F	68	69	6A	óВ	6C	6D
6	77	70	71	72	73	74	75
7	78	78	79	7A	7B	7C	7D

Flags:

\$	_z	Н	1	/ /	N	C
?	•	1		?	0	

Beispiel:

BIT 4, B

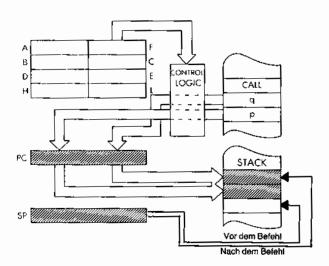
CALL cc, pq Bedingter Unterprogrammaufruf.

Funktion:

wenn cc erfüllt (SP - 1) ← PC_{oben}; (SP - 2) ← PC_{unten}; SP←SP - 2; PC ~pq Wenn cc nicht erfüllt: PC ← PC + 3

Format:

1 1 + cc 1 0 0	Byte 1 Byte 2: Adresse,
4 - 4 - 4 - 4 - 4	unterer Teil
	Byte 3: Adresse, oberer Teil

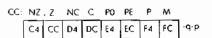

Beschreibung:

Ist die Bedingung erfüllt, dann wird der Inhalt des Befehlszählers auf den Stapel abgelegt, wie bei dem Befehl PUSH beschrieben. Dann wird der Inhalt der Speicherzelle, die unmittelbar auf den Opcode folgt, in die untere Hälfte von PC geladen, und der Inhalt der zweiten Speicherzelle nach dem Opcode in die obere Hälfte von PC. Der nächste Befehl wird dann von dieser neuen Adresse geholt. Ist die Bedingung nicht erfüllt, dann wird die Adresse pq ignoriert und der folgende Befehl ausgeführt. cc kann sein:

NZ - 000	PO - 100
Z - 001	PE - 101
NC - 010	P - 100
C - 011	M - 111

Mit dem Befehl RET kann der Inhalt von PC am Ende des aufgerufenen Unterprogramms wiederhergestellt werden.

Datenfluß:

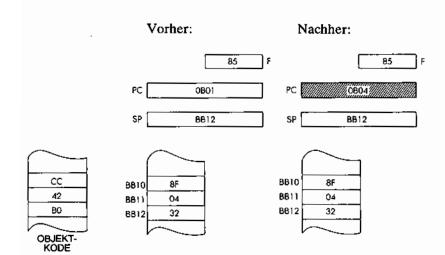


Befehlsablauf:

	M Zyklen:	T Zustände:	μsek @ 2 MHz
Bedingung erfüllt: Bedingung	5	17	8.5
nicht erfüllt:	3	10	5

Adressierungsart: Unmittelbar.

Byte Kode:



Flags:

\$ Z	ŀ	1	. <u>P/</u> V	N	Ç	
						(kein Einfluß)

Beispiel:

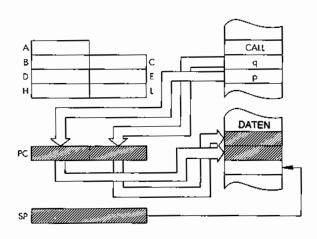
CALL Z,B042

CALL pq

Aufruf eines Unterprogramms an der Adresse pq.

Funktion:

 $(SP-1) \leftarrow PC_{oben}; (SP-2) \leftarrow PC_{unten}; SP \leftarrow SP - 2; PC \leftarrow pq$


Format:

ſ	ì	0	0	1	١	0	1	Byte 1: CD Byte 2: Adresse,
-	_		(-			<u></u>	untere Hälfte
-			<u> </u>	, 	<u> </u>	 	-	Byte 3: Adresse, obere Hälfte

Beschreibung:

Der Inhalt des Befehlszählers wird auf dem Stapel abgelegt, wie bei dem Befehl PUSH beschrieben. Der Inhalt der Speicherzelle, die unmittelbar auf den Opcode folgt, wird in die untere Hälfte, der Inhalt der darauf folgenden Speicherzelle in die obere Hälfte des Befehlszählers geladen. Der nächste Befehl wird von dieser Adresse geholt.

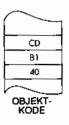
Datenfluß:

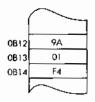
Befehlsablauf:

5 M Zyklen; 17 T Zustände: 8,5 μsek @ 2 MHz

Adressierungsart:

Unmittelbar.


S	Z ·	<u>. H</u>	P/V	Ν	C	
						(kein Einfluß)


Beispiel:

CA:LL 40B1

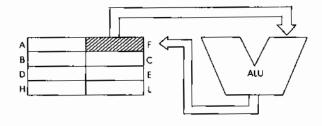
PC	AA40	PC 408
٠, [0814	SP (4/4//////////////////////////////////

CCF

Komplementiere Übertragsflag.

Funktion:

 $C \leftarrow \overline{C}$

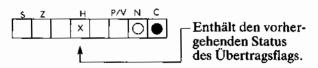

Format:

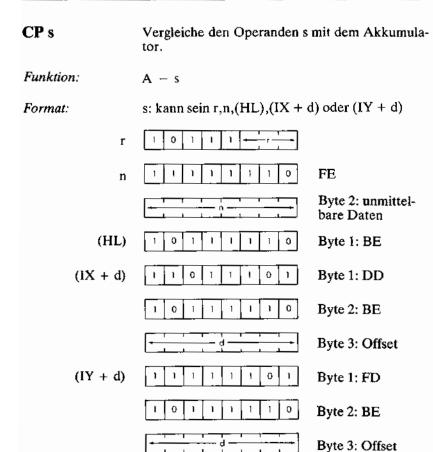
0 0 1 1 1 1 1 3F

Beschreibung:

Das Übertragsflag wird komplementiert.

Datenfluß:

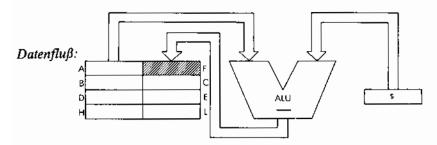

Befehlsablauf:


1 M Zyklen; 4 T Zustände: 2 μsek @ 2 MHz

Adressierungsart:

Implizit.

Flags:



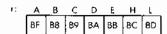
r kann sein:

Beschreibung:

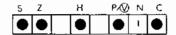
Der angegebene Operand wird vom Akkumulator subtrahiert und das Ergebnis wird nicht weiter berücksichtigt. s ist bei der Beschreibung des Befehls ADD definiert.

Befehlsablauf:

5:	M Zyklen:	T Zustände:	μsek @ 2 MHz:
r	1	4	2
n	2	7	3.5
(HL)	2	7	3.5
(IX + d)	5	19	9.5
(1Y + d)	5	19	9.5

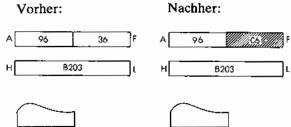

Adressierungsart:

r: implizit; n: unmittelbar; (HL): indirekt; (IX +


d), ($\dot{I}\dot{Y} + \dot{d}$): indiziert.

Byte Kode:

CP r:



Flags:

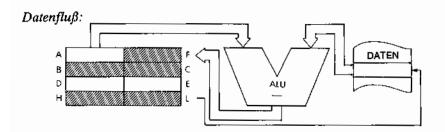
Beispiel:

CP (HL)

CPD

Vergleiche und dekrementiere.

Funktion:

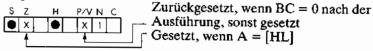

 $A - [HL]; HL \longrightarrow HL - 1; BC \longrightarrow BC - 1$

Format:

1	ı	1	0	ı	1	0	1	Byte 1: ED
1	0	1	0	1	0	0	1	Byte 2: A9

Beschreibung:

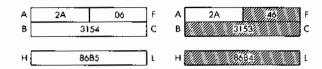
Der Inhalt der Speicherstelle, die durch den Inhalt des Registerpaares HL adressiert wird, wird vom Inhalt des Akkumulators subtrahiert, das Ergebnis wird nicht weiter berücksichtigt. Danach werden die Registerpaare HL und BC dekrementiert.

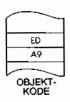

Befehlsablauf:

4 M Zyklen; 16 T Zustände: 8 μsek @ 2 MHz

Adressierungsart:

Indirekt.





CPD

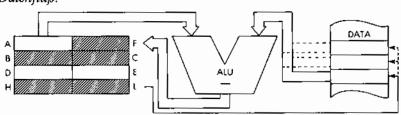
Vorher:

CPDR

Blockvergleich und Dekrementieren.

Funktion:

 $A - [HL]; HL \leftarrow HL - 1; BC \leftarrow BC - 1;$ Wiederhole bis BC = 0 oder A = [HL]


Format:

1	1	ì	0	l	l	0	1	Byte 1: ED
1	0	1	ı	1	0	0	1	Byte 2: B9

Beschreibung:

Der Inhalt der Speicherstelle, die durch das Registerpaar HL adressiert wird, wird vom Inhalt des Akkumulators subtrahiert, das Ergebnis wird nicht weiter berücksichtigt. Danach werden die Registerpaare BC und HL dekrementiert ist. BC $\neq 0$ und A \neq [HL], dann wird der Befehlszähler um zwei dekrementiert und der Befehl nochmals ausgeführt.

Datenfluß:

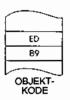
Befehlsablauf:

BC = 0 oder A = [HL]:4 M Zyklen; 16 T Zustän-

de: 8 μsek @ 2 MHz

BC \neq 0 und A \neq [HL]:5 M Zyklen; 21 T Zustände:

10,5 μsek @ 2 MHz


Beispiel:

CPDR

Vorher:

Α	9A	00						
В	0002							
	-							
н	610	00 L						

F	9A		2/////	
c 🂹		0000		
н∭		6OFE		

CPI

Vergleiche und inkrementiere.

Funktion:

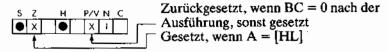
 $A = [HL]; HL \leftarrow HL + 1; BC \leftarrow BC - 1$

Format:

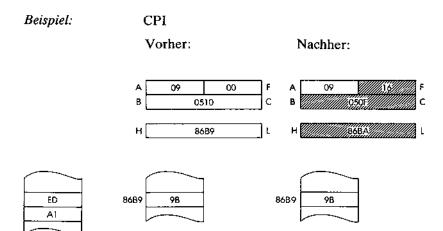
١	1	1	0	ı		0	ì	Byte 1: ED
<u> </u>	0	ī	0	0	0	0		Ryte 2: A1

Beschreibung:

Der Inhalt der Speicherzelle, die durch das Registerpaar HL adressiert wird, wird vom Inhalt des Akkumulators subtrahiert, das Ergebnis wird nicht weiter berücksichtigt. Das Registerpaar HL wird inkrementiert und das Registerpaar BC dekrementiert.



Befehlsablauf:


4 M Zyklen; 16 T Zustände: 8 μsek @ 2 MHz

Adressierungsart:

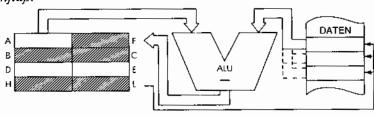
Indirekt.

OBJEKT-KODE

CPIR

Blockvergleich und Inkrementieren.

Funktion:


A - [HL]; $HL \leftarrow HL + 1$; $BC \leftarrow BC - 1$; Wiederhole bis BC = 0 oder A = [HL]

ı	ı	1	О	1	1	0	1	Byte 1: ED
ו	0	1	1	0	0	0	١	Byte 2: B1

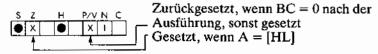
Beschreibung:

Der Inhalt der Speicherstelle, die durch das Registerpaar HL adressiert wird, wird vom Inhalt des Akkumulators subtrahiert, das Ergebnis wird nicht weiter berücksichtigt. Danach wird das Registerpaar HL inkrementiert und das Registerpaar BC dekrementiert. Ist BC \neq 0 und A \neq [HL], dann wird der Befehlszähler um zwei dekrementiert und der Befehl nochmals ausgeführt.

Befehlsablauf:

BC = 0 oder A = [HL]:4 M Zyklen; 16 T Zustän-

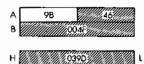
de: 8 μsek @ 2 MHz

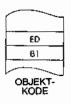

BC \neq 0 und A \neq [HL]:5 M Zyklen; 21 T Zustände:

10,5 μsek @ 2 MHz

Adressierungsart:

Indirekt.


Beispiel:


CPIR

Vorher:

Α	9B	00
В	00	51
н	03	9B

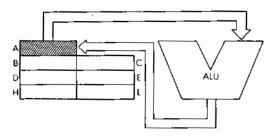
ι

CPL

Komplementiere Akkumulator.

Funktion:

 $A \leftarrow \tilde{A}$


Format:

0	0	1	0	1	1	1	1	2F
								i

Beschreibung:

Der Inhalt des Akkumulators wird komplementiert oder invertiert und das Ergebnis wieder im Akkumulator gespeichert (Einerkomplement).

Datenfluß:

Befehlsablauf:

1 M Zyklen; 4 T Zustände; 2 μsek @ 2 MHz

Adressierungsart:

Implizit.

Flags:

\$ Z	н	P/V	N	Ċ
	ì		1	

Beispiel:

CPL

Vorher:

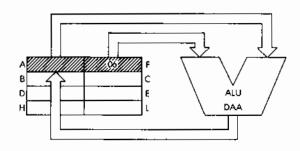
DAA

Dezimalanpassung des Akkumulators.

Funktion:

Siehe unten.

Format:


0 0 1 0 0 1 1 1 27

Beschreibung:

Dieser Befehl addiert bedingt "6" zum rechten und/oder linken Nibble des Akkumulators, abhängig vom Inhalt des Statusregisters. Dieser Befehl dient zur BCD-Umwandlung nach arithmetischen Operationen.

N	C	Wert des oberen Nibble	н	Wert des unteren Nibble	# zu A addiert	C nach Ausführung
0	0	0-9	0	0-9	00	0
(ADD,	0	0-8	0	A-F	06	0
ADC,	0	0-9	1	0-3	06	0
INC)	0	A-F	0	0-9	60	1
	0	9-F	0	A-F	66	i
	0	A-F	1	0-3	66	1
	1	0-2	0	0-9	60	1
1	1	0-2	0	A-F	66	1
	1	0-3	1	0-3	66	1
1	0	0-9	0	0-9	00	0
(SUB,	0	0-8	1	6-F	FA	0
SBC,	1	7-F	0	0-9	AO	1
DEC, NEG)	1	6-F	1	6 -F	9A	1

Datenfluß:

Befehlsablauf:

1 M Zyklen; 4 T Zustände; 2 μsek @ 2 MHz

Adressierungsart:

Implizit.

Flags:

5	Z	Н	_(P) v	N	C
	•	•	•		•

Beispiel:

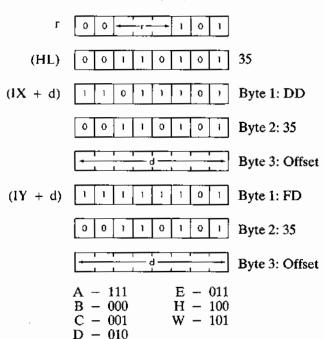
DAA

Vorher:

Nachher:

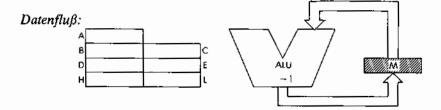
A B2 94 F A 18

DEC_m


Dekrementiere Operand m.

Funktion:

 $m \leftarrow m - 1$


Format:

m: kann sein r,(HL),(IX + d) oder (IY + d)

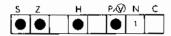
Beschreibung:

Der Inhalt der Speicherstelle, die durch den angegebenen Operanden adressiert wird, wird dekrementiert und wieder an dieser Stelle gespeichert. m ist bei der Beschreibung des Befehls INC definiert.

Bef	ehlse	abla	uf:

m:	M Zyklen:	T Zustände:	μsek @ 2 MHz:
ī	1	4	2
(HL)	3	11	5.5
(IX + d)	6	23	11.5
(IY + d)	6	23	11.5

Adressierungsart:


r: implizit; (HL): indirekt; (IX + d), (IY + d): indiziert.

Byte Kode:

DEC r

r:	Α	В	C	D	Ε	Н	L	
	3D	05	0D	15	۱D	25	2D	

Flags:

Beispiel:

0D

OBJEKT-KODE DEC C

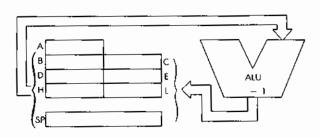
Vorher:

DEC rr

Dekrementiere Registerpaar rr.

Funktion:

rr ← rr - 1


Format:

0	0	1 1	1	0	1	ı
				`		

Beschreibung:

Der Inhalt des angegebenen Registerpaares wird dekrementiert und das Ergebnis wieder in dem Registerpaar gespeichert. rr kann sein:

Datenfluß:

Befehlsablauf:

1 M Zyklus; 6 T Zustände; 3 μsek @ 2 MHz

Adressierungsart:

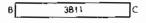
Implizit.

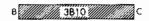
Byte Kode:

TT: BC DE HL SP

OB 18 2B 3B

Flags:


H P/V N C	
(kein Einflu	ß)


Beispiel:

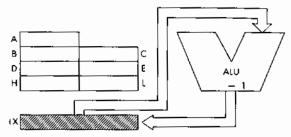
DEC BC

Vorher:

Dekrementiere IX.

Funktion:

 $IX \leftarrow IX - 1$

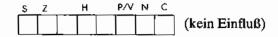

Format:

۱	1	0	ì	1	1	0	1	Byte 1: DD
0	0	1	0	1	0	1	1	Byte 2: 2B

Beschreibung:

Der Inhalt des Registers IX wird dekrementiert und das Ergebnis wieder im Register IX gespeichert.

Datenfluß:


Befehlsablauf:

2 M Zyklen; 10 T Zustände; 5 μsek @ 2 MHz

Adressierungsart:

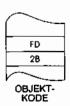
Implizit.

Flags:

Beispiel:

DEC IX

Vorher:


IX[6114	

DEC IY	Dekrementiere IY.
Funktion:	IY ← IY - 1
Format:	1 1 1 1 1 0 1 Byte 1: FD
	0 0 1 0 1 0 1 1 Byte 2: 2B
Beschreibung:	Der Inhalt des Registers IY wird dekrementiert und das Ergebnis wieder im Register IY gespei- chert.
Datenfluβ:	A B D C E L ALU
Befehlsablauf:	2 M Zyklen; 10 T Zustände; 5 μsek @ 2 MHz
Adressierungsart:	Implizit.
Flags:	S Z H P/V N C (kein Einfluß)
Beispiel:	DEC IY
	Vorher: Nachher:

900F

IY 900E

_	_	-	
1	•	•	

Sperre Interrupt.

Funktion:

IFF ← 0

Format:

1	ī	ī	1	0	0	1	1	F3
	L							

Beschreibung:

Die Interrupt-Flip-Flops werden zurückgesetzt und damit alle maskierbaren Interrupts gesperrt. Nach Ausführung dieses Befehls ist der maskierbare Interrupt gesperrt, bis er durch einen Befehl EI

wieder freigegeben wird.

Befehlsablauf:

1 M Zyklen; 4 T Zustände; 2 μsek @ 2 MHz

Adressierungsart:

Implizit.

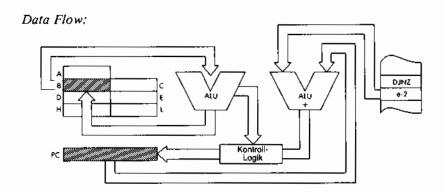
Flags: .

_5	<u> </u>	Z	 н	P/V	N	C	
							(kein Einfluß)

DJNZ e

Dekrementiere B und springe falls nicht Null.

Funktion:


 $B \leftarrow B - 1$; falls $B \neq 0$: $PC \leftarrow PC + e$

Format:

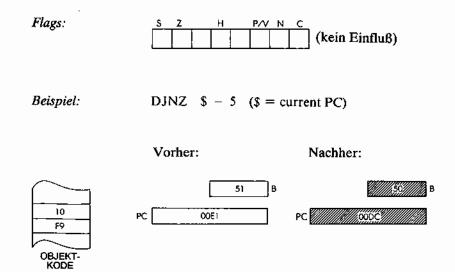
0	0	0	1	0	0	٥	0	Byte 1: 10
•-		,	е	2	1			Byte 2: Offset

Beschreibung:

Das Register B wird dekrementiert. Ist das Ergebnis nicht Null, dann wird der Offset mit Zweierkomplement-Arithmetik zum Befehlszähler addiert, so daß sowohl vorwärts als auch rückwärts gesprungen werden kann. Der Offset wird addiert zu PC + 2 (nach dem Sprung). Deshalb liegt der effektive Offset zwischen -126 und +129 Bytes. Der Assembler subtrahiert automatisch vom Quell-Offset, um den Hex-Kode zu erzeugen.

Befehlsablauf:

B \neq 0: 3 M Zyklen; 13 T Zustände; 6,5 μ sek @ 2


MHz

B = 0: 2 M Zyklen; 8 T Zustände; 4 μ sek @2.

MHz

Adressierungsart:

Unmittelbar.

_	_	_
1	וים	
	и 1	

Gib Interrupts frei.

Funktion:

IFF ← 1

Format:

ı	1	1	1	1	0	ı	l ı	FR
١,	_ '	١,	'	_ '		<u> </u>	<u>'</u>	ГБ

Beschreibung:

Die Interrupt-Flip-Flops werden gesetzt und dadurch nach der Ausführung des Befehls, der auf EI folgt, maskierbare Interrupts freigegeben. Bis zu diesem Zeitpunkt sind maskierbare Interrupts gesperrt.

Befehlsablauf:

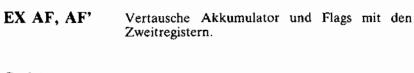
1 M Zyklen; 4 T Zustände; 2 μsek @ 2 MHz

Adressierungsart:

Implizit.

Flags:

\$ Z	. н	P/V N	C	
				(kein Einfluß)


Beispiel:

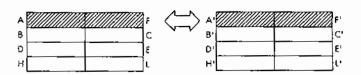
Eine übliche Folge am Ende einer Interrupt-Routi-

ne ist: EI RETI

Nach Ausführung von RETI sind maskierbare In-

terrupts wieder freigegeben.

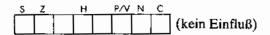
Funktion: AF → AF'


Format:

Beschreibung: Der Inhalt von Akkumulator und Statusregister

wird mit dem Inhalt der entsprechenden Zweit-

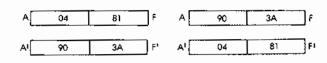
register vertauscht.


Datenfluß:

Befehlsablauf: 1 M Zyklen; 4 T Zustände; 2 μsek @ 2 MHz

Adressierungsart: Implizit.

Flags:



Beispiel:

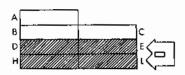
EX AF, AF

Vorher:

Vertausche Register HL und DE.

Funktion:

DE - HL

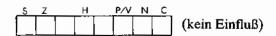

Format:

1	1	1	0	l	0	1	1	ΕB

Beschreibung:

Der Inhalt von der Registerpaare HL und DE wird vertauscht.

Datenfluß:

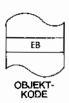

Befehlsablauf:

1 M Zyklen; 4 T Zustände; 2 μsek @ 2 MHz

Adressierungsart:

Implizit.

Flags:



Beispiel:

EX DE, HL

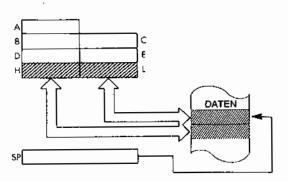
D	A4E6	٤
н	9604	L

EX (SP), HL

Vertausche HL mit dem Inhalt des obersten Stapelelementes.

Funktion:

 $(SP) \leftrightarrow L; (SP + 1) \leftrightarrow H$


Format:

1 1 1 0 0 0 i i E3

Beschreibung:

Der Inhalt des Registers L wird mit dem Inhalt der Speicherstelle vertauscht, die der Stapelzeiger adressiert. Der Inhalt des Registers H wird mit dem Inhalt der Speicherstelle vertauscht, die auf die durch den Stapelzeiger adressierte folgt.

Datenfluß:

Befehlsablauf:

5 M Zyklen; 19 T Zustände; 9,5 μsek @ 2 MHz

Adressierungsart:

Indirekt.

S	Z	H	P/V	N	C	_
						(kein Einfluß)

Beispiel:

EX (SP), HL

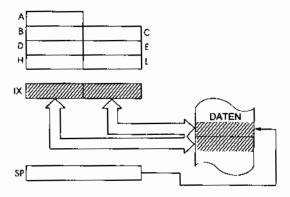
Vorher: Nachher: 8290 SP B409 B409 E3 B409 90 36 B409 B40A 0E 82 B40A OBJEKT-KODE

EX (SP), IX

Vertausche IX mit dem Inhalt des obersten Stapelelementes.

Funktion:

 $(SP) \leftrightarrow IX_{unten}; (SP + 1) \leftrightarrow IX_{oben}$


Format:

ı	1	0	1	1	1	0	1	Byte 1: DD
1	1	1	0	0	0	1	1	Byte 2: E3

Beschreibung:

Der Inhalt der unteren Hälfte des Registers IX wird mit dem Inhalt der Speicherzelle vertauscht, die durch den Stapelzeiger adressiert wird. Der Inhalt der oberen Hälfte des Registers IX wird mit dem Inhalt der Speicherstelle vertauscht, die unmittelbar auf die durch den Stapelzeiger adressierte folgt.

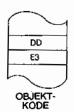
Datenfluß:

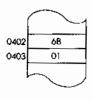
Befehlsablauf:

6 M Zyklen; 23 T Zustände; 11,5 μsek @ 2 MHz

Adressierungsart:

Indirekt.


_S	Z	 Н	₽/∨	Ν	Ç	
						(kein Einfluß)


Beispiel:

EX (SP), IX

Vorher:

Nachher:

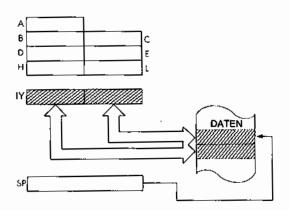
IX 9234 SP 0402

EX (SP), IY

Vertausche IY mit dem Inhalt des obersten Stapelelementes.

Funktion:

(SP) ↔ IYunten; (SP + 1) ↔ IYoben


Format:

Byte 1: FD	1	0	1	1	1	1	1	[1	
Byte 2: E3	1	1	0	0	0	1	1	ī	

Beschreibung:

Der Inhalt der unteren Hälfte des Registers IY wird mit dem Inhalt der Speicherzelle vertauscht, die durch den Stapelzeiger adressiert wird. Der Inhalt der oberen Hälfte des Registers IY wird mit dem Inhalt der Speicherstelle vertauscht, die unmittelbar auf die durch den Stapelzeiger adressierte folgt.

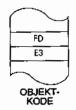
Datenfluß:

Befehlsablauf:

6 M Zyklen; 23 T Zustände; 11,5 μsek @ 2 MHz

Adressierungsart:

Indirekt.


	С	Ν	P/V	н	Z	_s
(kein Einfluß						

Beispiel:

EX (SP), IY

Vorher:

IY BF03	IY AD90
SP 6211	SP 6211

Vertausche mit den Zweitregistern.

Funktion:

BC ++ BC'; DE ++DE'; HL ++HL'

Format:

		_				_		
1	1	0	1	1	0	0	1	D9

Beschreibung:

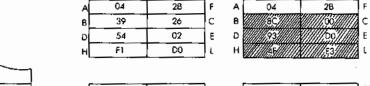
Der Inhalt der Universalregister wird mit dem Inhalt der entsprechenden Zweitregister vertauscht.

Befehlsablauf:

1 M Zyklen; 4 T Zustände; 2 μsek @ 2 MHz

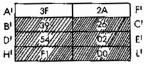
Adressierungsart:

Implizit.


Flags:

S	Z	н	P/V	N	C	
						(kein Einfluß)

Beispiel:


EXX

Vorher:

A۱	3F	2A	F١
В	8C	00	Сı
ս	93	DO	Εı
H,[4F	E3	ιţ

HALT

Halte CPU an.

Funktion:

CPU angehalten.

Format:

$\overline{}$				_				
0	1	١	1	0	ı	1	0	76

Beschreibung:

Die CPU unterbricht die Operation und führt solange NOPs aus, bis ein Interrupt oder ein Reset eintritt, um weiterhin Memory Refresh Zyklen zu liefern.

Befehlsablauf:

1 M Zyklen; 4 T Zustände; 2 μsek @ 2 MHz + un-

definiert NOPs.

Adressierungsart:

Implizit.

5	Z	Н	P/V	Ν	Ç	
						(kein Einfluß)

IM₀

Setze Interrupt Modus 0.

Funktion:

Interne Interruptkontrolle.

Format:

		1	ì	1	0	1	1	0	١	Byte 1: ED
--	--	---	---	---	---	---	---	---	---	------------

0	1	0	0	0	1	1	0	Byte 2: 46
---	---	---	---	---	---	---	---	------------

Beschreibung:

Setzt Interrupt Modus 0. In dieser Betriebsart kann der unterbrechende Baustein einen Befehl zur Ausführung auf den Datenbus legen. Das erste Byte des Befehls muß während des Interrupt

Acknowledge Zyklus erscheinen.

Befehlsablauf:

2 M Zyklen; 8 T Zustände; 4 μsek @2 MHz

Adressierungsart:

Implizit.

S	Z	н	 P/V	Ν	C	
						(kein Einfluß)

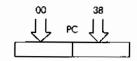
•		-1
	141	•

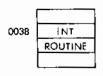
Setze Interrupt Modus 1.

Funktion:

Interne Interruptkontrolle.

Format:


1 1 1 0	1	1	0	ı	Byte 1: ED
---------	---	---	---	---	------------


		٥	1	0	1	0	1	٦	0	Byte 2: 56
--	--	---	---	---	---	---	---	---	---	------------

Beschreibung:

Setzt Interrupt Modus 1. Wenn ein Interrupt auftritt, wird ein Befehl RST 0038H ausgeführt.

Datenfluß:

Befehlsablauf:

2 M Zyklen; 8 T Zustände; 4 µsek @2 MHz

Adressierungsart:

Implizit.

Flags:

S	Z	н	P/V N	¢	

(kein Einfluß)

IM₂

Setze Interrupt Modus 2.

Funktion:

Interne Interruptkontrolle.

Format:

1	1	1	0	1	ı	0	1	Byte 1: ED

0	1	0	1	ı	1	1	0	Byte 2: 5E
---	---	---	---	---	---	---	---	------------

Beschreibung:

Setzt Interrupt Modus 2. Wenn ein Interrupt auftritt, dann muß der unterbrechende Baustein ein Datenbyte liefern, das als untere Hälte einer Adresse verwendet wird. Die obere Hälfte dieses Adreßvektors wird aus dem Register I entnommen. Dieser zeigt auf eine weitere Adresse, die im Speicher abgelegt ist. Diese Adresse wird in den Befehlszähler geladen und dort beginnt die Aus-

führung.

Befehlsablauf:

2 M Zyklen; 8 T Zustände; 4 μsek @2 MHz

Adressierungsart:

Implizit.

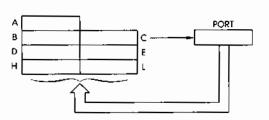
	\$ Z	H	P/V	N	С	
ı						(kein Einfluß)

IN r, (C)

Lade Register r aus Port (C).

Funktion:

r ← (C)


Format:

Byte 1: ED	ı	0	ı	1	0	1	١	1
Byte 2	0	0	0	0 1				

Beschreibung:

Das periphere Gerät, das durch den Inhalt des Registers C adressiert wird, wird gelesen und das Ergebnis in das angegebene Register geladen. C liefert die Bits A0 bis A7 des Adreßbusses, B liefert Bit A8 bis A15.

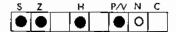
Datenfluß:

r kann sein:

$$\begin{array}{ccccc} A & - & 111 & & E & - & 011 \\ B & - & 000 & & H & - & 100 \\ C & - & 001 & & L & - & 101 \\ D & - & 010 & & & \end{array}$$

Befehlsablauf:

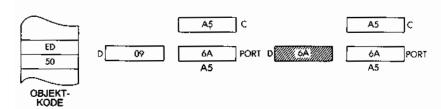
3 M Zyklen; 12 T Zustände; 6 µsek @2 MHz


Adressierungsart:

Extern.

Byte Kode:

r;	Α		С			н	<u></u>	
ED	78	40	48	50	58	60	68	



Es ist wichtig zu beachten, daß IN A,(N) keinerlei Einfluß auf die Flags hat, dagegen aber IN r,(C).

Beispiel:

IN D, (C)

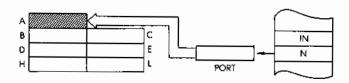
Vorher:

IN A, (N)

Lade Akkumulator aus Port N.

Funktion:

 $A \leftarrow (N)$

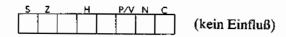

Format:

1	1	٥	1	ì	0	ı	1	Byte 1: DB
4-			1	7 —			-	Byte 2: Portadresse:

Beschreibung:

Das periphere Gerät N wird gelesen und das Ergebnis in den Akkumulator geladen. Das Literal N liegt auf Bit A0 bis A7 des Adreßbusses, A liefert Bit A8 bis A15.

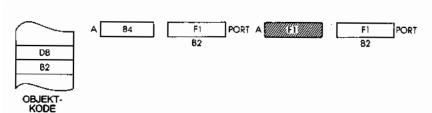
Datenfluß:


Befehlsablauf:

3 M Zyklen; 11 T Zustände; 5,5 µsek @2 MHz

Adressierungsart:

Extern.


Flags:

Beispiel:

IN A, (B2)

Vorher:

INC r

Inkrementiere Register r.

Funktion:

 $r \leftarrow r + 1$

Format:

Beschreibung:

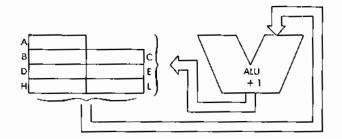
Der Inhalt des angegebenen Registers wird inkre-

mentiert, r kann sein:

A - 111

E - 011

B - 000


H - 100

C - 001

L - 101

D - 010

Datenfluß:

Befehlsablauf:

1 M Zyklus; 4 T Zustände; 2 μsek @2 MHz

Adressierungsart:

Implizit.

Byte Kode:

F: A B C D E H L 3C 04 0C 14 1C 24 2C

Flags:

5	Z	н	P.∕€	Ν	C
left	lacksquare			0	

Beispiel:

INC D

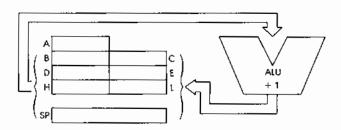
Vorher:

INC rr

Inkrementiere Registerpaar rr.

Funktion:

rr ← rr + 1


Format:

0 0 г	r	0 0	1	١	ı
-------	---	-----	---	---	---

Beschreibung:

Der Inhalt des angegebenen Registerpaars wird inkrementiert und das Ergebnis wieder in dem Registerpaar gespeichert, r kann sein:

Datenfluß:

Befehlsablauf:

1 M Zyklus; 6 T Zustände; 3 µsek @2 MHz

Adressierungsart:

Implizit.

Byte Kode:

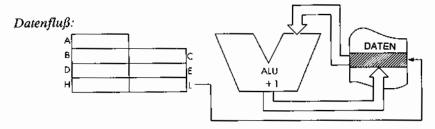
rr: BC DE HL SP

INC (HL)

Inkrementiere die indirekt adressierte Speicher-

stelle (HL).

Funktion:

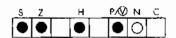

 $(HL) \leftarrow (HL) + 1$

Format:

	٥	٥	1	ì	0	1	0	0	34
- 1	_								

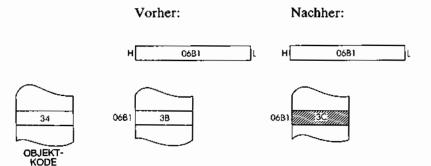
Beschreibung:

Der Inhalt der Speicherstelle, die durch das Registerpaar HL adressiert wird, wird inkrementiert und das Ergebnis wieder in dieser Stelle gespeichert.


Befehlsablauf:

3 M Zyklen; 11 T Zustände; 5,5 µsek @2 MHz

Adressierungsart:


Indirekt.

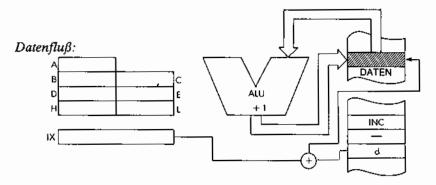
Flags:

Beispiel:

INC (HL)

INC (IX + d) Inkrementiere die indiziert adressierte Speicherstelle (IX + d).

Funktion:


 $(IX + d) \leftarrow (IX + d) + 1$

Format:

	1	0	1	1	1	0	1	Byte 1: DD
0	0	1	1	0	١	0	0	Byte 2: 34
-	· · ·			<u>, </u>				Byte 3: Offset

Beschreibung:

Der Inhalt der Speicherstelle, die durch den Inhalt des Registers IX plus dem angegebenen Offset adressiert wird, wird inkrementiert und das Ergebnis wieder in dieser Stelle gespeichert.

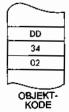
Befehlsablauf:

6 M Zyklen; 23 T Zustände; 11,5 μsek @2 MHz

Adressierungsart:

Indiziert.

S	Z	н	P/W	Ν	С
	•		•	0	

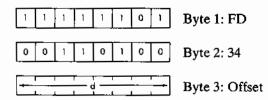

INC (1X + 2)

Vorher:

Nachher:

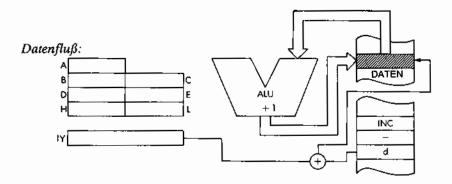
IX 03B!

1X 03B1



INC (IY + d) Inkrementiere die indiziert adressierte Speicherstelle (IY + d).

Funktion:


 $(IY + d) \leftarrow (IY + d) + 1$

Format:

Beschreibung:

Der Inhalt der Speicherstelle, die durch den Inhalt des Registers IY plus dem angegebenen Offset adressiert wird, wird inkrementiert und das Ergebnis wieder in dieser Stelle gespeichert.

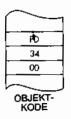
Befehlsablauf:

6 M Zyklen; 23 T Zustände; 11,5 μsek @2 MHz

Adressierungsart:

Indiziert.

S	Z	Н	P∕Ŵ	N	C
	•	•	•	0	


INC (1Y + 0)

Vorher:

Nachher:

IY 0601

IY 0601

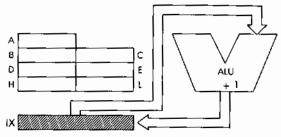
Inkrementiere IX.

Funktion:

 $IX \leftarrow IX + I$

Format:

١	1	0	1	1	1	0	1	Byte 1: DD
	_	,	_	Γ,		<u> </u>	,	D. 4 . 2 . 22

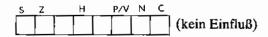

0 0 1 0 0 0 1 1 Byte 2: 23

Beschreibung:

Der Inhalt des Registers IX wird inkrementiert und das Ergebnis wieder im Register IX gespei-

chert.

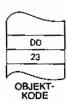
Datenfluß:


Befehlsablauf:

2 M Zyklen; 10 T Zustände; 5 µsek @2 MHz

Adressierungsart:

Implizit.


Flags:

Beispiel:

INC IX

Vorher:

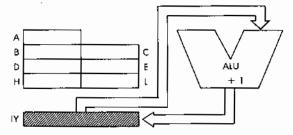
ΙX	B1B0

INC. IY	IN	\mathbf{C}	I¥
---------	----	--------------	----

Inkrementiere IY.

Funktion:

 $IY \leftarrow IY + 1$


Format:

0 0 1 0 0 0 1 1 Byte	

Beschreibung:

Der Inhalt des Registers IY wird inkrementiert und das Ergebnis wieder im Register IY gespeichert.

Datenfluß:


Befehlsablauf:

2 M Zyklen; 10 T Zustände; 5 μsek @2 MHz

Adressierungsart:

Implizit.

Flags:

Beispiel:

INC IY

Vorher:

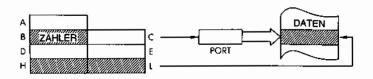
IY	36B1	

IND

Eingabe mit Dekrementieren.

Funktion:

 $(HL) \leftarrow (C); B \leftarrow B - 1; HL \leftarrow HL - 1$

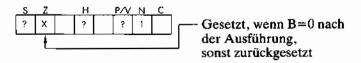

Format:

1	1	1	0	1	1	0	1	Byte 1: ED
Ī	0	1	0	1	0	1	0	Byte 2: AA

Beschreibung:

Das periphere Gerät, das durch das Register C adressiert wird, wird gelesen und das Ergebnis in die Speicherstelle geladen, die durch das Registerpaar HL adressiert wird. Das Register B und das Registerpaar HL werden dann jeweils dekrementiert.

Datenfluß:



Befehlsablauf:

4 M Zyklen; 16 T Zustände; 8 μsek @2 MHz

Adressierungsart:

Extern.

IND

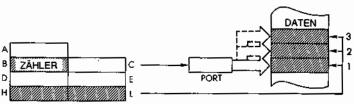
INDR

Blockeingabe mit Dekrementieren.

Funktion:

 $(HL) \leftarrow (C); B \leftarrow B - 1; HL \leftarrow HL - 1$

Wiederholung, bis B = 0.


Format:

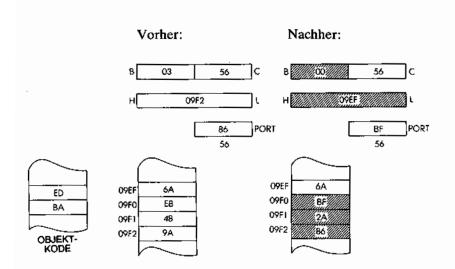
ı	1	1	0	ì	1	0	1	Byte 1: ED
1	0	1	_	1	0	1	0	Byte 2: BA

Beschreibung:

Das periphere Gerät, das durch das Register C adressiert wird, wird gelesen und das Ergebnis in die Speicherstelle geladen, die durch das Registerpaar HL adressiert wird. Das Register B und das Registerpaar HL werden dann dekrementiert. Ist B nicht Null, dann wird der Befehlszähler um zwei dekrementiert und der Befehl nochmals ausgeführt.

Befehlsablauf:

B = 0:4 M Zyklen; 16 T Zustände; 8 μ sek @2 MHz B \neq 0:5 M Zyklen; 21 T Zustände; 10,5 μ sek @2


MHz.

Adressierungsart:

Extern.

S	Z	_ н	P/V	N	. C
?	ı	5	?	1	\prod

INDR

INI

Eingabe mit Inkrementieren.

Funktion:

 $(HL) \leftarrow (C); B \leftarrow B - 1; HL \leftarrow HL + 1$

Format:

١	1	ì	0	ı,	ı	0	1	Byte 1: ED
1	0	l	0	0	0	ŀ	0	Byte 2: A2

Beschreibung:

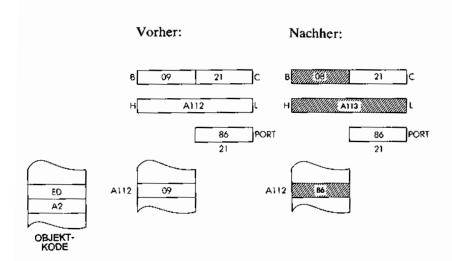
Das periphere Gerät, das durch das Register C adressiert wird, wird gelesen und das Ergebnis in die Speicherstelle geladen, die durch das Registerpaar HL adressiert wird. Das Register B wird dann dekrementiert und das Registerpaar HL inkrementiert.

Der Inhalt von C wird auf die untere Hälfte des Adreßbusses gelegt, der Inhalt von B auf die obere Hälfte. Die I/O-Selektion wird generell mit C durchgeführt, d. h. mit A0 bis A7. B ist ein Bytezähler.

Befehlsablauf:

4 M Zyklen; 16 T Zustände; 8 μsek @2 MHz

Adressierungsart:


Extern.

Flags:

5_	Z	H	P/V	N	С
7	Х	?	?	1	

Z ist gesetzt, wenn B=0 nach der Ausführung, sonst zurückgesetzt.

INI

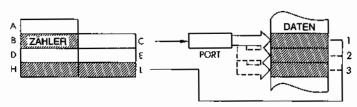
INIR

Blockeingabe mit Inkrementieren.

Funktion:

 $(HL) \leftarrow (C)$; $B \leftarrow B - 1$; $HL \leftarrow HL + 1$; Wiederholium his $B \rightarrow 0$

lung, bis B = 0.


Format:

1	1	1	٥)	1	0	1	Byte 1: ED
٦	0	1	1	0	0	ı	0	Byte 2: B2

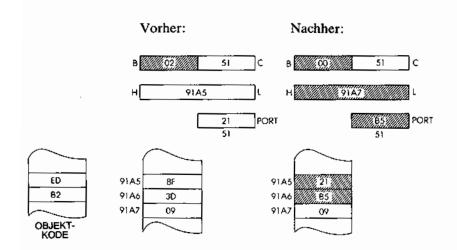
Beschreibung:

Das periphere Gerät, das durch das Register C adressiert wird, wird gelesen und das Ergebnis in die Speicherstelle geladen, die durch das Registerpaar HL adressiert wird. Das Register B wird dann dekrementiert und das Registerpaar HL inkrementiert. Ist B nicht Null, dann wird der Befehlszähler um zwei dekrementiert und der Befehl nochmals ausgeführt.

Befehlsablauf:

B = 0.4 M Zyklen; 16 T Zustände; 8 μ sek @2 MHz

B \neq 0:5 M Zyklen; 21 T Zustände; 10,5 μ sek @2.

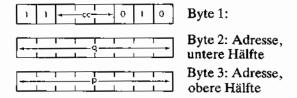

MHz

Adressierungsart:

Extern.

\$	Z	Н	P/V	Ν	C
?	1	?	?'	7	

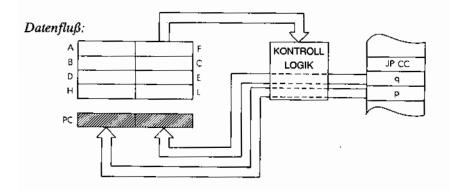
INIR


JP cc, pq

Bedingter Sprung zur Adresse pq.

Funktion:

Wenn cc erfüllt, dann PC-pq


Format:

Beschreibung:

Ist die angegebene Bedingung erfüllt, dann wird die Zweibyte-Adresse, die auf den Opcode folgt, in den Befehlszähler geladen. Dabei kommt das erste Byte hinter dem Opcode in die untere Hälfte von PC. Ist die Bedingung nicht erfüllt, dann wird die Adresse nicht beachtet. cc kann sein:

NZ - 000	nicht Null
z - 001	Null
NC - 010	kein Übertrag (Carry)
C - 011	Übertrag (Carry)
PO - 100	ungerade Parität
PE - 101	gerade Parität
P - 110	plus
M - 111	minus

Befehlsablauf:

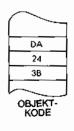
3 M Zyklen; 10 T Zustände; 5 μsek @2 MHz

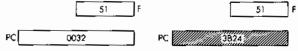
Adressierungsart:

Unmittelbar.

Byte Kode:

C C NZ Z NC C PO PE P M
C2 CA D2 DA E2 EA F2 FA


Flags:


S Z H P/V N C (kein Einfluß)

Beispiel:

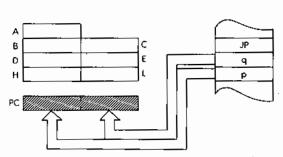
JP C, 3B24

JP pq

Sprung zur Adresse pq.

Funktion:

PC ← pq


Format:

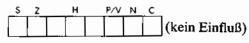
1	1	0	0	0	0	-1	1	Byte 1: C3
-	!		— q			_		Byte 2: Adresse untere Hälfte
•			— p	_		_		Byte 3: Adresse, obere Hälfte

Beschreibung:

Der Inhalt der Speicherzelle unmittelbar hinter dem Opcode wird in die untere Hälfte, der Inhalt der Speicherzelle dahinter in die obere Hälfte des Befehlszählers geladen. Der nächste Befehl wird von dieser Adresse geholt.

Datenfluß:

Befehlsablauf:

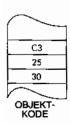

3 M Zyklen; 10 T Zustände; 5 µsek @2 MHz

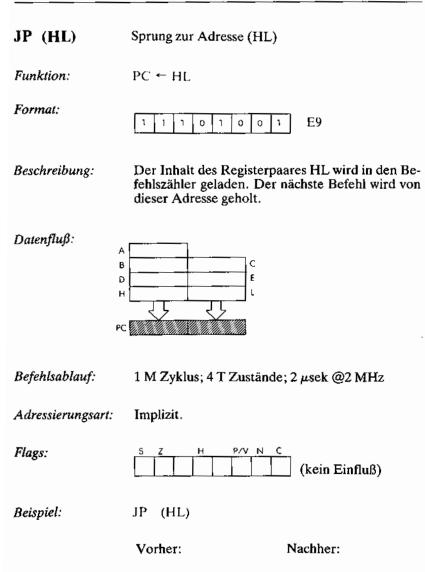
Nachher:

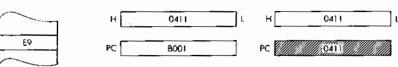
Adressierungsart:

Unmittelbar.

Flags:




Beispiel:


JP 3025

Vorher:

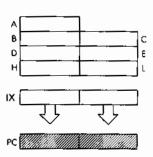
KODE

JP (IX)

Sprung zur Adresse (IX)

Funktion:

 $PC \leftarrow IX$

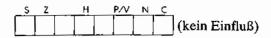

Format:

1	1	0	ı	1	1	0	1	byte 1: DD
1	1	ì	0	1	0	0	1	byte 2: E9

Beschreibung:

Der Inhalt des Registers IX wird in den Befehlszähler geladen. Der nächste Befehl wird von dieser Adresse geholt.

Datenfluß:


Befehlsablauf:

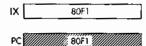
2 M Zyklen; 8 T Zustände; 4 µsek @2 MHz

Adressierungsart:

Implizit.

Flags:

Beispiel:


JΡ (IX)

Vorher:

1 X	80F1	
PC [3B4A	

JP (IY)	Sprung zur Adresse (IY)
Funktion:	PC ← IY
Format:	
Beschreibung:	Der Inhalt des Registers IY wird in den Befehlszähler geladen. Der nächste Befehl wird von dieser Adresse geholt.
Datenfluβ:	A B C E L L L L L L L L L L L L L L L L L L
Befehlsablauf:	2 M Zyklen; 8 T Zustände; 4 μsek @2 MHz
Adressierungsart:	Implizit.
Flags:	S Z H P/V N C (kein Einfluß)
Beispiel:	JP (IY)
	Vorher: Nachher:
FD 50	IY

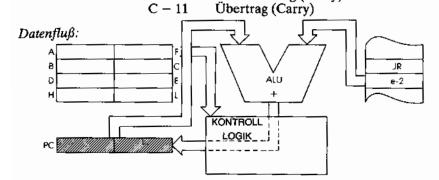
JR cc, e

Relativer bedingter Sprung um e.

Funktion:

Wenn cc erfüllt, dann PC←PC + e

Format:


0	0	ı	c	c	0	0	0	Byte 1
		ļ		2-			_	Byte 2: Offse

Beschreibung:

Ist die angegebene Bedingung erfüllt, dann wird der Offset in Zweierkomplement-Arithmetik zum Befehlszähler addiert, so daß Sprünge vorwärts und rückwärts möglich sind. Der Offset wird addiert zu PC + 2 (nach dem Sprung). Deshalb ist der effektive Offset -126 bis 129 Byte. Der Assembler subtrahiert automatisch 2 vom Quelloffset, um den Hexcode zu erzeugen. Ist die Bedingung nicht erfüllt, dann wird der Offset nicht beachtet, und die Befehlsausführung wird in der normalen Reihenfolge fortgeführt.

cc kann sein:

NZ - 00 nicht Null
Z - 01 Null
NC - 10 kein Übertrag (Carry)
C - 11 Übertrag (Carry)

Befehlsablauf:

	M Zyklen	T Zustände	μsek @ 2 MHz:
Bedingung erfüllt:	3	12	6
Bedingung nicht erfüllt:	2	7	3.5

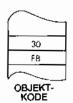
Adressierungsart: Unmittelbar.

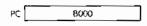
Byte Kode:

cc: NZ Z NC C 20 28 30 38

Flags:

S	Z	Н	P/V N	C	
	_				(kein Einfluß)


Beispiel:


JR NC, \$ - 3

\$ = current PC

Vorher:

Nachher:

00

] F

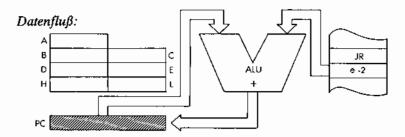
JR e

Relativer Sprung um e.

Funktion:

 $PC \leftarrow PC + e$

Format:

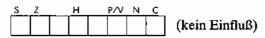

0 0 0 1 1 1 0 0 0

Byte 1: 18

Byte 2: Offset

Beschreibung: De

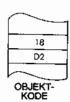
Der gegebene Offset wird in Zweierkomplement-Arithmetik zum Befehlszähler addiert, so daß Sprünge vorwärts und rückwärts möglich sind. Der Offset wird addiert zu PC + 2 (nach dem Sprung). Deshalb ist der effektive Offset -126 bis 129 Byte. Der Assembler subtrahiert automatisch 2 vom Quelloffset, um den Hexcode zu erzeugen.


Befehlsablauf:

3 M Zyklen; 12 T Zustände; 6 μsek @ 2 MHz

Adressierungsart:

Unmittelbar.


Flags:

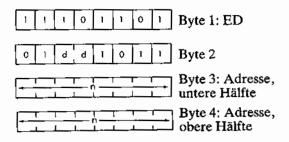
Beispiel:

JR D4

Vorher:

PC	B100

LD dd, (nn)

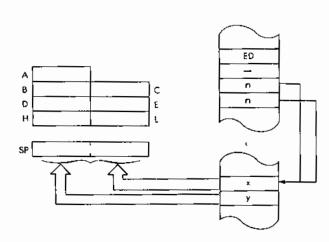

Lade das Registerpaar dd aus der durch nn adres-

sierten Speicherzelle.

Funktion:

 $dd_{unten} \leftarrow (nn); dd_{oben} \leftarrow (nn + 1)$

Format:



Beschreibung:

Der Inhalt der Speicherzelle, die durch die Speicherinhalte unmittelbar hinter dem Opcode adressiert wird, wird in die untere Hälfte des angegebenen Registerpaars geladen. Der Inhalt der Speicherzelle dahinter kommt in die obere Hälfte. Das untere Byte der Adresse nn folgt unmittelbar auf den Opcode.

dd kann sein:

Datenfluß:

Befehlsablauf:

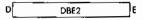
6 M Zyklen; 20 T Zustände; 10 µsek @ 2 MHz

Adressierungsart:

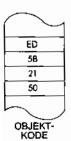
Direkt.

Byte Kode:

dd: BC DE HL SP 4B 5B 6B 7B

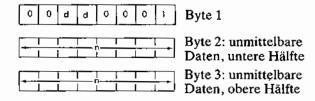

Flags:

	С	N	P/V	н	Z	S	
kein Einfluß (


Beispiel: .

LD DE, (5021)

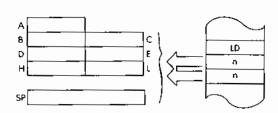
Vorher:


LD dd, nn

Lade das Registerpaar dd mit den unmittelbaren Daten nn.

Funktion:

dd ← nn


Format:

Beschreibung:

Der Inhalt der beiden Speicherzellen, die unmittelbar hinter dem Opcode stehen, wird in das angegebene Registerpaar geladen. Die untere Hälfte der Daten folgt unmittelbar auf den Opcode. dd kann sein:

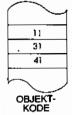
Datenfluß:

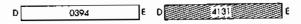
Befehlsablauf:

3 M Zyklen; 10 T Zustände; 5 μsek @ 2 MHz

Adressierungsart:

Unmittelbar.


Byte Kode:

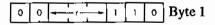

dd:	BC	DE	ΗĻ	\$P	
	Q1	11	21	31	

	c _	N	P/V	н	Z	\$
(kein Einfluß						

LD DE, 4131

Vorher:

LD r, n


Lade das Register r mit den unmittelbaren

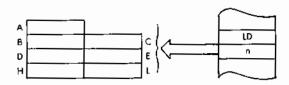
Daten n.

Funktion:

r ← n

Format:

Beschreibung:


Der Inhalt der Speicherzelle, die unmittelbar auf den Opcode folgt, wird in das angegebene Register r geladen.

r kann sein:

A - 111 E - 011 B - 000 H - 100 C - 001 L - 101

D - 010

Datenfluβ:

Befehlsablauf:

2 M Zyklen; 7 T Zustände; 3,5 μ sek @ 2 MHz

Adressierungsart:

Unmittelbar.

Byte Kode:

 , ,		С		E		L
ЗE	06	Œ	16	١E	26	2E

_ S	Z	 Н	P/V	N	С	
	Γ					(kein Einfluß)

LD C, 3B

Vorher:

Nachher:

C 01

C /////3B

OE 3B OBJEKT-KODE LD r, r'

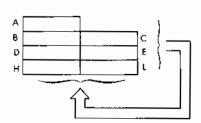
Lade das Register r aus dem Register r'.

Funktion:

 $r \leftarrow r'$

Format:

r		
0	١	
$\overline{}$		


Beschreibung:

Der Inhalt des Quellregisters wird in das angegebene Zielregister geladen.

r und r' können sein:

A - 111 E - 011 B - 000 H - 100 C - 001 L - 101 D - 010

Datenfluß:

Befehlsablauf:

1 M Zyklus; 4 T Zustände; 2 μsek @ 2 MHz

Adressierungsart:

Implizit.

Byte Kode:

	Α	В	C	D	E	Н	L	(Quelle)
Α	7F	78	79	7A	7B	7C	7D	
В	47	40	41	42	43	44	45	
С	4F	48	49	4A	4B	4C	40	
D	57	50	51	52	53	54	55	
Ε	5F	58	59	5A	56	5C	5D	
н	67	60	61	62	63	64	65	
ι	óF	68	69	6A	68	6C	бD	
(Ziel)								

S	Z	н	P/V	Ν	C	
						(kein Einfluß)

LD H, A

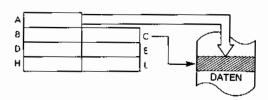
Vorher:

LD (BC), A

Lade die indirekt adressierte Speicherzelle (BC) aus dem Akkumulator.

Funktion:

(BC) ← A

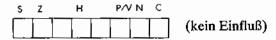

Format:

0 0 0 0 0 0 1 0 02

Beschreibung:

Der Inhalt des Akkumulators wird in die durch den Inhalt von BC adressierte Speicherzelle geladen.

Datenfluß:

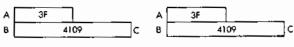

Befehlsablauf:

2 M Zyklen; 7 T Zustände; 3,5 µsek @ 2 MHz

Adressierungsart:

Indirekt.

Flags:



Beispiel:

LD (BC), A

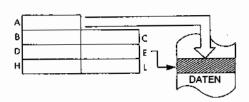
Vorher:

LD (DE), A

Lade die indirekt adressierte Speicherzelle (DE) aus dem Akkumulator.

Funktion:

(DE) ← A

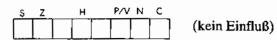

Format:

i	0	0	0	1	0	0	ì	0	12

Beschreibung:

Der Inhalt des Akkumulators wird in die durch den Inhalt von DE adressierte Speicherzelle geladen.

Datenfluß:

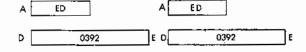

Befehlsablauf:

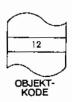
2 M Zyklen; 7 T Zustände; 3,5 μsek @ 2 MHz

Adressierungsart:

Indirekt.

Flags:




Beispiel:

LD (DE), A

Nachher:

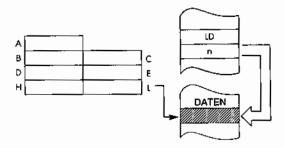
LD (HL), n

Lade die unmittelbaren Daten n in die indirekt

adressierte Speicherzelle (HL)

Funktion:

 $(HL) \leftarrow n$


Format:

0	0	1	1	0	1	1	0	Byte 1: 36
-				n —	r .	1 .		Byte 2: unmittelbare Daten

Beschreibung:

Der Inhalt der Speicherzelle, die unmittelbar auf den Opcode folgt, wird in die durch HL adressierte Speicherzelle geladen.

Datenfluß:

Befehlsablauf:

3 M Zyklen; 10 T Zustände; 5 μsek @ 2 MHz

Adressierungsart:

Unmittelbar/indirekt.

Flags:

S	Z	H	P/V	Ŋ	C	_
						(kein Einfluß)

Beispiel:

LD (HL), 5A

Vorher:

Nachher:

4 A342

A342

LD (HL), r

Lade die indirekt adressierte Speicherzelle (HL)

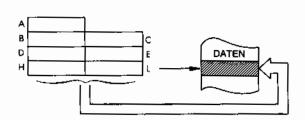
aus dem Register r.

Funktion:

 $(HL) \leftarrow r$

Format:

_	_	_				
C	,	1	1	ı	0	


Beschreibung:

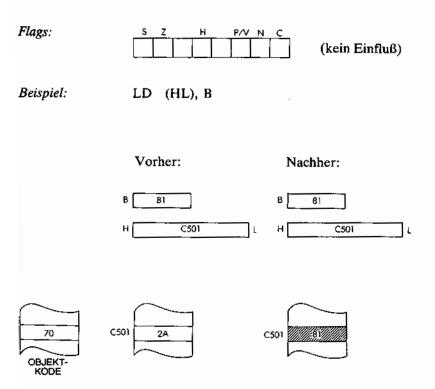
Der Inhalt des angegebenen Registers wird in die durch den Inhalt von HL adressierte Speicherzelle geladen.

r kann sein:

A - 111 E - 011 B - 000 H - 100 C - 001 L - 101 D - 010

Datenfluß:

Befehlsablauf:

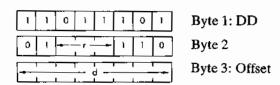

2 M Zyklen; 7 T Zustände; 3,5 μsek @ 2 MHz

Adressierungsart:

Indirekt.

Byte Kode:

 A		-			_::_	
77	70	71	72	73	74	75

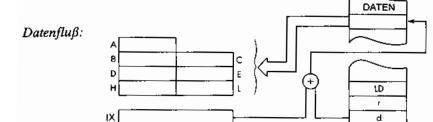


LD r, (IX + d) Lade das Register r indirekt aus der indiziert adressierten Speicherzelle (IX + d).

Funktion:

$$r \leftarrow (IX + d)$$

Format:



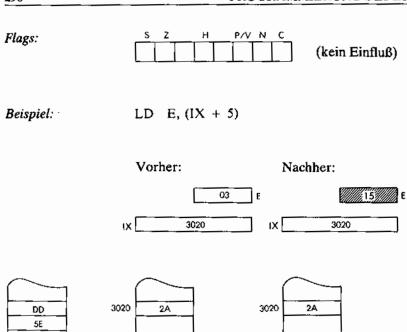
Beschreibung:

Der Inhalt der Speicherzelle, die durch das Register IX plus dem gegebenen Offset adressiert wird, wird ins Register r geladen.

r kann sein:

$$\begin{array}{ccccc} A & - & 111 & & E & - & 011 \\ B & - & 000 & & H & - & 100 \\ C & - & 001 & & L & - & 101 \\ D & - & 010 & & & \end{array}$$

Befehlsablauf:

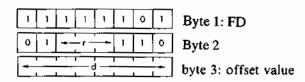

5 M Zyklen; 19 T Zustände; 9,5 μsek @ 2 MHz

Adressierungsart:

Indiziert.

Byte Kode:

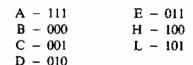
r:	Α	В	C	D	E	Н	Ł	
DD.	78	46	4E	56	5E	66	6E	-d

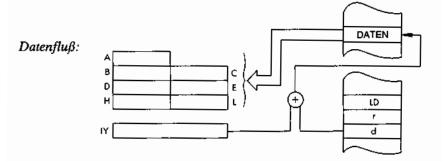

OBJEKT-KODE

LD r, (IY + d) Lade das Register r indirekt aus der indiziert adressierten Speicherzelle (IY + d).

Funktion:

$$r \leftarrow (IY + d)$$


Format:



Beschreibung:

Der Inhalt der Speicherzelle, die durch das Register IY plus dem gegebenen Offset adressiert wird, wird ins Register r geladen.

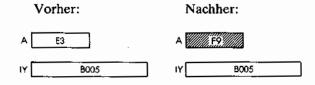
r kann sein:

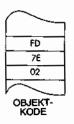
Befehlsablauf:

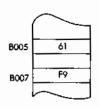
5 M Zyklen; 19 T Zustände; 9,5 μsek @ 2 MHz

Adressierungsart:

Indiziert.

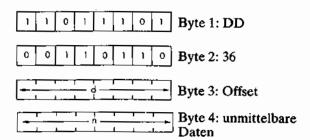



Flags:


S	_ Z	Н	P/V	Ŋ	С	
						(kein Einfluß)

Beispiel:

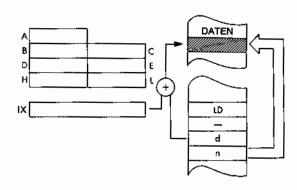
LD A,
$$(IY + 2)$$


LD(IX + d), n

Lade die indiziert adressierte Speicherzelle (IX + d) mit den unmittelbaren Daten n.

Funktion:

 $(1X + d) \leftarrow n$


Format:

Beschreibung:

Der Inhalt der Speicherzelle, die unmittelbar auf den Opcode folgt, wird in die Speicherzelle geladen, die durch das Register IX plus dem gegebenen Offset adressiert wird.

Datenfluß:

Befehlsablauf: 5 M Zyklen; 19 T Zustände; 9,5 μsek @ 2 MHz

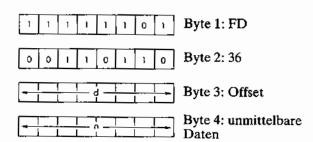
Adressierungsart: Indiziert/unmittelbar.

Flags: S Z H P/V N C (kein Einfluß)

Beispiel:

LD (IX + 4), FF

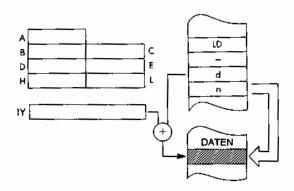
Vorher: Nachher: B109 ıχ[B109 ıχ[DD B109 60 B109 60 36 04 FF B10D B100 4E OBJEKT-KODE


LD(IY + d), n

Lade die indiziert adressierte Speicherzelle (IY + d) mit den unmittelbaren Daten n.

Funktion:

 $(1Y + d) \leftarrow n$


Format:

Beschreibung:

Der Inhalt der Speicherzelle, die unmittelbar auf den Opcode folgt, wird in die Speicherzelle geladen, die durch das Register IY plus dem gegebenen Offset adressiert wird.

Datenfluß:

Befehlsablauf:

5 M Zyklen; 19 T Zustände; 9,5 μsek @ 2 MHz

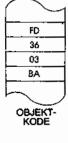
Adressierungsart:

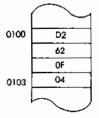
Indiziert/unmittelbar.

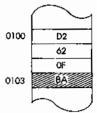
Flags:

	C	Ν	P/V	_	Н	Z	5	
(kein Einflu								

-		
Hor	spiel:	
	,,,,,,,	


LD (IY + 3), BA


Vorher:


Nachher:

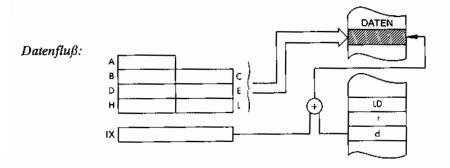
IY 0100

IY 0100

LD(IX + d),r

Lade die indiziert adressierte Speicherzelle (IX + d) aus dem Register r.

Funktion:


$$(IX + d) \leftarrow r$$

Format:

1	1	0	1	1	1 0	1	Byte 1: DD
0	1	1	١	0	- r - T	~	Byte 2
-			- d -		l	-	Byte 3: Offset

Beschreibung:

Der Inhalt des angegebenen Registers wird in die Speicherzelle geladen, die durch das Register IX plus dem gegebenen Offset adressiert wird. r kann sein:

Befehlsablauf:

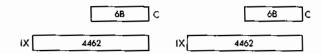
5 M Zyklen; 19 T Zustände; 9,5 μsek @ 2 MHz

Adressierungsart:

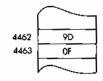
Indiziert.

Byte Kode:

Flags:


S Z	Н	<u>P</u> ∕V N		
			(kein Eir	ıfluß)


Beispiel:


$$LD (IX + 1), C$$

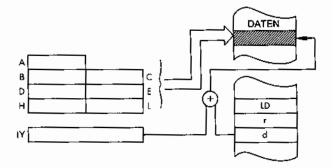
Vorher:

Nachher:

LD(IY + d), rLade die indiziert adressierte Speicherzelle (IY + d) aus dem Register r.

Funktion:

 $(IY + d) \leftarrow r$

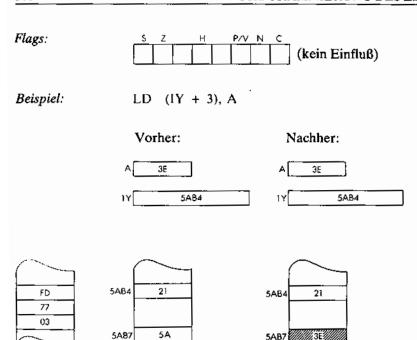

Format:

1	1	ì	1	١	ì	0	1	Byte 1: FD
0	1	1	1	0	-	r r !	-	Byte 2
-	_			_			- -]	Byte 3: Offset

Beschreibung:

Der Inhalt des angegebenen Registers wird in die Speicherzelle geladen, die durch das Register IY plus dem gegebenen Offset adressiert wird. r kann sein:

Datenfluß:


Befehlsablauf:

5 M Zyklen; 19 T Zustände; 9,5 μsek @ 2 MHz

Adressierungsart:

Indiziert.

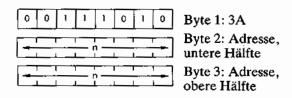
Byte Kode:

5AB7

3E

5A87

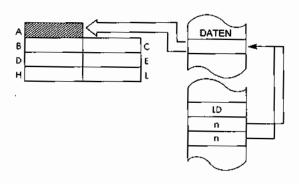
OBJEKT-KODE


LD A, (nn)

Lade den Akkumulator aus der Speicherstelle (nn).

Funktion:

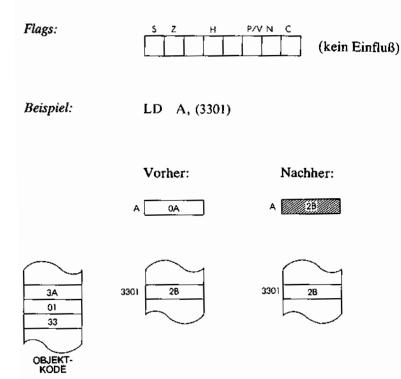
A ← (nn)


Format:

Beschreibung:

Der Inhalt der Speicherzelle, die durch den Inhalt der beiden Bytes nach dem Opcode adressiert wird, wird in den Akkumulator geladen. Das untere Byte der Adresse folgt unmittelbar auf den Opcode.

Datenfluß:



Befehlsablauf:

4 M Zyklen; 13 T Zustände; 6,5 μsek @ 2 MHz

Adressierungsart:

Direkt.

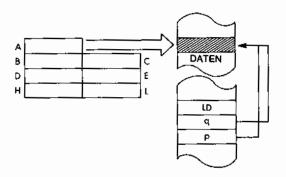
LD (nn), A

Lade die direkt adressierte Speicherstelle (nn) aus

dem Akkumulator.

Funktion:

(nn) ← A

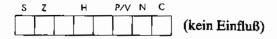

Format:

0 0 1	1 0 0	1 0	Byte 1: 32
	- n - 1 - 1		Byte 2: Adresse, untere Hälfte
	- n - 1 - 1	1	Byte 3: Adresse, obere Hälfte

Beschreibung:

Der Inhalt der Speicherzelle, die durch den Inhalt der beiden Bytes nach dem Opcode adressiert wird, wird aus dem Akkumulator geladen. Das untere Byte der Adresse folgt unmittelbar auf den Opcode.

Datenfluß:

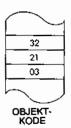

Befehlsablauf:

4 M Zyklen; 13 T Zustände; 6,5 μsek @ 2 MHz

Adressierungsart:

Direkt.

Beispiel:


LD (0321), A

Vorher:

Nachher:

A A4

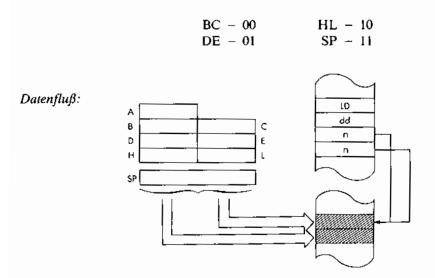
A A4

LD (nn), dd

Lade die durch nn adressierten Speicherstellen aus dem Registerpaar dd.

Funktion:

 $(nn) \leftarrow dd_{unten}; (nn + 1) \leftarrow dd_{oben}$


Format:

1 1 1 0 1 1 0 1 Byte	1: ED
0 1 d d 0 0 1 1 Byte	2
Byte unter	3: Adresse, e Hälfte
Byte	4: Adresse, Hälfte

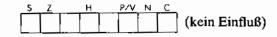
Beschreibung:

Die untere Hälfte des angegebenen Registerpaares wird in die Speicherzelle geladen, die durch die Speicherstellen adressiert ist, die unmittelbar auf den Opcode folgen. Die obere Hälfte wird aus der Speicherzelle dahinter geladen. Die untere Hälfte der Adresse nn erscheint unmittelbar hinter dem Opcode.

dd kann sein:

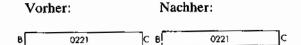
Befehlsablauf:

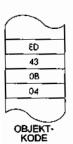
6 M Zyklen; 20 T Zustände; 10 μsek @ 2 MHz


Adressierungsart:

Direkt.

Byte Kode:


dd: BC DE HL 43 53 63


Flags:

Beispiel:

LD (040B), BC

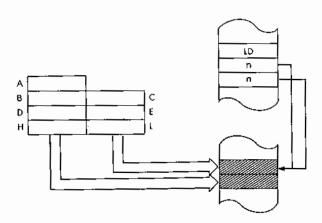
Nachher:

LD (nn), HL

Lade die durch nn adressierten Speicherstellen aus dem Register HL.

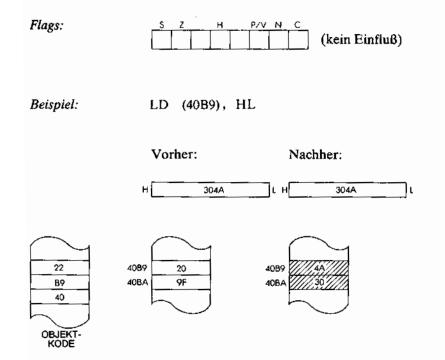
Funktion:

 $(nn) \leftarrow L; (nn + 1) \leftarrow H$


Format:

0	0	1	0	0	0	1	0	Byte 1: 22
								Byte 2: Adresse, untere Hälfte
		1				<u> </u>		
		11		<u> </u>				Byte 3: Adresse, obere Hälfte

Beschreibung:


Der Inhalt des Registers L wird in die Speicherzelle geladen, die durch die Speicherstellen adressiert ist, die unmittelbar auf den Opcode folgen. Das Register H wird aus der Speicherzelle dahinter geladen. Die untere Hälfte der Adresse nn erscheint unmittelbar hinter dem Opcode.

Datenfluß:

Befehlsablauf: 5 M Zyklen; 16 T Zustände; 8 μsek @ 2 MHz

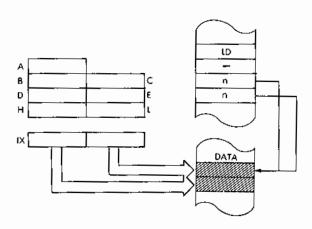
Adressierungsart: Direkt.

LD (nn), IX

Lade die durch nn adressierten Speicherstellen aus dem Register IX.

Funktion:

 $(nn) \leftarrow IX_{unten}; (nn + 1) \leftarrow IX_{oben}$


Format:

1 1 0 1 1 1 0 1 Byte 1: DD
0 0 1 0 0 0 1 0 Byte 2: 22
Byte 3: Adresse, untere Hälfte
Byte 4: Adresse, obere Hälfte

Beschreibung:

Die untere Hälfte des Registers IX wird in die Speicherzelle geladen, die durch die Speicherstellen adressiert ist, die unmittelbar auf den Opcode folgen. Die obere Hälfte wird aus der Speicherzelle dahinter geladen. Die untere Hälfte der Adresse nn erscheint unmittelbar hinter dem Opcode.

Datenfluß:

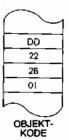
Befehlsablauf:

6 M Zyklen; 20 T Zustände; 10 μsek @ 2 MHz

Adressierungsart:

Direkt.

\$ Z	 Н	P/V	Ν	C	
					(kein Einfluß)


Beispiel:

LD (012B), IX

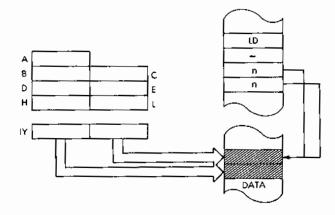
Nachher:

LD (nn), IY

Lade die durch nn adressierten Speicherstellen aus dem Register IY.

Funktion:

 $(nn) \leftarrow IY_{unten}; (nn + 1) \leftarrow IY_{oben}$

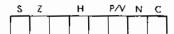

Format:

1 1 1 1 1 0 1 Byte 1: FD
0 0 1 0 0 0 1 0 Byte 2: 22
Byte 3: Adresse, untere Hälfte
Byte 4: Adresse, obere Hälfte

Beschreibung:

Die untere Hälfte des Registers IY wird in die Speicherzelle geladen, die durch die Speicherstellen adressiert ist, die unmittelbar auf den Opcode folgen. Die obere Hälfte wird aus der Speicherzelle dahinter geladen. Die untere Hälfte der Adresse nn erscheint unmittelbar hinter dem Opcode.

Datenfluß:


Befehlsablauf:

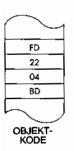
6 M Zyklen; 20 T Zustände; 10 μ sek @ 2 MHz

Adressierungsart:

Direkt.

(kein Einfluß)

Beispiel:


LD (BD04), IY

Nachher:

ίΥ	D204	

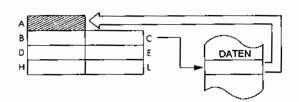
lY D204

LD A, (BC)

Lade den Akkumulator aus der durch das Registerpaar BC indirekt adressierten Speicherstelle.

Funktion:

A ← (BC)

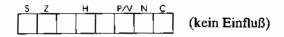

Format:

0	0	0	0	1	0	1	0	0A

Beschreibung:

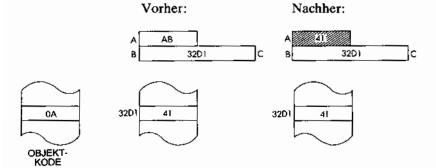
Der Inhalt der Speicherzelle, die durch den Inhalt des Registerpaares BC adressiert wird, wird in den Akkumulator geladen.

Datenfluß:


Befehlsablauf:

2 M Zyklen; 7 T Zustände; 3,5 μsek @ 2 MHz

Adressierungsart:


Indirekt.

Flags:

Beispiel:

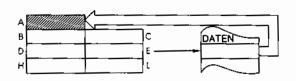
LD A, (BC)

LD A, (DE)

Lade den Akkumulator aus der durch das Registerpaar DE indirekt adressierten Speicherstelle.

Funktion:

A ← (DE)

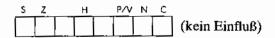

Format:

	0	0	٥	ì	i	0	1	0	1A
--	---	---	---	---	---	---	---	---	----

Beschreibung:

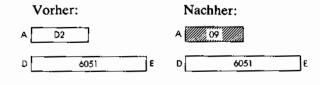
Der Inhalt der Speicherzelle, die durch den Inhalt des Registerpaares DE adressiert wird, wird in den Akkumulator geladen.

Datenfluß:


Befehlsablauf:

2 M Zyklen; 7 T Zustände; 3,5 μsek @ 2 MHz

Adressierungsart:


Indirekt.

Flags:

Beispiel:

LD A, (DE)

LD A, I

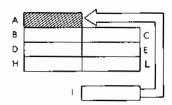
Lade den Akkumulator aus dem Interruptvektor-

Register I.

Funktion:

A ←]

Format:

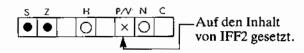

1	1	ı	0	1	1	0	1	byte 1: E	D
0	1_	0	1	0	1	1)	byte 2: 5	7

Beschreibung:

Der Inhalt des Interruptvektor-Registers I wird in

den Akkumulator geladen.

Datenfluß:

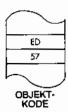

Befehlsablauf:

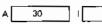
2 M Zyklen; 9 T Zustände; 4,5 μsek @ 2 MHz

Adressierungsart:

Implizit.

Flags:

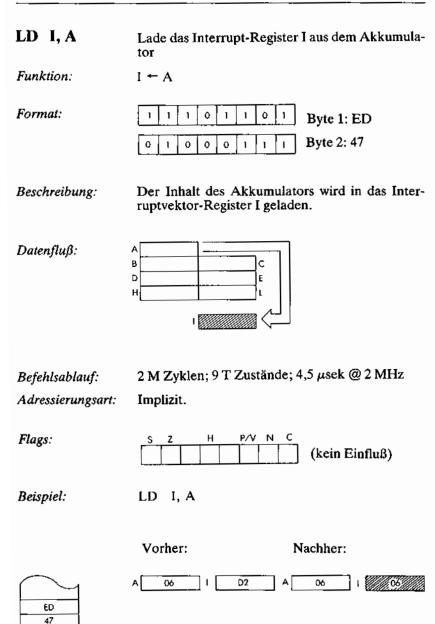

4B


Beispiel:

LD A, I

Vorher:

Nachher:



OBJEKT-KODE

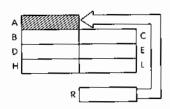
LD A, R

Lade den Akkumulator aus dem Memory-Re-

fresh-Register R.

Funktion:

 $A \leftarrow R$

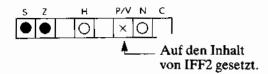

Format:

ı	1	. 1	0	۱	1	0		Byte 1: ED
0	. 1	0	1	1	ı	ı	1	Byte 2: 5F

Beschreibung:

Der Inhalt des Memory-Refresh-Registers wird in den Akkumulator geladen.

Datenfluß:

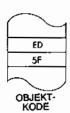

Befehlsablauf:

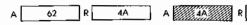
2 M Zyklen; 9 T Zustände; 4,5 μsek @ 2 MHz

Adressierungsart:

Implizit.

Flags:

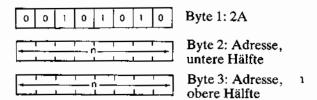



Beispiel:

LD A, R

Vorher:

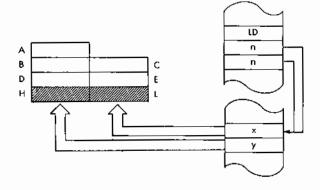
Nachher:



LD HL, (nn) Lade das Register HL aus der Speicherzelle nn.

Funktion:

 $L \leftarrow (nn); H \leftarrow (nn + 1)$


Format:

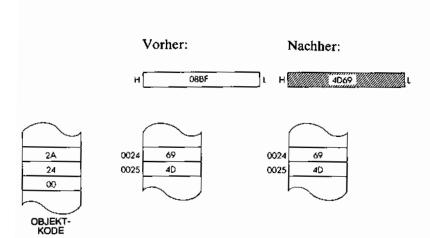
Beschreibung:

Der Inhalt der Speicherzelle, die durch die Speicherstellen adressiert ist, die unmittelbar auf den Opcode folgen, wird ins Register L geladen. Das Register H wird aus der Speicherzelle dahinter geladen. Die untere Hälfte der Adresse nn erscheint unmittelbar hinter dem Opcode.

Datenfluß:

Befehlsablauf:

5 M Zyklen; 16 T Zustände; 8 μsek @ 2 MHz


Adressierungsart:

Direkt.

Flags:

S	Z	н	P/V N C	
				(kein Einfluß)

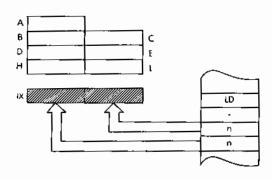
LD HL, (0024)

Lade das Register IX mit den unmittelbaren

Daten nn.

Funktion:

 $IX \leftarrow nn$


Format:

1 1 0 1 1 0 1	Byte 1: DD
00100001	Byte 2: 21
+	Byte 3: unmittelbare Daten, untere Hälfte
	Byte 4: unmittelbare Daten, obere Hälfte

Beschreibung:

Der Inhalt der Speicherzellen, die unmittelbar auf den Opcode folgen, wird in das Register IX geladen. Das untere Byte erscheint unmittelbar hinter dem Opcode.

Datenfluß:

Befehlsablauf:

4 M Zyklen; 14 T Zustände; 7 µsek @ 2 MHz

Adressierungsart:

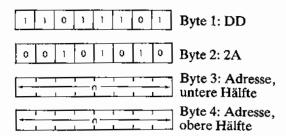
Unmittelbar.

S	Z	Н		P/V	Ν	C	
							(kein Einfluß)

LD IX, B0B 1

Vorher:

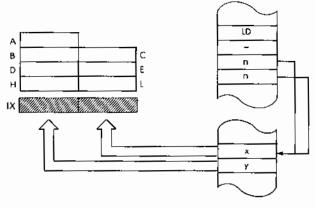
Nachher:


IX 306F 13

IX BOB1

LD IX, (nn) Lade das Register IX aus der Speicherzelle nn.

Funktion: $IX_{unten} \leftarrow (nn); IX_{oben} \leftarrow (nn + 1)$

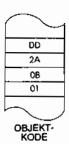

Format:

Beschreibung:

Der Inhalt der Speicherzelle, die durch die Speicherstellen adressiert ist, die unmittelbar auf den Opcode folgen, wird in die untere Hälfte des Registers IX geladen. Die obere Hälfte wird aus der Speicherzelle dahinter geladen. Die untere Hälfte der Adresse nn erscheint unmittelbar hinter dem Opcode.

Befehlsablauf: 6 M Zyklen; 20 T Zustände; 10 μsek @ 2 MHz

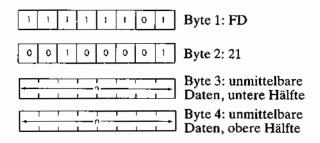
Adressierungsart: Direkt.



\$ Z	Н	P/V	Ν	С	
					(kein Einfluß)

LD 1X, (010B)

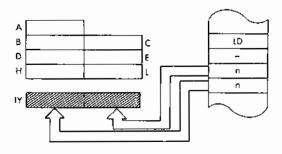
]Xi	FF4B	IX 3200
-----	------	---------


LD IY, nn

Lade das Register IY mit den unmittelbaren Daten nn.

Funktion:

nn → YI


Format:

Beschreibung:

Der Inhalt der Speicherzellen, die unmittelbar auf den Opcode folgen, wird in das Register IY geladen. Das untere Byte erscheint unmittelbar hinter dem Opcode.

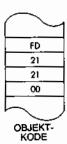
Datenfluß:

Befehlsablauf:

4 M Zyklen; 14 T Zustände; 7 μsek @ 2 MHz

Adressierungsart:

Unmittelbar.


Flags:

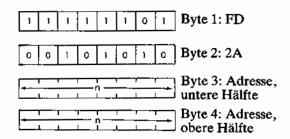
5	Z	H	1	P/V	N.	С	
							(kein Einfluß)

Beispiel:

LD IY, 21

Vorher:

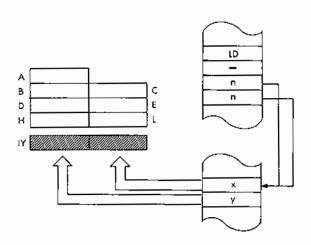
ΙY	069B	IY 0021
----	------	---------


LD IY, (nn)

Lade das Register IY aus der Speicherzelle nn.

Funktion:

 $IY_{unten} \leftarrow (nn); IY_{oben} \leftarrow (nn + 1)$


Format:

Beschreibung:

Der Inhalt der Speicherzelle, die durch die Speicherstellen adressiert ist, die unmittelbar auf den Opcode folgen, wird in die untere Hälfte des Registers IY geladen. Die obere Hälfte wird aus der Speicherzelle dahinter geladen. Die untere Hälfte der Adresse nn erscheint unmittelbar hinter dem Opcode.

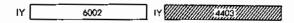
Datenfluß:

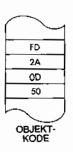
Befehlsablauf:

6 M Zyklen; 20 T Zustände; 10 μsek @ 2 MHz

Adressierungsart:

Direkt.

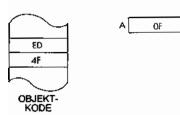

Flags:


\$ Z	Н	P/V N	C	
				(kein Einfluß)

Beispiel:

LD 1Y, (500D)

Vorher:


R WWO F

OF

LD R,A Lade das Memory-Refresh-Register aus dem Akkumulator. Funktion: $R \leftarrow A$ Format: byte 1: ED 0 0 byte 2: 4F 0 Beschreibung: Der Inhalt des Akkumulators wird in das Memory-Refresh-Register geladen. Datenfluß: В c D E Befehlsablauf: 2 M Zyklen; 9 T Zustände; 4,5 µsek @2 MHz Adressierungsart: Implizit. Flags: (kein Einfluß) LD R, A Beispiel: Vorher: Nachher:

R

40

ı

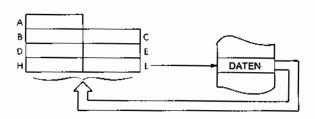
LD r, (HL)

Lade das Register r indirekt aus der Speicherstelle (HL).

Funktion:

 $r \leftarrow (HL)$

Format:


0	1	 1	1	0
		 		-

Beschreibung:

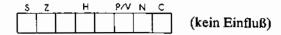
Der Inhalt der Speicherstelle, die durch HL adressiert wird, wird in das angegebene Register geladen.

r kann sein:

Datenfluß:

Befehlsablauf:

2 M Zyklen; 7 T Zustände; 3,5 µsek @2 MHz


Adressierungsart:

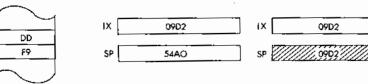
Indirekt.

Byte Kode:

r:	Α	В	C	D	Ε	Н	L	
	7E	46	48	56	5E	66	6E	

LD D, (HL)

Vorher:



LD SP, HL	Lade den Stapelzeiger aus HL.								
Funktion:	SP ← HL								
Format:	1 1 1 1 1 0 0 1 F9								
Beschreibung:	Der Inhalt des Registerpaares HL wird in den Sta pelzeiger geladen.								
Datenfluβ:	A B C E E SP								
Befehlsablauf:	1 M Zyklen; 6 T Zustände; 3 μsek @2 MHz								
Adressierungsart:	Implizit.								
Flags:	S Z H P/V N C (kein Einfluß)								
Beispiel:	LD SP, HL								
	Vorher: Nachher:								
50	H 06AF L H 06AF L								

SP

OBJEKT-KODE DBOE

LD SP, IX Lade den Stapelzeiger aus dem Register IX. Funktion: $SP \leftarrow IX$ Format: byte 1: DD byte 2: F9 Der Inhalt des Registers IX wird in den Stapelzei-Beschreibung: ger geladen. Datenfluß: C В E D Н lΧ Befehlsablauf: 2 M Zyklen; 10 T Zustände; 5 µsek @2 MHz Adressierungsart: Implizit. C Н P/V Ν Z Flags: \$ (kein Einfluß) Beispiel: LD SP, IX Nachher: Vorher:

LD SP, IY Lade den Stapelzeiger aus dem Register IY. Funktion: SP - IY Format: byte 1: FD byte 2: F9 0 Beschreibung: Der Inhalt des Registers IY wird in den Stapelzeiger geladen. Datenfluß: Α C В E D Н ١Y 2 M Zyklen; 10 T Zustände; 5 µsek @ 2 MHz Befehlsablauf: Adressierungsart: Implizit: Flags: (kein Einfluß) Beispiel: LD SP, IY Nachher: Vorher:

LDD

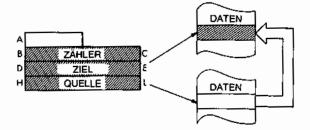
Blockladen mit Dekrementieren.

Funktion:

(DE)
$$\leftarrow$$
 (HL); DE \leftarrow DE -1 ; HL \leftarrow HL -1 ;

 $BC \leftarrow BC - 1$

Format:

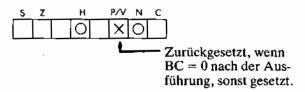

1	1	1	٨	1	1	n	ı	Byte 1: ED
<u> </u>	<u>L'</u>	'	Ů	'_	<u>'</u>	Ů	Ľ	Dyte I. ED

1	0	١	0	1	٥	0	0	Byte 2: A8
Щ.				L				2,00-010

Beschreibung:

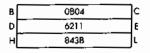
Der Inhalt der Speicherstelle, die durch HL adressiert wird, wird in die Speicherstelle geladen, auf die DE zeigt. Dann werden BC, DE und HL dekrementiert.

Datenfluß:

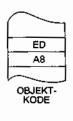


Befehlsablauf:

4 M Zyklen; 16 T Zustände; 8 µsek @ 2 MHz


Adressierungsart:

Indirekt.



LDD

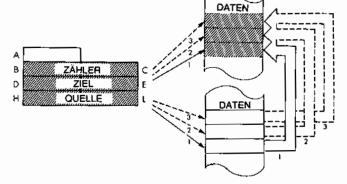
Vorher:

LDDR

Wiederholtes Blockladen mit Dekrementieren.

Funktion:

(DE) \leftarrow (HL); DE \leftarrow DE - 1; HL \leftarrow HL -1; BC \leftarrow BC - 1; Wiederhole bis BC = 0


Format:

1	1	1	0	_1	1	0	1	Byte 1: ED
1	0	ı	1	1	0	0	0	Byte 2: B8

Beschreibung:

Der Inhalt der Speicherstelle, die durch HL adressiert wird, wird in die Speicherstelle geladen, auf die DE zeigt. Dann werden DE, HL und BC dekrementiert. Ist BC $\neq 0$, dann wird der Befehlszähler um zwei dekrementiert und der Befehl wiederholt.

Befehlsablauf:

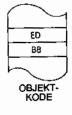
 $BC \neq 0:5 \text{ M Zyklen}; 21 \text{ T Zustände}; 10,5 \text{ }\mu\text{sek} \otimes 2$

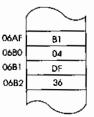
MHz

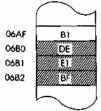
BC = 0:4 M Zyklen; 16 T Zustände; 8 μsek @

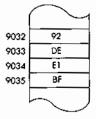
MHz

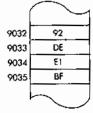
Adressierungsart:


Indirekt.


_ 5	Z	H	P/V	N	C
			0	0	


LDDR


Vorher:

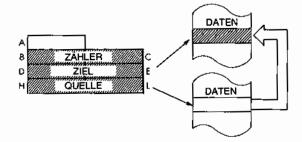

В	0003	c	B ////////////////////////////////////
D	06B2	E	D O6AF
н	9035	l	н 9032

LDI

Blockladen mit Inkrementieren.

Funktion:

(DE)
$$\leftarrow$$
 (HL); DE \leftarrow DE + 1; HL \leftarrow HL + 1; BC \leftarrow BC - 1

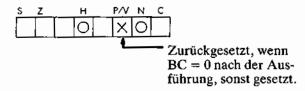

Format:

1	1	1	0	1	1	0	1	Byte 1: ED
1	0	1	0	0	0	0	0	Byte 2: AO

Beschreibung:

Der Inhalt der Speicherstelle, die durch HL adressiert wird, wird in die Speicherstelle geladen, auf die DE zeigt. Dann werden DE und HL inkrementiert und BC dekrementiert.

Datenfluß:

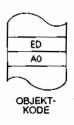


Befehlsablauf:

4 M Zyklen; 16 T Zustände; 8 μsek @ 2 MHz

Adressierungsart:

Indirekt.



LDI

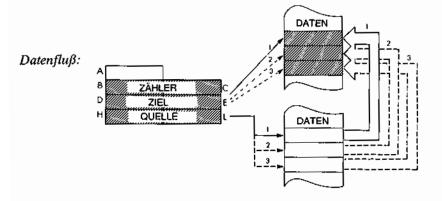
Vorher:

В	0006	c
D	34B1	E
н	3902	\

LDIR

Wiederholtes Blockladen mit Inkrementieren.

Funktion:


(DE) \leftarrow (HL); DE \leftarrow DE + 1; HL \leftarrow HL + 1; BC \leftarrow BC - 1; Wiederhole bis BC = 0

Format:

ı	1	1	0	1	1	0	1	Byte 1: ED
[1	0	1	1	0	0	0	0	Byte 2: BO

Beschreibung:

Der Inhalt der Speicherstelle, die durch HL adressiert wird, wird in die Speicherstelle geladen, auf die DE zeigt. Dann werden DE und HL inkrementiert und BC dekrementiert. Ist BC $\neq 0$, dann wird der Befehlszähler um zwei dekrementiert und der Befehl wiederholt.

Befehlsablauf:

Für $BC \neq 0$: 5 M Zyklen; 21 T Zustände; 10,5 μ sek

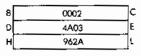
@ 2 MHz

Für BC = 0:4 M Zyklen; 16 T Zustände; 8 μsek @

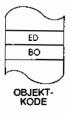
MHz

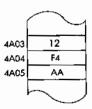
Adressierungsart:

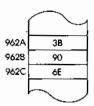
Indirekt.



\$ Z	н	P/V	Ŋ	C_
	0	0	0	


LDIR

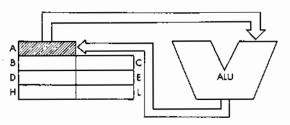

Vorher:


Nachher:

Negiere Akkumulator.

Funktion:

 $A \leftarrow 0 - A$

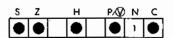

Format:

١	1	1	0	1	1	0	ļ	Byte 1: ED
0	ī	0	0	0	1	0	0	Byte 2: 44

Beschreibung:

Der Inhalt des Akkumulators wird von Null subtrahiert (Zweierkomplement). Das Ergebnis wird wieder im Akkumulator gespeichert.

Datenfluß:


Befehlsablauf:

2 M Zyklen; 8 T Zustände; 4 µsek @ 2 MHz

Adressierungsart:

Implizit.

Flags:

C wird gesetzt, wenn A vor dem Befehl Null war. P wird gesetzt, wenn A 80H war.

Beispiel:

NEG

Vorher:

		•	n
N	ı	,	r

Keine Operation.

Funktion:

Delay.

Format:

0 0 0 0 0 0 0 0 0

Beschreibung:

Einen M-Zyklus lang wird nichts getan.

Datenfluß:

A	¬	Keine A	ktion
В			¢
D			E
н] ւ

Befehlsablauf:

1 M Zyklus; 4 T Zustände; 2 μsek @ 2 MHz

Adressierungsart:

Implizit.

Flags:

S	Z	н	P/V	N	С	
						(k

(kein Einfluß)

OR s

Logische Oder-Verknüpfung von Akkumulator und Operand s.

Funktion:

 $A \leftarrow A \lor s$

Format:

s: kann sein r, n, (HL), (IX + d), oder (IY + d)

1 1 1 1 0 1 1 0 Byte 1: F6

Byte 2: unmittelbare
Daten

(HL) 1 0 1 1 0 1 1 0 Byte 1: B6

(IX + d) 1 1 0 1 1 1 0 1 Byte 1: DD

1 0 1 1 0 1 1 0 Byte 2: B6

Byte 3: Offset

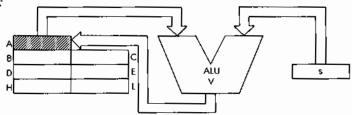
(IY + d) | 1 | 1 | 1 | 1 | 0 | 1 | Byte 1: FD

1 0 1 1 0 1 1 0 Byte 2: B6

Byte 3: Offset

r kann sein:

A - 111 E - 011 B - 000 H - 100

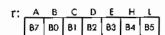

C - 001 L - 101

D - 010

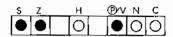
Beschreibung:

Der Akkumulator und der angegebene Operand werden logisch durch die Funktion ODER verknüpft und das Ergebnis wieder im Akkumulator abgelegt. s ist in der Beschreibung des Befehls AND definiert.

Befehlsablauf:


s:	M Zyklen	T Zustände	μsek @ 2 MHz:
r	1	4	4
n	2	7	3.5
(HL)	2	. 7	3.5
(1X + d)	5	19	9.5
(IY + d)	5	19	9.5

Adressierungsart:


r: implizit; n: unmittelbar; (HL): indirekt; (IX + d),(IY + d): indiziert.

Byte Kode:

OR r

Flags:

Beispiel:

OR B

Α	06
В	BŶ

OTDR

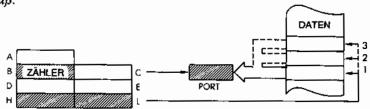
Blockausgabe mit Dekrementieren.

Funktion:

 $(C) \leftarrow (HL); B \leftarrow B - 1; HL \leftarrow HL - 1;$

Wiederhole bis B = 0.

Format:


	ì	1	1	0	ì	١	0	1	Byte 1: ED
•									

ī	0	1	1	١.	0	١	1	Byte 2: BB
---	---	---	---	----	---	---	---	------------

Beschreibung:

Der Inhalt der Speicherstelle, die durch das Registerpaar HL adressiert wird, wird zu dem peripheren Gerät ausgegeben, das durch den Inhalt des Registers C adressiert wird. Dann werden die Register B und HL dekrementiert. Ist $B \neq 0$, dann wird der Befehlszähler um zwei dekrementiert und der Befehl nochmals ausgeführt. C liefert die Bits A0 bis A7 des Adreßbusses, B liefert A8 bis A15 (nach dem Dekrementieren).

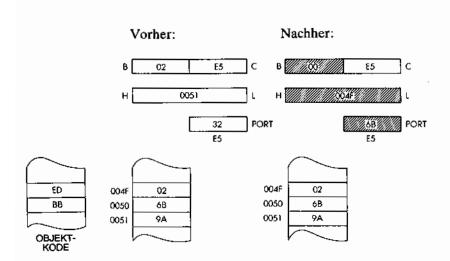
Datenfluß:

Befehlsablauf:

B = 0: 4 M Zyklen; 16 T Zustände;

8 μsek @ 2 MHz

 $C \neq 0$: 5 M Zyklen; 21 T Zustände;


10,5 μsek @ MHz

Adressierungsart:

Extern.

_S	Z		Н	P/V	Ν	C
3	ı	$\lceil \rceil$?	?	1	

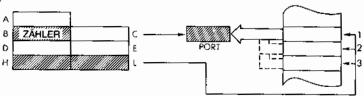
OTDR

OTIR

Blockausgabe mit Inkrementieren.

Funktion:

(C) \leftarrow (HL); B \leftarrow B - 1; HL \leftarrow HL +1; Wiederhole bis B = 0.


Format:

1	1	١	0	1	1	0	1	Byte 1: ED
<u> </u>	0	1	1	0	0	1	1	Byte 2: B3

Beschreibung:

Der Inhalt der Speicherstelle, die durch das Registerpaar HL adressiert wird, wird zu dem peripheren Gerät ausgegeben, das durch den Inhalt des Registers C adressiert wird. Dann wird das Register B dekrementiert und HL inkrementiert. Ist B \neq 0, dann wird der Befehlszähler um zwei dekrementiert und der Befehl nochmals ausgeführt. C liefert die Bits A0 bis A7 des Adreßbusses, B liefert A8 bis A15 (nach dem Dekrementieren).

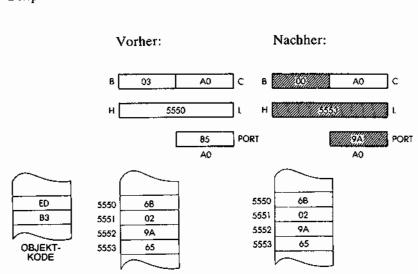
Datenfluß:

Befehlsablauf:

B = 0: 4 M Zyklen; 16 T Zustände;

8 μsek @ 2 MHz

 $B \neq 0$: 5 M Zyklen; 21 T Zustände;


10,5 μsek @ MHz

Adressierungsart:

Extern.

5_	Z	 н	P/V	Ν	C
?	1	?	?	1	

OTIR

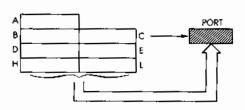
OUT (C), r

Ausgabe des Registers r zum Port C.

Funktion:

(C) ← r

Format:

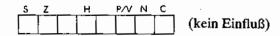

1	1	1	0	1	1	0	i	Byte 1: ED
0	1	-	→ r =	_	0	0	1	Byte 2

Beschreibung:

Der Inhalt des angegebenen Registers wird an das periphere Gerät ausgegeben, das durch den Inhalt des Registers C adressiert wird.

C liefert die Bits A0 bis A7 des Adreßbusses, B liefert A8 bis A15 (nach dem Dekrementieren).

Datenfluß:


Befehlsablauf:

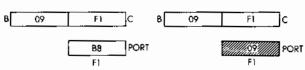
3 M Zyklen; 12 T Zustände; 6 µsek @ 2 MHz

Adressierungsart:

Extern.

Flags:

Byte Kode:


r:		в с			E	н	Ĺ
	79	41	49	51	59	61	69

OUT (C), B

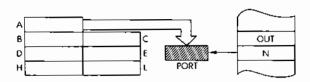
Nachher:

OUT (N), A

Ausgabe des Akkumulators an den peripheren Port N.

Funktion:

(N) ← A

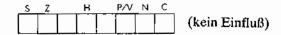

Format:

1	1	0	1	0	0	1	1	Byte 1: D3
							+	Byte 2: Portadresse

Beschreibung:

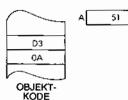
Der Inhalt des Akkumulators wird an das periphere Gerät ausgegeben, das durch den Inhalt der Speicherzelle adressiert wird, die unmittelbar auf den Opcode folgt.

Datenfluß:

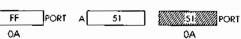

Befehlsablauf:

3 M Zyklen; 11 T Zustände; 5,5 µsek @ 2 MHz

Adressierungsart:


Extern.

Flags:


Beispiel:

OUT (0A), A

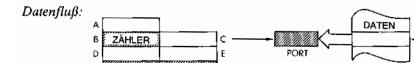
Vorher:

OA

OUTD

Ausgabe mit Dekrementieren.

Funktion:

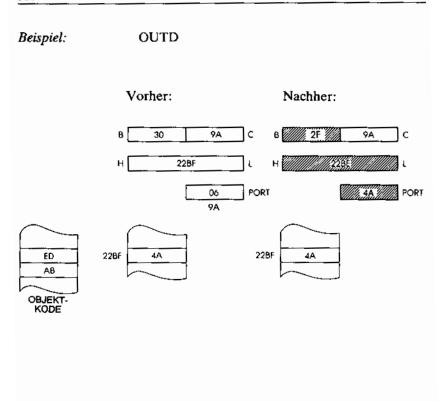

 $(C) \leftarrow (HL); B \leftarrow B - 1; HL \leftarrow HL - 1$

Format:

1	1	1	0	1	1	0	1	Byte 1: ED
1	0	ı	0	1	0	1	1	Byte 2: AB

Beschreibung:

Der Inhalt der Speicherzelle, die durch das Registerpaar HL adressiert wird, wird an das periphere Gerät ausgegeben, das durch den Inhalt des Registers C adressiert wird. Dann werden die Register B und HL dekrementiert. C liefert die Bits A0 bis A7 des Adreßbusses, B liefert A8 bis A15 (nach dem Dekrementieren).


Befehlsablauf:

4 M Zyklen; 16 T Zustände; 8 μsek @ 2 MHz

Adressierungsart:

Extern.

OUTI

Ausgabe mit Inkrementieren.

Funktion:

(C) \leftarrow (HL); B \leftarrow B - 1; HL \leftarrow HL + 1

Format:

	ı	1	0	1	1	0	1	Byte 1: ED
1	0	ı	0	0	0	1	1	Byte 2: A3

Beschreibung:

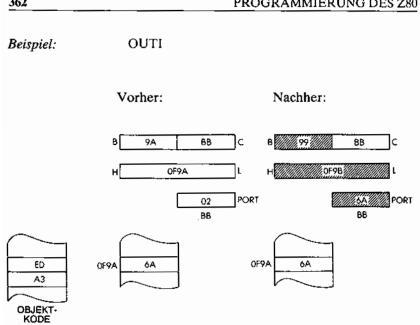
Der Inhalt der Speicherzelle, die durch das Registerpaar HL adressiert wird, wird an das periphere Gerät ausgegeben, das durch den Inhalt des Registers C adressiert wird. Dann wird das Register B dekrementiert und HL inkrementiert. C liefert die Bits A0 bis A7 des Adreßbusses, B lie-

fert A8 bis A15 (nach dem Dekrementieren).

Datenfluß:

A
B
ZÄHLER
C
E
PORT
PORT

Befehlsablauf:


4 M Zyklen; 16 T Zustände; 8 μsek @ 2 MHz

Adressierungsart:

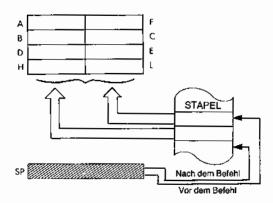
Extern.

POP qq

Hole das Registerpaar qq vom Stapel.

Funktion:

 $qqunten \leftarrow (SP); qqoben \leftarrow (SP + 1); SP \leftarrow SP + 2$

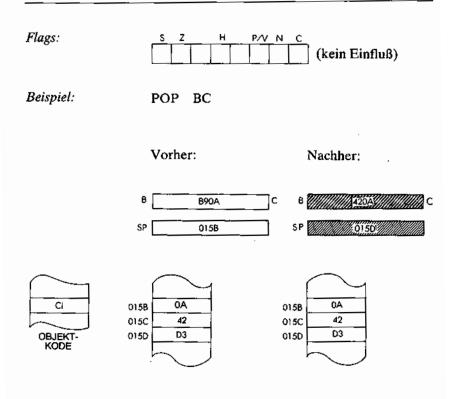

Format:

_							
1	1	q	q	0	0	0	1

Beschreibung:

Der Inhalt der Speicherzelle, auf die der Stapelzeiger zeigt, wird in die untere Hälfte des angegebenen Registerpaares geladen. Dann wird der Stapelzeiger inkrementiert und der Inhalt der Speicherzelle, auf die er dann zeigt, in die obere Hälfte des angegebenen Registerpaares geladen. Daraufhin wird der Stapelzeiger nochmals inkrementiert. 4g kann sein:

Datenfluß:


Befehlsablauf:

3 M Zyklen; 10 T Zustände; 5 µsek @ 2 MHz

Adressierungsart: Indirekt.

Byte Kode:

q:		DΕ		
	C1	Di	E1	FI

POP IX

Hole das Register IX vom Stapel.

Funktion:

 $IX_{unten} \leftarrow (SP); IX_{oben} \leftarrow (SP + 1); SP \leftarrow SP + 2$

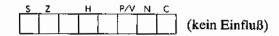
Format:

1	1	0	1	1	1	0	ì	Byte 1: DD
1	1	1	0	0	0	0	ı	Byte 2: E1

Beschreibung:

Der Inhalt der Speicherzelle, auf die der Stapelzeiger zeigt, wird in die untere Hälfte des Registers IX geladen. Dann wird der Stapelzeiger inkrementiert und der Inhalt der Speicherzelle, auf die er dann zeigt, in die obere Hälfte des Registers IX geladen. Daraufhin wird der Stapelzeiger nochmals inkrementiert.

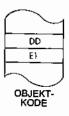
Datenfluß:

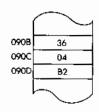

Befehlsablauf:

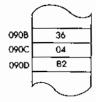
4 M Zyklen; 14 T Zustände; 7 μsek @ 2 MHz

Adressierungsart:

Indirekt.


Beispiel:


POP IX


Vorher:

Nachher:

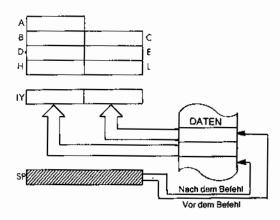
IX 0001	IX0436
SP 090B	SP (/////090D

POP IY

Hole das Register IY vom Stapel.

Funktion:

 $IY_{unten} \leftarrow (SP); IY_{oben} \leftarrow (SP + 1); SP \leftarrow SP + 2$


Format:

1	1	1	ı	1	1	0	ı	Byte 1: FD
١	1	1	0	0	0	0	1	Byte 2: E1

Beschreibung:

Der Inhalt der Speicherzelle, auf die der Stapelzeiger zeigt, wird in die untere Hälfte des Registers IY geladen. Dann wird der Stapelzeiger inkrementiert und der Inhalt der Speicherzelle, auf die er dann zeigt, in die obere Hälfte des Registers IY geladen. Daraufhin wird der Stapelzeiger nochmals inkrementiert.

Datenfluß:

Befehlsablauf:

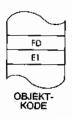
4 M Zyklen; 14 T Zustände; 2 μsek @ 2 MHz

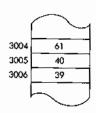
Adressierungsart:

Indirekt.

Flags:

S	Ž.	н	P/V	И	C	
						(kein Einfluß)


Beispiel:


POP IY

Vorher:

Nachher:

IY 032A	IY 4061
SP 3004	SP//////S006

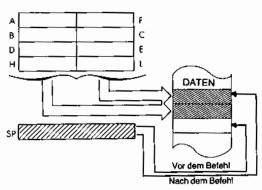
PUSH qq

Lege das Registerpaar qq auf dem Stapel ab.

Funktion:

$$(SP - 1) \leftarrow qq_{oben}; (SP - 2) \leftarrow qq_{unten}$$

 $SP \leftarrow SP - 2$

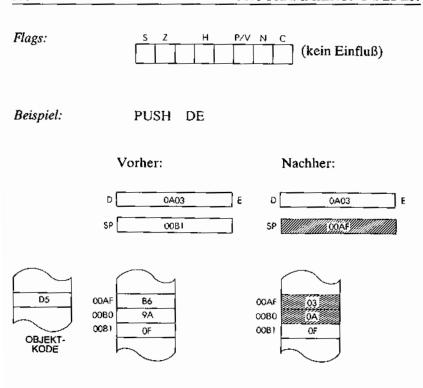

Format:

Γ.		T ₁	q	q	0	ı	0	1
L	' '		۳	ч	Ľ		Ľ	l

Beschreibung:

Der Stapelzeiger wird dekrementiert und der Inhalt der oberen Hälfte des angebenen Registerpaares in die Speicherzelle geladen, auf die der Stapelzeiger zeigt. Dann wird der Stapelzeiger nochmals dekrementiert und der Inhalt der unteren Hälfte des Registerpaares in die Speicherzelle geladen, auf die der Stapelzeiger jetzt zeigt. qq kann sein:

Datenfluß:


Befehlsablauf:

3 M Zyklen; 11 T Zustände; 6,5 µsek @ 2 MHz

Adressierungsart: Indirekt.

Byte Kode: 99: BC DE HL AF

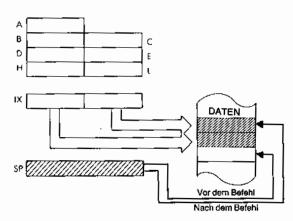
C5 D5 E5 F5

PUSH IX

Lege das Register IX auf dem Stapel ab.

Funktion:

 $(SP - 1) \leftarrow IX_{oben}; (SP - 2) \leftarrow IX_{unten}$ $SP \leftarrow SP - 2$


Format:

ì	1	0	1	١	1	0	1	Byte 1: DD
	,		_	_	Γ.	_	,	Byte 2: E5

Beschreibung:

Der Stapelzeiger wird dekrementiert und der Inhalt der oberen Hälfte des Registers IX in die Speicherzelle geladen, auf die der Stapelzeiger zeigt. Dann wird der Stapelzeiger nochmals dekrementiert und der Inhalt der unteren Hälfte des Registers IX in die Speicherzelle geladen, auf die der Stapelzeiger jetzt zeigt.

Datenfluß:

Befehlsablauf:

4 M Zyklen; 15 T Zustände; 7,5 µsek @ 2 MHz

Adressierungsart:

Indirekt.

Flags:

S_	Ζ	Н	P/V	Ŋ	C	
						(kein Einfluß)

OBJEKT-KODE

Beispiel: PUSH IX Vorher: Nachher: ıχ 04A2 ıχ 04A2 0094 SP 0096 8₿ ĎΦ 0094 0094 0095 9F 0095 E5 04

0096

04

0096

04

PUSH IY

Lege das Register IY auf dem Stapel ab.

Funktion:

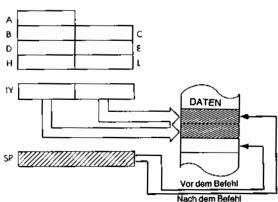
 $(SP-1)\leftarrow IY_{oben}; (SP-2)\leftarrow IY_{unten}$ $SP\leftarrow SP-2$

Format:

1	1	1	1	1	1	٥	1	Byte 1: FD

0

0


0

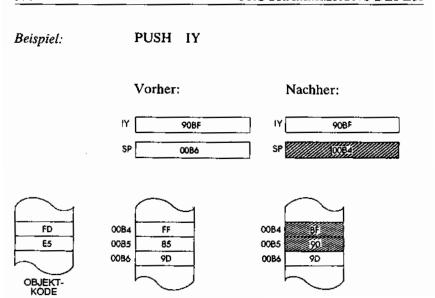
Beschreibung:

Der Stapelzeiger wird dekrementiert und der Inhalt der oberen Hälfte des Registers IY in die Speicherzelle geladen, auf die der Stapelzeiger zeigt. Dann wird der Stapelzeiger nochmals dekrementiert und der Inhalt der unteren Hälfte des Registers IY in die Speicherzelle geladen, auf die der Stapelzeiger jetzt zeigt.

Byte 2: E5

Datenfluß:

Befehlsablauf:


3 M Zyklen; 15 T Zustände; 7,5 µsek @ 2 MHz

Adressierungsart:

Indirekt.

Flags:

S	Z	Н	 P/V	N	C	
						(kein Einfluß)

RES b, s

Setze Bit b des Operanden s zurück.

Funktion:

 $s_b \leftarrow 0$

Format:

s: kann sein r,(HL),(IX + d) oder (IY + d)

r 1 1 0 0 1 0 1 1 Byte 1: CB

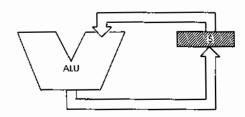
(HL) 1 1 0 0 1 0 1 1 Byte 1: CB

0 - b 1 1 0 Byte 4

(IY + d) | 1 | 1 | 1 | 1 | 0 | 1 | Byte 1: FD | | Byte 2: CB | | Byte 3: Offset | | 1 | 0 | 0 | 1 | 1 | 0 | Byte 4

b kann sein:

0 - 000 4 - 100 1 - 001 5 - 101 2 - 010 6 - 110 3 - 011 7 - 111


r kann sein:

A - 111 E - 011 B - 000 H - 100 C - 001 L - 101 D - 010 Beschreibung:

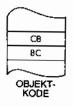
Das angegebene Bit in s wird zurückgesetzt.

Befehlsablauf:

s:	M Zyklen	T Zustände	μsek @ 2 MHz:
r	2	8	4
(HL)	4	15	7.5
(IX + d)	6	23	11.5
(IY + d)	6	23	11.5

Adressierungsart:

r: implizit; (HL): indirekt; (IX d),(IY d): indiziert.


Byte Kode:

RES b, r

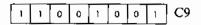
•								
	ь: ^r	: A	В	С	D	E	н	ι
CB-	o.	87	80	81	82	83	84	85
	1	8F	88	89	8A	8B	8C	8D
	2	97	90	91	92	93	94	95
	3	ĢF	98	99	9A	98	9C	9D
	4	A7	A0	Αì	A2	ΑQ	A4	A5
	5	AF	A8	Α9	AA	АВ	AC	ΑD
	6	B 7	80	81	82	83	84	85
	7	BF	88	В9	ВА	ВВ	BC	BD

b:	0		_	3		_	_	
СВ-	86	8E	96	9E	A6	ΑĒ	86	8E

RES b, (IX + d)DDCB b: 0 2 3 4 5 7 RES b, (HL) CB -86 8E 96 9E A6 AE B6 BE RES b, (IY + d)FDCB -Flags: Н P/V N (kein Einfluß) Beispiel: RES 1, H Vorher: Nachher:

H 42

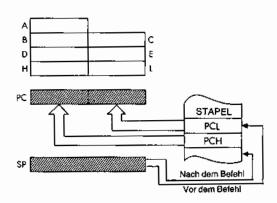
H 40



Rücksprung vom Unterprogramm.

Funktion:

 $PC_{unten} \leftarrow (SP); PC_{oben} \leftarrow (SP + 1); SP \leftarrow SP + 2$


Format:

Beschreibung:

Der Befehlszähler wird vom Stapel geholt, wie bei dem Befehl POP beschrieben. Der nächste Befehl wird von der Adresse geholt, auf die PC zeigt.

Befehlsablauf:

3 M Zyklen; 10 T Zustände; 5 μ sek @ 2 MHz

Adressierungsart:

Indirekt.

Flags:

S	Z	H	P/V	N	С	
						(kein Einfluß)

Beispiel:

RET

 Vorher:
 Nachher:

 PC
 08B1
 PC
 B421

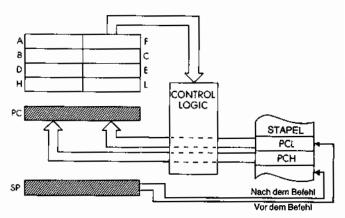
 SP
 3310
 SP
 3312

RET cc

Bedingter Rücksprung vom Unterprogramm.

Funktion:

Ist cc erfüllt, dann $PC_{unten} \leftarrow (SP); PC_{oben} \leftarrow (SP + 1); SP \leftarrow SP + 2$


Format:

1 1 - cc 0 0 0

Beschreibung:

Ist die Bedingung erfüllt, dann wird der Befehlszähler vom Stapel geholt, wie bei dem Befehl POP beschrieben. Der nächste Befehl wird von der Adresse geholt, auf die PC zeigt. Ist die Bedingung nicht erfüllt, werden die nächsten Befehle der Reihe nach ausgeführt.

Datenfluß:

cc kann sein:

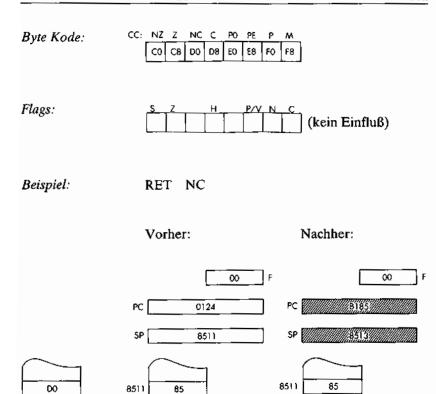
NZ - 000 PO - 100 Z - 001 PE - 101 NC - 010 P - 110 C - 011 M - 111

Befehlsablauf:

Bedingung erfüllt: 3 M Zyklen; 11 T Zustände; 6,5

μsek @ 2 MHz

Bedingung nicht erfüllt: 1 M Zyklen; 5 T Zustän-


de; 2,5 µsek @ 2 MHz

Adressierungsart:

Indirekt.

8512

OBJEKT-KODE В1

8512

В1

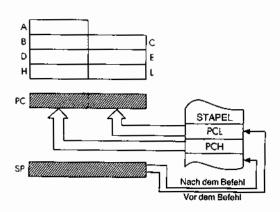
RETI

Rücksprung vom Interrupt-

Behandlungs-Programm.

Funktion:

 $PC_{unten} \leftarrow (SP); PC_{oben} \leftarrow (SP + 1); SP \leftarrow SP + 2$


Format:

1	1	١	0	1	Ī	0	ı	Byte 1: ED
0	ì	0	0	1	1	0	1	Byte 2: 4D

Beschreibung:

Der Befehlszähler wird vom Stapel geholt, wie bei dem Befehl POP beschrieben. Die Peripheriebausteine von Zilog erkennen diesen Befehl als das Ende einer Behandlungsroutine, so daß die entsprechende Bearbeitung verschachtelter Interrupts ermöglicht wird. Vor RETI muß ein EI ausgeführt werden, um Interrupts wieder freizugeben.

Datenfluß:

Befehlsablauf:

4 M Zyklen; 14 T Zustände; 7 μsek @ 2 MHz

Adressierungsart:

Indirekt.

Flags:

S	Ζ.	Н	P/V	N	Ċ	
						(kein Einfluß)

Be is piel:

RETI

Vorher:

Nachher:

PC	84E1	PC
SP	89B2	SP 8984

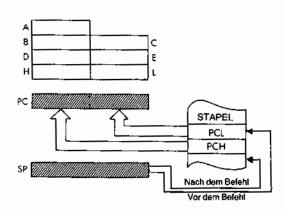
RETN

Rücksprung von einem nicht-maskierbaren Inter-

rupt.

Funktion:

 $PC_{unten} \leftarrow (SP); PC_{oben} \leftarrow (SP + 1); SP \leftarrow SP + 2;$ IFF1 \leftarrow IFF2

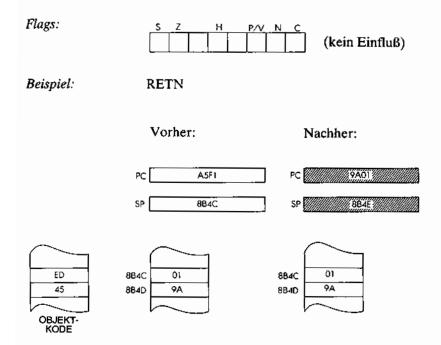

Format:

1	ו	ז	0	1	1	0	1	Byte 1: ED
0	1	0	٥	0)	0	1	Byte 2: 45

Beschreibung:

Der Befehlszähler wird vom Stapel geholt, wie bei dem Befehl POP beschrieben. Dann wird der Inhalt von IFF2 (Zwischenspeicher) wieder nach IFF1 kopiert, um den Zustand des Interruptflags vor dem nicht-maskierbaren Interrupt wiederherzustellen.

Datenfluß:

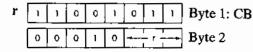


Befehlsablauf:

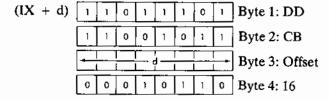
4 M Zyklen; 14 T Zustände; 7 µsek @ 2 MHz

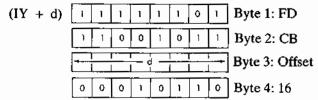
Adressierungsart:

Indirekt.


RL s

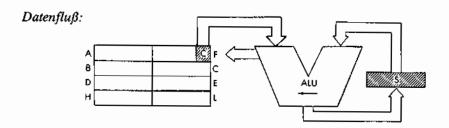
Rotiere links durch das Übertragsbit (Carry).


Funktion:


Format:

s: kann sein r, (HL), (IX + d) oder (IY + d)

(HL) 1 1 0 0 1 0 1 1 Byte 1: CB



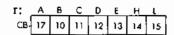
r kann sein:

A - 111 E - 011 B - 000 H - 100 C - 001 L - 101 D - 010

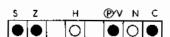
Beschreibung:

Der Inhalt der Stelle, die durch den Operanden festgelegt wird, wird links verschoben. Der Inhalt des Übertragsbits wird nach Bit 0 und der Inhalt von Bit 7 ins Übertragsbit verschoben. Das Ergebnis wird wieder an der alten Stelle abgelegt.

Befehlsablauf:


s:	M	T	μsek
	Zyklen	Zustände	@ 2 MHz:
r	2	8	4
(HL)		15	7.5
(IX + d)	6	23	11.5
(iY + d)	6	23	11.5

Adressierungsart:


r: implizit; (HL): indirekt; (IX d),(IY d): indiziert.

Byte Kode:

RL r

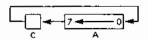

Flags:

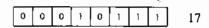
C wird von Bit 7 der Quelle s gesetzt.

Beispiel:

RL E

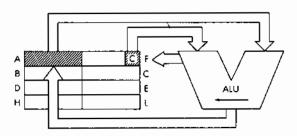
Vorher:


δ**E** E


RLA

Rotiere den Akkumulator links durchs Übertragsbit.

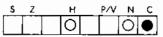
Funktion:


Format:

Beschreibung:

Der Inhalt des Akkumulators wird nach links verschoben. Der Inhalt des Übertragsbits wird nach Bit 0, der Inhalt von Bit 7 ins Übertragsbit verschoben. (9 Bit Rotation).

Datenfluß:


Befehlsablauf:

1 M Zyklus; 4 T Zustände; 2 µsek @ 2 MHz

Adressierungsart:

Implizit.

Flags:

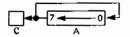
C wird gesetzt durch Bit 7 von A.

Beispiel:

RLA

Vorher:

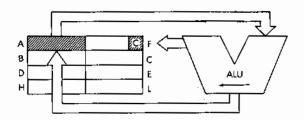
Nachher:


_			
٩Ĺ	OF	01	F

RLCA

Rotiere Akkumulator links.

Funktion:

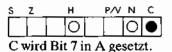

Format:

0	0	0	0	0	1	1	1	07

Beschreibung:

Der Inhalt des Akkumulators wird um eine Stelle links rotiert. Der ursprüngliche Inhalt von Bit 7 wird ins Übertragsflag und gleichzeitig ins Bit 0 verschoben.

Datenfluß:


Befehlsablauf:

1 M Zyklus; 4 T Zustände; 2 μsek @ 2 MHz

Adressierungsart:

Implizit.

Flags:

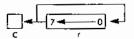
Beispiel:

RLCA

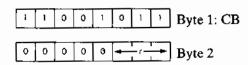
Vorher:

Nachher:

A	6B	01	F
	Achtuna		

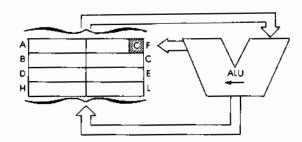


Mit Ausnahme der Flags ist dieser Befehl identisch zu RLC A. Er wurde wegen der Kompatibilität zum 8080 eingebaut.


RLC r

Rotiere links.

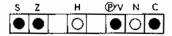
Funktion:


Format:

Beschreibung:

Der Inhalt der durch den Operanden bestimmten Stelle wird links rotiert und das Ergebnis an der alten Stelle abgelegt. Der Inhalt von Bit 7 wird ins Übertragsflag und gleichzeitig ins Bit 0 verschoben. r kann sein:

Datenfluß:


Befehlsablauf:

2 M Zyklen; 8 T Zustände; 4 µsek @ 2 MHz

Adressierungsart: Implizit.

Byte Kode: r: A B C D E H L
CB- 07 00 01 02 03 04 05

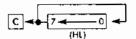
Flags:

C wird von Bit 7 der Quelle gesetzt.

Beispiel:

RLC B

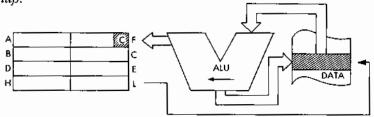
Vorher:


Nachher:

RLC (HL)

Rotiere die Speicherzelle (HL) links.

Funktion:

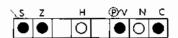

Format:

	1	1	0	0	1	0	1	1	Byte 1: CB
[)	0	0	٥	0	ι	1	0	Byte 2: 06

Beschreibung:

Der Inhalt der Speicherzelle, die durch das Registerpaar HL adressiert wird, wird links rotiert und das Ergebnis an der alten Stelle abgelegt. Der Inhalt von Bit 7 wird ins Übertragsflag und gleichzeitig ins Bit 0 verschoben.

Datenfluß:

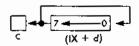

Befehlsablauf:

4 M Zyklen; 15 T Zustände; 7,5 μsek @ 2 MHz

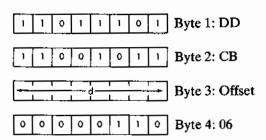
Adressierungsart:

Indirekt.

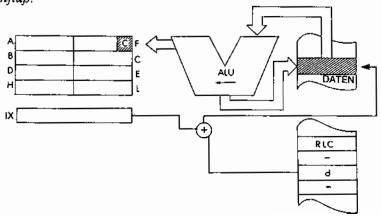
Flags:


C wird von Bit 7 der Quelle gesetzt.

06


OBJEKT-KODE

RLC (IX + d) Rotiere die Speicherzelle (IX + d) links.


Format:

Beschreibung:

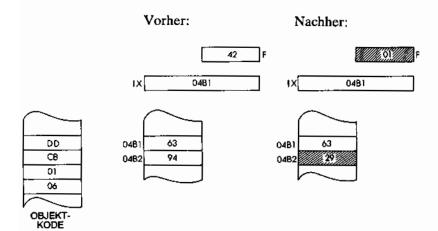
Der Inhalt der Speicherzelle, die durch den Inhalt des Registers IX plus einem gegebenen Offset adressiert wird, wird links rotiert und das Ergebnis an der alten Stelle abgelegt. Der Inhalt von Bit 7 wird ins Übertragsflag und gleichzeitig ins Bit 0 verschoben.

Befehlsablauf:

6 M Zyklen; 23 T Zustände; 11,5 μsek @ 2 MHz

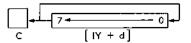
Adressierungsart:

Indiziert.

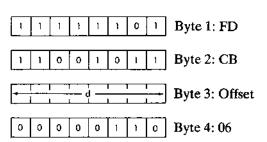

Flags:

5	Z	н	Ø∕∨	Ν	C
	•	Ö	•	0	

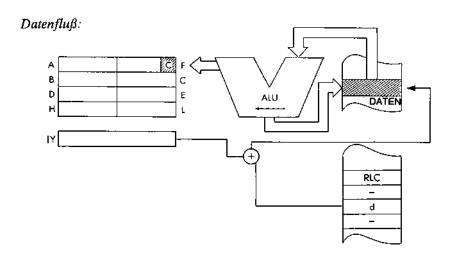
C wird von Bit 7 der Quelle gesetzt.


Beispiel:

RLC (IX + 1)



RLC (IY + \mathbf{d}) Rotiere die Speicherzelle (IY + \mathbf{d}) links.



Format:

Beschreibung:

Der Inhalt der Speicherzelle, die durch den Inhalt des Registers IY plus einem gegebenen Offset adressiert wird, wird links rotiert und das Ergebnis an der alten Stelle abgelegt. Der Inhalt von Bit 7 wird ins Übertragsflag und gleichzeitig ins Bit 0 verschoben.

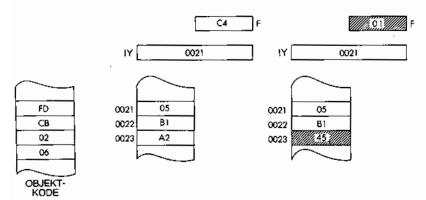
Befehlsablauf:

6 M Zyklen; 23 T Zustände; 11,5 μsek @ 2 MHz

Adressierungsart:

Indiziert.

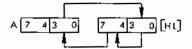
Flags:


S	Z	H_	® ٧	N	С
•	•	0	•	0	•

C wird von Bit 7 der Quelle gesetzt.

Beispiel:

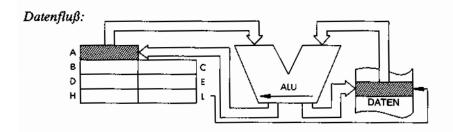
RLC (IY + 2)



RLD

Rotiere links dezimal.

Funktion:

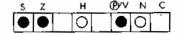


Format:

1	1	1	0	1	1	0	1	Byte 1: ED
0	ı	1	0	ī	1	1	1	Byte 2: 6F

Beschreibung:

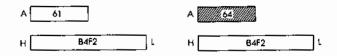
Die vier unteren Bit der Speicherzelle, die durch den Inhalt von HL adressiert wird, werden in die oberen Bits der gleichen Stelle verschoben. Die vier oberen Bit kommen in die vier unteren Bit des Akkumulators. Die unteren Bit des Akkumulators kommen in die vier unteren Bit der ursprünglich festgelegten Speicherzelle. Alle diese Operationen werden gleichzeitig ausgeführt.

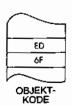

Befehlsablauf:

5 M Zyklen; 18 T Zustände; 9 μsek @ 2 MHz

Adressierungsart:

Indirekt.



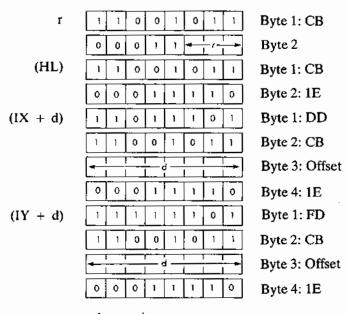


Beispiel:

RLD

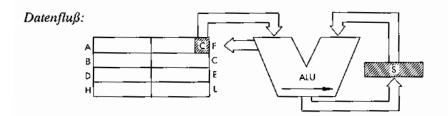


RR s


Rotiere rechts durch das Übertragsbit C.

Format:

s: kann sein r, (HL), (IX + d) oder (IY + d)



r kann sein:

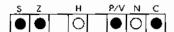
Α	_	111	E	_	011
В	_	000	Н	_	100
C	_	001	L	_	101
D	_	010			

Beschreibung:

Der Inhalt der Stelle, die durch den Operanden festgelegt wird, wird rechts verschoben. Der Inhalt des Übertragsbits wird nach Bit 7 und der Inhalt von Bit 0 ins Übertragsbit verschoben. Das Ergebnis wird wieder an der alten Stelle abgelegt. sist bei der Beschreibung des Befehls RLC definiert.

Befehlsablauf:

s:	M Zyklen	T Zustände	μsek @ 2 MHz
r	2	8	4
(HL)	4	15	7.5
(IX + d)	6	23	11.5
(1Y + d)	6	23	11.5


Adressierungsart:

r: implizit; (HL): indirekt; (IX d),(IY d): indiziert.

Byte Kode:

RR r:

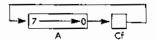
Flags:

C wird von Bit 0 der Quelle gesetzt.

Beispiel:

RR H

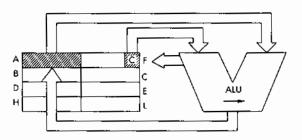
Vorher:



RRA

Rotiere den Akkumulator rechts durchs Übertragsbit.

Funktion:

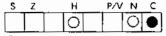

Format:

0	0	0	1	ì	1	ı	1	· iF
٠ ا	٠,	١ ٧	'	' '	<u>ا</u> ا	l. ' l	Ι'.	11

Beschreibung:

Der Inhalt des Akkumulators wird rechts verschoben. Der Inhalt des Übertragsbits wird nach Bit 7, der Inhalt von Bit 0 ins Übertragsbit verschoben (9 Bit Rotation).

Datenfluß:


Befehlsablauf:

1 M Zyklus; 4 T Zustände; 2 μsek @ 2 MHz

Adressierungsart:

Implizit.

Flags:

C wird gesetzt durch Bit 0 von A.

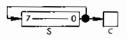
Beispiel:

RRA

Vorher:

Nachher:

			_
Α	F4	95	۴


Achtung: Dieser Befehl ist weitgehend identisch mit RR A. Er wurde wegen der Kompatibilität zum 8080 eingebaut.

(1Y + d)

RRC s

Rotiere rechts.

Funktion:

Format:

s: kann sein r, (HL), (IX + d) oder (IY + d)

r	ŀ	1	0	٥_	1	0	1	1	Byte 1: CB
	0	0	0	0	ı	4	- r -	-	Byte 2
(HL)	ı	1	0	0	1	0	1	1	Byte 1: CB
,	0	0	0	0	1	1	1	0	Byte 2: 0E

	_						L	ldot	
C	()	0	0	ì	1	ì	0	Byte 4: 0E

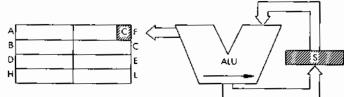
Byte 2: CB

Byte 3: Offset

0 0 0 0 1 1 1 0 Byte 4: 0E

Byte 3: Offset

Byte 1: FD


r kann sein:

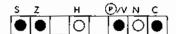
A - 111 E - 011 B - 000 H - 100 C - 011 L - 101 D - 010

Beschreibung:

Der Inhalt der durch den Operanden bestimmten Stelle wird rechts rotiert und das Ergebnis an der alten Stelle abgelegt. Der Inhalt von Bit 0 wird ins Übertragsflag und gleichzeitig ins Bit 7 verschoben. s ist bei der Beschreibung des Befehls RLC definiert.

Befehlsablauf:

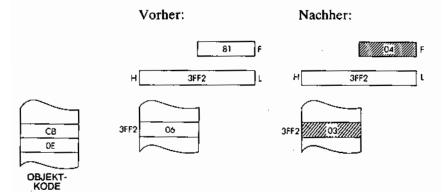
s:	M Zyklen	T Zustände	μsek @ 2 MHz
г	2	8	4
(HL)	4	15	7.5
(IX + d)	6	23	11.5
(IY + d)	6	23	11.5


Adressierungsart:

r: implizit; (HL): indirekt; (IX d),(IY d): indiziert.

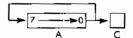
Byte Kode:

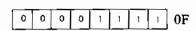
RRC r r: A B C D E H L
CB- OF 08 09 0A 0B 0C 0D


Flags:

C wird von Bit 0 der Quelle gesetzt.

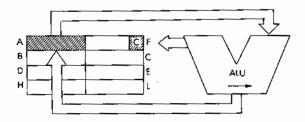
Beispiel:


RRC (HL)


RRCA

Rotiere Akkumulator rechts.

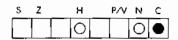
Funktion:


Format:

Beschreibung:

Der Inhalt des Akkumulators wird um eine Stelle rechts rotiert. Der ursprüngliche Inhalt von Bit 0 wird ins Übertragsflag und gleichzeitig ins Bit 7 verschoben.

Datenfluß:


Befehlsablauf:

1 M Zyklus; 4 T Zustände; 2 μsek @ 2 MHz

Adressierungsart:

Implizit.

Flags:

C wird von Bit 0 in A gesetzt.

Beispiel:

RRCA

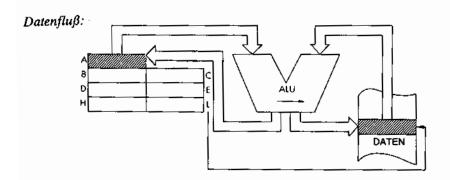
Vorher:

A	D4	51	F

RRD

Rotiere rechts dezimal.

Funktion:



Format:

1	1	1	0	1	١	0	1	Byte 1: ED
٥	Ī	1	0	0	ו	1	1	Byte 2: 67

Beschreibung:

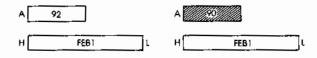
Die vier oberen Bit der Speicherzelle, die durch den Inhalt von HL adressiert wird, werden in die unteren Bits der gleichen Stelle verschoben. Die vier unteren Bit kommen in die vier unteren Bit des Akkumulators. Die unteren Bit des Akkumulators kommen in die vier oberen Bit der ursprünglich festgelegten Speicherzelle. Alle diese Operationen werden gleichzeitig ausgeführt.

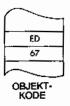
Befehlsablauf:

5 M Zyklen; 18 T Zustände; 9 μsek @ 2 MHz

Adressierungsart:

Indirekt.




_	S	Z	Н	®∨	N	C
	•	•	0	•	0	

Beispiel:

RRD

Vorher:

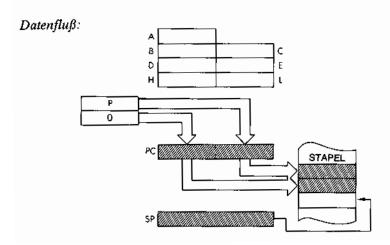
RST p

Restart bei p.

Funktion:

$$(SP-1)\leftarrow PC_{oben}$$
; $(SP-2)\leftarrow PC_{unten}$; $SP\leftarrow SP-2$; $PC_{oben}\leftarrow 0$; $PC_{unten\leftarrow p}$

Format:


_					
1	ı	p	ı	1	1

Beschreibung:

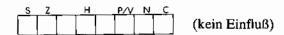
Der Inhalt des Befehlszählers wird auf dem Stapel abgelegt, wie bei dem Befehl PUSH beschrieben. Dann wird der entsprechende Wert für p in den Befehlszähler geladen und der nächste Befehl von dieser neuen Adresse geholt. p kann sein:

H00	- 000	20H -	100
H80	- 001	28H -	101
10H	- 010	30H -	110
18H	- 011	38H -	111

Dieser Befehl bewirkt einen Sprung zu einer von acht Startadressen im unteren Bereich des Speichers, und er belegt nur ein einziges. Byte. Er kann als schnelle Antwort auf einen Interrupt verwendet werden.

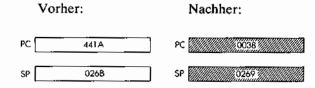
Befghlsablauf:

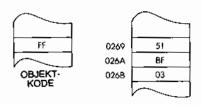
3 M Zyklen; 11 T Zustände; 5,5 μsek @ 2 MHz

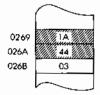

Adressierungsart:

Indirekt.

Byte Kode:


p: 00 08 10 18 20 28 30 38 C7 CF D7 DF E7 EF F7 FF

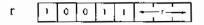

Flags:



Beispiel:

RST 38H

SBC A, s


Subtrahiere vom Akkumulator den gegebenen Operanden s mit Übertrag.

Funktion:

$$A \leftarrow A - s - C$$

Format:

s: kann sein r,n,(HL),(IX + d) oder (IY + d)

n | | | 0 | 1 | 1 | 1 | 0 | Byte 1: DE

Byte 2: unmittelbare Daten

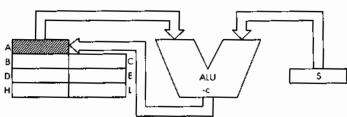
(HL) | 0 0 1 1 1 0 Byte 1:9E

1 0 0 1 1 1 1 0 **9E**

Byte 3: Offset

1 0 0 1 1 1 1 0 Byte 2: 9E

Byte 3: Offset


r kann sein:

A - 111 E - 011 B - 000 H - 100 C - 001 L - 101

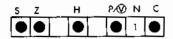
D - 010

Beschreibung:

Der angegebene Operand s und das Übertragsflag werden vom Akkumulator subtrahiert. Das Ergebnis wird wieder im Akkumulator abgelegt. s ist bei der Beschreibung des Befehls ADD definiert. Datenfluß:

Befehlsablauf:

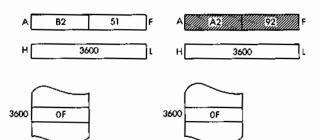
s:	M Zyklen	T Zustände	μsek @ 2 MHz
Г	1	4	2
n	2	7	3.5
(HL)	2	7	3.5
(IX + d)	5	19	9.5
(IY + d)	5	19	9.5


Adressierungsart:

r: implizit; n: unmittelbar; (HL): indirekt; (IX d),(IY d): indiziert.

Byte Kode:

SBC A, r ... A B C D E H L 9F 98 99 9A 9B 9C 9C


Flags:

Beispiel:

SBC A, (HL)

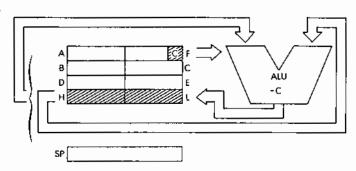
Vorher:

SBC HL, ss Subtrahiere von HL das angegebene Registerpaar

mit Übertrag.

Funktion:

HL ← HL - ss - C


Format:

ļ	1	ì	0	1	1	0	l	Byte 1: ED
0	1	8	Ş	0	0	1	0	Byte 2

Beschreibung:

Der Inhalt des angegebenen Registerpaares und der Übertrag werden vom Inhalt des Registerpaars HL subtrahiert. Das Ergebnis wird wieder im Registerpaar HL abgelegt, ss kann sein:

Datenfluß:

Befehlsablauf:

4 M Zyklen; 15 T Zustände; 7,5 μsek @ 2 MHz

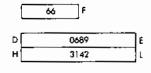
Adressierungsart:

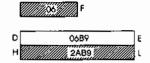
Implizit.

Byte Kode:

ss: BC DE HL SP ED-62

S	Z	H	PAQ	N	C
•	•	•		1	•


H ist gesetzt bei Übertrag von Bit 12. C ist gesetzt bei Übertrag.


Beispiel:

SBC HL, DE

Vorher:

SCF

Setze Übertragsflag.

Funktion:

 $C \leftarrow 1$

Format:

0 0 1 1 0 1 1 1

37

Beschreibung:

Das Übertragsflag wird gesetzt.

Befehlsablauf:

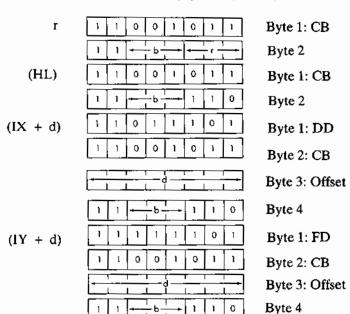
1 M Zyklus; 4 T Zustände; 2 µsek @ 2 MHz

Adressierungsart:

Implizit.

Flags:

_Ş	Ž	 Н	P/	V N	С
		5]"		0	_

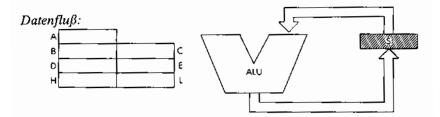

SET b, s Setze Bit b des Operanden s.

Funktion:

$$s_b \leftarrow 1$$

Format:

s: kann sein r, (HL), (IX + d) oder (IY + d)



r kann sein:

b kann sein:

Beschreibung:

Das angegebene Bit von s wird gesetzt. s ist bei der Beschreibung des Befehls BIT definiert.

Befehls	ablauf:
---------	---------

s:	M Zyklen	T Zustände	μsek @ 2 MHz
r	2	8	4
(HL)	4	15	7.5
(1X + d)	6	23	11.5
(IY + d)	6	23	11.5

Adressierungsart:

r: implizit; (HL): indirekt; (IX d),(IY d): indiziert.

Byte Kode:

SET b, r

	b : !	<u>:</u> A	В	С	D	E	Н	ι
CB-	0	C7	CO	C1	C2	C3	C4	C5
	1	CF	C3	Ç9	CA	СB	СС	CD
	2	D7	DO	DI	D2	D3	D4	D 5
	3	DF	D8	D9	DA	DB	DC	DD
	4	E7	EO	Εì	E2	E3	E4	E5
	5	EF	E8	E9	EΑ	EB	ξC	ED
	6	F7	FO	F۱	F2	F3	F4	F5
	7	FF	F8	F9	FΑ	FB	FC	FD

Flags:

S	Ζ	Н	 P/V	N	C	
						(kein Einfluß)

Beispiel:

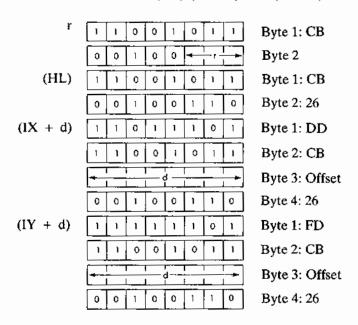
SET 7, A

Vorher:

Nachher:

A _____61

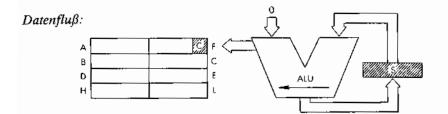
A WEY


SLA s

Arithmetisches Links-Schieben des Operanden s.

Funktion:

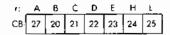
Format:


s: kann sein r, (HL), (IX + d) oder (IY + d)

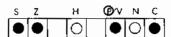
r kann sein:

Beschreibung:

Der Inhalt der Stelle, die durch den angegebenen Operanden festgelegt wird, wird arithmetisch links verschoben, wobei der Inhalt von Bit 7 ins Übertragsbit kommt und eine Null in Bit 0. Das Endergebnis wird wieder an der ursprünglichen Stelle abgelegt. s ist bei der Beschreibung des Befehls RLC definiert.



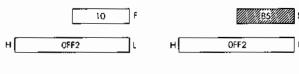
Befehlsablauf:	s:	M Zyklen	T Zustände	μsek @ 2 MHz
	r	2	8	4
	(HL)	4	15	7.5
	(IX + d)	6	23	11.5
	(IY + d)	6	23	11.5


Adressierungsart: r: implizit; (HL): indirekt; (IX d), (IY d): indiziert.

Byte Kode:

SLA r

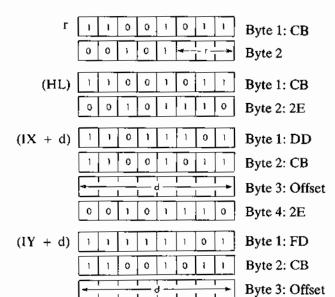
Flags:


C wird von Bit 7 der Quelle gesetzt.

Beispiel:

SLA (HL)

Vorher:


SRA s

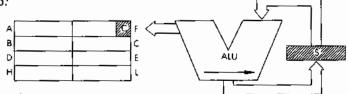
Arithmetisches Rechts-Schieben des Operanden s.

Funktion:

Format:

s: kann sein $r_1(HL)_1(IX + d)$ oder (IY + d)

r kann sein:


0

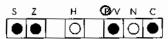
Beschreibung:

Der Inhalt der Stelle, die durch den angegebenen Operanden festgelegt wird, wird arithmetisch rechts verschoben. Dabei kommt der Inhalt von Bit 0 ins Übertragsbit und der Inhalt von Bit 7 bleibt unverändert. Das Endergebnis wird wieder an der ursprünglichen Stelle abgelegt.

Byte 4: 2E

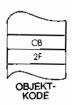

Befehlsablauf:

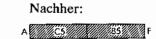
s:	M Zyklen	T Zustände	μsek @ 2 MHz
r	2	8	4
(HL)	4	15	7.5
(IX + d)	6	23	11.5
(IY + d)	6	23	11.5


Adressierungsart:

r: implizit; (HL): indirekt; (IX d),(IY d): indiziert.

Byte Kode:

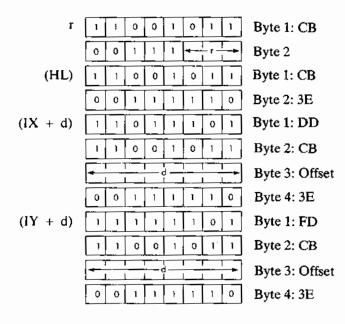

Flags:


C wird von Bit 0 der Quelle gesetzt.

Beispiel:

SRA A

Vorher:			
Α	88	04	F

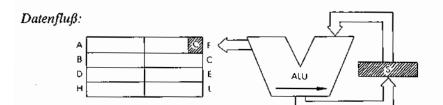

SRL s

Logisches Rechts-Schieben des Operanden s.

Funktion:

Format:

s: kann sein r, (HL), (IX + d) oder (IY + d)



r kann sein:

A - 111	E - 011
B - 000	H - 100
C - 001	L - 101
D - 010	

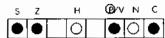
Beschreibung:

Der Inhalt der Stelle, die durch den angegebenen Operanden festgelegt wird, wird logisch rechts verschoben. Dabei kommt der Inhalt von Bit 0 ins Übertragsbit und eine Null ins Bit 7. Das Endergebnis wird wieder an der ursprünglichen Stelle abgelegt.

Befehlsablauf:	
----------------	--

s:	M Zyklen	T Zustände	μsek @ 2 MHz
r	2	8	4
(HL)	4	15	7.5
(IX + d)	6	23	11.5
(iY + d)	6	23	11.5

Adressierungsart:

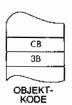

r: implizit; (HL): indirekt; (IX d),(IY d): indiziert.

Byte Kode:

SRL r

r:		В		-	-	н	l
СВ	3F	38	39	ЗА	зв	3C	3D

Flags:



C wird von Bit 7 der Quelle gesetzt.

Beispiel:

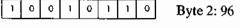
SRL E

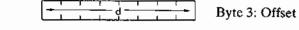
Vorher:

Byte 1: D6

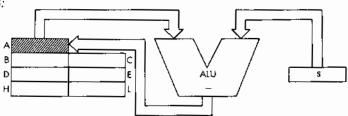
Byte 2: 96

SUB s Subtrahiere den angegebenen Operanden s vom Akkumulator.


$$A \leftarrow A - s$$


Format:

s: kann sein r, n,(HL),(IX + d) or (IY + d)



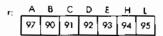
r kann sein:

Beschreibung:

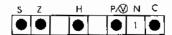
Der angegebene Operand s wird vom Akkumulator subtrahiert. Das Ergebnis wird wieder im Akkumulator abgelegt. s ist bei der Beschreibung des Befehls ADD definiert.

Befehlsablauf:

s:	M Zyklen	T Zustände	μsek @ 2 MHz
r	1	4	2
n	2	7	3.5
(HL)	2	7	3.5
(IX + d)	5	19	9.5
(IX + d)	5	19	9.5


Adressierungsart:

r: implizit; n: unmittelbar; (HL): indirekt; (IXX


d), $(I\dot{Y} + \dot{d})$: indiziert.

Byte Kode:

SUB r

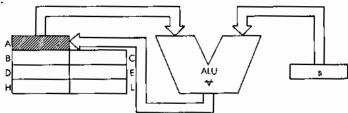
Flags:

Beispiel:

SUB B

Vorher:

Α	80
В	31



XOR s	EXKLUSIVES ODER von Operand s.	Akkumulator und
Funktion:	A ← A V s	
Format: s:	kann sein $r,n,(HL),(IX + d)$	oder (IY + d)
r	1 0 1 0 1 - 1	
n	1 1 1 0 1 1 1 0	Byte 1: EE
	n	Byte 2: unmittelbare Daten
(HL)	1 0 1 0 1 1 1 0	AE
(IX + d)	1 1 0 1 1 1 0 1	Byte 1: DD
	1 0 1 0 1 1 1 0	Byte 2: AE
		Byte 3: Offset
(IY + d)	1 1 1 1 1 1 0 1	Byte 1: FD
	1 0 1 0 1 1 1 0	Byte 2: AE
	- d	Byte 3: Offset
	r kann sein:	
	A - 111 E - 011 B - 000 H - 100 C - 001 L - 101 D - 010	0

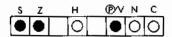
Beschreibung:

Der Akkumulator und der angegebene Operand s werden durch die logische Funktion EXKLUSI-VES ODER verknüpft. Das Ergebnis wird wieder im Akkumulator abgelegt. s ist bei der Definition des Befehls ADD definiert.

Befehlsablauf:

s:	M Zyklen	T Zustände	μsek @ 2 MHz
r	1	4	2
n	2	7	3.5
(HL)	2	7	3.5
(IX + d)	5	19	9.5
(IY + d)	5	19	9.5

Adressierungsart:


r: implizit; n: unmittelbar; (HL): indirekt; (IX d),(IY d): indiziert.

Byte Kode:

XOR r

F: A B C D E H L

Flags:

Beispiel:

XOR B1H

Vorher:

Nachher:

B1
OBJEKT-KODE

A 36

Adressierungstechniken

Einführung

In diesem Kapitel wird die allgemeine Theorie der Adressierung vorgestellt und die verschiedenen Techniken, die entwickelt wurden, um das Auffinden der Daten zu erleichtern. In einem zweiten Abschnitt werden die speziellen Adressierungsarten vorgestellt, die beim Z80 verfügbar sind, zusammen mit den Vorteilen und Einschränkungen. Um den Leser schließlich mit den verschiedenen Verfahren vertraut zu machen, wird ein Abschnitt die Anwendungen möglicher Adressierungstechniken in speziellen Programmbeispielen demonstrieren.

Da der Z80 außer dem Befehlszähler noch mehrere 16-Bit-Register besitzt, mit deren Hilfe man eine Adresse festlegen kann, ist es wichtig, daß der Benutzer die verschiedenen Adressierungsarten versteht, speziell auch die Verwendung der Indexregister. Die komplizierteren Verfahren kann man am Anfang übergehen. Alle diese Adressierungsmethoden sind jedoch nützlich, wenn man Programme für diesen Mikroprozessor entwickelt. Wir wollen jetzt die verschiedenen Möglichkeiten studieren.

Die möglichen Arten der Adressierung

Adressierung ist die Art und Weise, wie der Ort des Operanden, mit dem ein Befehl arbeitet, innerhalb dieses Befehls festgelegt wird. Jetzt werden wir die hauptsächlichen Adressierungsarten untersuchen. Sie sind in Abb. 5.1 veranschaulicht.

Implizite Adressierung (oder Registeradressierung)

Befehle, die ausschließlich mit Registern arbeiten, verwenden normalerweise implizite Adressierung. Dies ist in Abbildung 5.1 dargestellt. Der Name impliziter Befehle leitet sich von der Tatsache ab, daß er die Adresse des Operanden, mit dem er arbeitet, nicht besonders enthält. Stattdessen legt sein Opcode ein oder mehrere Register fest, mit denen er arbeitet, üblicherweise den Akkumulator oder irgendwelche anderen

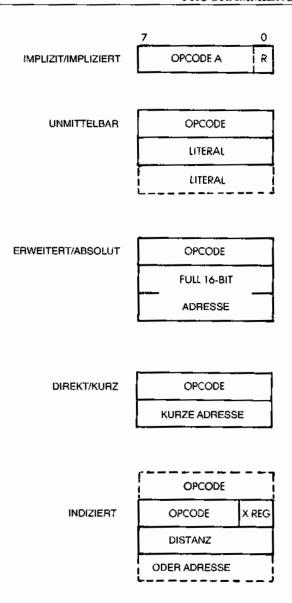


Abb. 5.1: Grundlegende Adressierungsarten

Register. Da es normalerweise nur wenige interne Register gibt (üblicherweise acht), werden dafür nur wenige Bit benötigt. Beispielsweise legen drei Bit innerhalb eines Befehls eines von acht Registern fest. Solche Befehle können deshalb normalerweise mit 8 Bit kodiert werden. Dies ist ein wesentlicher Vorteil, da ein Acht-Bit-Befehl normalerweise schneller ausgeführt wird als jeder Zwei- oder Dreibytebefehl.

Ein Beispiel für einen impliziten Befehl ist:

LD A,B

der festlegt "übertrage den Inhalt von B nach A" (Lade A aus B).

Unmittelbare Adressierung

Unmittelbare Adressierung ist in Abb. 5.1 dargestellt. Auf den 8-Bit-Opcode folgt ein 8- oder 16-Bit-Literal (eine Konstante). Diese Art von Befehl braucht man zum Beispiel, wenn man einen 8-Bit-Wert in ein Acht-Bit-Register laden will. Da der Mikroprozessor 16-Bit-Register enthält, kann es auch nötig sein, 16-Bit-Literals zu laden. Ein Beispiel für einen unmittelbaren Befehl ist:

ADD A,0H

Das zweite Wort dieses Befehls enthält das Literal "0", das zum Akkumulator addiert wird.

Absolute Adressierung

Absolute Adressierung ist das Verfahren, Daten aus dem Speicher zu holen oder in den Speicher abzulegen, bei dem die 16-Bit-Adresse der Speicherstelle direkt auf den Opcode folgt. Absolute Adressierung setzt deshalb Dreibytebefehle voraus. Ein Beispiel für absolute Adressierung:

LD (1234H),A

Dieser Befehl legt fest, daß der Inhalt des Akkumulators bei der Adresse 1234H gespeichert wird.

Der Nachteil der absoluten Adressierung ist, daß sie Dreibytebefehle nötig macht. Um die Effizienz des Mikroprozessors zu verbessern, kann eine andere Adressierungsart vorhanden sein, die nur ein Wort für die Adresse belegt: die Kurzadressierung.

Kurzadressierung

Bei dieser Adressierungsart folgt auf den Opcode eine Acht-Bit-Adresse. Auch dies ist in Abb. 5.1 dargestellt. Der Vorteil dieser Methode ist, daß sie nur zwei Byte belegt, anstatt drei Byte bei der absoluten Adressierung. Der Nachteil ist, daß alle Adressen auf einen Bereich von 0 bis 255 oder aber von -128 bis +127 beschränkt sind. Wenn man den Bereich von 0 bis 255 benutzt (die "Seite 0"), nennt man die Kurzadressierung auch Seite-Null-Adressierung. Wenn eine Kurzadressierung verfügbar ist, nennt man die absolute Adressierung oft im Gegensatz dazu

erweiterte Adressierung. Der Bereich von -128 bis +127 wird oft bei Sprungbefehlen verwendet. Dies nennt man dann relative Adressierung.

Relative Adressierung

Normale Sprung- oder Verzweigungsbefehle benötigen acht Bit für den Opcode und zusätzlich die 16-Bit-Adresse, zu der das Programm springen soll. Genau wie im vorhergehenden Beispiel hat dies den Nachteil. daß drei Worte, d. h. drei Speicherzyklen benötigt werden. Um effizientere Sprünge zu erhalten, verwendet die relative Adressierung nur ein Zweibyteformat. Das erste Wort legt den Sprung fest, üblicherweise zusammen mit dem Test, den er enthält. Das zweite Wort ist die Distanz. Weil die Distanz positiv oder negativ sein kann, kann man mit einem relativen Sprung um 127 Plätze vorwärts (sieben Bit) oder um 128 Plätze zurückspringen (normalerweise +129 bis -126, da der Befehlszähler schon um 2 inkrementiert wurde). Da die meisten Schleifen kurz sind, kann man oft die relative Adressierung verwenden und erhält eine deutlich verbesserte Leistungsfähigkeit für solche kurzen Routinen. Wir haben z. B. schon den Befehl JR NC,dd verwendet, der einen "Sprung, falls kein Übertrag" festlegt, innerhalb eines Bereichs von 127 Stellen (genauer von +129 bis -126).

Die zwei Vorteile der relativen Adressierung sind verbesserte Leistungsfähigkeit (es werden weniger Bytes verwendet, deswegen höhere Geschwindigkeit) und Verschieblichkeit des Programms (Unabhängigkeit von absoluten Adressen).

Indizierte Adressierung

Die indizierte Adressierung ist eine Technik, die man verwendet, wenn man nacheinander auf Elemente eines Blocks oder einer Tabelle zugreifen will. Dies wird später in diesem Kapitel an Beispielen verdeutlicht. Das Prinzip der indizierten Adressierung ist es, daß der Befehl sowohl ein Indexregister als auch eine Adresse festlegt. Der Registerinhalt und die Adresse werden addiert und ergeben die endgültige Adresse. So könnte die Adresse der Anfang einer Tabelle im Speicher sein. Das Indexregister würde dann dazu benutzt, auf alle Elemente einer Tabelle nacheinander auf effiziente Art zuzugreifen. (Dazu muß es Inkrementier-/Dekrementierbefehle für das Indexregister geben.) Praktisch bestehen oft Einschränkungen, die die Größe des Indexregisters oder die des Adreß- oder Distanzfeldes beschränken können.

Direkte und indirekte Indizierung

Man kann zwei Arten der Indizierung unterscheiden. Die direkte Indizierung ist die normale Art der Indizierung, bei der sich die endgültige Adresse ergibt als Summe von Distanz bzw. Adresse und dem Inhalt des Indexregisters. In Abb. 5.2 ist dies gezeigt, wobei ein 8 Bit langes Distanzfeld und ein 16-Bit-Indexregister angenommen sind.

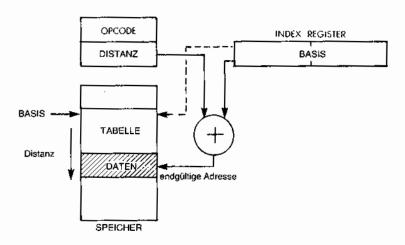


Abb. 5.2: Adressierung (direkt indiziert)

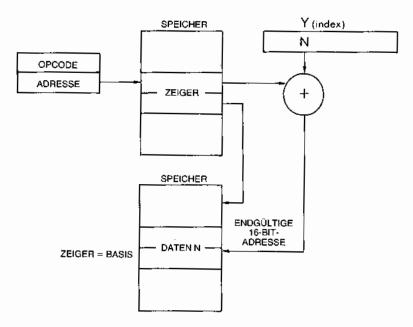


Abb. 5.3: Indirekte indizierte Adressierung

Indirekte Indizierung behandelt den Inhalt des Distanzfeldes als Adresse der wirklichen Distanz, nicht selbst schon als Distanz. Dies ist in Abb. 5.3 dargestellt. Bei der indirekten Indizierung ergibt sich die endgültige Adresse als Summe aus dem Inhalt des Indexregisters und dem Inhalt der Speicherzelle, auf die das Distanzfeld zeigt. Diese Möglichkeit bietet in der Tat eine Kombination von indirekter und indizierter Adressierung. Wir haben aber die indirekte Adressierung noch gar nicht definiert. Das wollen wir gleich nachholen.

Indirekte Adressierung

Wir haben schon gesehen, daß zwei Unterprogramme eventuell große Datenmengen austauschen wollen, die im Speicher stehen. Allgemeiner mögen zwei Programme oder zwei Unterprogramme auf einen gemeinsamen Block von Information zugreifen müssen. Wenn man das Programm allgemein halten will, kann man einen solchen Block nicht an einer festen Adresse speichern. Zum Beispiel mag sich die Größe des Blocks dynamisch vergrößern oder verkleinern, und der Block könnte abhängig von der Größe in verschiedenen Speicherbereichen stehen müssen. Es wäre deshalb nicht durchführbar, wenn man auf diesen Block mit absoluter Adressierung zugreifen wollte, ohne das Programm jedes Mal zu ändern.

Die Lösung dieses Problems besteht darin, daß man die Anfangsadresse des Blocks bei einer festen Speicheradresse ablegt. Dies ist analog zu der Situation, wenn verschiedene Leute in ein Haus hineinkommen müssen, aber nur ein Schlüssel existiert. Es wird vereinbart, den Schlüssel unter der Fußmatte zu verstecken. Jeder weiß dann, wo er nachschauen muß (unter der Fußmatte), um den Hausschlüssel zu finden (oder vielleicht

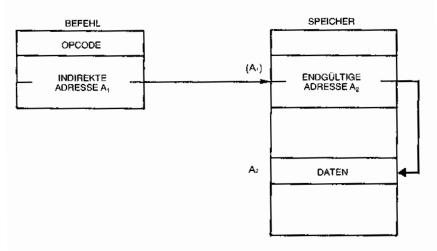


Abb. 5.4: Indirekte Adressierung

die Adresse des vorgesehenen Treffpunkts, um eine strengere Analogie zu bilden). Die indirekte Adressierung benutzt deshalb einen Opcode (16 Bit beim Z80), auf den eine 16-Bit-Adresse folgt. Diese Adresse dient dazu, ein Wort aus dem Speicher zu erhalten. Üblicherweise wird dies ein 16-Bit-Wort im Speicher sein (zwei Byte in unserem Fall), da es eine Adresse ist. Dies ist in Abb. 5.4 dargestellt. Die beiden Bytes an der festgelegten Adresse A1 enthalten "A2". A2 wird dann als die tatsächliche Adresse der Daten interpretiert, auf die man zugreifen will.

Indirekte Adressierung ist unter anderem immer dann nützlich, wenn man Zeiger verwendet. Verschiedene Teile des Programms können dann diese Zeiger verwenden, um auf ein Wort oder einen Datenblock bequem und elegant zuzugreifen. Die endgültige Adresse kann man auch erhalten, wenn innerhalb des Befehls auf ein Register verwiesen wird, in dem diese Adresse steht. Dies nennt man dann "Register indirekt".

Kombination der Adressierungsarten

Die obigen Adressierungsarten können auch kombiniert werden. Zum Beispiel sollte es in einem vollständigen allgemeinen Adressierungsschema möglich sein, mehrere indirekte Ebenen zu verwenden. Die Adresse A2 könnte wieder als indirekte Adresse verwendet werden, usw.

Indizierte Adressierung kann auch mit indirekter Adressierung kombiniert sein. Dies erlaubt einen effizienten Zugriff auf das Wort in einem Block von Daten, vorausgesetzt man weiß, wo der Zeiger auf die Anfangsadresse steht (siehe Abb. 5.2).

Jetzt haben wir uns mit allen Adressierungsarten vertraut gemacht, die üblicherweise in einem System zur Verfügung stehen können. Die meisten Mikroprozessorsysteme verfügen nicht über alle möglichen Adressierungsverfahren, sondern nur über einen kleinen Teil davon, da die Komplexität der MPU, die in einem einzigen Baustein untergebracht sein muß, begrenzt ist. Der Z80 verfügt über einen guten Teil der Möglichkeiten. Wir wollen sie jetzt untersuchen.

Die Adressierungsarten des Z80

Implizierte Adressierung (Z80)

Die implizierte Adressierung wird im wesentlichen von den Einbytebefehlen benutzt, die mit internen Registern arbeiten. Wenn implizierte Befehle nur mit internen Registern arbeiten, benötigen sie nur einen Zyklus zur Ausführung.

Beispiele für Befehle, die implizite (oder "Register-") Adressierung verwenden, sind: LD r,r'; ADD A,r; ADC A,s; SUB s; SBC A,s; AND s; OR s; XOR s; CP s; INC r.

Zilog unterscheidet noch zwischen "Registeradressierung" und "implizierter Adressierung". Implizierte Adressierung meint dann nach dieser Definition nur Befehle, die kein bestimmtes Feld enthalten, das auf ein internes Register zeigt. Damit wird eine weitere Adressierungsart eingeführt. Dies ist ein Grund, warum die Anzahl der Adressierungsarten kein geeignetes Kriterium ist, wenn man die Fähigkeiten eines Mikroprozessors charakterisieren will.

Unmittelbare Adressierung (Z80)

Da der Z80 sowohl Register einfacher Länge (acht Bit) als auch doppelter Länge (16 Bit) hat, verfügt er über zwei Arten von unmittelbarer Adressierung, mit 8-Bit- und mit 16-Bit-Literals. Die Befehle sind dann entweder ein Byte oder zwei Byte lang. Das zweite (und manchmal das dritte) Byte enthalten die Konstante oder das Literal, die in ein Register geladen oder in einer Operation verwendet werden soll. Ausnahmen sind LD IX und LD IY, die 16-Bit-Opcodes haben.

Beispiele für Befehle, die unmittelbar adressieren, sind:

LD r,n (zwei Byte), LD dd,nn (drei Byte) und ADD A,n (zwei Byte).

Wenn das Literal zwei Byte lang ist, nennt man die Adressierung beim Z80 "unmittelbar erweitert".

Absolute oder "erweiterte" Adressierung (Z80)

Laut Definition belegt die absolute Adressierung drei Byte. Das erste Byte ist der Opcode und die nächsten beiden Bytes sind die Adresse, die die Speicherzelle festlegen (die "absolute" Adresse).

Im Gegensatz zur "Kurzadressierung" (Achtbitadresse), nennt man dieses Verfahren auch "erweiterte Adressierung".

Beispiele für Befehle mit erweiterter Adressierung sind:

LD HL,(nn) und JP nn

wobei nn die 16-Bit-Adresse darstellt und (nn) den Inhalt dieser Adresse.

Modifizierte Seite-Null-Adressierung

Eine Seite-Null-Adressierung ist auf dem Z80 nicht vorhanden, außer für den RST-Befehl. Die spezielle Adressierungsart, die dieser Befehl verwendet, wird "modifizierte Seite-Null-Adressierung" genannt.

Der RST-Befehl enthält an den Stellen b b b ein 3-Bit-Feld, das auf eine von drei Adressen in der Seite Null zeigt. Die effektive Adresse, die in PC geladen wird, ist b b 000. Da dieser Befehl nur ein einziges Byte belegt, wird er schnell ausgeführt und kann leicht hardwaremäßig erzeugt werden. Er wurde allgemein verwendet, um verschiedene Interrupts (maximal 8) zu bearbeiten. Sein Nachteil ist, daß entweder das be-

arbeitende Programm auf eine Länge von 16 Bit begrenzt ist, oder daß ein Sprung nötig ist, der den Geschwindigkeitsvorteil zunichte macht. Dies liegt daran, daß die 8 Adressen nur jeweils 16 Bit auseinander liegen.

Dieser Befehl wird jetzt weniger oft verwendet, seit Prioritäts-Interrupt-Controller Bausteine (PICs) auf dem Markt sind (siehe C201 und C207 für eine genauere Beschreibung von PICs). Ein PIC gibt als Antwort auf einen Interrupt Acknowledge automatisch einen drei Byte langen absoluten Sprung aus.

Dieser Befehl wird jetzt allgemein als Restart verwendet.

Relative Adressierung (Z80)

Relative Adressierung belegt definitionsgemäß zwei Byte. Das erste ist der Opcode, und das zweite gibt die Distanz mit Vorzeichen an.

Um diese Adressierungsart von einem absoluten Sprung zu unterscheiden, wird sie "JR" abgekürzt.

Bezüglich der Ausführungszeit ist dieser Befehl mit Vorsicht zu behandeln. Immer wenn ein Test fehlschlägt, d. h. wenn keine Verzweigung eintritt, dauert dieser Befehl nur sieben Taktzyklen lang. Der Grund dafür ist, daß der Befehlszähler schon auf den Befehl zeigt, der als nächster ausgeführt werden soll.

Trifft jedoch der Test zu, d. h. wenn der Sprung ausgeführt wird, benötigt der Befehl 12 "T-Zyklen". Eine neue effektive Adresse muß berechnet und in den Befehlszähler geladen werden. Wenn man nicht weiß, ob der Sprung ausgeführt wird oder nicht, muß man die Tatsache berücksichtigen, daß der Sprung entweder 12 T-Zyklen (Bedingung erfüllt) oder 7 T-Zyklen dauern kann (Bedingung nicht erfüllt).

Wenn man eine Schleife mit einem relativen Sprung (JR) entwirft, dann wird diese schneller ausgeführt, wenn man eine Bedingung testet, die normalerweise nicht erfüllt ist, z. B. die Bedingung nicht-Null für den Zähler.

Verwendet man JRs außerhalb von Schleifen und ist die getestete Bedingung unbekannt, nimmt man für die Dauer von JR oft einen Durchschnittswert an.

Dieses Problem der Ausführungszeit tritt bei dem unbedingten Sprung JR e nicht auf. Dabei wird keine Bedingung getestet, und der Befehl dauert immer 12 T-Zyklen.

Indizierte Adressierung (Z80)

Diese Adressierungsart existierte beim 8080 nicht, und sie wurde beim Z80 hinzugefügt (wie auch die beiden Indexregister). Dabei wurde es nötig, dem Opcode ein weiteres Byte hinzuzufügen, so daß daraus beim Z80 ein 16-Bit-Opcode wurde (LDIR ist ein anderes Beispiel für einen 16-Bit-Opcode). Die Struktur der indizierten Befehle ist in Abb. 5.5 gezeigt.

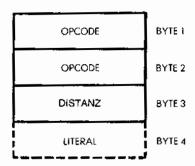


Abb. 5.5: Die indizierte Adressierung hat einen Zweibyte-Opcode

Folgende Befehle erlauben eine indizierte Adressierung: LD, ADD, DEC, RES, INC, RLC, BIT, SET.

Dieses Adressierungsverfahren wird in Programmen, die mit Blöcken von Daten, Tabellen oder Listen arbeiten, ausgiebig verwendet werden.

Indirekte Adressierung (Z80)

Der Z80 besitzt eine beschränkte Möglichkeit, indirekt zu adressieren, genannt "Register-indirekte-Adressierung". Dabei kann jedes der 16-Bit-Registerpaare BC, DE und HL als Speicheradresse verwendet werden.

Immer wenn sie auf 16-Bit-Daten zeigen, zeigen sie auf den unteren Teil. Der obere Teil liegt in der nächsten (höheren) Adresse.

Kombinationen der Adressierungsarten

Im wesentlichen gibt es keine Kombinationen von Adressierungsarten, mit der Ausnahme, daß Befehle, die zwei Operanden ansprechen, für beide Operanden verschiedene Adressierungsarten verwenden können. So kann ein Ladebefehl oder ein arithmetischer Befehl auf den einen Operanden unmittelbar zugreifen und auf den anderen über eine indizierte Adresse.

Auch kann der Mechanismus der Bitadressierung auf das acht Bit lange Byte in drei verschiedenen Adressierungsarten zugreifen, wie im nächsten Abschnitt beschrieben.

Die spezifischen Adressierungsverfahren, die bei jedem Befehl verfügbar sind, sind in den Tabellen im vorhergehenden Kapitel angegeben.

Bitadressierung

Die Bitadressierung bezeichnet man allgemein nicht als Adressierungsverfahren, wenn die Adressierung als Zugriff auf ein *Byte* definiert ist. Ob sie jedoch als Adressierungsart oder als Gruppe von Befehlen defi-

niert ist, es ist in jedem Fall eine nützliche Möglichkeit. Da sie in der Bezeichnungsweise von Zilog als Adressierungsverfahren definiert ist, werden wir sie hier beschreiben. Sie ist für den Z80 spezifisch und war beim 8080 nicht verfügbar.

Bitadressierung bezieht sich auf das Verfahren, auf einzelne Bits zuzugreifen. Der Z80 besitzt spezielle Befehle, um festgelegte Bits in einer Speicherzelle oder in einem Register zu setzen, zurückzusetzen und zu testen. Das festgelegte Byte kann mit einem der folgenden Verfahren adressiert werden: Register, Register-indirekt und indiziert. Innerhalb des Opcodes werden drei Bits verwendet, um eines von acht Bit auszuwählen.

Der Gebrauch der Z80-Adressierungsarten

Lange und kurze Adressierung

In verschiedenen Programmen, die wir entwickelt haben, haben wir schon relative Sprünge benutzt. Sie erklären sich selbst. Eine interessante Frage ist: Was kann man tun, wenn der mit dem relativen Sprung erreichbare Bereich für unsere Zwecke nicht ausreicht. Eine einfache Lösung ist es, einen sogenannten langen Sprung zu verwenden. Dies heißt einfach, auf eine Adresse zu springen, in der ein absoluter oder "langer" Sprung steht.

JR NC,\$+3 Sprung auf aktuelle Adresse +3, wenn C gelöscht JP FAR Springe sonst zu FAR (nächster Befehl)

Dieses zweizeilige Programm bewirkt einen Sprung nach FAR, wenn das Carry (Übertragsbit) gesetzt ist. Dies löst unser Problem mit dem langen Sprung. Deshalb wollen wir uns jetzt den komplizierteren Adressierungsverfahren zuwenden, d. h. der indizierten und der indirekten Adressierung.

Die Anwendung der Indizierung für den sequentiellen Zugriff auf einen Block

Indizierung wird hauptsächlich angewendet, um auf aufeinanderfolgende Adressen in einer Tabelle nacheinander zuzugreifen. Eine Einschränkung ist, daß die maximale Länge kleiner als 256 sein muß, so daß die Distanz in ein Acht-Bit-Register paßt.

Wir haben gelernt, wie man auf ein Zeichen testet. Jetzt wollen wir eine Tabelle von 100 Elementen auf das Zeichen "*" durchsuchen. Die Anfangsadresse dieser Tabelle wird BASE genannt. Die Tabelle hat nur

100 Elemente. Das Programm ist unten angegeben (siehe das Flußdiagramm in Abb. 5.6):

SEARCH LD IX,BASE
LD A,,*"
LD B,COUNT
TEST CP (IX)
JR Z,FOUND
INC IX
DJNZ TEST
NOTFND ...

Ein verbessertes Programm wird unten im Abschnitt über den Blocktransfer vorgestellt.

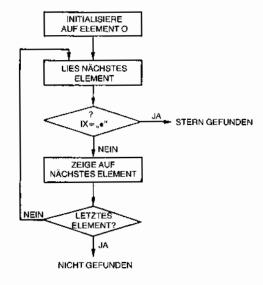


Abb. 5.6: Flußdiagramm zur Zeichensuche

Ein Blocktransfer-Programm für weniger als 256 Elemente

Wir wollen die Anzahl der Elemente in dem Block, der kopiert werden soll, COUNT nennen. Es wird angenommen, daß diese Anzahl kleiner als 256 ist. FROM ist die Anfangsadresse des Blocks. TO ist die Anfangsadresse des Speicherbereichs, in den der Block kopiert werden soll. Der Algorithmus ist ganz einfach: Wir übertragen jeweils ein Wort. Um zu wissen, welches Wort wir übertragen haben, speichern wir seine Posi-

tion im Zähler C. Das Programm ist unten angegeben:

BLKMOV LD IX.FROM LD IY,TO LD C.COUNT NEXT LD $A_{\bullet}(IX)$ Hole Wort LD (IY),A INC ľΧ INC ΙY DEC C JR NZ,NEXT

Wir wollen es überprüfen:

BLKMOV LD IX,FROM LD IY,TO LD C,COUNT

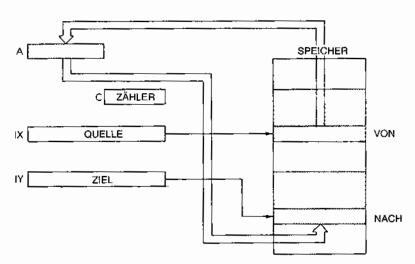


Abb. 5.7: Blocktransfer – Initialisierung der Register

Diese drei Befehle initialisieren die Register IX, IY und C, wie in Abb. 5.7 veranschaulicht. Das Indexregister IX dient als Zeiger auf die Quelle und wird regelmäßig inkrementiert. Das Register C wird mit der Anzahl der Elemente geladen, die kopiert werden sollen (begrenzt auf 256, da dies ein Acht-Bit-Register ist), und wird regelmäßig dekrementiert. Sobald C auf Null dekrementiert wurde, sind alle Elemente verschoben. Die beiden nächsten Befehle:

laden den Inhalt der Speicherzelle, auf die IX zeigt, in den Akkumulator

und übertragen ihn dann an die Stelle des Speichers, auf die IY zeigt. Mit anderen Worten, diese beiden Befehle übertragen ein Wort aus dem Quellenblock in den Zielblock. Dann werden die beiden Indexregister inkrementiert:

INC IX

und das Zählerregister wird dekrementiert:

DEC C

Schließlich kehrt die Programmschleife zur Marke NEXT zurück, solange der Zähler nicht Null ist:

JR NZ,NEXT

Dies ist ein Beispiel für eine mögliche Verwendung der Indexregister. Wir wollen es jedoch mit einem gleichwertigen Programm vergleichen, das für einen anderen Mikroprozessor geschrieben wurde, für den 6502 von MOS Technology. Er besitzt auch die Möglichkeit zur Indizierung, verwendet aber andere Vereinbarungen (d. h. er hat andere Einschränkungen der allgemeinen Indexmöglichkeiten). Das Programm ist unten angegeben:

NEXT LDX NUMBER LDA FROM,X STA TO,X DEX

BNE NEXT

Ohne auf Einzelheiten des obigen Programms einzugehen, wird der Leser sofort bemerken, um wieviel kürzer es ist als das vorhergehende. Dies liegt daran, daß das Indexregister X als variable Distanz verwendet wird, während FROM und TO feste Quell- und Zieladressen sind.

Dieses Beispiel sollte herausstellen, daß Indizierung nicht notwendigerweise zu effizientem Kode führt, obwohl dies in der Theorie ein leistungsfähiges Verfahren ist. Dies liegt daran, daß die verschiedenen Mikroprozessoren die Adressierung unterschiedlich einschränken. Wirkliche universelle Indizierung setzt die Möglichkeit eines 16-Bit langen Distanz- oder Adreßfelds genauso voraus wie ein 16-Bit-Indexregister.

Es sollte jedoch angemerkt werden, daß dieses spezielle Problem beim Z80 mit vier Spezialbefehlen gelöst wird. Ein universeller Blocktransfer wird jetzt beschrieben, der mit nur vier Befehlen aufgebaut werden kann. Um jedoch dem Z80 gerecht zu werden, wollen wir dem Leser zusätzliche Aufgaben vorschlagen:

Aufgabe 5.1: Schreiben Sie ein Blocktransfer-Programm für den Z80 im Stil des obigen 6502-Programms, d. h. nehmen Sie an, daß das Indexregister eine Distanz enthält. Nehmen Sie an, daß Quelle und Ziel in der Seite Null liegen, d. h. im Adreßbereich 0 bis 256. Natürlich sei vorausgesetzt, daß die Anzahl der Elemente in jedem Block so klein ist, daß sie sich nicht überlappen.

Aufgabe 5.2: Nehmen Sie jetzt an, daß Quelle- und Zielblock irgendwo im Speicher liegen, allerdings in derselben Seite. Schreiben Sie das obige Programm für diesen Fall um.

Allgemeines Blocktransfer-Programm (mehr als 256 Elemente)

Abbildung 5.8 zeigt die Registerzuordnung und die Speicherbelegung. Das Programm ist unten angegeben:

LD BC,COUNT Anzahl Bytes LD DE,TO Zieladresse LD HL,FROM Quelladresse

LDIR Übertrage alle Bytes

Belegter Speicher: 11 Byte Zeitbedarf: 21 Taktzyklen/Byte

Der erste Befehl ist:

LD BC.COUNT

Er lädt die Anzahl der Elemente, die übertragen werden sollen (eine 16-Bit-Zahl), ins Registerpaar BC. Die nächsten beiden Befehle initialisieren das Registerpaar DE und entsprechend das Registerpaar HL:

LD DE,TO LD HL,FROM

Der vierte Befehl schließlich:

LDIR

führt die vollständige Übertragung durch.

LDIR ist ein automatischer Blocktransferbefehl. Seine Leistungsfähigkeit sollte nach diesem Beispiel klar sein. LDIR führt folgenden Ablauf aus: Der Inhalt der Speicherstelle, auf die HL zeigt, wird in die Speicherzelle übertragen, auf die DE zeigt: (DE) — (HL). Danach wird DE inkre-

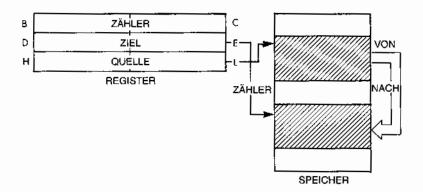


Abb. 5.8: Speicherbelegung beim Blocktransfer

mentiert: DE=DE+1 und HL inkrementiert: HL=HL+1. Danach wird BC dekrementiert: BC=BC-1. Wird BC dabei 0, dann ist der Befehl beendet. Ansonsten wird der Befehl wiederholt.

Der Nutzen und die Leistung des Befehls LDIR sollte an dieser Stelle ohne weitere Kommentare klar sein. Auf ähnliche Art kann unsere Suche nach dem Zeichen "Stern" durch Verwendung eines automatischen Befehls, des Spezialbefehls CPIR beim Z80, verbessert werden. Das entsprechende Programm erscheint unten:

LDA ,'*'

LD BC,COUNT

LD HL,STRING

CPIR

JR Z,STAR

NOSTAR ...

Der erste Befehl lädt den Kode des Zeichens Stern in den Akkumulator. Dann wird das Registerpaar BC als Zähler für die Zahl der Worte initialisiert, die in dem Block durchsucht werden sollen:

LD BC.COUNT

Das Registerpaar H und L wird auf die Anfangsadresse des Blocks gesetzt, der durchsucht werden soll (STRING). Dann wird der automatische Befehl ausgeführt:

LD HL,STRING CPIR

Der Befehl CPIR ist ein automatischer Vergleichsbefehl. Der Inhalt der Speicherstelle, deren Adresse in H und L steht, wird mit dem Inhalt des Akkumulators verglichen. Ergibt sich Gleichheit, dann wird das Z-Flag auf 1 gesetzt. Dann wird das Registerpaar HL inkrementiert und BC dekrementiert. Der Befehl wird solange wiederholt, bis entweder das Registerpaar BC den Wert 0 erreicht, oder bis sich eine Gleichheit ergibt. Deshalb muß man nach Ausführung des Befehls das Z-Flag testen, um festzustellen, ob der Vergleich erfolgreich war (in Extremfällen kann man ja 64 k durchsucht haben, ohne daß das Zeichen auftrat). Dies ist die Aufgabe des letzten Befehls:

JR Z,STAR

Aufgabe 5.3: Schreiben Sie das obig Programm so um, daß die Suche in umgekehrter Reihenfolge abläuft. (Hinweis: Verwenden Sie den Befehl CPDR.)

Wir wollen jetzt ein Programm entwickeln, das die Eigenschaften der beiden vorangehenden Programme kombiniert. Wir wollen einen Blocktransfer von der Stelle FROM zur Stelle TO ausführen, der automatisch dann gestoppt wird, wenn das Zeichen "Stern" gefunden wird. Das Programm ist unten angegeben:

LD BC,COUNT LD HL,FROM LD DE,TO LD A,'*' Zeichen "Ende" TEST CP (HL) Vergleich mit Speicher Z,END Ende bei Gleichheit IR . LDI Übertrage Zeichen und ändere Zeiger

JR PO,TEST Mache weiter, bis Test beendet P/V gibt an, ob BC=0

Die ersten drei Befehle des Programms führen die übliche Initialisierung durch. Sie setzen das Zählerregister und die Zeiger auf Quelle und Ziel:

> LD BC,COUNT LD HL,FROM LD DE,TO

Der Stern wird "wie üblich" im Akkumulator abgelegt, so daß er mit dem Zeichen verglichen werden kann, das aus dem Speicher gelesen wird.

LD A,'*'

Genau das tut der nächste Befehl:

TEST CP (HL)

Ob der Vergleich Gleichheit ergab, stellt man fest, indem man das Z-Flag testet. Bei Gleichheit ist das Z-Flag gesetzt. Der nächste Befehl führt das durch:

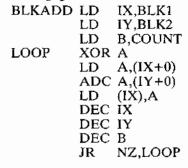
> JR Z,END

Der nächste Befehl führt einen automatischen Transfer aus:

LDI

Dieser Befehl überträgt das Zeichen und ändert die Zeiger und den Zähler in einem einzigen Befehl. LDI überträgt den Inhalt der Speicherstelle, auf die H und L zeigen, in die Speicherstelle, auf die D und E zeigen: (DE)=(HL). DE und HL werden inkrementiert:

> DE = DE + 1HL = HL + 1


Schließlich wird BC dekrementiert: BC wird zu BC-1. Eine Besonderheit dieses Befehls ist es, daß das Flag P/V zurückgesetzt wird, wenn BC auf "0" dekrementiert wird, und sonst gesetzt wird. Dieses wird im letzten Befehl ausdrücklich getestet, um festzustellen, ob das Programm beendet werden soil:

> JR PO,TEST

Addition zweier Blöcke

Hier werden wir ein Programm entwickeln, das zwei Blöcke element-

weise addiert. Die Blöcke sollen bei den Adressen BLK1 und BLK2 starten und die gleiche Anzahl COUNT von Elementen haben. Das Programm ist unten angegeben:

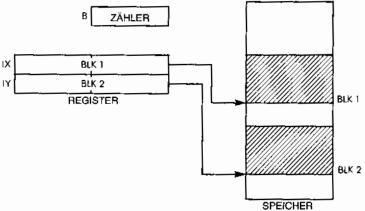


Abb. 5.9: Addition zweier Blöcke: BLK1=BLK1+BLK2

In Abb. 5.9 ist die Speicherbelegung angegeben. Das Programm ist einfach. Die Anzahl der Elemente, die addiert werden sollen, wird in das Zählerregister B geladen, und die beiden Indexregister IX und IY werden auf ihre Startwerte BLK1 und BLK2 initialisiert:

Dann wird das Übertragsbit für die erste Addition gelöscht:

Das erste Element wird in den Akkumulator geladen:

LOOP LD
$$A_{,}(IX+0)$$

Dann wird das entsprechende Element aus BLK2 dazu addiert:

ADC A,
$$(IY+0)$$

Schließlich wird das Ergebnis in dem Element in BLK1 gespeichert:

LD (IX),A

Die beiden Zeiger IX und IY werden dekrementiert:

DEC IX

und ebenso das Zählerregister B:

DEC B

Die Additionsschleife wird wiederholt ausgeführt, solange das Zählerregister nicht Null ist:

JR NZ,LOOP

Aufgabe 5.4: Können Sie das obige Programm verwenden, um eine 32-Bit-Addition auszuführen?

Aufgabe 5.5: Können Sie das obige Programm verwenden, um eine 64-Bit-Addition auszuführen?

Aufgabe 5.6: Ändern Sie das obige Programm so, daß das Ergebnis in einem getrennten Block gespeichert wird, der bei der Adresse BLK3 beginnt.

Aufgabe 5.7: Ändern Sie das obige Programm so, daß statt der Addition eine Subtraktion ausgeführt wird.

Aufgabe 5.8: Ändern Sie das obige Programm so, daß die Adressen BLK1 und BLK2 am oberen Ende eines Blocks (bei der tieferen Adresse) und nicht am unteren Ende stehen (siehe Abb. 5.10).

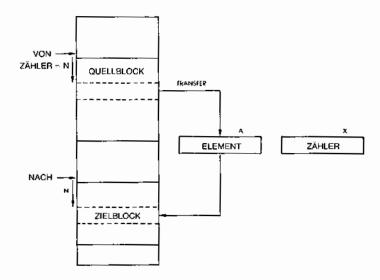


Abb. 5.10: Speicherorganisation für den Blocktransfer

Zusammenfassung

In diesem Kapitel wurde eine vollständige Beschreibung der Adressierungstechniken dargestellt. Es wurde gezeigt, daß der Z80 viele verschiedene Verfahren bietet, und die speziellen Adressierungsarten des Z80 wurden untersucht. Schließlich wurden mehrere Anwendungsprogramme vorgestellt, um den Wert der verschiedenen Adressierungsarten zu zeigen. Eine effiziente Programmierung des Z80 setzt ein Verständnis dieser Techniken voraus. Sie werden bei den Programmen, die in diesem Buch noch folgen, angewendet werden.

Aufgaben:

Aufgabe 5.9: Schreiben Sie ein Programm zur Addition der ersten 10 Byte einer Tabelle, die bei der Adresse "BASE" steht. Das Ergebnis soll 16 Bit haben. (So wird eine Prüfsumme berechnet.)

Aufgabe 5.10: Können Sie das gleiche Problem ohne Indizierung lösen? Aufgabe 5.11: Kehren Sie die Reihenfolge der 10 Byte in dieser Tabelle um. Speichern Sie das Ergebnis bei der Adresse "REVER".

Aufgabe 5.12: Durchsuchen Sie die Tabelle nach dem größten Element. Speichern Sie es bei der Adresse "LARGE".

Aufgabe 5.13: Addieren Sie die entsprechenden Elemente der drei Tabellen mit den Anfangsadressen BASE1, BASE2 und BASE3. Die Länge dieser Adressen steht bei der Adresse "LENGTH" in Seite Null.

Ein-/Ausgabe-Techniken

Einführung

Wir haben bis jetzt gelernt, wie man Information zwischen dem Speicher und den verschiedenen Registern des Prozessors austauschen kann. Wir haben gelernt, die Register zu verwalten und die vielen Befehle anzuwenden, um Daten zu bearbeiten. Jetzt müssen wir lernen, mit der Außenwelt in Verbindung zu treten. Dies nennt man Eingabe/Ausgabe.

Eingabe bezieht sich auf die Aufnahme von Daten von externen Peripheriegeräten (Tastatur, Platte oder ein physikalischer Sensor). Ausgabe bedeutet die Übertragung von Daten vom Mikroprozessor oder vom Speicher zu externen Geräten wie Drucker, Bildschirm, Platte oder Sensor und Relais.

Wir wollen in zwei Schritten vorgehen. Zuerst wollen wir lernen, die Ein-/Ausgabeoperationen durchzuführen, die man für gebräuchliche Geräte braucht. Zweitens wollen wir lernen, verschiedene Ein-/Ausgabegeräte gleichzeitig zu verwalten, d. h. sie wie eine Liste zu bearbeiten. Im zweiten Teil werden u. a. die Techniken Abfrage (englisch: polling) und Unterbrechung (englisch: interrupt) vorgestellt.

Eingabe und Ausgabe

In diesem Abschnitt wollen wir lernen, einfache Signale wie Impulse zu erkennen oder zu erzeugen. Dann werden wir Techniken studieren, die einen korrekten zeitlichen Ablauf ausführen oder messen. Dann sind wir in der Lage, kompliziertere Ein-/Ausgabe-Verfahren zu verstehen, wie schnelle serielle und parallele Übertragung.

Die Ein-/Ausgabe-Befehle des Z80

Der Z80 ist mit einem speziellen Satz von Ein-/Ausgabe-Befehlen ausgestattet. Die meisten Mikroprozessoren besitzen keine speziellen Ein-/Ausgabe-Befehle, sondern verwenden die allgemeinen Befehle auch für Ein-/Ausgabegeräte. Wie der 8080 verfügt auch der Z80 über grundlegende Befehle zur Eingabe und Ausgabe. Der Z80 verfügt aber außer-

dem über zusätzliche Ein-/Ausgabe-Befehle. Diese werden hier genauer beschrieben, um das Verständnis der Programme zu erleichtern, die in diesem Kapitel im weiteren vorgestellt werden.

Die grundlegenden Befehle zur Ein-/Ausgabe sind: IN A,(n) und OUT (n), A. Der Z80 hat diese beiden Befehle vom 8080 geerbt. Sie übertragen ein Byte zwischen dem Akkumulator und dem ausgewählten Port (Ein-/Ausgabekanal), d. h. sie führen eine Lese- oder Schreiboperation aus. Die Adressierung funktioniert so, daß die Adresse "n" des Ein-/ Ausgabegerätes auf der unteren Hälfte des Adreßbusses (An bis A7) erscheint, der Inhalt des Akkumulators auf der oberen (A_8 bis A_{15}). Falls ein Ein-/Ausgabegerät auch irgendwelche der Adreßleitungen As bis A₁₅ dekodiert und mehr als 256 Geräte adressiert werden, kann es nötig sein, den Inhalt des Akkumulators ausdrücklich auf Null zu setzen. Üblich ist dies aber nicht, d. h. in der Regel dekodieren Ein-/Ausgabegeräte nur die untere Hälfte des Adreßbusses. Auch in den folgenden Beispielen wollen wir annehmen, daß höchstens 256 Ein-/Ausgabegeräte vorhanden sind, und daß diese nicht mit den Adreßleitungen A₈ bis A₁₅ verbunden sind, so daß der Inhalt des Akkumulators nichts mit der Adressierung zu tun hat und nicht z. B. vor der Verwendung des Befehls IN auf Null gesetzt werden muß.

Bei dem speziellen Eingabebefehl IN r, (C) wird der Inhalt des Registers C als Adresse des Ein-/Ausgabegerätes benutzt. Wird dieser Befehl verwendet, dann stellt das Register B automatisch die obere Hälfte des Adreßbusses (A₈ bis A₁₅). Das festgelegte Register r wird aus der Adresse in C geladen. "r" kann irgendeines der Universalregister sein.

Erzeugung eines Signals

Im einfachsten Fall wird ein Ausgabegerät vom Computer ein- oder ausgeschaltet. Um den Zustand des Ausgabegerätes zu ändern, muß der Programmierer nur eine logische Größe von "0" auf "1" oder von "1" auf "0" verändern. Wir wollen annehmen, daß ein externes Relais an Bit "0" eines "OUT1" genannten Registers angeschlossen ist. Um es einzuschalten, schreiben wir einfach eine "1" in die entsprechende Stelle des Registers. Wir nehmen hier an, daß OUT1 die Adresse dieses Ausgaberegisters in unserem System darstellt. Das folgende Programm schaltet das Relais ein:

TURNON LD A,00000001B Lade Zeichen nach A OUT (OUT1),A Ausgabe an Gerät Hierbei ist OUT der Ausgabebefehl.

Wir haben angenommen, daß der Zustand der anderen sieben Bit des Registers OUT1 keine Bedeutung hat. Das ist jedoch oft nicht der Fall. An diese Bits könnten andere Relais angeschlossen sein. Deshalb wollen wir dieses einfache Programm verbessern. Wir wollen das Relais einschalten, ohne den Zustand irgendeines anderen Bits in dem Register zu verändern. Wir wollen annehmen, daß der Inhalt dieses Registers gelesen und eingeschrieben werden kann. Unser verbessertes Programm heißt dann:

TURNON IN A,(OUT1) Lies Inhalt von OUT1
OR 00000001B Setze Bit "0" in A auf "1"
OUT (OUT1),A

Das Programm liest zuerst den Inhalt der Adresse OUT1 und führt dann damit ein inklusives OR aus. Dies verändert nur das Bit an der Stelle 0 auf "1" und läßt den Rest des Registers unverändert. (Siehe Kapitel 4 für weitere Einzelheiten der Operation OR.) Dies ist in Abb. 6.1 veranschaulicht.

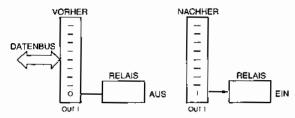
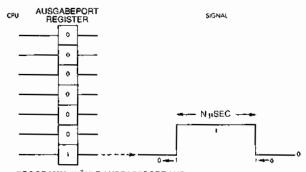



Abb. 6.1: Ein Relais einschalten

Impulse

Ein Impuls wird genau auf die gleiche Art erzeugt, wie der Pegel oben. Zuerst wird ein Bit eines Ausgangs eingeschaltet und dann wieder ausgeschaltet. Das Ergebnis ist ein Impuls. Dies ist in Abb. 6.2 veranschaulicht. Jetzt muß man jedoch noch ein zusätzliches Problem lösen: Man muß einen Impuls mit der richtigen zeitlichen Länge erzeugen. Dazu wollen wir überlegen, wie man eine berechnete Verzögerung erzeugt.

PROGRAMM: WÄHLE AUSGABEPORT AUS LADE DAS REGISTER DES AUSGABEPORTS MIT DEM BITMUSTER WARTE (SCHLEIFE FÜR N "SEC) LADE AUSGABEPORT MIT NULL RÜCKSPRUNG

Abb. 6.2: Ein programmierter Impuls

Erzeugung und Messung einer Verzögerung

Eine Verzögerung kann man softwaremäßig oder hardwaremäßig erzeugen. Hier wollen wir untersuchen, wie man sie mit einem Programm erzeugt, und später wollen wir zeigen, wie man sie mit einem Hardwarezähler ausführt, den man programmierbaren Zeitgeber (programmable interval timer, PIT) nennt.

Eine programmierte Verzögerung erhält man durch Zählen. Ein Zählerregister wird mit einem Wert geladen und dann dekrementiert. Das Programm läuft in einer Schleife ab und dekrementiert das Zählerregister so lange, bis der Wert "0" erreicht wird. Die gewünschte Verzögerung ergibt sich durch die Zeit, die dieser Prozeß beansprucht. Als Beispiel wollen wir eine Verzögerung von 67 Taktzyklen erzeugen:

DELAY	LD A,5	A ist der Zähler
NEXT	DEC A	Dekrementieren
	JR NZ,N	NEXT Test und Sprung zu NEXT

Dieses Programm lädt A mit dem Wert 5. Der nächste Befehl dekrementiert A und der folgende Befehl bewirkt solange einen Sprung zu NEXT, wie A noch nicht auf "0" dekrementiert wurde. Wenn A schließlich auf Null dekrementiert wurde, wird das Programm die Schleife verlassen und den Befehl ausführen, der dann folgt. Die Logik dieses Programms ist einfach und erscheint in dem Flußdiagramm in Abb. 6.3.

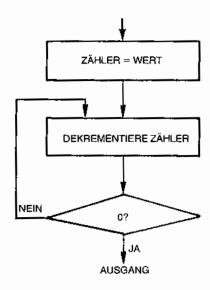


Abb. 6.3: Prinzipielles Flußdiagramm einer Verzögerungsschleife)

Wir wollen jetzt die effektive Verzögerung berechnen, die das Programm bewirkt. Dazu schauen wir in Kapitel 4 dieses Buchs nach, wie viele Taktzyklen jeder dieser Befehle braucht:

LD A,n ist unmittelbar adressiert und belegt sieben Taktzyklen. DEC braucht vier Zyklen. Schließlich braucht JR 12 Zyklen, mit Ausnahme des letzten Schrittes, bei dem er 7 Zyklen belegt. Wenn wir die Zahl der Zyklen für JR in der Tabelle nachschlagen, sehen wir, daß es zwei Möglichkeiten gibt: Tritt keine Verzweigung ein, braucht JR nur sieben Zyklen. Wird die Verzweigung aber ausgeführt, was in der Schleife meist der Fall sein dürfte, werden 12 Zyklen gebraucht.

Der Zeitbedarf ist deshalb sieben Zyklen für den ersten Befehl plus 16 Zyklen für die beiden nächsten, multipliziert mit der Anzahl der Durchläufe durch die Schleife, minus 5 Zyklen für den letzten JR, der zu keiner Verzweigung führt:

Verzögerung =
$$7 + 16 \times 5 - 5 = 82$$
 Zyklen

Wenn wir einen Zyklus von 0,5 µs annehmen, beträgt diese programmierte Verzögerung 41 Mikrosekunden.

Die Verzögerungsschleife, die beschrieben wurde, wird von den meisten Ein-/Ausgabeprogrammen verwendet. Man sollte sie gut verstehen. Versuchen Sie die folgenden Aufgaben zu lösen:

Aufgabe 6.1: Wie groß ist die maximale und die minimale Verzögerung, die mit diesen drei Befehlen eingebaut werden kann?

Aufgabe 6.2: Ändern Sie das Programm so, daß Sie eine Verzögerung von etwa 100 Mikrosekunden erhalten.

Will man eine längere Verzögerung einbauen, so ist es eine einfache Lösung, in das Programm zwischen DEC und JR zusätzliche Befehle einzubauen. Am einfachsten ist es, NOP-Befehle einzufügen. (NOP tut vier Zyklen lang nichts.)

Längere Verzögerungen

Längere Verzögerungen kann man softwaremäßig erreichen, indem man einen längeren Zähler verwendet. Man kann ein Registerpaar verwenden, um einen 16-Bit-Zähler zu speichern. Zur Vereinfachung wollen wir annehmen, daß der unterste Zählerstand "0" ist. Das unterste Byte wird mit "255" geladen, dem höchsten Zählerstand, und läuft dann durch eine Dekrementierschleife. Immer wenn auf "0" dekrementiert wurde, wird das obere Byte des Zählers um eins dekrementiert. Das Programm ist beendet, sobald das obere Byte auf "0" dekrementiert wurde. Braucht man eine größere Genauigkeit der Verzögerung, kann der unterste Zählerstand von Null verschieden sein. In diesem Fall würden wir ein Programm schreiben, wie gerade erklärt, und am Ende das dreizeilige Verzögerungsprogramm anhängen, das oben beschrieben wurde.

Ein 24-Bit Verzögerungsprogramm ist unten angegeben:

```
DEL24
         LD
                B.COUNTH
                            Oberer Zähler (8 Bit)
DEL16
         LD
                DE. - 1
LOOPA
         LD
                HL.COUNTL Unterer Zähler
LOOPB
         ADD
               HL.DE
                            Dekrementiere HL
         JR
               C.LOOPB
                            Wiederhole, bis Null
         DJNZ LOOPA
                            Dekrementiere B und springe
```

Beachten Sie, daß DE mit "-1" geladen und dazu verwendet wird, HL zu dekrementieren.

Noch längere Verzögerungen kann man natürlich dadurch erzeugen, daß man mehr als drei Worte verwendet. Dies ist analog zu der Art und Weise, wie ein Kilometerzähler im Auto funktioniert. Wenn das Rad rechts von "9" auf "0" springt, wird das nächste Rad um 1 inkrementiert. Dies ist das allgemeine Prinzip, wenn man mit mehreren getrennten Einheiten zählt.

Der hauptsächliche Nachteil dieser Methode ist es jedoch, daß der Mikroprozessor für Hunderte von Millisekunden oder gar Sekunden nichts anderes tun kann, solange Verzögerungen gezählt werden. Wenn der Computer nichts anderes zu tun hat, ist dies vollkommen akzeptabel. Im allgemeinen sollte der Mikroprozessor jedoch für andere Aufgaben zur Verfügung stehen, so daß längere Verzögerungen normalerweise nicht softwaremäßig eingebaut werden. Tatsächlich können selbst kurze Verzögerungen in einem System inakzeptabel sein, wenn in gegebenen Situationen eine bestimmte Reaktionszeit garantiert sein muß. Dann muß man eine Hardwareverzögerung verwenden. Wenn Interrupts verwendet werden, dann kann die zeitliche Genauigkeit verloren gehen, wenn die Zeitschleife unterbrochen wird.

Aufgabe 6.3: Schreiben Sie ein Programm, das eine Verzögerung von 100 ms erzeugt (für einen Fernschreiber typisch).

Hardwareverzögerung

Hardwareverzögerungen werden eingebaut, indem man einen programmierbaren Zeitgeber oder "Timer" benutzt. Ein Register des Timers wird mit einem Wert geladen. Der Unterschied ist, daß der Timer den Zähler automatisch periodisch dekrementiert. Die Periode kann normalerweise vom Programmierer bestimmt oder ausgewählt werden. Wenn der Timer auf "0" dekrementiert hat, wird er normalerweise einen Interrupt an den Mikroprozessor schicken. Er kann auch ein Zustandsbit setzen, das periodisch von dem Mikroprozessor abgefragt werden kann. Der Gebrauch von Interrupts wird später in diesem Kapitel erklärt.

Andere Betriebsarten des Timers können es sein, die Dauer eines Signals bei "0" beginnend zu zählen oder die Anzahl der empfangenen Impulse. Wenn der Timer eine Zeitspanne festlegt, so sagt man, er arbeitet in der Betriebsart Zeitgeber. Zählt er Impulse, so arbeitet er in der Betriebsart Zähler. Einige Timerbausteine können auch mehrere Register

enthalten und zusätzliche Fähigkeiten, unter denen der Programmierer wählen kann.

Die Erkennung von Impulsen

Das Problem, Impulse zu erkennen, ist die Umkehrung des Problems, Impulse zu erzeugen, und es enthält eine zusätzliche Schwierigkeit: Während ein Ausgangsimpuls unter der Kontrolle des Programms erzeugt wird, treten Eingangsimpulse asynchron mit dem Programm auf. Um einen Impuls zu erkennen, kann man zwei Verfahren benutzen: Polling und Interrupt. Interrupts werden später in diesem Kapitel beschrieben.

Wir wollen jetzt die Technik des Polling betrachten. Wenn man diese Technik anwendet, dann liest das Programm kontinuierlich den Inhalt eines gegebenen Registers und testet ein Bit, z. B. Bit 0. Es sei angenommen, Bit 0 sei anfänglich "0". Wird ein Impuls empfangen, dann nimmt dieses Bit den Wert "1" an. Das Programm überwacht fortlaufend das Bit 0, bis es den Wert "1" annimmt. Wenn eine "1" gefunden wird, ist der Impuls erkannt. Das Programm ist unten angegeben:

POLL	IN	A,(INPUT)	Lies Eingangsregister
ON	BIT	0,A	Teste auf 0
	JR	Z,POLL	Frage weiter ab, wenn 0

Jetzt wollen wir umgekehrt annehmen, daß die Eingangsleitung anfangs "1" ist, und daß wir eine "0" erkennen wollen. Dies ist normalerweise der Fall, wenn man den Ausgang eines Fernschreibers überwacht und das Startbit erkennen will. Das Programm ist unten angegeben:

POLL	IN	A,(INPUT)	Lies Eingangsregister
	BIT	0, A	Teste Bit 0
	JR	NZ,POLL	Test erfüllt?
START			

Überwachung der Pulsdauer

Die Pulsdauer kann man auf die gleiche Art und Weise überwachen, auf die man die Dauer eines Ausgangspulses berechnet. Man kann entweder eine Hardware- oder eine Softwaremethode anwenden. Wenn man einen Impuls softwaremäßig überwacht, wird ein Zähler regelmäßig um 1 inkrementiert und dann überprüft, ob der Impuls noch anliegt. Liegt der Impuls noch an, wiederholt das Programm die Schleife. Wenn der Impuls verschwindet, wird aus der Summe im Zählerregister die effektive Pulsdauer berechnet. Das Programm ist unten angegeben:

```
DURTN
          LD
                 B.0
                              Lösche Zähler
AGAIN
          ĺΝ
                 A,(INPUT)
                              Lies Eingang
                              Überwache Bit 0
          BIT
                 0,A
          JR
                 Z,AGAIN
                              Warte auf cine "1"
LONGER INC
                 В
                              Inkrementiere Zähler
          IN
                 A,(INPUT)
                              Teste Bit 0
          BIT
                 0.A
                 NZ,LONGER Warte auf eine "0"
          JR
```

Wir nehmen natürlich an, daß die maximale Pulsdauer das Register B nicht überlaufen läßt. Wäre dies der Fall, dann müßte das Programm so geändert werden, daß dies berücksichtigt würde (sonst wäre dies ein Programmierfehler!).

Da wir jetzt wissen, wie man Impulse erkennt und erzeugt, wollen wir größere Datenmengen aufnehmen oder übertragen. Zwei Fälle werden unterschieden: serielle und parallele Daten. Danach wollen wir diese Kenntnisse auf tatsächliche Ein-/Ausgabegeräte anwenden.

Parallele Übertragung von Worten

Es sei hier angenommen, daß acht Bit übertragene Daten bei der Adresse "INPUT" parallel verfügbar sind. Der Mikroprozessor muß das Datenwort bei dieser Adresse immer dann lesen, wenn ein Statuswort anzeigt, daß es gültig ist. Die Statusinformation sei in Bit 7 der Adresse "STATUS" enthalten. Wir wollen hier ein Programm schreiben, das jedes Datenwort liest und automatisch abspeichert, sobald es hereinkommt. Zur Vereinfachung wollen wir annehmen, daß die Anzahl der Worte, die gelesen werden sollen, im voraus bekannt ist und bei der Adresse "COUNT" steht. Wäre diese Information nicht verfügbar, wür-

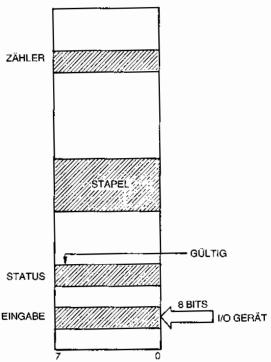


Abb. 6.4: Parallele Übertragung von Worten - der Speicher

den wir auf ein sogenanntes Break-Zeichen testen, wie z. B. Rubout oder vielleicht das Zeichen "*". Wie man dies tut, haben wir schon gelernt.

Das Flußdiagramm gibt Abb. 6.5 wieder. Es ist ziemlich einfach. Wir testen die Statusinformation, bis sie "1" wird und anzeigt, daß ein Wort bereit ist. Sobald das Wort bereit ist, lesen wir es und speichern es in einer entsprechenden Speicherstelle. Dann dekrementieren wir den Zähler und testen, ob er auf "0" dekrementiert wurde. Ist das der Fäll, dann sind wir fertig; wenn nicht, dann lesen wir das nächste Wort. Ein einfaches Programm, das diesen Algorithmus ausführt, erscheint unten:

LD	A,(COUNT)	Lies Zähler nach A
LD	B,A	B ist der Zähler
IN	A,(STATUS)	Schaue, ob Daten bereit sind
BIT	7,A	Bit 7 ist "1", wenn Daten bereit
JR	Z,WATCH	Daten verfügbar?
IN	A,(INPUT)	Lies Daten
PUSH	AF	Speichere Daten auf dem Stapel
DEC	В	Dekrementiere Zähler
JR	NZ,WATCH	Wiederhole so lange, bis Null
	LD IN BIT JR IN PUSH DEC	LD B,A IN A,(STATUS) BIT 7,A JR Z,WATCH IN A,(INPUT) PUSH AF DEC B

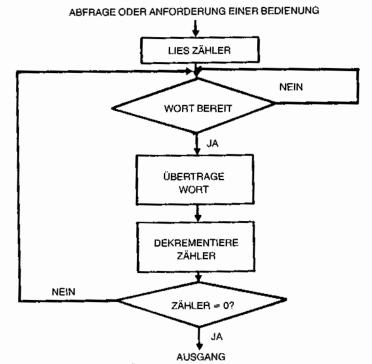


Abb. 6.5: Parallele Übertragung von Worten: Flußdiagramm

Es wurde angenommen, daß das Flag "Daten bereit" automatisch gelöscht wird, sobald STATUS gelesen wurde, wie es bei den üblichen Steuerbausteinen der Fall ist.

Die beiden ersten Befehle initialisieren das Zählerregister B:

Beachten Sie, daß man B nicht direkt aus dem Speicher laden kann. Mann muß entweder A laden und dann seinen Inhalt nach B übertragen, oder B und C gleichzeitig laden.

Die nächsten drei Befehle des Programms lesen die Statusinformation und bewirken, daß eine Schleife so lange durchlaufen wird, wie Bit sieben des Statusregisters "0" ist. (Dies ist das Vorzeichenbit, d. h. Bit N.)

Wird JR nicht ausgeführt, dann liegen Daten an, und wir können sie lesen:

Das Wort wurde jetzt aus der Adresse INPUT gelesen, wo es anlag, und muß gespeichert werden. Unter der Annahme, daß genügend Platz für den Stapel vorhanden ist, können wir

PUSH AF

verwenden, was A (und F) auf dem Stapel ablegt. Ist der Stapel voll oder die Zahl der Worte groß, die übertragen werden sollen, dann könnten wir sie nicht auf dem Stapel ablegen und müßten sie in einen bestimmten Speicherbereich ablegen, z. B. unter Verwendung von indizierten Befehlen. Dies würde jedoch einen zusätzlichen Befehl zum Inkrementieren oder Dekrementieren des Indexregisters erforderlich machen. PUSH ist schneller (nur 11 Taktzyklen).

Das Datenwort wurde jetzt gelesen und gespeichert. Wir wollen einfach den Wortzähler dekrementieren und testen, ob wir fertig sind:

Wir erwarten so lange weitere Daten, bis der Zähler auf "0" dekrementiert wird.

Dieses Programm aus neun Befehlen kann man einen Benchmark nennen. Ein Benchmark-Programm ist ein sorgfältig ausgewähltes Programm, das entworfen wurde, um die Fähigkeiten eines gegebenen Prozessors für eine spezielle Anwendung zu testen. Parallele Übertragungen sind eine solche typische Anwendung. Dieses Programm wurde entworfen mit Blick auf maximale Geschwindigkeit und Effizienz. Wir wollen jetzt die maximale Übertragungsgeschwindigkeit dieses Programms berechnen. Wir wollen annehmen, daß COUNT im Speicher steht. Die

Dauer jedes Befehls steht in den Befehlsbeschreibungen in Kapitel 4. Dort finden sich folgende Werte:

			Taktzyklen
PARAL	LD	A,(COUNT)	13
	LD	B,A	4
WATCH	IN	A,(STATUS)	11
	BIT	7,A	8
	JŔ	Z,WATCH	7/12
	IN	A,(INPUT)	11
	PUSH	AF	11
	DEC	В	4
	JR	NZ,WATCH	7/12

Die minimale Zeit für die Ausführung erhält man, wenn man annimmt, daß jedesmal Daten anliegen, wenn wir STATUS abfragen. Mit anderen Worten: Der erste Sprung wird nie ausgeführt. Dann ergibt sich folgende Zeit:

$$13 + 4 + (11 + 8 + 7 + 11 + 11 + 4 + 7) * COUNT$$

Wenn wir die ersten 17 Zyklen vernachlässigen, die zur Initialisierung des Zählerregisters nötig sind, dann benötigt die Übertragung eines Wortes 59 Zyklen oder 29,5 Mikrosekunden bei einem 2 MHz Takt.

Die maximale Datenübertragungsrate ist deshalb:

$$1/(29.5 \times 10^{-6}) = 33 \text{ k Byte pro Sekunde}$$

Aufgabe 6.4: Nehmen Sie an, die Zahl der übertragenen Worte sei größer als 256. Ändern Sie das Programm entsprechend und bestimmen Sie den Einfluß auf die maximale Übertragungsrate.

Aufgabe 6.5: Verändern Sie dieses Programm, um zu versuchen, seine Geschwindigkeit zu erhöhen:

- 1 durch Verwendung von JP statt JR
- 2 durch Verwendung von DJNZ
- 3 durch Verwendung von INIR oder INDR

War das obige Programm optimal?

Wir haben jetzt gelernt, wie man eine Parallelübertragung mit hoher Geschwindigkeit durchführt. Jetzt wollen wir einen komplizierteren Fall betrachten.

Serielle Bitweise Übertragung

Bei einem seriellen Eingang kommen die Bits der Information (Nullen oder Einsen) nacheinander auf einer Leitung herein. Diese Bits können in regelmäßigen Abständen ankommen. Das nennt man normalerweise synchrone Übertragung. Sie können aber auch als Gruppen von Daten in zufälligen Abständen ankommen. Dies nennt man dann asynchrone Übertragung. Wir wollen ein Programm entwickeln, das in beiden Fäl-

len funktioniert. Das Prinzip der Aufnahme serieller Daten ist einfach: Wir beobachten eine Eingangsleitung, die die Leitung 0 sein soll. Sobald auf dieser Leitung ein Datenbit erkannt wird, lesen wir dieses Bit ein und schieben es in ein Register. Immer wenn acht Bit zusammengekommen sind, legen wir das Datenbyte im Speicher ab und setzen dann das nächste zusammen. Um die Sache zu vereinfachen, wollen wir annehmen, daß die Anzahl der Bytes, die empfangen werden soll, im voraus bekannt ist. Sonst müßten wir beispielsweise auf ein spezielles Zeichen Break (Unterbrechung) warten und dann an dieser Stelle die bitserielle Übertragung stoppen. Wie man das tut, haben wir schon gelernt. Das Flußdiagramm für dieses Programm zeigt Abb. 6.6. Das Programm ist unten angegeben:

LD	C,0	Lösche Eingangswort
LD	A,(COUNT)	Lade B mit der Zahl der Bytes
LD	B,A	•
ΙŅ	A,(INPUT)	Lies Port
BIT	7,A	Bit 7 ist Status, Bit 0 Daten
JR	Z,LOOP	Warte auf eine "1"
SRL	Α	Schiebe Datenbit ins Carry
RL	C	Schiebe Datenbit vom Carry nach C
JR	NC,LOOP	Solange, Bis 8 Bits vorhanden
PUSH	BC	Speichere Wort auf dem Stapel
LD	C,01H	Setze Markierungsbit
DEC	В	Dekrementiere Bytezähler
JR	NZ,LOOP	Stelle nächstes Wort zusammen
	LD LD IN BIT JR SRL RL JR PUSH LD DEC	LD A,(COUNT) LD B,A IN A,(INPUT) BIT 7,A JR Z,LOOP SRL A RL C JR NC,LOOP PUSH BC LD C,01H DEC B

Dieses Programm wurde im Hinblick auf Effizienz entworfen und verwendet neue Techniken, die wir erklären wollen (siehe Abb. 6.7).

Dabei gelten folgende Vereinbarungen: Die Speicherstelle COUNT soll die Anzahl der Worte enthalten, die übertragen werden sollen. Das Register C wird dazu verwendet, acht Bits zusammenzustellen, die nacheinander hereinkommen. Die Adresse INPUT bezieht sich auf ein Eingangsregister. Es sei angenommen, daß Bit 7 dieses Registers ein Statusflag oder ein Taktbit ist. Wenn es "0" ist, liegen keine Daten an. Ist es "1", dann sind Daten verfügbar. Die Daten selbst sollen in Bit 0 der gleichen Adresse erscheinen. In vielen Fällen wird die Statusinformation in einem anderen Register abgelegt als die Daten. Es sollte eine einfache Aufgabe sein, das Programm dann entsprechend zu ändern. Zusätzlich wollen wir annehmen, daß das erste Datenbit, das von dem Programm empfangen werden soll, garantiert eine "1" ist. Es zeigt an, daß die wirklichen Daten folgen. Für den Fall, daß das nicht so wäre, werden wir später eine naheliegende Modifikation sehen, mit der das berücksichtigt wird. Das Programm entspricht genau dem Flußdiagramm in Abb. 6.6. Die ersten Zeilen des Programms bilden eine Warteschleife, die testet, ob ein Bit bereit ist. Um festzustellen, ob ein Bit bereit ist, lesen wir das Eingangsregister und testen dann das Statusbit auf Null. So lange dieses Bit "0" ist, wird der Befehl JR ausgeführt, und wir verzweigen in die

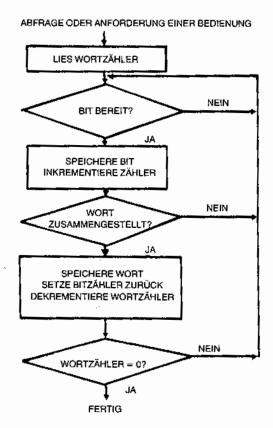


Abb. 6.6: Bitserielle Übertragung

Schleife zurück. Sobald das Statusbit (oder Taktbit) logisch wahr ("1") wird, tritt der JR nicht ein und der nächste Befehl wird ausgeführt. Diese anfängliche Folge von Befehlen entspricht dem Pfeil 1 in Abb. 6.7. An dieser Stelle enthält der Akkumulator eine "1" in der Stelle Bit 7 und das gültige Datenbit in Stelle 0. Das erste Datenbit, das ankommen soll, wird eine "1" sein. Die folgenden Bits können jedoch "0" oder "1" sein. Wir wollen jetzt das Datenbit erhalten, das in Position 0 angekommen ist. Der Befehl:

SRL A

schiebt den Inhalt des Akkumulators um eine Stelle nach rechts. Damit fällt das rechte Bit von A, unser Datenbit, ins Carry (Übertragsbit). Wir wollen jetzt dieses Datenbit ins Register C bringen (dieser Vorgang wird von den Pfeilen 2 und 3 in Abb. 6.7 veranschaulicht):

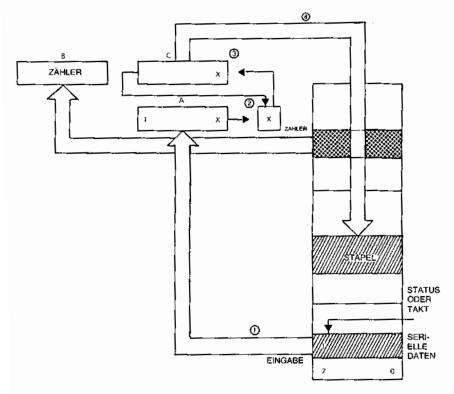


Abb. 6.7: Seriell nach Parallel: die Register

Die Wirkung dieses Befehls ist es, daß das Carrybit in die rechte Stelle von C rotiert wird. Gleichzeitig fällt das linke Bit von C ins Carrybit. (Wenn Ihnen die Rotieroperation nicht ganz klar ist, dann schauen Sie in Kapitel 4 nach!)

Es ist wichtig, sich daran zu erinnern, daß eine Rotieroperation sowohl das Carrybit rettet, hier in die rechte Stelle, und auch das Carrybit mit dem Wert von Bit 7 neu lädt.

Hier wird eine "0" ins Carry gelangen. Der nächste Befehl:

JR NC,LOOP

testet das Carry und verzweigt zur Adresse LOOP, solange das Carry "0" ist. Dies ist unser automatischer Bitzähler. Man kann leicht sehen, daß C als Ergebnis des ersten RLC "00000001" enthält. Nach acht weiteren Schiebebefehlen wird die "1" schließlich ins Carry gelangen und die Verzweigung beenden. Dies ist eine geschickte Art, einen automatischen Schleifenzähler einzubauen, ohne daß man einen Befehl zum Dekrementieren eines Indexregisters verschwenden muß. Diese Technik

wird verwendet, um das Programm zu verkürzen und seine Effizienz zu verbessern.

Wenn JR NC schließlich nicht mehr eintritt, sind 8 Bit in C angesammelt. Dieser Wert sollte im Speicher abgelegt werden. Das wird mit dem nächsten Befehl erledigt (Pfeil 4 in Abb. 6.7):

PUSH BC

Wir retten hier den Inhalt der Register B und C auf den Stapel. Die Speicherung auf dem Stapel ist nur möglich, wenn auf dem Stapel genug Platz ist. Unter der Voraussetzung, daß diese Bedingung erfüllt ist, ist es normalerweise die schnellste Art und Weise, ein Wort in den Speicher zu retten, obwohl ein unnötiges Register (B) gespeichert wird. Der Stapelzeiger wird automatisch auf den neuesten Stand gebracht. Würden wir das Wort nicht auf dem Stapel ablegen, dann müßten wir einen zusätzlichen Befehl verwenden, um einen Zeiger in den Speicher auf den neuesten Stand zu bringen. Wir könnten gleichwertig eine indiziert adressierte Operation ausführen, aber das würde auch voraussetzen, daß der Index dekrementiert oder inkrementiert wird, was zusätzliche Zeit kostet. Nachdem das erste Datenwort gespeichert wurde, ist nicht länger garantiert, daß das erste hereinkommende Datenbit eine "1" ist. Es ist beliebig. Deshalb müssen wir den Inhalt auf "00000001" setzen, so daß wir es weiterhin als Bitzähler verwenden können. Dies wird mit dem nächsten Befehl durchgeführt:

LD C,01H

Schließlich wollen wir den Wortzähler dekrementieren, da ein Wort zusammengekommen war, und testen, ob wir das Ende der Übertragung erreicht haben. Dies wird von den beiden folgenden Befehlen erledigt:

> DEC B JR NZ,LOOP

Das obige Programm wurde auf Geschwindigkeit ausgelegt, so daß man eine schnelle Folge von Datenbits aufnehmen kann. Sobald das Programm endet, ist es natürlich empfehlenswert, sofort die Worte aus dem Stapel zu lesen, die dort abgelegt wurden, und sie in einen anderen Speicherbereich zu übertragen. In Kapitel 2 haben wir schon gelernt, wie man einen solchen Blocktransfer ausführt.

Aufgabe 6.6: Berechnen Sie die maximale Geschwindigkeit, mit der dieses Programm serielle Datenbits lesen kann. Schauen Sie in Kapitel 4 nach, wieviele Zyklen jeder Befehl beansprucht, und berechnen Sie die Zeit, die während der Ausführung des Programms vergeht. Zur Berechnung der Zeit, die von einer Schleife verbraucht wird, multiplizieren Sie einfach die Dauer eines Durchlaufs in Mikrosekunden mit der Anzahl der Durchläufe. Nehmen Sie zur Berechnung der maximalen Geschwindigkeit an, daß immer ein Datenbit anliegt, wenn der Eingang abgefragt wird.

Dieses Programm ist schwerer verständlich als die vorhergehenden. Wir wollen es nochmals genau anschauen (siehe Abb. 6.6) und einige Besonderheiten untersuchen.

Von Zeit zu Zeit kommt ein Datenbit in Position 0 von "INPUT". Es können beispielsweise drei Einsen nacheinander ankommen. Wir müssen deshalb zwischen den Bits unterscheiden, die aufeinanderfolgend hereinkommen. Dies ist die Aufgabe des Taktsignals.

Das Signal Takt (oder STATUS) sagt uns, daß jetzt das Bit am Eingang verfügbar ist. Bevor wir ein Bit lesen, wollen wir deshalb zuerst das Statusbit testen. Ist der Status "0", müssen wir warten. Ist das Statusbit "1", dann ist das Datenbit gültig.

Wir nehmen hier an, daß das Statussignal an Bit 7 des Registers INPUT angeschlossen ist.

Aufgabe 6.7: Können Sie erklären, warum Bit 7 für den Status und Bit 0 für die Daten verwendet wird? Spielt das eine Rolle?

Sobald wir ein Datenbit eingefangen haben, wollen wir es an einem sicheren Ort aufbewahren und dann nach links schieben, so daß wir das nächste Bit aufnehmen können.

Unglücklicherweise wird der Akkumulator in diesem Programm dazu verwendet, sowohl Daten als auch den Status zu lesen und zu testen. Würden wir Daten im Akkumulator sammeln, dann würde die Stelle 7 durch das Statusbit gelöscht.

Aufgabe 6.8: Können Sie eine Methode vorschlagen, wie man den Status testen kann, ohne den Inhalt des Akkumulators zu löschen (mit einem Spezialbefehl)? Wenn man das tun kann, könnten wir dann den Akkumulator verwenden, um die Bits zu sammeln, die nacheinander hereinkommen? Können Sie die Geschwindigkeit mit einem "automatischen Sprung" erhöhen?

Aufgabe 6.9: Schreiben Sie das Programm so um, daß der Akkumulator dazu verwendet wird, die hereinkommenden Bits zu speichern. Vergleichen Sie es bezüglich Geschwindigkeit und Zahl der Befehle mit dem vorhergehenden Programm.

Wir wollen zwei weitere mögliche Varianten ansprechen.

In unserem Beispiel haben wir angenommen, daß das erste Bit, das hereinkommt, ein spezielles Signal ist, nämlich eine "1". Allgemein kann es jedoch beliebig sein.

Aufgabe 6.10: Verändern Sie das obige Programm unter der Annahme, daß das erste Bit, das hereinkommt, gültige Daten darstellt (nicht verworfen werden darf) und eine "0" oder eine "1" sein kann. Hinweis: Unser "Bitzähler" sollte weiterhin korrekt arbeiten, wenn Sie ihn mit dem richtigen Wert initialisieren.

Schließlich haben wir das zusammengestellte Wort auf den Stapel gerettet, um Zeit zu sparen. Wir hätten es natürlich auch in einem festgelegten Speicherbereich ablegen können.

Aufgabe 6.11: Modifizieren Sie das obige Programm so, daß das zusammengestellte Wort in dem Speicherbereich abgelegt wird, der bei der Adresse BASE beginnt.

Aufgabe 6.12: Verändern Sie das Programm so, daß die Übertragung endet, sobald das Zeichen "S" im Eingabefluß erkannt wird.

Die Hardware-Alternative

Wie die meisten Standardalgorithmen zur Ein-/Ausgabe kann auch dieses Verfahren hardwaremäßig realisiert werden. Den Baustein nennt man UART. Er sammelt die Bits automatisch. Will man jedoch die Zahl der Bauelemente vermindern, wird statt dessen dieses Programm oder eine Abwandlung davon verwendet.

Aufgabe 6.13: Verändern sie das Programm unter der Annahme, daß die Daten in Stelle 0 der Adresse INPUT verfügbar sind, die Statusinformation dagegen in Stelle 0 der Adresse INPUT+1.

Zusammenfassung der grundlegenden Ein-/Ausgabe

Wir haben jetzt gelernt, die grundlegenden Ein-/Ausgabe-Operationen auszuführen und auch einen Strom paralleler Daten oder serieller Bits zu verwalten. Wir sind jetzt in der Lage, mit wirklichen Ein-/Ausgabegeräten zu kommunizieren.

Kommunikation mit Ein-/Ausgabegeräten

Um Daten mit Ein-/Ausgabegeräten auszutauschen, müssen wir uns zuerst davon überzeugen, ob Daten verfügbar sind, wenn wir sie lesen wollen, oder ob das Gerät bereit ist, Daten anzunehmen, wenn wir sie ausgeben wollen. Man kann zwei Verfahren anwenden: Handshaking ("Händeschütteln") und Interrupts. Wir wollen zuerst das Handshaking untersuchen.

Handshaking

Handshaking wird allgemein verwendet, um zwischen zwei beliebigen asynchronen Geräten zu kommunizieren, d. h. zwischen zwei Geräten, die nicht synchronisiert sind. Wenn wir zum Beispiel ein Wort zu einem Paralleldrucker senden wollen, müssen wir uns zuerst davon überzeugen, daß der Eingangspuffer des Druckers frei ist. Wir werden deshalb den Drucker fragen: Bist du bereit? Der Drucker antwortet dann "ja" oder "nein". Wenn er nicht bereit ist, werden wir warten. Ist er bereit, übertragen wir die Daten (siehe Abb. 6.8)

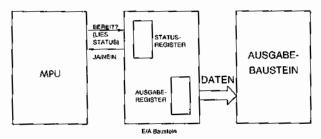


Abb. 6.8: Handshaking (Ausgabe)

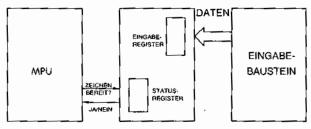


Abb. 6.8a: Handshaking (Eingabe)

Bevor wir umgekehrt Daten aus einem Eingabegerät lesen, werden wir prüfen, ob die Daten verfügbar sind. Wir werden fragen: "Sind Daten verfügbar?", und der Baustein sagt uns "ja" oder "nein". Das "ja" oder "nein" kann durch Statusbits oder mit anderen Mitteln angezeigt werden (siehe Abb. 6.8a).

Eine Analogie dazu ist es, wenn Sie mit jemandem Informationen austauschen wollen, der unabhängig ist und zur Zeit etwas anderes tun könnte. Dann sollten Sie sich davon überzeugen, daß er bereit ist, sich mit Ihnen zu unterhalten. Das übliche Höflichkeitsritual ist es, sich die Hände zu geben. Dann kann der Datenaustausch folgen. Genau dieses Verfahren wendet man bei der Kommunikation mit Ein-/Ausgabegeräten auch an.

Wir wollen dieses Verfahren jetzt an einem einfachen Beispiel veranschaulichen.

Ausgabe eines Zeichens an einen Drucker

Es sei angenommen, daß das Zeichen in der Speicherstelle CHAR steht. Das Programm zum Ausdrucken folgt unten:

WAIT	IN	A,(STATUS)	
	BIT	7,À	Test, ob bereit
	JR	Z,WAIT	Ansonsten warten
	LD	A,(CHAR)	Hole Zeichen
	OUT	(PRNTD),A	Drucke das Zeichen
	JR	WAIT	Sprung zum nächsten Zeichen

Das Druckprogramm ist einfach, und es verwendet das Handshaking-Verfahren, das oben beschrieben wurde. Die Datenwege sind in Abb. 6.9 dargestellt.

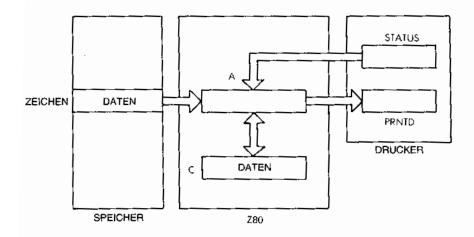


Abb. 6.9: Drucker - Datenwege

Das Zeichen (DATA genannt) steht in der Speicherzelle CHAR. Zuerst wird der Status des Druckers geprüft. Wenn Bit 7 des Statusregisters 1 wird, dann zeigt dies an, daß der Drucker zur Ausgabe bereit ist, d.h. daß sein Ausgabepuffer verfügbar ist. An dieser Stelle wird das Zeichen in den Akkumulator geladen und dann vom Akkumulator an den Drukker ausgegeben. Solange das Statusbit 0 ist, verbleibt das Programm in einer Schleife, die WAIT genannt wurde.

Aufgabe 6.14: Wieviele Befehle würden im obigen Programm eingespart, wenn es möglich wäre, Daten direkt ins Register zu laden und auch den Inhalt des Registers C direkt auszugeben?

Aufgabe 6.15: Wenn man einen wirklichen Drucker verwendet, ist es üblicherweise nötig, einen Startbefehl auszugeben, bevor man das Gerät benutzt. Verändern Sie das Programm so, daß ein solcher Befehl erzeugt wird. Nehmen Sie dazu an, daß man als Startbefehl eine 1 in die Stelle 0 des Statusregisters schreiben muß, welches bidirektional sein soll.

Aufgabe 6.16: Wenn es den Befehl BIT nicht gäbe, könnte man dann in Zeile 2 des Programms einen anderen Befehl verwenden? Erläutern Sie einen eventuellen Vorteil des Befehls BIT, falls das geht.

Aufgabe 6.17: Verändern Sie das obige Programm so, daß eine Zeichenkette aus n Zeichen ausgegeben wird, wobei n kleiner als 255 sein soll.

Aufgabe 6.18: Verändern Sie das Programm so, daß eine Zeichenkette so lange ausgedruckt wird, bis das Zeichen "Carriage-Return" (Wagenrücklauf) entdeckt wird.

Wir wollen jetzt das Ausgabeverfahren komplizierter machen, indem wir eine Kodeumwandlung durchführen und gleichzeitig an mehrere Geräte ausgeben.

Ausgabe an eine Siebensegmentanzeige

Eine übliche Siebensegmentanzeige aus Leuchtdioden (LEDs) kann die Ziffern "0" bis "9" anzeigen, oder auch "0" bis "F" hexadezimal, indem mehrere der sieben Segmente leuchten. Die Abbildung 6.10 zeigt eine Siebensegmentanzeige. Die Zeichen, die man damit erzeugen kann, sind in Abb. 6.11 dargestellt.

Die Segmente der Anzeige werden in Abb. 6.10 "a" bis "g" genannt.

Eine "0" wird beispielsweise angezeigt, indem die Segmente abcdef leuchten. Wir wollen jetzt annehmen, daß Bit "0" eines Ausgabeports mit Segment "a" verbunden ist, Bit "1" mit Segment "b" usw. Bit 7 wird nicht benutzt. Um die Segmente fedcba leuchten zu lassen (zur Darstellung einer "0"), wird deshalb der Binärcode "0111111" verwendet. Hexadezimal ist dies "3F". Lösen Sie die folgende Aufgabe.

Aufgabe 6.19: Ermitteln Sie den Siebensegmentkode für die Hexadezimalziffern "0" bis "F". Füllen Sie die folgende Tabelle aus:

	Hex	LED-Kode	Hex	LED-Kode	Hex	LED-Kode	Hex	LED-Kode
	0	3F	4		8		С	
I	1		5		9		D	i
1	2		6		Α		E	}
l	3		7		В		F	

Wir wollen jetzt Hexadezimalzahlen mit mehreren Siebensegmentanzeigen darstellen.

Steuerung mehrfacher LEDs

Eine LED enthält keinen Speicher. Sie zeigt die Daten nur solange an, solange Strom durch ein Segment fließt. Um die Kosten einer LED-Anzeige gering zu halten, zeigt der Mikroprozessor die Information auf jeder Stelle nacheinander an. Der Wechsel zwischen den Stellen muß schnell genug sein, so daß er nicht als Blinken erscheint. Das setzt voraus, daß die Zeit, die von einer LED bis zur nächsten gebraucht wird, kürzer als 100 ms ist. Wir wollen ein Programm entwerfen, das dies erledigt. Das Register C dient als Zeiger auf die Stelle, in der wir eine Ziffer anzeigen wollen. Der Akkumulator soll den hexadezimalen Wert ent-

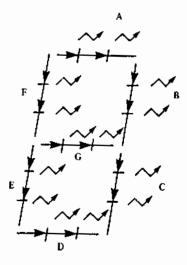


Abb. 6.10: Siebensegmentanzeige LED

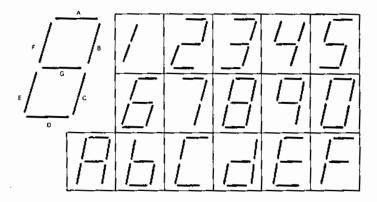


Abb. 6.11: Hexadezimalzeichen, die mit einer Siebensegmentanzeige erzeugt werden

halten, der an dieser Stelle angezeigt werden soll. Unsere erste Aufgabe ist es deshalb, den hexadezimalen Wert in seine Siebensegmentdarstellung umzuwandeln. Im vorhergehenden Abschnitt haben wir die Umwandlungstabelle aufgestellt. Da wir auf eine Tabelle zugreifen, wollen wir indizierte Adressierung verwenden, wobei der hexadezimale Wert als Distanz verwendet wird. Dies heißt, daß man den Siebensegmentkode für die Hexadezimalziffer "3" dadurch erhält, daß man in der Ta-

belle das dritte Element nach der Basis betrachtet. Die Adresse der Basis wird SEGBAS genannt. Das Programm erscheint unten:

		C	0
LEDS	LD	E,A	A enthält die Hexadezimalziffer
	LD	D,0	"DE" wird als Distanz verwendet
	LD	HL,SEGBAS	"HL" dient als Index
	ADD	HL,DE	Adresse in der Tabelle
	LD	A,(HL)	Lies Kode aus der Tabelle
	LD	B,50H	Wert für Verzögerung
			= beliebige große Zahl
	OUT	(C),A	Ausgabe für die festgesetzte
			Dauer
DELAY	DEC	В	Zähler für Verzögerung
	JR	NZ,DELAY	Schleife
	DEC	C	Cist die Nummer des Ports
	LD	A,C	
	CP	MINLED	Schon letzte Stelle?
	JR	NZ.OUT	
	LD) Falls ja, setze C auf oberste Stelle
OUT	RET	/\	,,-,

Das Programm setzt voraus, daß das Register C die Adresse der Stelle enthält, die als nächste leuchten soll, und daß der Akkumulator A den Wert enthält, der angezeigt werden soll.

Das Programm ermittelt zuerst den Siebensegmentkode, der dem hexadezimalen Wert im Akkumulator entspricht. Die Register D und E dienen als Distanzfeld, und die Register H und L werden als 16-Bit Indexregister verwendet. Der hexadezimale Kode wird zur Basisadresse der Tabelle addiert:

LEDS	LD	E,A	7-Segmentkode
	LD	D,0	-
	LD	HL,SEGBAS	
	ADD	HL,DE	

Danach ist eine Verzögerungsschleife eingebaut, so daß der Kode, den man aus der Tabelle erhält, für die entsprechende Dauer angezeigt wird. Hier wurde die hexadezimale Konstante "50" willkürlich gewählt:

Zur Verzögerung dient eine klassische Schleife. Der erste Befehl OUT (C),A

gibt den Inhalt des Akkumulators an den Ein-/Ausgabeport aus, auf den das Register C zeigt (die Nummer der Stelle). Die nächsten beiden Befehle bilden die Schleife:

Sobald die Verzögerungsschleife abgearbeitet ist, müssen wir einfach

den Zeiger auf die angezeigte Stelle dekrementieren und dafür sorgen, daß wir wieder zur höchsten Stelle verzweigen, sobald die Adresse der tiefsten Stelle erreicht ist:

> DEC C LD A,C CP MINLED JR NZ,OUT LD BC,(MAXLED)

OUT RET

Das obige Programm wurde als Unterprogramm geschrieben, und der letzte Befehl ist deshalb ein RET: "Rücksprung vom Unterprogramm".

Aufgabe 6.20: Es ist üblicherweise notwendig, die Segmenttreiber für die entsprechende Stelle einzuschalten, bevor die Ziffer angezeigt wird. Ändern Sie das obige Programm, indem Sie die dazu nötigen Befehle einfügen (geben Sie dazu "00" aus, bevor das Zeichen ausgegeben wird). Aufgabe 6.21: Was würde mit der Anzeige passieren, wenn die Marke DELAY eine Zeile nach oben verschoben würde. Würde dies den zeitlichen Ablauf verändern? Würde das Aussehen der Anzeige verändert? Aufgabe 6.22: Sie werden bemerkt haben, daß die ersten vier Befehle des Programms in Wirklichkeit eine indizierte 16-Bit-Adressierung bilden. Ohne Verwendung des Mechanismus der Indizierung wirkt dies jedoch scheinbar umständlich. Nehmen Sie an, daß die Adresse SEGBAS im voraus bekannt ist. Der obere Teil dieser Adresse werde SEGBSH genannt, der untere SEGBSL. Speichern Sie SEGBSH im oberen Teil des Registers IX. Schreiben Sie jetzt das obige Programm um und verwenden Sie die indizierte Adressierung des Z80, wobei SEGBSL als Distanzfeld des Befehls dienen soll. Was sind die Vor- und Nachteile dieses Verfahrens?

Aufgabe 6.23: Wir wollen annehmen, daß das obige Programm als Unterprogramm verwendet wird. Dann werden Sie bemerken, daß die Register B, D, E, H und L intern verwendet werden, und daß ihr Inhalt geändert wird. Wenn das Unterprogramm die Speicherzellen T1, T2, T3, T4 und T5 frei verwenden darf, können Sie dann am Anfang und am Ende des Programms Befehle einfügen, die gewährleisten, daß der Inhalt der Register B, D, E, H und L der gleiche bleibt wie bei Beginn des Unterprogramms?

Aufgabe 6.24: Es soll das gleiche Problem wie oben gelöst werden, allerdings soll der Speicherbereich T1 usw. nicht für das Unterprogramm zur Verfügung stehen. (Hinweis: Es gibt in jedem Computer einen eingebauten Mechanismus, um Information in zeitlicher Reihenfolge abzulcgen.)

Wir haben bisher allgemeine Probleme der Ein-/Ausgabe gelöst. Wir wollen uns jetzt mit einem gebräuchlichen Peripheriegerät beschäftigen, mit dem Fernschreiber.

Eingabe und Ausgabe mit dem Fernschreiber

Der Fernschreiber ist ein serielles Gerät. Er sendet und empfängt Worte von Information in einem scriellen Format. Jedes Zeichen ist im 8-Bit-ASCII-Format dargestellt (die ASCII-Tabelle befindet sich am Schluß dieses Buchs). Zusätzlich geht jedem Zeichen ein "Startbit" voraus und es wird von zwei "Stopbits" abgeschlossen. In dem sogenannten 20 mA-Stromschleifen-Interface, das üblicherweise benutzt wird, ist der Zustand der Leitung normalerweise eine "1". Damit wird dem Prozessor angezeigt, daß die Leitung nicht unterbrochen ist. Ein Startbit ist ein Übergang von "1" auf "0". Es zeigt dem empfangenden Baustein an, daß Datenbits folgen. Der Standard-Fernschreiber verarbeitet 10 Zeichen in der Sekunde. (Dies gilt für amerikanische Fernschreiber, die Fernschreiber im europäischen Telexnetz benutzen einen anderen Kode, den 5-Bit-Baudot-Kode, und eine andere Übertragungsrate, nämlich 50 Bit pro Sekunde.) Wir haben bereits festgelegt, daß jedes Zeichen 11 Bit einnimmt. Dies heißt, daß ein Fernschreiber 110 Bit pro Sekunde überträgt. Man sagt, er ist ein 110-Baud-Gerät. Wir wollen ein Programm entwerfen, das serielle Bits mit der richtigen Geschwindigkeit an einen Fernschreiber ausgibt.

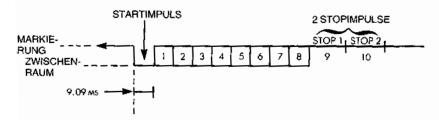


Abb. 6.12: Format eines Fernschreiberwortes

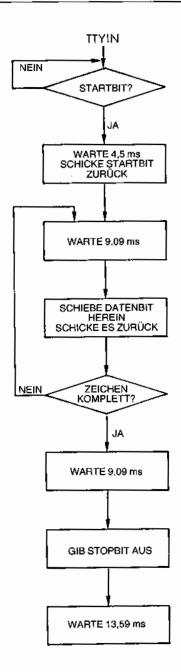


Abb. 6.13: TTY-Eingabe mit Echo

110 Bit pro Sekunde bedeutet, daß die Bits 9,09 Millisekunden auseinander liegen. Solange muß die Verzögerungsschleife dauern, die zwischen aufeinanderfolgende Bits eingebaut wird. Das Format eines Fernschreiberwortes ist in Abb. 6.12 dargestellt. Das Flußdiagramm zur Biteingabe erscheint in Abb. 6.13. Das Programm folgt:

IN	A,(STATUS)	
BIT	7,A	Daten bereit?
JR	Z,TTYIN	Wartesonst
CALL	DELAY1	Mitte des Impulses
IN	A,(TTYBIT)	Startbit
OUT	(TTYBIT),A	Echo
CALL	DELAY9	Nächster Impuls (9ms)
LD	B,08H	Bitzähler
IN	A,(TTYBIT)	Lies Datenbit
OUT	(TTYBIT),A	Echo
SRL	À	Speichere es im Carry
RR	C	Rotiere es nach C
CALL	DELAY9	Nächster Impuls (9ms)
DEC	В	Dekrementiere Bitzähler
JR	NZ,NEXT	
IN		Lies Stopbit
OUT		Echo
CALL	DELAY9	Überspringe zweites Stopbit
RET		
	BIT JR CALL IN OUT CALL LD IN OUT SRL RR CALL DEC JR IN OUT CALL	BIT 7,A JR Z,TTYIN CALL DELAY1 IN A,(TTYBIT) OUT (TTYBIT),A CALL DELAY9 LD B,08H IN A,(TTYBIT) OUT (TTYBIT),A SRL A RR C CALL DELAY9 DEC B JR NZ,NEXT IN A,(TTYBIT) OUT (TTYBIT),A CALL DELAY9

Abb. 6.14: Fernschreiberprogramm

Wir wollen das Programm jetzt genau untersuchen. Zuerst muß der Status des Fernschreibers getestet werden, um festzustellen, ob ein Zeichen verfügbar ist:

```
TTYIN IN A,(STATUS)
BIT 7,A
JR Z,TTYN
```

Der Befehl "BIT" ist eine nützliche Einrichtung beim Z80, die es erlaubt, jedes Bit in jedem Register zu testen. Dabei wird der Inhalt des getesteten Registers nicht verändert. Das Z-Flag wird gesetzt, wenn der Inhalt des getesteten Registers 0 ist, sonst zurückgesetzt.

Das Programm verbleibt deshalb solange in der Schleife, bis der Status schließlich "1" wird. Dies ist eine klassische Abfrageschleife.

Beachten Sie, daß wir auch

AND 10000000B

statt

BIT 7,A

verwenden könnten, da der Status nicht erhalten bleiben muß. Der Befehl AND zerstört den Inhalt des Akkumulators (was hier akzeptabel wäre).

Wenn man ein Programm optimiert, dann muß man beachten, daß jeder neue Befehl unterwünschte Nebenwirkungen haben kann.

Danach ist eine Verzögerung von 4,5 ms eingebaut, um das Startbit in der Mitte des Impulses abzutasten:

CALL DELAYI

DELAY1 ist ein Unterprogramm, das die gewünschte Verzögerung ergibt. Das erste Bit, das hereinkommen soll, ist das Startbit. Es sollte wieder an den Fernschreiber ausgegeben, ansonsten aber nicht beachtet werden. Dies erledigen die nächsten Befehle:

Wir müssen dann auf das erste Datenbit warten. Die nötige Verzögerung beträgt 9,09 Millisekunden und ist als Unterprogramm ausgeführt:

Register B wird als Zähler verwendet und wird mit der Zahl 8 geladen, um die 8 Datenbits richtig aufzunehmen:

Dann werden die Datenbits nacheinander in den Akkumulator gelesen und wieder ausgegeben. Es wird angenommen, daß sie in der Stelle 0 des Akkumulators ankommen. Das Datenbit wird dann ins Register C gerettet, indem es hineingeschoben wird. Der Transfer von A nach C wird über das Carrybit ausgeführt:

Dieser Ablauf ist in Abb. 6.15 veranschaulicht.

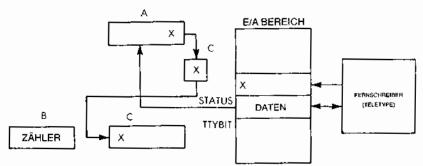


Abb. 6.15: Eingabe vom Fernschreiber

Danach sind die üblichen 9 Millisekunden Verzögerung eingebaut, der Bitzähler wird dekrementiert und die Schleife solange wiederholt, bis die acht Bit aufgenommen sind:

CALL DELAY9
DEC B
JR NZ.NEXT

Schließlich wird das Stopbit aufgenommen und wieder ausgegeben. Es genügt normalerweise, ein einzelnes Stopbit zu senden, mit zwei weiteren Befehlen könnte man jedoch beide zurückschicken:

> IN A,(TTYBIT) OUT (TTYBIT),A CALL DELAY9 RET

Dieses Programm sollte man sorgfältig untersuchen. Der logische Aufbau ist ziemlich einfach. Neu ist, daß jedes Bit, das aufgenommen wird (bei der Adresse TTYBIT), an den Fernschreiber zurückgeschickt wird. Dies ist ein Standardverfahren bei Fernschreibern. Wenn der Benutzer eine Taste drückt, wird die Information an den Prozessor übertragen und dann zum Druckwerk des Fernschreibers zurückgeschickt. Damit wird überprüft, daß die Übertragungsleitungen in Ordnung sind und daß der Prozessor arbeitet, wenn ein Zeichen richtig gedruckt wird.

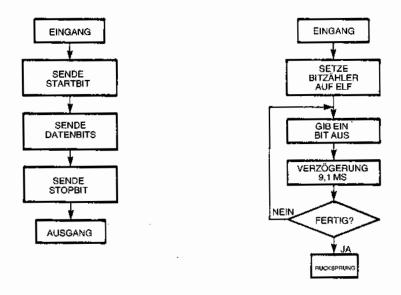


Abb. 6.16: Ausgabe auf den Fernschreiber

Aufgabe 6.25: Schreiben Sie das Verzögerungsprogramm, das die 9,09 Millisekunden Verzögerung liefert. (Unterprogramm DELAY)

Aufgabe 6.26: Schreiben Sie in Anlehnung an das obige Programm ein Programm PRINTC, das den Inhalt der Speicherzelle CHAR auf dem Fernschreiber ausdruckt (siehe Abb. 6.15).

Die Lösung erscheint unten:

PRINTC	LD	B,11H	Zähler = 11 Bit
	LD	A,(CHAR)	Hole Zeichen
	OR	A	Lösche Carry = Startbit
	RLA		Carry nach A
NEXT	OUT	(TTYBIT),A	Ausgabe
	CALL	DELAY	
	RRA		Nächstes Bit
	SCF		Carry = 1 (Stopbit)
	DEC	В	Bitzähler
	JR	NZ,NEXT	
	RET	·	

Das Register B dient als Bitzähler für die Ausgabe. Der Inhalt von Bit 0 in A wird an den Fernschreiber geschickt ("TTYBIT"). Beachten Sie, daß das Carry verwendet wird, um ein neuntes Bit zu liefern (das Startbit). Beachten Sie auch, daß das Carry gelöscht wird durch:

Am Ende des Programms wird das Carry auf Eins gesetzt durch:

SCF

um das Stopbit zu erzeugen.

Aufgabe 6.27: Verändern Sie das Programm so, daß es auf ein Startbit wartet und nicht auf ein Statusbit.

Ausdrucken einer Zeichenkette

Wir wollen annehmen, daß das Unterprogramm PRINTC (siehe Aufgabe 6.26) ein Zeichen auf unseren Drucker, unsere Anzeige oder auf ein beliebiges Gerät ausgibt. Wir wollen hier den Inhalt des Speichers ab der Stelle START bis zur Stelle START + N ausdrucken.

Das Programm ist einfach (siehe Abb. 6.17):

P\$	STRING	LD	B, N	Länge der Zeichenkette
		LD	HL,START	Basisadresse
N.	EXT	LD	A,(HL)	Hole Zeichen
		CALL	PRINTC	Drucke es
		INC	HL	Nächstes Element
		DEC	В	
		JR	NZ,NEXT	Wiederhole den Vorgang
		RET		Ç Ö

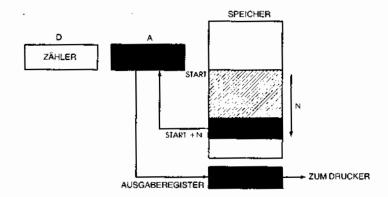


Abb. 6.17: Ausdruck eines Speicherbereichs

Zusammenfassung der Peripherie

Wir haben jetzt die Grundtechniken der Programmierung beschrieben, die man verwendet, um mit typischen Ein-/Ausgabegeräten zu kommunizieren. Zusätzlich zur Übertragung der Daten ist es normalerweise notwendig, ein oder mehrere Steuerregister innerhalb jedes Ein-/Ausgabegerätes zu setzen, um die Übertragungsgeschwindigkeit, den Interruptmechanismus und verschiedene andere Optionen richtig festzulegen. Dazu sollte man das Handbuch für jedes Gerät zu Rate ziehen. (Für weitergehende Einzelheiten über den Informationsaustausch mit allen gebräuchlichen Peripherien sei auf unser Buch Mikroprozessor Interface Techniken. Ref.-Nr. 3012 verwiesen.)

Wir haben jetzt gelernt, einzelne Geräte zu verwalten. In einem realen System sind jedoch alle Peripheriegeräte mit Bussen verbunden und können gleichzeitig eine Bearbeitung anfordern. Wie setzen wir dann die Prozessorzeit fest?

Verwaltung von Ein- und Ausgabe

Da Anforderungen von Eingaben und Ausgaben gleichzeitig auftreten können, muß in jedem System ein Verwaltungsmechanismus eingebaut sein, der festlegt, in welcher Reihenfolge die Bearbeitung stattfindet. Es werden drei grundlegende Ein-/Ausgabetechniken angewendet, die miteinander kombiniert werden können. Dies sind: Polling, Interrupt und DMA. Polling und Interrupt werden hier beschrieben. DMA ist eine reine Hardwaretechnik und wird als solche hier nicht beschrieben. (Sie wird in den Büchern 3012 und 3017 abgehandelt.)

Polling

Vom Konzept her ist Polling die einfachste Methode, um mehrere Peripheriegeräte zu verwalten. Bei diesem Verfahren fragt der Prozessor die Geräte, die an die Busse angeschlossen sind, der Reihe nach ab. Wenn ein Gerät eine Bearbeitung anfordert, wird sie gewährt. Fordert es keine Bearbeitung an, wird das nächste Peripheriegerät untersucht. Polling wird nicht nur für Geräte angewendet, sondern bei beliebigen Bearbeitungsprogrammen.

Als Beispiel sei unser System mit einem Fernschreiber, mit einem Tonbandgerät und mit einem Bildschirm ausgestattet. Dann würde das Polling-Programm den Ferschreiber fragen: "Hast du ein Zeichen zu übertragen?" Danach würde es das Fernschreiberausgabeprogramm fragen: "Hast du ein Zeichen zu senden?" Angenommen, die Antworten wären bisher negativ, dann würde es die Tonbandgeräte-Programme und schließlich den Bildschirm abfragen. Ist nur ein Gerät an das System angeschlossen, dann wird Polling auch verwendet, um festzustellen, ob das Gerät nach Bearbeitung verlangt. Als Beispiel sind die Flußdiagramme zum Lesen von einem Lochstreifenleser und zur Ausgabe an einen Drucker in Abb. 6.20 und 6.21 dargestellt.

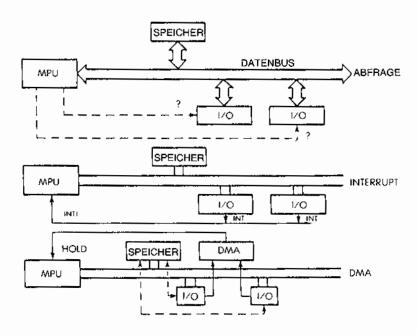


Abb. 6.18: Drei Methoden der Ein-/Ausgabesteuerung

Beispiel: eine Pollingschleife für die Geräte 1, 2, 3 und 4 (siehe Abb. 6.19):

POLIA IN A,(STATUS1) Lies Status von Gerät 1 BIT 7,A Anforderung einer Bearbeitung? CALL NZ, EINS BIT7 = 1?IN A (STATUS2) Gerät 2 BIT 7.A CALL NZ, ZWEI ľN A,(STATUS3) Gerät 3 BIT 7.A CALL NZ.DREI ΙŇ A,(STATUS4) Gerät 4 BIT 7.A CALL NZ, VIER JR POLL4 Keine Anforderung, nächster Versuch

Bit 7 des Statusregisters von jedem Gerät ist "1", wenn es Bearbeitung verlangt. Wird eine Anforderung erkannt, verzweigt dieses Programm zu dem entsprechenden Bearbeitungsprogramm, bei Adresse EINS für das Gerät 1, ZWEI für das Gerät 2 usw.

Auf eine Feinheit sei hier hingewiesen. Es ist wichtig, sich bei jedem Befehl sorgfältig zu überzeugen, wie er die Flags beeinflußt. Es sollte betont werden, daß der Eingabebefehl die Flags nicht beeinflußt. Deshalb muß mit "BIT 7,A" ein spezieller Test in das Programm eingebaut werden.

Die Vorteile von Polling sind offensichtlich: Das Verfahren ist einfach, benötigt keine Hardwareunterstützung, und alle Ein- und Ausgaben laufen synchron mit dem Programmablauf. Die Nachteile sind genauso offensichtlich: Die meiste Prozessorzeit wird damit verschwendet, nach Geräten zu schauen, die keine Bearbeitung brauchen. Darüberhinaus könnte der Prozessor, da so viel Zeit verschwendet wird, ein Gerät zu spät bearbeiten.

Deshalb wünscht man sich ein anderes Verfahren, um zu gewährleisten, daß die Prozessorzeit für sinnvolle Arbeiten genutzt werden kann und nicht die ganze Zeit nur dazu, unnötig Geräte abzufragen. Wir wollen aber betonen, daß Polling immer dann ausgiebig verwendet wird, wenn ein Mikroprozessor nichts Besseres zu tun hat, da es die gesamte Organisation einfach hält. Wir wollen jetzt die wichtige Alternative zu Polling untersuchen: Interrupts.

Interrupts

Das Konzept von Interrupts ist in Abb. 6.18 vernaschulicht. Eine spezielle Hardwareleitung, die Interruptleitung, ist mit einem speziellen Eingang des Mikroprozessors verbunden. An diese Interruptleitung können mehrere Ein-/Ausgabegeräte angeschlossen werden. Wenn irgendeines davon dann nach Bearbeitung verlangt, legt es einen Pegel oder einen Impuls auf diese Leitung. Ein Interruptsignal ist eine Anfor-

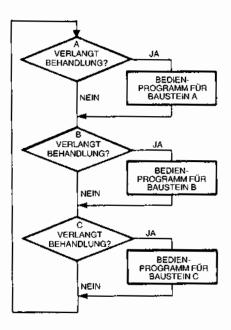


Abb. 6.19: Flußdiagramm einer Pollingschleife

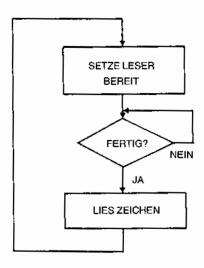


Abb. 6.20: Eingabe von einem Lochstreifenleser

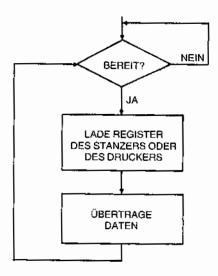


Abb. 6.21: Ausgabe auf einen Stanzer oder Drucker

derung von einem Ein-/Ausgabegerät an den Prozessor. Wir wollen die Antwort des Prozessors auf diesen Interrupt untersuchen.

In jedem Fall arbeitet der Prozessor den Befehl, den er gerade ausführte, vollständig ab. Sonst würde dies ein Chaos im Innern des Mikroprozessors auslösen. Als nächtes sollte der Mikroprozessor zu einem Interruptbehandlungs-Programm verzweigen, das den Interrupt bearbeitet. Die Verzweigung zu einem solchen Unterprogramm setzt voraus, daß der Inhalt des Befehlszählers auf dem Stapel abgelegt werden muß. Ein Interrupt muß deshalb die automatische Rettung des Befehlszählers auf den Stapel auslösen. Zusätzlich sollte das Flagregister F automatisch gerettet werden, wenn sein Inhalt von den folgenden Befehlen verändert wird. Wenn die Interruptbehandlungs-Routine irgendwelche internen Register verändert, müssen letztlich auch diese auf den Stapel gerettet werden (siehe Abb. 6.22 und 6.23).

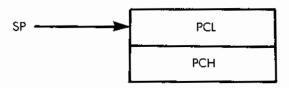


Abb. 6.22: Der Stapel des Z80 nach einem Interrupt

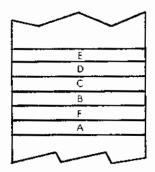


Abb. 6.23: Sicherstellen einiger Arbeitsregister

Nachdem alle diese Register sichergestellt sind, kann man zu der entsprechenden Interruptbehandlungs-Adresse verzweigen. Am Ende dieses Programms sollten alle Register wiederhergestellt werden, und ein spezieller Rücksprung vom Interrupt sollte ausgeführt werden, so daß die Ausführung des Hauptprogramms fortgesetzt wird. Wir wollen die Interruptleitungen des Z80 genauer untersuchen.

Z80 Interrupts

Ein Interrupt ist ein Signal, das zum Mikroprozessor geschickt wird, und das jederzeit asynchron zum Programm Behandlung anfordern kann. Wenn ein Programm zu einem Unterprogramm verzweigt, dann ist eine solche Verzweigung synchron zur Programmausführung, d. h. vom Programm gesteuert. Ein Interrupt kann jedoch zu jeder Zeit eintreten und wird im allgemeinen die Ausführung des laufenden Programms unterbrechen (ohne daß das Programm es weiß). Da dies zu beliebiger Zeit im Programm passieren kann, nennt man das asynchron.

Der Z80 verfügt über drei Interruptmechanismen: den Bus Request (BUSRQ), den nicht maskierbaren Interrupt (NMI) und den normalen Interrupt (INT).

Wir wollen diese drei Verfahren untersuchen.

Der Bus Request

Der Bus Request ist der Interruptmechanismus mit der höchsten Priorität beim Z80. Abb. 6.24 zeigt den Ablauf. Es ist eine allgemeine Regel, daß der Z80 solange keinen Interrupt zur Kenntnis nimmt, bis der laufende Maschinenzyklus beendet ist. Die Interrupts NMI und INT werden nicht bearbeitet, bis der laufende Befehl abgeschlossen ist. BUSRQ wird jedoch am Ende des laufenden Maschinenzyklus behandelt, ohne daß notwendigerweise das Ende des Befehls abgewartet wird. BUSRQ wird für einen direkten Speicherzugriff verwendet (DMA) und es veranlaßt, daß der Z80 in den DMA-Modus geht (siehe C201 für eine Erklä-

rung des DMA-Mechanismus). Ist das Ende eines Befehls erreicht, und stehen NMI oder INT an, so werden sie im Z80 daran erkannt, daß spezielle Flip-Flops gesetzt werden: das NMI-Flip-Flop und das INT-Flip-Flop. Im DMA Modus unterbricht der Z80 seine Arbeit und gibt seinen Datenbus und seinen Adreßbus im hochohmigen Zustand frei. Diese Betriebsart wird normalerweise von einem DMA-Controller benutzt, um Datenübertragungen zwischen einem sehr schnellen Ein-/Ausgabegerät und dem Speicher durchzuführen und dazu Daten- und Adreßbus des Mikroprozessors zu benutzen. Das Ende der DMA-Operation wird dem Z80 dadurch angezeigt, daß BUSRQ seinen Pegel ändert. An die-

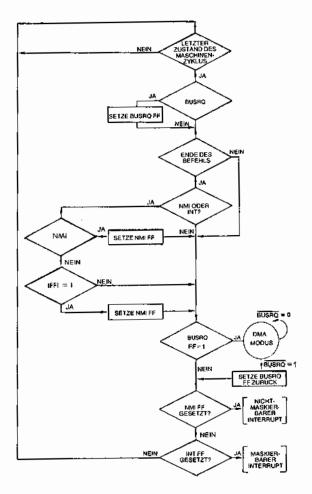


Abb. 6.24: Interrupt Folge

ser Stelle nimmt der Z80 seine normale Arbeit wieder auf. Eventuell testet er zuerst, ob sein internes NMI- oder INT-Flip-Flop gesetzt wurden, und bearbeitet dann die entsprechenden Interrupt.

Normalerweise sollte DMA den Programmierer nicht betreffen, wenn nicht der zeitliche Ablauf wichtig ist. Enthält das System einen DMA-Controller, dann muß der Programmierer verstehen, daß DMA die Antwort auf einen NMI oder INT verzögern kann.

Der Nichtmaskierbare Interrupt

Diese Art von Interrupt kann vom Programmierer nicht unterdrückt werden. Man sagt deshalb, er sei nicht maskierbar, daher sein Name. Er wird vom Z80 immer nach Ausführung des laufenden Befehls akzeptiert, falls kein Bus Request empfangen wurde. (Wenn während eines BUSRQ ein NMI empfangen wird, dann wird das interne NMI-Flip-Flop gesetzt, und der Interrupt wird nach dem Bus Request bearbeitet.) Der NMI bewirkt, daß der Befehlszähler automatisch auf den Stapel abgelegt wird, und daß zur Adresse 0066H verzweigt wird: Die beiden By-

gelegt wird, und daß zur Adresse 0066H verzweigt wird: Die beiden Bytes, die die Adresse 0066H darstellen, werden in den Befehlzähler eingetragen. Sie bilden die Startadresse der Behandlungsroutine für den NMI (siehe Abb. 6.25).

Dieser Interruptmechanismus wurde auf Geschwindigkeit ausgelegt, da er bei "Notfällen" verwendet wird. Deshalb bietet er nicht die Flexibilität der maskierbaren Interruptarten, die unten beschrieben werden.

Beachten Sie auch, daß eine Interruptroutine bei der Adresse 0066H geladen sein muß, bevor der NMI verwendet wird.

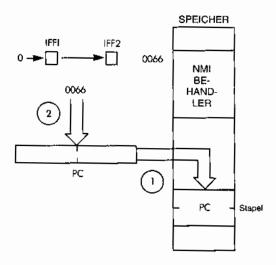


Abb. 6.25: Der NMI erzwingt eine automatische Verzweigung

Ein NMI bewirkt einen automatischen Restart zu der Adresse 0066H. Es laufen die folgenden Ereignisse ab:

PC → Stapel (rette Befehlszähler)

IFF1 → IFF2 (rette IFF)

0 → IFF1 (setze IFF zurück)

Sprung nach 0066H (starte Interruptbehandlung)

Der Zustand des Flip-Flops, das das Bit Interruptmaske enthält (IFF1), wird automatisch nach IFF2 gerettet. Dann wird IFF1 zurückgesetzt um weitere Interrupts zu verhindern. Diese Maßnahme ist wichtig, um zu verhindern, daß Interrupts niedriger Priorität verloren gehen, und sie vereinfacht die externe Hardware: Der Status eines anstehenden INT wird im Z80 intern gespeichert.

Der NMI wird normalerweise für Ereignisse hoher Priorität verwendet, wie für Uhren oder Stromausfälle.

Der Rücksprung von der NMI-Behandlung wird mit einem Spezialbefehl ausgeführt, mit RETN: "Rücksprung von einem Nichtmaskierbaren Interrupt". Der Inhalt von IFF1 wird wieder aus IFF2 geladen und der Inhalt des Befehlszählers vom Stapel geholt. Da IFF1 während der Ausführung des NMI zurückgesetzt war, konnten keine externen INTs akzeptiert werden, d. h. es ging keine Information verloren.

Bei der Beendigung des Interruptbehandlungs-Programms werden folgende Operationen ausgeführt:

IFF2 → IFF1 (stelle IFF1 wieder her)

Stapel → PC (stelle Befehlszähler wieder her)

Sobald IFF1 wiederhergestellt ist, liegt wieder der alte Interrupt-Enable-Status vor.

Interrupt

Der normale maskierbare Interrupt INT kann in einem von drei Modi arbeiten. Sie sind spezielle Eigenschaften des Z80, der 8080 hat nur eine einzige Interrupt-Betriebsart. Der normale Interrupt INT kann auch vom Programmierer selektiv maskiert werden. Wenn die Interrupt-Flip-Flops IFF1 und IFF2 auf "1" gesetzt werden, dann sind Interrupts zugelassen. Werden sie auf "0" gesetzt (maskiert), wird INT nicht beachtet. Mit dem Befehl EI werden sie gesetzt, mit DI zurückgesetzt. IFF1 und IFF2 werden zusammen gesetzt oder zurückgesetzt. Während der Ausführung von EI und DI sind INTs gesperrt, um einen Verlust von Information zu vermeiden.

Wir wollen jetzt die drei Interrupt-Modi untersuchen:

Interrupt Modus 0

Dieser Modus ist mit dem 8080 Interrupt Modus identisch. Der Z80 arbeitet im Interrupt-Modus 0, nachdem er anfangs gestartet wurde (wenn das Reset-Signal angelegt wurde) oder wenn der Befehl IMO ausgeführt wurde. Ist der Interrupt-Modus 0 gesetzt, dann wird ein Interrupt er-

kannt, wenn das Interrupt-Freigabe-Flip-Flop IFF1 auf 1 gesetzt ist, vorausgesetzt daß nicht gleichzeitig ein Bus Request oder ein nichtmaskierbarer Interrupt auftritt. Der Interrupt wird nur am Ende eines Befehls erkannt, Im wesentlichen antwortet der Z80 auf einen Interrupt, indem er das Signal IORQ erzeugt (außer dem Signal M1) und dann wartet.

Es ist die Aufgabe eines externen Gerätes, die Signale IORQ und M1 (dies nennt man Interrupt Acknowledge oder INTA) zu erkennen und einen Befehl auf den Datenbus zu legen. Der Z80 erwartet, daß ein externes Gerät während des nächsten Zyklus einen Befehl auf den Datenbus legt. Typischerweise wird ein RST oder ein CALL auf den Bus gelegt. Diese beiden Befehle retten automatisch den Befehlszähler auf den Stapel und bewirken eine Verzweigung zu einer speziellen Adresse. Der Vorteil des Befehls RST ist es, daß er nur aus einem einzigen Byte besteht, d. h. daß er schnell ausgeführt wird. Sein Nachteil ist, daß er nur zu einer von acht Adressen in der Seite Null (Adressen 0 bis 255) verzweigen kann. Der Vorteil des Befehls CALL ist es, daß er als universeller Verzweigungsbefehl eine vollständige 16-Bit-Adresse festlegt. Er belegt jedoch drei Byte und wird deshalb weniger schnell ausgeführt.

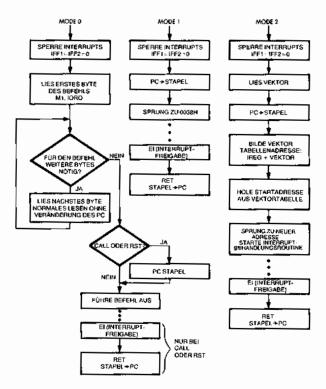


Abb. 6.26: Interrupt Modi

Beachten Sie, daß alle weiteren Interrupts gesperrt sind, sobald die Interruptbehandlung beginnt. IFF1 und IFF2 werden automatisch auf "0" gesetzt. Es ist dann Aufgabe des Programmierers, einen Befehl EI (Enable Interrupt, Interruptfreigabe) an der entsprechenden Stelle im Programm einzufügen, wenn er will, daß weitere Interrupts zugelassen sind, und in jedem Fall, bevor er von dem Interrupt zurückkehrt.

Die genaue Abfolge, die dem Modus 0 entspricht, ist in Abb. 6.26 dargestellt.

Der Rücksprung vom Interrupt wird mit dem Befehl RETI ausgeführt. Wir wollen den Programmierer an dieser Stelle daran erinnern, daß er normalerweise dafür verantwortlich ist, daß die Interrupt-Anforderung des Ein-/Ausgabegerätes explizit gelöscht wird, und immer dafür, daß das interne Interrupt-Flip-Flop des Z80 wieder gesetzt wird. Das periphere Steuergerät kann jedoch das Signal INTA dazu verwenden, die Interrupt-Anforderung zu löschen, und den Programmierer von dieser Aufgabe zu entlasten.

Falls die Interruptbehandlungs-Routine den Inhalt irgendwelcher interner Register verändert, ist der Programmierer speziell dafür verantwortlich, diese Register vor Ausführung der Interruptbehandlungs-Routine auf den Stapel zu retten. Sonst wird der Inhalt dieser Register zerstört, und das unterbrochene Programm versagt, wenn es die Ausführung fortsetzen soll. Werden beispielsweise die Register A, B, C, D, E, H und L innerhalb der Interruptbehandlung verwendet, müssen sie gerettet werden (siehe Abb. 6.27).

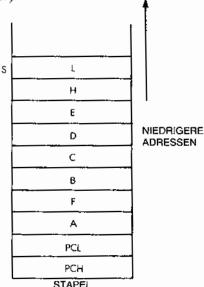


Abb. 6.27: Sicherstellen der Register

Das entsprechende Programm lautet:

SAVREG PUSH AF PUSH BC PUSH DE PUSH HL

Nach Beendigung der Interruptbehandlungs-Routine müssen diese Register wiederhergestellt werden. Das Interruptbehandlungs-Programm wird mit den folgenden Befehlen abgeschlossen:

POP HL
POP DE
POP BC
POP AF
EI (wenn EI nicht schon vorher in diesem
Programm ausgeführt wurde)

Wenn die Routine die Register IX und IY benutzt, müssen diese zusätzlich genauso sichergestellt und später wiederhergestellt werden.

Interrupt Modus 1

Dieser Interrupt Modus wird gesetzt durch Ausführung des Befehls IM1. Er ist ein automatischer Interrupt-Behandler, der einen Sprung zur Adresse 0038H bewirkt. Er ist deshalb im wesentlichen analog zu dem NMI Interruptmechanismus, außer daß er maskiert werden kann. Der Z80 rettet automatisch den Inhalt des Befehlszählers auf den Stapel (siehe Abb. 6.28).

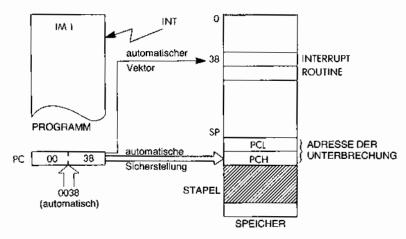


Abb. 6.28: Interrupt Modus 1

Diese automatische Antwort auf einen Interrupt, die alle Interrupts auf die Adresse 38H verweist, vermindert den Aufwand an externer Hardware, die zur Ausführung von Interrupts nötig ist. Ein möglicher Nachteil ist die Verzweigung zu einer einzigen Speicheradresse. Wenn mehrere Bausteine an die Leitung INT angeschlossen sind, dann ist es Aufgabe des Programms an der Adresse 38H festzustellen, welches Gerät den Interrupt angefordert hat. Dieses Problem wird unten angesprochen.

Eine Vorsichtsmaßnahme muß mit Rücksicht auf den zeitlichen Ablauf dieses Interrupts ergriffen werden: Wenn man programmierte Ein-/Ausgaben ausführt, dann beachtet der Z80 Daten nicht, die während des Zyklus, der auf den Interrupt folgt (dem Interrupt Acknowledge Zyklus), auf dem Datenbus liegen können.

Interrupt Modus 2 (Vektorinterrupts)

Dieser Modus wird durch Ausführung des Befehls IM2 gesetzt. Er ist ein leistungsfähiger Modus, der eine automatische Verzeigerung von Interrupts erlaubt. Der Interruptvektor ist eine Adresse, die das periphere Gerät liefert, das den Interrupt angefordert hat, und die als Zeiger auf die Interruptbehandlungsroutine dient. Der Adressierungsmechanismus des Z80 im Modus 2 ist indirekt (statt direkt). Jedes periphere Gerät liefert eine 7 Bit lange Adresse, die an die 8 Bit lange Adresse im Register I angehängt wird. Das rechte Bit der endgültigen 16-Bit-Adresse wird auf Null gesetzt. Diese Adresse zeigt in eine Tabelle irgendwo im Speicher. Diese Tabelle kann bis zu 128 Eintragungen aus zwei Worten enthalten. Jedes dieser Doppelworte ist die Adresse der Behandlungsroutine für das entsprechende Gerät. Dies ist in Abbildung 6.29 und 6.30 veranschaulicht.

Die Interrupt-Tabelle kann bis zu 128 Eintragungen aus zwei Worten enthalten.

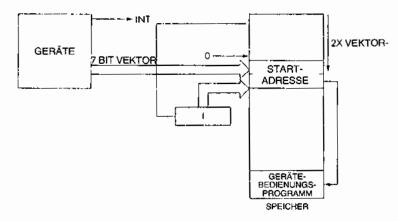


Abb. 6.29: Interrupt Modus 2

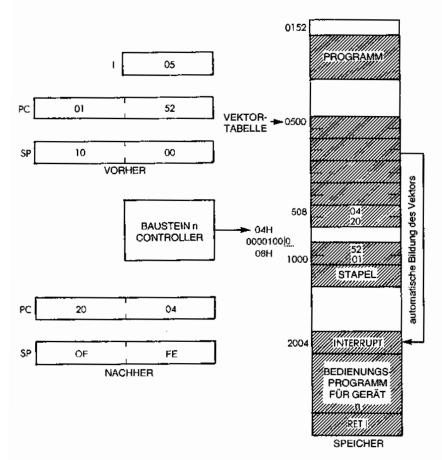


Abb. 6.30: Modus 2 - ein praktisches Beispiel

Auch in diesem Modus legt der Z80 den Inhalt des Befehlszählers automatisch auf den Stapel. Dies ist auch notwendig, da der Befehlszähler aus der Interrupt-Tabelle entsprechend dem Zeiger geladen wird, den das Gerät liefert.

Verwaltungsaufwand bei Interrupts

Für einen Vergleich zwischen Polling und Interrupt sei auf Abb. 6.18 verwiesen, wo oben der Pollingprozeß und darunter der Interruptprozeß dargestellt ist. Man sieht, daß das Programm bei der Pollingtechnik viel Zeit beim Abtasten verschwendet.

Wenn man Interrupts verwendet, wird das Programm unterbrochen, der Interrupt behandelt und dann die Ausführung des Programms fortgesetzt. Der offensichtliche Nachteil eines Interrupts ist es jedoch, daß am Anfang und am Ende mehrere zusätzliche Befehle ausgeführt werden, die eine Verzögerung bewirken, bevor der erste Befehl des Behandlungsprogramms ausgeführt werden kann. Dies ist ein zusätzlicher Zeitverlust.

Aufgabe 6.28: Berechnen Sie, wieviel Zeit verloren geht, um die Register A, B, D und H zu retten und wiederherzustellen.

Nachdem die Arbeitsweise der Interruptleitungen geklärt ist, wollen wir uns noch mit zwei weiteren wichtigen Problemen befassen:

- 1 Wie lösen wir das Problem, daß mehrere Geräte gleichzeitig einen Interrupt auslösen können?
- 2 Wie lösen wir das Problem, daß ein weiterer Interrupt eintreten kann, während ein Interrupt bearbeitet wird?

Verschiedene Geräte an einer einzigen Interruptleitung

Immer wenn ein Interrupt auftritt, verzweigt der Prozessor zu einer festgelegten Adresse. Bevor die Bearbeitung beginnen kann, muß das Interruptbehandlungs-Programm feststellen, welches Gerät den Interrupt ausgelöst hat. Es gibt wie üblich zwei Methoden, das Gerät zu identifizieren: eine Software-Methode und eine Hardware-Methode.

Bei der Software-Methode wird Polling angewendet: Der Mikroprozessor fragt jedes Gerät der Reihe nach: "Hast du den Interrupt angefordert?" Ist die Antwort negativ, wird das nächste Gerät befragt. Dieses Verfahren ist in Abb. 6.31 dargestellt. Ein Beispielprogramm ist:

```
POLINT IN
               A,(STATUS1) Lies Status
         BIT
                             Hat dieses Gerät den INT
              7,A
                             angefordert?
         JP
               NZ,EINS
                             Wenn ja, behandle den Interrupt
              A,(STATUS2)
         IN
         BIT
              7,A
         JP
               NZ,ZWEI
         usw.
```

Die Hardware-Methode benötigt zusätzliche Bauteile, liefert die Adresse des unterbrechenden Gerätes aber gleichzeitig mit der Interruptanforderung. Der Baustein, der jetzt allgemein verwendet wird, um diese Aufgabe zu erfüllen, heißt PIC oder Priority-Interupt-Controller (priorisierter Steuerbaustein für Interrupts). Ein solcher PIC legt die Adresse automatisch auf den Datenbus, die für das unterbrechende Gerät gebraucht wird.

Um genauer zu sein, im Interrupt Modus 0 legt der PIC einen Ein-Byte-RST oder einen Drei-Byte-CALL auf den Datenbus, als Antwort auf den Interrupt Acknowledge. So wird der Zeiger auf die Behandlungsroutine automatisch geliefert und der Zeitverlust klein gehalten.

Beachten Sie, daß ein Unterprogrammaufruf nötig ist, da der Z80 im Modus 0 den Befehlszähler nicht rettet.

In den meisten Fällen ist die Geschwindigkeit der Reaktion auf einen Interrupt nicht kritisch, und man verwendet ein Polling-Verfahren. Ist die Antwortzeit besonders entscheidend, muß man ein Hardware-Verfahren anwenden.

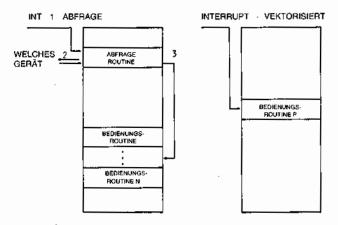


Abb. 6.31: Abfrage (Polling) und vektorisierter Interrupt

Gleichzeitige Interrupts

Weiterhin kann das Problem auftreten, daß ein neuer Interrupt angefordert wird, während ein Interruptbehandlungs-Programm läuft. Wir wollen untersuchen, was dann passiert, und wie der Stapel verwendet wird, um das Problem zu lösen. Im Kapitel 2 haben wir angekündigt, daß dies eine weitere wesentliche Aufgabe des Stapels ist, und jetzt ist die Zeit gekommen, seine Verwendung zu demonstrieren. Wir wollen uns auf Abb. 6.33 beziehen, um mehrfache Interrupts zu veranschaulichen. In der Darstellung verläuft die Zeitachse von links nach rechts. Der Inhalt des Stapels ist im unteren Teil der Abbildung dargestellt. Wenn wir links beginnen, so wird zum Zeitpunkt T0 das Programm P ausgeführt. Wenn wir uns nach rechts wenden, dann tritt zum Zeitpunkt T1 der Interrupt I1 ein. Wir wollen annehmen, daß Interrupts freigegeben sind und I1 zugelassen ist. Das Programm P wird unterbrochen. Dies ist im unteren Teil der Abbildung dargestellt. Der Stapel enthält den Befehlszähler und wenigstens das Statusregister vom Programm P1, außerdem weitere Register, die die Behandlungsroutine für den Interrupt I1 rettet.

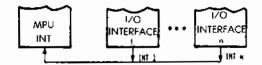


Abb. 6.32: Mehrere Geräte können die gleiche Interruptleitung verwenden

Vom Zeitpunkt T1 bis zum Zeitpunkt T2 wird der Interrupt I1 behandelt. Zum Zeitpunkt T2 tritt der Interrupt I2 auf. Wir wollen annehmen, daß der Interrupt I2 eine höhere Priorität besitzt als I1. Hätte er eine niedrigere Priorität, dann würde er solange nicht beachtet, bis I1 abgeschlossen wäre. Zum Zeitpunkt T2 werden die Register von I1 auf den Stapel gelegt, und dies erscheint unten in der Abbildung. Wieder werden der Inhalt des Befehlszählers und AF auf den Stapel gelegt. Zusätzlich wird vielleicht das Programm für I2 einige weitere Register retten. I2 wird jetzt ausgeführt, bis es zum Zeitpunkt T3 beendet ist.

Wird I2 beendet, dann wird der Inhalt des Stapels automatisch in den Z80 zurück "gepopt", und dies zeigt Abb. 6.33 unten. Dann fährt automatisch I1 mit der Ausführung fort. Unglücklicherweise passiert zum Zeitpunkt T4 wieder ein Interrupt mit höherer Priorität. Wir sehen in der Abbildung, daß wieder die Register von I1 auf den Stapel abgelegt werden. Der Interrupt I3 wird von T4 bis T5 bearbeitet, wo er beendet wird. Zu diesem Zeitpunkt wird der Inhalt des Stapels in den Z80 zurückgegeben, und der Interrupt I1 wird weiter behandelt, bis er zum Zeitpunkt T6 beendet wird. Bei T6 werden die Register, die noch auf dem Stapel liegen, in den Z80 zurückgegeben, und die Ausführung des Programms P wird fortgesetzt. Der Leser wird sich davon überzeugen, daß der Stapel an dieser Stelle leer ist. Die Zahl der gestrichelten Linien, die anzeigt, wie oft ein Programm unterbrochen wurde, zeigt gleichzeitig an, wieviele Ebenen auf dem Stapel liegen.

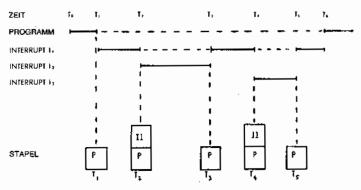


Abb. 6.33: Inhalt des Stapels während mehrerer Interrupts

Aufgabe 6.29: Nehmen sie an, daß der Platz für den Stapel in einem speziellen Programm auf 300 Plätze begrenzt ist. Nehmen Sie an, daß immer alle Register gerettet werden müssen, und daß der Programmierer verschachtelte Interrupts zuläßt, d. h. sie unterbrechen sich gegenseitig. Wie viele Interrupts können gleichzeitig behandelt werden? Kann ein anderer Grund die maximale Zahl gleichzeitiger Interrupts weiter vermindern?

Es muß jedoch betont werden, daß Mikroprozessorsysteme in der Praxis normalerweise mit einer kleinen Zahl von Geräten verbunden sind, die Interrupts auslösen können. Es ist deshalb untypisch, daß eine große Zahl von Interrupts in einem solchen System gleichzeitig auftritt.

Wir haben jetzt alle die Probleme gelöst, die üblicherweise im Zusammenhang mit Interrupts auftreten. Ihre Anwendung ist tatsächlich einfach, und auch der Programmiererneuling sollte sie zum Vorteil einsetzen.

Zusammenfassung

In diesem Kapitel haben wir den Bereich der Techniken vorgestellt, die zur Kommunikation mit der Außenwelt verwendet werden. Von elementaren Ein-/Ausgabeprogrammen bis zu komplexeren Programmen zur Kommunikation mit wirklichen Geräten haben wir es gelernt, die nötigen Programme zu entwickeln, und wir haben sogar die Effizienz eines Benchmarkprogramms im Falle einer Parallelübertragung und einer Parallel-Seriell-Wandlung untersucht. Schließlich haben wir es gelernt, die Arbeit mit mehreren Peripheriegeräten zu verwalten und dabei Polling und Interrupts zu verwenden. Natürlich kann man viele weitere exotische Ein-/Ausgabegeräte an ein System anschließen. Mit den Techniken, die bisher vorgestellt wurden, und mit einem Verständnis für die verwendeten Geräte sollte es möglich sein, die meisten allgemeinen Probleme zu lösen.

Im nächsten Kapitel wollen wir die wirklichen Eigenschaften der Ein-/ Ausgabegeräte untersuchen, die normalerweise an einen Z80 angeschlossen werden. Dann wollen wir die grundlegenden Datenstrukturen betrachten, die der Programmierer verwenden kann.

Aufgabe 6.30: Berechnen sie den Zeitverlust, wenn man im Modus 0 arbeitet und alle Register gerettet werden müssen, und wenn ein RST als Antwort auf den Interrupt Acknowledge empfangen wird. Der Zeitverlust ist die gesamte Verzögerung, die eintritt, mit Ausnahme der Befehle, die nötig sind, um die Interruptbearbeitung entsprechend einzubauen.

Aufgabe 6.31: Eine 7-Segment-LED-Anzeige kann auch andere Zeichen als das Hexadezimale Alphabet anzeigen. Berechnen Sie den Kode für H, I, J, L, O, P, S, U, Y, g i, j, l, n, o, p, r, t, u, y.

Aufgabe 6.32: Das Flußdiagramm zur Interruptverwaltung erscheint in Abb. 6.34. Beantworten Sie folgende Fragen:

- a Was erledigt man mit Hardware, was mit Software?
- b Wozu wird die Maske verwendet?
- c Wie viele Register sollte man retten?
- d Wie erkennt man das unterbrechende Gerät
- e Was macht der Befehl RETI? Wie unterscheidet er sich von einem Rücksprung aus einem Unterprogramm?
- f Schlagen Sie eine Methode vor, wie man einen Überlauf des Stapels behandeln kann.
- g Wie groß ist der Zeitverlust, den der Interruptmechanismus mit sich bringt?

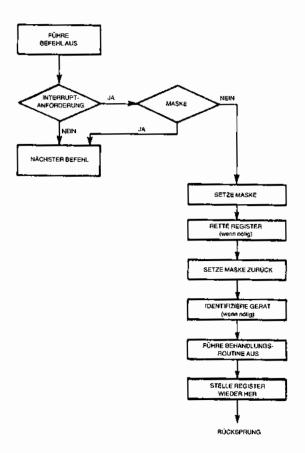


Abb. 6.34: Interruptlogik

7

Ein-/Ausgabegeräte

Einführung

Wir haben gelernt, wie der Mikroprozessor Z80 in den meisten gebräuchlichen Situationen programmiert wird. Wir sollten jedoch den Ein-/Ausgabebausteinen, die normalerweise an den Mikroprozessor angeschlossen werden, besondere Beachtung schenken. Durch den Fortschritt bei der LSI-Integration wurden neue ICs eingeführt, die es vorher nicht gab. Deshalb gehört zur Programmierung eines Systems natürlich die Programmierung des Mikroprozessors selbst, aber auch die Programmierung der Ein-/Ausgabebausteine. Tatsächlich ist es oft schwieriger, sich zu merken, wie die verschiedenen Steuerungsvarianten eines Ein-/Ausgabebausteins programmiert werden; wie der Mikroprozessor selbst programmiert wird, ist dagegen vergleichsweise einfach! Dies liegt nicht daran, daß die Programmierung selbst komplizierter ist, sondern daran, daß jeder dieser Bausteine seine speziellen Eigenheiten hat. Wir wollen hier zuerst den allgemeinsten Ein-/Ausgabebaustein untersuchen, den programmierbaren Ein-/Ausgabebaustein (englisch: parallel input output, kurz "PIO"), danach einige Ein-/Ausgabebausteine von Zilog.

Die "Standard-PIO".

Es gibt keine "Standard-PIO". Allerdings funktioniert jeder PIO-Baustein im wesentlichen analog zu allen ähnlichen PIOs, die andere Hersteller für die gleichen Aufgaben produzieren. Die Aufgabe einer PIO ist es, mehrere Ports zur Ein-/Ausgabe zur Verfügung zu stellen (ein "Port" ist einfach ein Satz von 8 Ein-/Ausgabe-Leitungen). Jede PIO stellt wenigstens zwei Sätze von 8 Ein-/Ausgabe-Leitungen zur Ein-/Ausgabe zur Verfügung. Jede PIO braucht einen Datenpuffer, um wenigstens den Inhalt des Datenbusses am Ausgang zu stabilisieren. Unsere PIO hat deshalb für jeden Port mindestens einen Puffer.

Zusätzlich haben wir festgesetzt, daß der Mikroprozessor ein Handshaking-Verfahren benutzt oder aber mit dem Ein-/Ausgabebaustein über Interrupts kommuniziert. Die PIO selbst wird ein ähnliches Verfahren zur Kommunikation mit der Peripherie anwenden. Jede PIO muß deshalb für jeden Port mindestens zwei Steuer-Leitungen besitzen, um das Handshaking-Verfahren zu realisieren.

Der Mikroprozessor muß außerdem den Status jedes Ports lesen können. Jeder Port muß ein oder mehrere Statusbits besitzen. Schließlich wird es in der PIO tine Reihe von Optionen geben, die ihre Funktionen festlegen. Der Programmierer muß auf ein Spezialregister in der PIO zugreifen können, um die programmierbaren Optionen festzulegen. Dies ist das Steuer-Register. In manchen Fällen ist die Statusinformation Teil des Steuer-Registers.

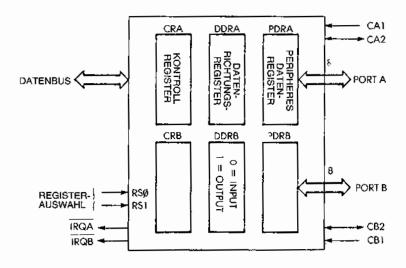


Abb. 7.1: Typische PIO

Eine wesentliche Eigenschaft der PIO ist es, daß jeder Anschluß entweder als Eingang oder als Ausgang programmiert werden kann. Abb. 7.1 zeigt den Aufbau einer PIO. Der Programmierer kann festlegen, ob eine Leitung Eingang oder Ausgang ist. Um die Richtung der Leitungen festzulegen, gibt es ein Datenrichtungsregister für jeden Port. Eine "0" an einer Stelle des Datenrichtungsregisters legt einen Eingang fest, eine "1" einen Ausgang.

Es mag überraschen, daß eine "0" für Eingänge verwendet wird und eine "1" für Ausgänge, und daß nicht umgekehrt eine "0" Ausgänge festlegt und eine "1" Eingänge. Dies ist aber beabsichtigt: Wenn das System eingeschaltet wird, dann ist es wichtig, daß alle Ein-/Ausgänge als Eingänge geschaltet sind. Wenn der Mikrocomputer mit "gefährlichen" Geräten

verbunden ist, könnte er sie sonst durch Zufall einschalten. Wird ein Reset angelegt, dann werden normalerweise alle Register auf Null gesetzt, und das führt dazu, daß alle Anschlüsse der PIO zu Eingängen werden. Die Verbindungen zum Mikroprozessor erscheinen auf der linken Seite der Abbildung. Die PIO ist natürlich an den 8-Bit Datenbus angeschlossen, an den Adreßbus des Mikroprozessors und an den Steuerbus. Der Programmierer gibt einfach die Adresse eines beliebigen Registers an, auf das er innerhalb der PIO zugreifen will.

Die internen Steuer-Register

Das Steuer-Register der PIO liefert eine Anzahl von Optionen zur Erzeugung und Erkennung von Interrupts und zum Einbau automatischer Handshaking-Funktionen. Es ist hier nicht notwendig, alle Möglichkeiten vollständig zu beschreiben. Der Benutzer eines wirklichen Systems, das eine PIO verwendet, muß einfach das Datenblatt zu Rate ziehen, das die Wirkung der verschiedenen Bits im Steuer-Register beschreibt. Wenn das System initialisiert wird, muß der Programmierer das Steuer-Register der PIO mit dem richtigen Inhalt für die gewünschte Anwendung laden.

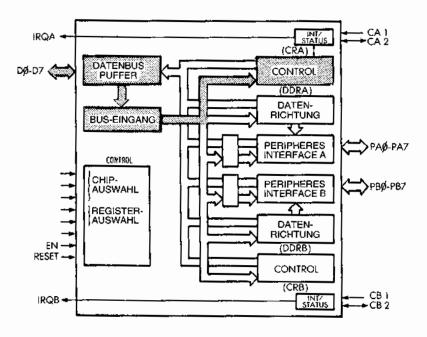


Abb. 7.2: Der Gebrauch einer PIO – Laden des Steuer-Registers

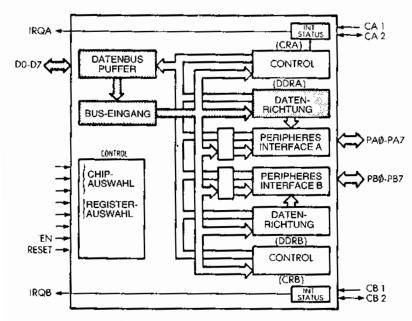


Abb. 7.3: Der Gebrauch einer PIO - Laden der Datenrichtung

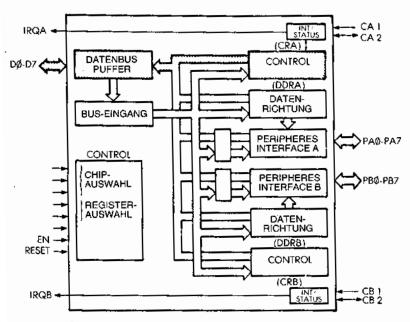


Abb. 7.4: Der Gebrauch einer PIO - Lesen des Status

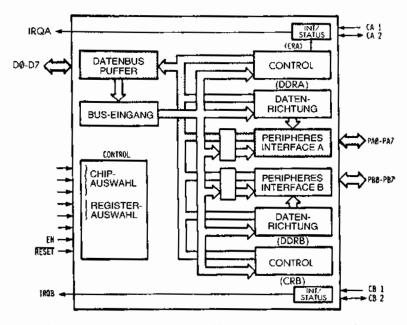


Abb. 7.5: Der Gebrauch einer P10 - Lesen einer Eingabe

Programmierung einer PIO

Wenn man einen PIO-Kanal als Eingang verwenden will, dann ergibt sich typischerweise folgender Ablauf:

Laden des Steuer-Registers

Dies erledigt man durch einen programmierten Transfer zwischen einem Z80-Register (normalerweise dem Akkumulator) und dem Steuer-Register der PIO. Damit werden die Optionen und die Betriebsart gesetzt (siehe Abb. 7.2). Dies macht man normalerweise einmal am Anfang eines Programms.

Laden des Richtungsregisters

Dies legt die Richtung fest, in der die Ein-/Ausgabe-Leitungen benutzt werden (siehe Abb. 7.3).

Lesen des Status

Das Statusregister zeigt an, ob ein gültiges Byte zur Eingabe verfügbar ist (siehe Abb. 7.4).

Lesen des Ports

Das Byte wird in den Z80 gelesen (siehe Abb. 7.5).

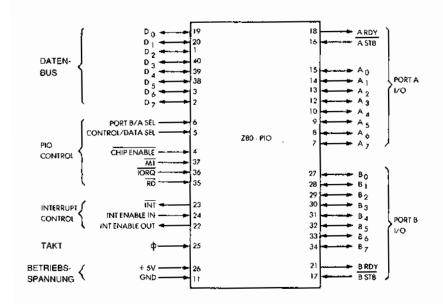


Abb. 7.6: Die Anschlußbelegung der Z80 PIO

Die Zilog Z80 PIO

Die Z80 PIO besitzt zwei Ports. Ihr Aufbau entspricht im wesentlichen dem Standardmodell, das wir eben beschrieben haben. Abb. 7.6 zeigt die tatsächliche Anschlußbelegung, in Abb. 7.7 ist ein Blockdiagramm dargestellt.

Jeder Port der PIO hat sechs Register: ein 8-Bit Eingaberegister, ein 9-Bit Ausgaberegister, ein 2-Bit Betriebsartenregister, ein 8-Bit Maskenregister, ein 8-Bit Ein-/Ausgabeauswahlregister (Richtungsregister) und ein 2-Bit Maskenkontrollregister. Die letzten drei Register werden nur benutzt, wenn die PIO im Bitmodus arbeitet.

Die PIO kann in einer von vier Betriebsarten arbeiten, die durch den Inhalt des Betriebsartenregisters (2 Bit) festgelegt wird. Dies sind: Byteausgabe, Byteeingabe, bidirektonaler Bytebus und Bitmodus.

Die beiden Bits im Maskenkontrollregister werden vom Programmierer geladen, und sie legen fest, ob der Zustand hoch oder niedrig des Peripheriegeräts überwacht werden soll, sowie die Bedingungen, unter denen ein Interrupt erzeugt wird.

Das 8-Bit Ein-/Ausgabe-Auswahlregister legt für jeden Anschluß fest, ob er Eingang oder Ausgang ist, wenn man im Bitmodus arbeitet.

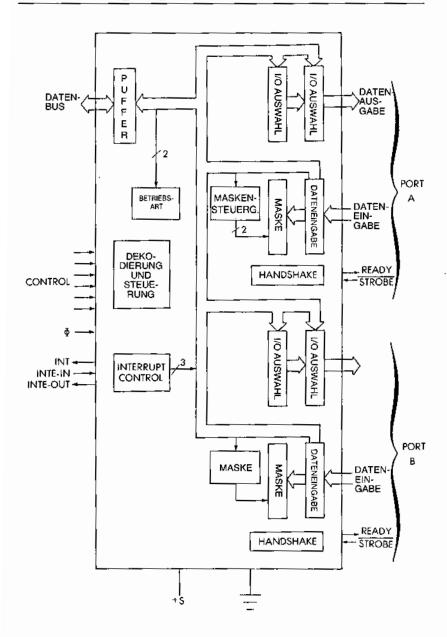


Abb. 7.7: Blockdiagramm der Z80 PIO

Programmierung der Zilog PIO

Eine typische Folge zur Programmierung einer PIO z. B. im Bit-Modus wäre folgendes:

Lade das Betriebsartenkontrollregister, um den Bit-Modus festzulegen. Lade das Ein-/Ausgang-Auswahlregister von Port A um festzulegen, daß die Leitungen 0-5 Eingänge, die Leitungen 6 und 7 Ausgänge sind. Danach wird ein Wort gelesen, indem der Inhalt des Eingangspuffers gelesen wird.

Zusätzlich könnte man das Maskenregister verwenden, um die Statusbedingungen festzulegen.

Für eine weitergehende Beschreibung der Arbeitsweise der PIO sei der Leser auf das begleitende Buch aus dieser Serie, das Z80 Applikationsbuch verwiesen.

Die Z80 SIO

Die SIO (serielle Ein-/Ausgabe) ist ein Peripheriebaustein mit zwei Kanälen, der entworfen wurde, um die asynchrone Kommunikation in serieller Form zu erleichtern. Sie enthält ein UART, d. h. einen universellen asynchronen Empfänger-Sender. Seine hauptsächliche Funktion ist die Wandlung seriell nach parallel und parallel nach seriell. Dieser Baustein ist jedoch mit hochentwickelten Eigenschaften ausgerüstet, wie automatische Behandlung komplexer byteorientierter Protokolle, wie IBM BSC (Binary Synchroneous Communication) oder auch HDLC (High Data Link Communication) und SDLC (Synchroneous Data Link Communication).

Zusätzlich kann sie in synchroner Betriebsart arbeiten, wie ein USRT, und CRC-Kodes erzeugen und testen. Sie bietet mehrere Betriebsarten zum Aufruf, für Interrupts und zur Blockübertragung. Die vollständige Beschreibung dieses Bausteins würde den Rahmen dieses einführenden Buchs bei weitem sprengen.

Andere Ein-/Ausgabebausteine

Da der Z80 üblicherweise den 8080 ersetzt, wurde er so konstruiert, daß er mit den meisten der gebräuchlichen 8080-Ein-/Ausgabebausteine arbeiten kann, wie auch mit den speziellen Ein-/Ausgabebausteinen, die Zilog herstellt. Alle Ein-/Ausgabebausteine des 8080 kann man zur Anwendung in Z80-Systemen in Betracht ziehen.

Zusammenfassung

Um die Ein-/Ausgabebausteine effektiv zu verwenden, ist es notwendig, daß man die Funktion jedes einzelnen Bits oder jeder Gruppe von Bits innerhalb der verschiedenen Steuer- Register versteht. Diese komplexen neuen Bausteine automatisieren eine Anzahl von Verfahren, die vorher softwaremäßig oder mit spezieller Logik ausgeführt werden mußten. Speziell ist in Bausteinen wie der SIO ein guter Teil der Handshaking-Funktionen automatisch eingebaut. Auch die Interrupterkennung und -behandlung kann intern realisiert sein. Mit der Information, die in diesem Kapitel geliefert wurde, sollte der Leser in der Lage sein, zu verstehen, welche Funktionen die Signale und Register haben. Natürlich werden noch weitere Bausteine eingeführt werden, die noch kompliziertere Algorithmen in der Hardware eingebaut haben.

8

Beispiele für Anwendungen

Einführung

Dieses Kapitel hat die Aufgabe, Ihre neuen Programmierkenntnisse zu testen, indem es eine Sammlung von nützlichen Programmen vorstellt. Diese Programme oder "Routinen" trifft man in Anwendungen häufig an und nennt sie deshalb "Hilfsprogramme". Sie verlangen eine Zusammenfassung der Kenntnisse und Techniken, die bisher vorgestellt wurden.

Wir werden Zeichen von einem Ein-/Ausgabegerät einlesen und sie auf verschiedene Arten verarbeiten. Zuerst wollen wir aber einen Speicherbereich löschen (dies mag unnötig sein – jedoch wird jedes dieser Programme nur als Programmierbeispiel vorgestellt).

Löschen eines Speicherbereichs

Wir wollen den Inhalt eines Speicherbereichs löschen (auf Null setzen), der bei der Adresse BASIS beginnt und bei der Adresse (BASIS + LAENGE-1) endet, wobei LAENGE kleiner als 256 sein soll.

Das Programm ist:

ZEROM	LD	B,LAENGE	Lade B mit LAENGE
	LD	A,0	Lösche A
	LD	HL,BASIS	Zeiger auf BASIS
CLEAR	LD	(HL),A	Lösche eine Stelle
	INC	HL	Zeiger auf nächste Stelle
	DEC	В	Dekrementiere Zähler
	JR	NZ,CLEAR	Ende des Bereichs?
	RET	•	

Im obigen Beispiel ist angenommen, daß die Länge des Speicherbereichs gleich LANEGE ist. Das Registerpaar HL dient als Zeiger auf das laufende Wort, das gelöscht wird. Das Register B wird wie üblich als Zähler verwendet.

Der Akkumulator wird nur einmal mit dem Wert 0 geladen und dann in aufeinanderfolgende Speicherstellen kopiert.

In einem Speichertestprogramm könnte dieses Anwendungsprogramm beispielsweise dazu verwendet werden, den Inhalt eines Blocks auf Null zu setzen. Das Speichertestprogramm könnte danach testen, ob der Inhalt überall Null geblieben ist.

Das obige Beispiel war die direkte Realisierung eines Löschprogramms. Wir wollen es verbessern.

Das verbesserte Programm erscheint unten:

```
ZEROM LD B,LAENGE
LD HL,BASIS
LOOP LD (HL),0
INC HL
DJNZ LOOP
RET
```

Die beiden Verbesserungen wurden eingebaut, indem der Befehl LD A,0 entfernt und eine "Null" direkt in die Speicherstelle geladen wird, auf die H und L zeigen, und außerdem durch Verwendung des Z80-Spezialbefehls DJNZ.

Dieses Beispiel einer Verbesserung sollte zeigen, daß jedes Programm, das geschrieben wurde, auch wenn es in Ordnung ist, in der Regel immer verbessert werden kann, wenn man es sorgfältig untersucht. Die Vertrautheit mit dem vollständigen Befehlssatz ist wichtig, wenn man solche Verbesserungen einbringen will. Diese Verbesserungen sind nicht nur kosmetische Operationen. Sie erhöhen die Ausführungsgeschwindigkeit eines Programms, beanspruchen weniger Befehle und damit weniger Speicherplatz und erhöhen im allgemeinen auch die Lesbarkeit eines Programms und damit die Chancen, daß es korrekt ist.

Aufgabe 8.1: Schreiben Sie ein Speichertestprogramm, das einen Block von 256 Worten Null setzt, und dann überprüft, ob jede Stelle Null ist. Danach sollen lauter Einsen geschrieben und der Inhalt des Blocks überprüft werden. Danach wird 01010101 geschrieben und überprüft und letztlich 10101010.

Aufgabe 8.2: Verändern Sie das obige Programm so, daß es den Speicherbereich abwechselnd mit Nullen und Einsen füllt.

Wir wollen jetzt unsere Ein-/Ausgabebausteine abfragen um herauszufinden, welcher behandelt werden muß.

Abfrage von Ein-/Ausgabegeräten

Wir wollen annehmen, daß diese Ein-/Ausgabegeräte an unser System angeschlossen sind. Ihre Statusregister liegen bei den Adressen STA-TUS1, STATUS2 und STATUS3. Das Programm ist:

TEST	IN	A,(STATUS1)	Lies I/O-Status 1
	BIT	7,A	Teste das Bit "bereit" (Bit 7)
	JP	NZ,FOUND1	Springe zum Behandlungs
			programm 1
	IN	A,(STATUS2)	dto. für Gerät 2
	BIT	7,A	
	JP	NZ,FOUND2	
	IN	A,(STATUS3)	dto. für Gerät 3
	BIT	7,A	
	JP	NZ,FOUND3	
	(Fehler	r-Ausgang)	

Als Ergebnis des Befehls BIT wird das Bit Z des Flagregisters auf 1 gesetzt, wenn der Status nicht Null ist. Dann führt der Befehl JP NZ (springe, wenn nicht gleich Null) zu einer Verzweigung zur entsprechenden Routine FOUND.

Zeichen einlesen

Wir wollen annehmen, wir hätten gerade herausgefunden, daß von der Tastatur ein Zeichen anliegt. Wir wollen Zeichen in einem Speicherbereich namens BUFFER sammeln, bis wir ein Spezialzeichen genannt SPC erhalten, dessen Kode schon vorher definiert sein soll.

Das Unterprogramm GETCHAR holt ein Zeichen von der Tastatur (siehe Kapitel 6 für weitere Details) und legt es in den Akkumulator. Wir wollen annehmen, daß maximal 256 Zeichen geholt werden, bis ein SPC-Zeichen gefunden wird.

STRING	LD	HL,BUFFER	Zeiger auf BUFFER
NEXT	CALL	GETCHAR	Hole ein Zeichen
	CP	SPC	Teste auf ein Spezialzeichen
	JR	Z,OUT	Gefunden?
	LD	(HL),A	Speichere Zeichen in BUFFER
	INC	ĤL΄	Nächster Platz im BUFFER
	JR	NEXT	Hole nächstes Zeichen
OUT	RET		

Aufgabe 8.3: Wir wollen dieses grundlegende Programm verbessern: a — Gib das Zeichen wieder an das Gerät aus (z. B. an einen Fernschreiher).

Teste, daß die eingegebene Zeichenkette nicht länger als 256 Zeichen ist.

Wir haben jetzt eine Zeichenkette im Speicherpuffer. Wir wollen sie auf verschiedene Arten bearbeiten.

Test eines Zeichens

Wir wollen feststellen, ob das Zeichen in der Speicherstelle LOC gleich 0, 1 oder 2 ist:

ZOT	LD	A,(LOC)	Hole Zeichen
	CP	00H	Ist es Null?
	JР	Z,NULL	Sprung zur Routine
	CP	01H	Eine Eins?
	JР	Z,EINS	
	CP	02H	Eine Zwei?
	JP	Z,ZWEI	
	JP	NOTFND	Fehler

Wir lesen einfach das Zeichen und verwenden dann den Befehl CP, um seinen Wert zu testen.

Jetzt wollen wir einen anderen Test ausführen.

Test auf einen Zeichenbereich

Wir wollen feststellen, ob das ASCII-Zeichen in der Speicherstelle LOC eine Ziffer zwischen 0 und 9 ist:

BRACK	LD	A,(LOC)	Hole Zeichen
	AND	7FH	Blende Paritätsbit aus
	CP	30H	ASCII 0
	JR	C,OUT	Zeichen zu klein?
	CP	39H	ASCII 9
	JR	NC,OUT	Zeichen zu groß?
	CP	A	Setze Nullflag
OUT	RET		Ü

ASCII "0" wird hexadezimal durch "30" oder durch "D0" dargestellt, abhängig davon, ob das Paritätsbit verwendet wird oder nicht. Entsprechend wird ASCII "9" hexadezimal durch "39" oder "D9" dargestellt.

Der Zweck des zweiten Befehls in dem Programm ist es, das Bit 7, das Paritätsbit, zu löschen, für den Fall, daß es verwendet war, so daß das Programm in beiden Fällen anwendbar ist. Nach einem Vergleichsbefehl ist das Flag Z gesetzt, wenn sich Gleichheit ergab. Das Carrybit ist gesetzt, wenn ein Unterlauf auftrat, sonst zurückgesetzt. Mit anderen Worten, das Carrybit wird gesetzt, wenn der Wert der Konstanten, die in dem Befehl erscheint, größer ist als der Wert im Akkumulator. Ist er kleiner oder gleich, wird es zurückgesetzt ("0").

Der letzte Befehl CP A mcht das Flag Z zu Null. Dieses Flag dient dazu, dem aufrufenden Programm anzuzeigen, ob das Zeichen in LOC in dem Intervall (0,9) liegt. Man kann natürlich auch andere Vereinbarungen benutzen, z. B. ein Zeichen in den Akkumulator laden, um das Ergebnis des Tests anzugeben.

Aufgabe 8.4: Ist das folgende Programm äquivalent zum obigen?

LD A,(CHAR)
SUB 30H
JP M,OUT
SUB 10H
JP P,OUT
ADD 10H

Aufgabe 8.5: Stellen Sie fest, ob ein ASCII-Zeichen im Akkumulator ein Buchstabe des Alphabets ist.

Wenn Sie eine ASCII-Tabelle betrachten, dann werden Sie feststellen, daß die Parität oft verwendet wird. Beispielsweise ist der ASCII-Kode für "0" "0110000", ein 7-Bit-Kode. Verwenden wir jedoch zum Beispiel ungerade Parität, dann garantieren wir, daß die Gesamtzahl an Einsen in einem Wort ungerade ist. Der Kode wird dann zu "10110000". Links wurde eine zusätzliche "1" angefügt. Hexadezimal ist dies "B0". Wir wollen deshalb ein Programm entwerfen, daß die Parität erzeugt.

Erzeugen des Paritätsbits

Dises Programm erzeugt ein gerades Paritätsbit in der Stelle 7:

PARITY LD A,(LOC) Hole Zeichen AND 7FH Lösche Paritätsbit JP PE.OUT Teste, ob Parität schon gerade OR Setze Paritätsbit H08(LOC),A Speichere Ergebnis OUT LD

Dieses Programm verwendet die interne Paritätsprüfung des Z80.

Der dritte Befehl: JP PE,OUT testet, ob die Parität des Wortes im Akkumulator schon gerade ist. Ist die Parität gerade "PE", dann wird dieser Sprung ausgeführt.

Ist die Parität nicht gerade, d. h. der Sprung wird nicht ausgeführt, dann ist die Parität ungerade und in der Stelle 7 muß eine "1" eingetragen werden. Dies ist der Zweck des vierten Befehls:

OR 80H

Schließlich wird der Wert, der sich ergab, in der Speicherstelle LOC abgelegt.

Codeumwandlung: ASCII nach BCD

Die Wandlung von ASCII nach BCD ist sehr einfach. Wir sehen, die hexadezimale Darstellung der ASCII-Zeichen 0 bis 9 ist 30 bis 39 bzw. B0 bis B9, abhängig von der Parität. Die BCD-Darstellung erhält man ein-

fach, wenn man die "3" oder das "B" wegläßt, d. h. das linke Nibble (4 Bit) maskiert:

ASCBCD CALL BRACK

O und 9

JP NZ,ILLEGAL Ende, wenn unzulässiges Zeichen
LD A,(LOC) Hole Zeichen
AND 0FH Maskiere oberes Nibble
LD (BCDCHAR), A Speichere Ergebnis

Aufgabe 8.6: Schreiben Sie ein Programm zur Umwandlung von BCD nach ASCII.

Aufgabe 8.7: Schreiben Sie ein Programm zur Umwandlung von BCD nach Dual (schwieriger). Hinweis: $N_3 N_2 N_1 N_0$ in BCD ist Dual (($(N_3 \times 10) + N_2) \times 10 + N_1$) x $10 + N_0$.

Verwenden Sie zur Multiplikation mit 10 ein Links Schieben (=x2), ein weiteres Links Schieben (=x4), dann ein ADC (=x5) und noch ein Links Schieben (=x10).

In der vollständigen BCD-Darstellung kann das erste Wort die Zahl der BCD-Ziffern enthalten, das nächste Nibble das Vorzeichen und jedes weitere Nibble eine BCD-Ziffer (wir nehmen an, daß kein Dezimalkomma vorhanden ist). Das letzte Nibble des Blocks kann unbelegt sein.

Umwandlung Hexadezimal nach ASCII

"A" enthalte eine hexadezimale Ziffer. Wir müssen einfach nur eine "3" (oder ein "B") im linken Nibble hinzufügen:

AND OFH
ADD A,30H
CP 39H
JP M,OUT
ADD A,7

Setze linkes Nibble Null
ASCII
Korrektur notwendig?
Korrektur für A bis F

Aufgabe 8.8: Wandle Hexadezimal nach ASCII um, wobei ein gepacktes Format vorliegen soll (zwei Hexadezimalziffern in A).

Das größte Element in einer Tabelle suchen

Die Anfangsadresse der Tabelle steht in der Speicherzelle BASE in Seite Null. Die erste Eintragung in der Tabelle ist die Zahl der Bytes, die sie enthält. Dieses Programm sucht das größte Element in der Tabelle. Sein Wert bleibt in A und seine Adresse wird in der Speicherzelle INDEX abgelegt.

Dieses Programm benutzt die Register A, B, H und L und verwendet indirekte Adressierung, so daß es eine Tabelle an beliebiger Stelle im Speicher durchsuchen kann (siche Abb. 8.1).

de Reihenfolge sortiert.

MAX	LD	HL,BASE	Adresse der Tabelle
	LD	B,(HL)	Zahl der Bytes in der Tabelle
	LD	A,0	Lösche Maximalwert
	LD	(INDEX),HL	Initialisiere Index
	INC	HL	Nächste Eintragung
LOOP	CP	(HL)	Vergleiche Eintragung
	JR	NC, NOSWITCH	I Sprung, falls kleiner als MAX
	LD	A,(HL)	Lade neuen Maximalwert
	LD	(INDEX),HL	
NOSWITCH	IINC	HL	Zeiger auf nächste Eintragung
	DEC	В	Dekrementiere Zähler
	JR	NZ,LOOP	Wiederhole, solange nicht Null
	RET		

Dieses Programm testet zuerst die n-te Eintragung. Ist sie größer als Null, kommt die Eintragung nach A und ihre Adresse nach INDEX. Dann wird die (n-1)-te Eintragung getestet usw.

Dieses Programm funktioniert mit positiven ganzen Zahlen.

Aufgabe 8.9: Verändern Sie das Programm so, daß es auch mit negativen Zahlen in Zweierkomplement-Darstellung arbeitet.

Aufgabe 8.10: Funktioniert das Programm auch mit ASCII-Zeichen? Aufgabe 8.11: Schreiben Sie ein Programm, das n Zahlen in aufsteigen-

Aufgabe 8.12: Schreiben Sie ein Programm, das n Namen (aus je drei Zeichen) in alphabetischer Reihenfolge sortiert.

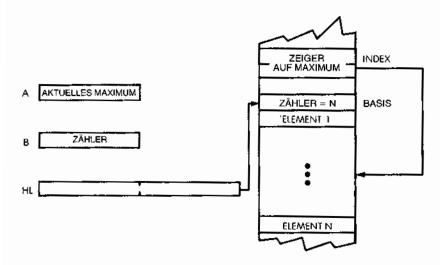
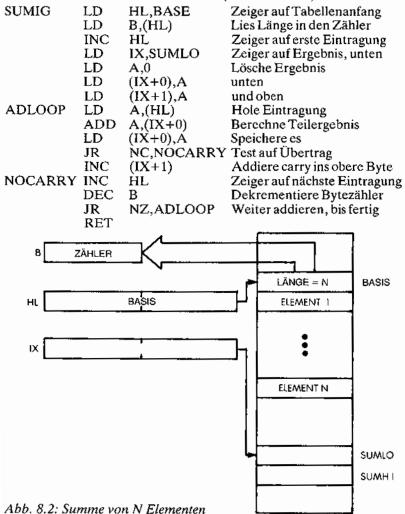



Abb. 8.1: Größtes Element in der Tabelle

Summe von N Elementen

Dieses Programm berechnet die 16-Bit-Summe von N positiven 8 Bit-Zahlen in einer Tabelle. Die Tabelle beginnt bei der Adresse BASE in der Seite Null. Die erste Eintragung in der Tabelle enthält die Anzahl der Elemente. Die 16-Bit-Summe wird in den Speicherzellen SUMLO und SUMHI abgelegt. Sollte die Summe länger als 16 Bit sein, erhält man nur die unteren 16 Bit. (Man sagt, die oberen Bits werden abgeschnitten.)

Das Programm verändert die Register A, B, H, L und IX. Es setzt ein Maximum von 256 Elementen voraus (siehe Abb. 8.2).

Dieses Programm ist einfach und sollte sich selbst erklären.

Aufgabe 8.13: Verändern Sie dieses Programm, um

a - eine 24-Bit-Summe zu berechnen

b – eine 32-Bit-Summe zu berechnen

c – einen Überlauf anzuzeigen.

Berechnung einer Prüfsumme

Eine Prüfsumme ist eine Ziffer oder ein Satz von Ziffern, die aus einem Satz aufeinanderfolgender Zeichen berechnet werden. Die Prüfsumme wird zu dem Zeitpunkt berechnet, zu dem die Daten gespeichert werden, und am Ende abgelegt. Um zu überprüfen daß die Daten unversehrt sind, liest man die Daten, berechnet die Prüfsumme neu und vergleicht sie mit dem gespeicherten Wert. Ein Unterschied zeigt einen Fehler an.

Dazu werden verschiedene Algorithmen verwendet. Hier wollen wir alle Bytes in einer Tabelle von N Elementen exklusiv-OR verknüpfen und das Ergebnis im Akkumulator stehen lassen. Wie üblich beginnt die Tabelle bei der Adresse BASE. Die erste Eintragung in die Tabelle ist die Anzahl N der Elemente. Das Programm verändert A, B, H und L. N muß kleiner als 256 sein.

CHECKSUM	1LD	HL,BASE	Lies Tabellenanfang nach HL
	LD	B,(HL)	Hole N = Länge
	XOR	Α	Lösche Prüfsumme
	INC	HL	Zeiger auf das erste Element
CHLOOP	XOR	(HL)	Berechne Prüfsumme
	INC	HL	Zeiger auf nächstes Element
	DEC	В	Dekrementiere Zähler
	JR	NZ,CHLOOP	Wiederhole, falls nicht fertig
	LD	(HL),A	Speichere Prüfsumme am
		,	Tabellenende
	RET		

Zählen der Nullen

Dieses Programm zählt die Anzahl der Nullen in unserer üblichen Tabelle und speichert sie bei der Adresse TOTAL. Es verändert A, B, C, H und L.

ZEROS	LD	HL,BASE	Zeiger auf Tabelle
	LD	B,(HL)	Lies Länge in den Zähler
	LD	C,0	Summe der Nullen
	INC	HL	Zeiger auf erste Eintragung
ZLOOP	LD	A,(HL)	Hole Element
	OR	0	Setze Nullflag
	JŔ	NZ,NOTZ	Ist es Null?
	INC	C	Wenn ja, inkrementiere
			Nullenzähler

NOTZ	INC	HL	Zeiger auf nächste Eintragung
	DEC	В	Dekrementiere Längenzähler
	JR	NZ,ZLOOP	_
	LD	A,Č	
	ĽD	(TOTAL),A	Speichere Ergebnis

Aufgabe 8.14: Ändern Sie dieses Programm zum Zählen

- a der Anzahl der Sterne (Zeichen "*")
- b der Anzahl der Buchstaben des Alphabets
- c der Anzahl der Ziffern zwischen "0" und "9".

Übertragung von Blöcken

Wir wollen jede dritte Eintragung aus dem Quellblock bei der Adresse FROM herausgreifen und in einem Block bei der Adresse TO ablegen:

FER3	LD	HL,FROM	
	LD	DE,TO	Setze Zeiger
	LD	BC,SIZE	•
LOOP	LDÏ		Automatischer Transfer
	INC	HL	
	INC	HL	Überspringe zwei Eintragungen
	JR	PE,LOOP	

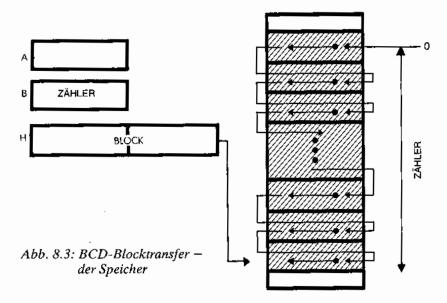
Transfer eines Blocks von BCD-Zahlen

Wir wollen BCD-Ziffern, d. h. 4-Bit-Nibbles in den Speicher hineinschieben (siehe Abb. 8.3). Das Programm erscheint unten:

DMOV	LD B,COUNT	
	LD HL,BLOCK	
	XOR A	A=0
LOOP	RLD	
	INC HL	Zeiger auf nächstes Byte
	DJNZ LOOP	Dekrementiere Schleifenzähler
		bis Null

Das Programm verwendet den Befehl RLD, den wir bisher noch nicht benutzt haben. RLD rotiert eine BCD-Ziffer zwischen A und (HL). (HL) oder M bezeichnet den Inhalt der Speicherzellen, auf die H und L

zeigen. M unten kommt nach M oben


M oben kommt nach A unten A unten kommt nach M unten

Hier beziehen sich "unten" und "oben" auf ein 4-Bit-Nibble.

Um den leistungsfähigen Befehl DJNZ verwenden zu können, dient das Register B als Ziffernzähler. HL wird auf den Blockanfang gesetzt.

A wird dazu verwendet, die linke Ziffer zu speichern, die bei jeder Rotation zwischen zwei Zugriffen auf den Block versetzt wird.

Vereinbarungsgemäß wird am oberen Ende des Blockes "O" eingetragen.

Vergleich zweier Vorzeichenbehafteter 16 Bit-Zahlen

IX zeigt auf die erste Zahl N1.

IY zeigt auf N2 (siehe Abb. 8.4)

Das Programm setzt das Übertragsflag, wenn N1<N2, und das Nullflag, wenn N1=N2.

COMP	LD	B,(IX+1)	Hole Vorzeichen von N1
	LD	A,B	
	AND	80H	Teste Vorzeichen, lösche Carry
	JR	NZ,NEGM1	N1 ist negativ
	BIT	7,(IY+1)	· ·
	RET	NŽ	N2 ist negativ
	LD	A,B	
	CP	(IY+1)	Beide Vorzeichen positiv
	RET	Ν̈Ζ	1
	LD	A,(IX)	
	CP	(IY)	
	RET	` '	
NEGM1	XOR	(IY+1)	
	RLA	, ,	Vorzeichenbit ins Carry
	RET	C	Vorzeichen verschieden
	LD	A,B	
	CP	(IY+1)	Beide Vorzeichen negativ
	RET	Ν̈́Ζ	3
	LD	$A_{\bullet}(IX)$	
	CP	(IY)	
	RET	\ <i>/</i>	

Das Programm testet zuerst die Vorzeichen von N1 und N2. Ist N1 negativ, wird zu NEGM1 gesprungen. Sonst wird der obere Teil des Programms ausgeführt.

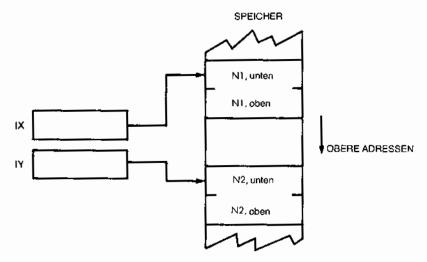


Abb. 8.4: Vergleich zweier vorzeichenbehafteter Zahlen

Beachten Sie, daß der Befehl BIT in der fünften Zeile dazu verwendet wird, das Vorzeichenbit von N2 direkt im Speicher zu testen:

BIT
$$7,(IY+1)$$

Für N1 hätte man ebenso vorgehen können, aber wir werden den Wert von N1 in Kürze brauchen. Es ist deshalb einfacher, N1 aus dem Speicher zu lesen und in B abzulegen:

COMP LD
$$B_{*}(IX+1)$$

Es ist nötig, N1 in B zu speichern, da AND den Inhalt von A zerstört:

Beachten Sie auch, daß ein bedingter Rücksprung verwendet wird (Zeile 6):

Dies ist eine leistungsfähige Eigenschaft des Z80, die die Programmierung vereinfacht.

Beachten Sie, daß der Vergleichsbefehl in indizierter Adressierung direkt im Speicher ausgeführt wird:

$$CP \qquad (IY+1)$$

Wenn man die beiden Zahlen vergleicht, wird zuerst das am meisten signifikante Byte verglichen, danach das weniger signifikante.

Beachten Sie die ausgiebige Anwendung der indizierten Adressierung in diesem Programm, die zu effizientem Kode führt.

Bubble-Sort

Bubble-Sort ("Blasensortieren") ist ein Sortierverfahren, das man verwendet, um Elemente einer Tabelle in steigender oder fallender Ordnung zu sortieren. Das Bubble-Sort-Verfahren leitet seinen Namen davon ab, daß das kleinste Element wie eine Luftblase zum oberen Ende der Tabelle steigt. Immer wenn es mit einem "schwereren" Element zusammenstößt, überspringt es dieses.

Ein praktisches Beispiel für Bubble-Sort ist in Abb. 8.5 gezeigt. Die Liste, die sortiert werden soll, enthält: (10, 5, 0, 2, 100), und sie soll in aufsteigender Reihenfolge sortiert werden ("0" oben). Der Algorithmus ist einfach, das Flußdiagramm ist in Abb. 8.7 dargestellt.

Die beiden obersten (oder die beiden untersten) Elemente werden verglichen. Ist das untere kleiner ("leichter") als das obere, werden sie vertauscht, sonst nicht. Zur praktischen Anwendung wird der Austausch, wenn er stattfindet, in seinem Flag namens "EXCHANGED" gespeichert. Das Verfahren wird dann mit dem nächsten Elementepaar wiederholt, usw. bis alle Elemente paarweise verglichen wurden.

Dor erste Durchgang ist in den Schritten 1, 2, 3, 4, 5 und 6 in Abb. 8.5 dargestellt. Dabei wurde von unten nach oben vorgegangen. (Entsprechend hätten wir auch von oben nach unten vorgehen können.)

Wurden keine Elemente vertauscht, ist die Tabelle fertig sortiert. Trat ein Austausch auf, wird der Durchgang wiederholt.

Wenn wir Abb. 8.6 betrachten, dann sehen wir, daß in diesem Beispiel vier Durchgänge nötig sind.

Das Verfahren ist einfach und wird häufig angewendet.

Eine Schwierigkeit besteht noch in der Durchführung des Austauschs. Wenn wir A und B vertauschen wollen, dann können wir nicht schreiben

$$A = B$$

 $B = A$

da dann der alte Wert von A verloren wäre (probieren Sie es an einem Beispiel).

Die richtige Lösung ist es, den Wert von A in einem Register oder einer Speicherstelle zwischenzuspeichern:

$$TEMP = A$$

$$A = B$$

$$B = TEMP$$

Es funktioniert (probieren Sie es an einem Beispiel)! Man nennt dieses Vorgehen zyklische Vertauschung. Alle Programme führen eine Vertauschung nach diesem Verfahren durch. Diese Technik ist in dem Flußdiagramm in Abb. 8.7 veranschaulicht.

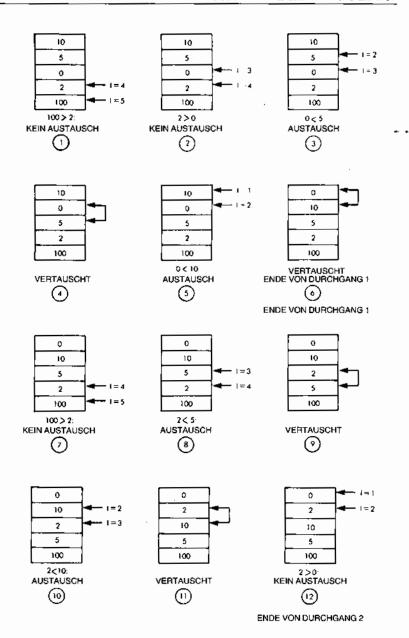


Abb. 8.5: Bubble-Sort Beispiel: Schritte 1 bis 12

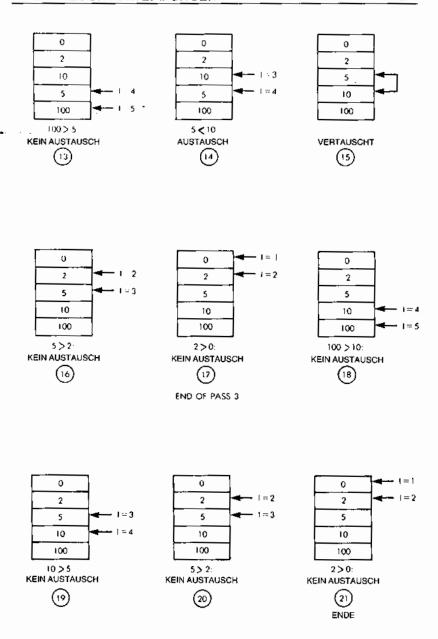


Abb. 8.6: Bubble-Sort Beispiel: Schritte 13 bis 21

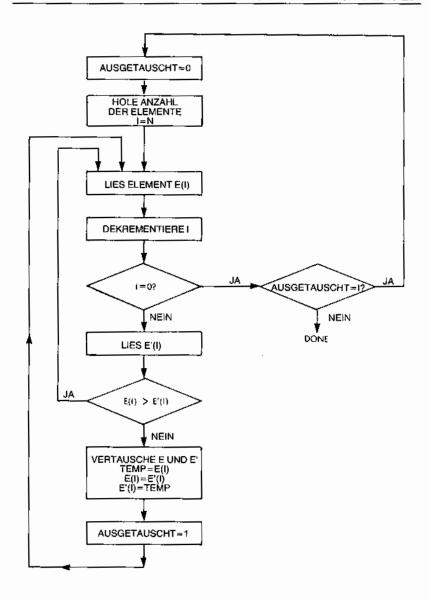


Abb. 8.7: Bubble-Sort Flußdiagramm

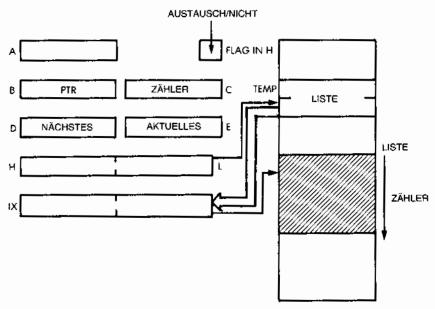


Abb. 8.8: Bubble-Sort

Abbildung 8.8 zeigt die Belegung der Register und des Speichers. Das Programm ist:

BUBBLE	LD	(TEMP),HL	TEMP = (HL)
	LD	IX,(TEMP)	IX=(HL)
	RES	FLÀG,H	Austauschflag $= 0$
	LD	B,C	Ü
	DEC	В	
NEXT	LD	$A_{,}(IX)$	
	LD	D,A	D = aktuelle Eintragung
	LD	E,(IX+1)	E = nächste Eintragung
	SUB	E	Vergleich
	JR	NC, NOSWITCH	Sprung, wenn aktuelle
			> nächste Eintragung
XCHANGE	LD	(IX),E	Speichere nächste in
			aktuelle Eintragung
	LD	(IX+1),D	Speichere aktuelle in
			nächste Eintragung
	SET	FLAG,H	Austauschflag = 1
NOSWITCH	INC	IX	Nächste Eintragung
	DJNZ		Dekr. B, weiter bis Null
	BIT	FLAG,H	Vertauschung ausgeführt?
	JR	NZ,AGAIN	Wiederholung, falls $FLAG = 1$
	RET		

Zusammenfassung

In diesem Kapitel wurden gebräuchliche Anwendungsprogramme vorgestellt, die Kombinationen von Techniken verwenden, die wir in den vorhergehenden Kapiteln beschrieben haben. Sie sollten Ihnen jetzt erlauben, mit dem Entwurf eigener Programme zu beginnen. Viele dieser Programme haben eine spezielle Datenstruktur benutzt, die Tabelle. Es gibt noch weitere Möglichkeiten zur Strukturierung von Daten, und diese werden im folgenden Kapitel vorgestellt.

9

Datenstrukturen

1. Teil - Theorie

Einführung

Der Entwurf eines guten Programms schließt zwei Aufgaben ein: den Entwurf des Algorithmus und den Entwurf der Datenstrukturen. Die meisten einfachen Programme enthalten keine wesentlichen Datenstrukturen, so daß es das Hauptziel ist, Algorithmen zu entwerfen und sie in einer gegebenen Maschinensprache effizient zu kodieren, wenn man Programmieren lernt. Das haben wir bisher getan. Der Entwurf komplexerer Programme setzt jedoch auch ein Verständnis von Datenstrukturen voraus. In diesem Buch wurden schon zwei Datenstrukturen benutzt: Tabelle und Stapel. Die Aufgabe dieses Kapitels ist es, weitere allgemeine Datenstrukturen vorzustellen, die Sie vielleicht verwenden können. Dieses Kapitel ist vollkommen uanbhängig von dem gewählten Mikroprozessor. Es ist theoretisch und enthält die logische Organisation von Daten in dem System. Es gibt spezielle Bücher über Datenstrukturen, wie es auch spezielle Bücher über effiziente Multiplikation, Division und andere nützliche Algorithmen gibt. Deshalb beschränkt sich dieses Kapitel nur auf das Wesentliche. Es erhebt nicht den Anspruch auf Vollständigkeit. Es sollen nun die gebräuchlichsten Datentrukturen vorgestellt werden.

Zeiger

Ein Zeiger ist eine Zahl, die dazu dient, die Adresse der tatsächlichen Daten anzugeben. Jeder Zeiger ist eine Adresse. Jedoch wird nicht jede Adresse Zeiger genannt. Eine Adresse ist nur dann ein Zeiger, wenn sie auf gewisse Typen von Daten oder von strukturierter Information zeigt. Wir haben schon einen speziellen Typ von Zeiger eingeführt, den Stapelzeiger, der auf das oberste Stapelelement zeigt (oder unmittelbar darüber). Wir werden sehen, daß der Stapel eine gebräuchliche Datenstruktur ist, genannt LIFO Struktur.

Ein weiteres Beispiel: Wenn wir indirekte Adressierung verwenden, ist die indirekte Adresse immer ein Zeiger auf die Daten, auf die man zugreifen will.

Aufgabe 9.1: Untersuchen Sie die Abbildung 9.1. In der Adresse 15 im Speicher steht ein Zeiger auf die Tabelle T. Die Tabelle T beginnt bei der Adresse 500. Was ist der tatsächliche Inhalt des Zeigers auf T?

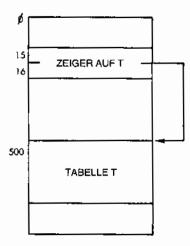


Abb. 9.1: Ein indirekter Zeiger

Listen

Fast alle Datenstrukturen sind in Form verschiedener Arten von Listen organisiert.

Sequentielle Listen

Eine sequentielle Liste, eine Tabelle oder ein Block ist die wahrscheinlich einfachste Datenstruktur, und wir haben sie auch schon verwendet. Tabellen sind normalerweise nach einem bestimmten Kriterium geordnet, z. B. alphabetisch oder numerisch. Dann kann man leicht ein Element in der Tabelle finden, wenn man z. B. indizierte Adressierung verwendet, wie wir es schon getan haben. Als Block bezeichnet man normalerweise eine Gruppe von Daten, die festgesetzte Begrenzungen hat, deren Inhalt aber nicht geordnet ist. Er kann eine Zeichenkette enthalten, er mag einen Sektor auf einer Platte bilden, oder er kann ein bestimmter logischer Bereich im Speicher (genannt Segment) sein. In solchen Fällen ist es nicht leicht, auf ein beliebiges Element des Blocks zuzugreifen.

Um den Zugriff auf Blöcke von Information zu erleichtern, benutzt man Inhaltsverzeichnisse.

Inhaltsverzeichnisse

Ein Inhaltsverzeichnis (englisch: directory) ist eine Liste von Tabellen oder Blöcken. Zum Beispiel ist das Dateisystem normalerweise nach einem Inhaltsverzeichnis strukturiert. Als einfaches Beispiel soll das Hauptinhaltsverzeichnis des Systems eine Liste mit den Namen der Benutzer enthalten. Dies ist in Abb. 9.2 veranschaulicht. Die Eintragung für den Benutzer "John" zeigt auf das Inhaltsverzeichnis von Johns Dateien. Dieses ist wieder eine Tabelle von Zeigern. In diesem Fall haben wir ein Inhaltsverzeichnis aus zwei Ebenen entworfen. Ein flexibles System von Inhaltsverzeichnissen läßt es zu, daß weitere darunterliegende Inhaltsverzeichnisse eingeschlossen werden, wenn es der Benutzer für günstig hält.

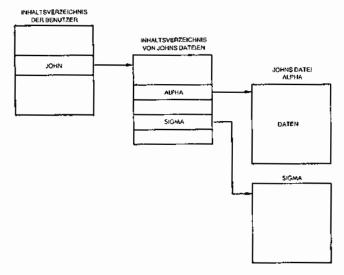


Abb. 9.2: Struktur eines Inhaltsverzeichnisses

Verkettete Liste

In einem System hat man oft Blöcke von Information, die Daten, Ereignisse oder andere Strukturen enthalten, die man nicht leicht verschieben kann. Könnte man dies tun, dann würden wir sie wahrscheinlich in einer Tabelle sammeln, um sie zu sortieren oder zu strukturieren. Das Problem ist aber, daß wir sie dort stehen lassen wollen, wo sie stehen, und trotzdem eine Ordnung einführen wollen, wie erstes, zweites, drittes, viertes Element. Dieses Problem kann man mit einer verketteten Liste lösen. Das Konzept der verketteten Liste zeigt Abbildung 9.3. In der Abbildung sehen wir, daß ein Listenzeiger, genannt ERSTERBLOCK, auf den Anfang des ersten Blocks zeigt. Eine festgesetzte Stelle im er-

sten Block, z. B. das erste oder das letzte Wort, enthält einen Zeiger auf Block 2, genannt PTR1. Dieses Verfahren wiederholt sich dann bei Block 2 und bei Block 3. Da Block 3 die letzte Eintragung in der Liste ist, enthält PTR3 vereinbarungsgemäß ein Nullzeichen oder er zeigt auf sich selbst, so daß man das Ende der Liste erkennen kann. Diese Struktur ist wirtschaftlich, da sie nur wenige Zeiger benötigt (einen pro Block), und den Benutzer von der Aufgabe befreit, die Blöcke im Speicher physikalisch verschieben zu müssen.

Abb. 9.3: Eine verkettete Liste

Wir wollen z. B. untersuchen, wie ein Block eingefügt wird. Abbildung 9.4 veranschaulicht dies. Wir wollen annehmen, daß der neue Block die Adresse NEUERBLOCK hat, und daß er zwischen Block 1 und Block 2 eingefügt werden soll. Der Zeiger PTR1 wird einfach auf den Wert NEUERBLOCK geändert, so daß er jetzt auf den Block X zeigt. PTRX wird mit dem früheren Wert von PTR1 geladen, d. h. er zeigt auf Block 2. Die anderen Zeiger in der Struktur bleiben unverändert. Wir sehen, daß zum Einfügen eines neuen Blocks nur zwei Zeiger in der Struktur geändert werden mußten. Dies ist natürlich effizient.

Aufgabe 9.2: Zeichnen Sie ein Diagramm, wie Block 2 aus dieser Struktur entfernt würde.

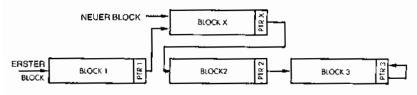


Abb. 9.4: Einfügen eines Blocks

Um spezielle Arten von Zugriff, Einfügen und Löschen zu erleichtern, wurden verschiedene Typen von Listen entwickelt. Wir wollen einige der gebräuchlichsten Typen verketteter Listen untersuchen.

Schlange

Eine Schlange wird formal FIFO oder First-In-First-Out genannt. Abbildung 9.5 veranschaulicht eine Schlange. Um das Diagramm zu erklären, können wir beispielsweise annehmen, daß der Błock auf der linken

Seite ein Treiberprogramm für ein Ausgabegerät wie einen Drucker ist. Die Blöcke auf der rechten Seite sind Anforderungen von verschiedenen Programmen oder Routinen, Zeichen zu drucken. Die Reihenfolge, in der sie bearbeitet werden, ist die Ordnung in der Warteschlange. Man sieht, daß zuerst der Block 1, dann der Block 2 und danach Block 3 bearbeitet wird. Bei einer Schlange gilt die Vereinbarung, daß neue Anforderungen am Ende angefügt werden. Hier werden sie hinter Block 3 angehängt. Dies garantiert, daß der Block, der als erster in die Schlange eingefügt wird, als erster bearbeitet wird. Schlangen werden in Computern normalerweise dann verwendet, wenn verschiedene Vorgänge warten müssen, z. B. auf den Prozessor oder auf Ein-/Ausgabgeräte.

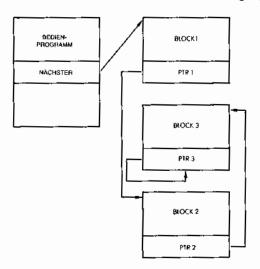


Abb. 9.5: Eine Schlange

Stapel

Die Stapelstruktur haben wir dieses Buch hindurch schon im einzelnen untersucht. Sie ist eine Last-In-First-Out (LIFO) Struktur. Das Element, das als letztes auf dem Stapel abgelegt wurde, wird als erstes wieder geholt. Ein Stapel kann entweder als sortierter Block oder als Liste aufgebaut werden. Da die meisten Stapel in Mikroprozessoren für Ereignisse mit hoher Geschwindigkeit verwendet werden, wie Unterprogramme und Interrupts, wird für den Stapel üblicherweise ein zusammenhängender Block verwendet und keine verkettete Liste.

Verkettete Liste oder Block

Entsprechend könnte man auch die Schlange als Block reservierter Speicherplätze realisieren. Der Vorteil eines zusammenhängenden Blocks

ist ein schneller Zugriff und der Wegfall der Zeiger. Der Nachteil ist, daß man üblicherweise einen ziemlich großen Block reservieren muß, um der Größe der Struktur im ungünstigsten Fall zu entsprechen. Außerdem ist es schwierig, Elemente in den Block einzufügen oder aus dem Block zu entfernen. Da Speicher traditionell knapp ist, verwendet man Blöcke nur für Strukturen fester Größe oder für Strukturen, auf die man mit maximaler Geschwindigkeit zugreifen muß, wie auf den Stapel.

Ringliste

Eine Ringliste ist eine verkettete Liste, in der die letzte Eintragung wieder auf den Anfang zeigt. Abbildung 9.6 veranschaulicht das. Bei einer Ringliste hat man oft einen Zeiger auf den aktuellen Block. Wenn Ereignisse oder Programme auf Bearbeitung warten, wird der Zeiger auf das aktuelle Ereignis um eine Stelle nach links oder rechts verschoben. Eine Ringliste entspricht üblicherweise einer Struktur, in der für alle Blöcke die gleiche Priorität angenommen wird. Eine Ringliste kann man aber auch anderen Strukturen untergeordnet verwenden, wenn man z. B. beim Suchen den Zugriff auf den ersten Block erleichtern will, nachdem man auf den letzten zugegriffen hatte.

Beispielsweise geht ein Programm beim Polling oft nach einer Ringliste vor. Es werden alle Peripheriegeräte der Reihe nach abgefragt und dann beginnt man wieder beim ersten.

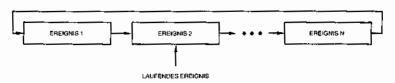


Abb. 9.6: Ringliste

Bäume

Wenn unter den Elementen einer Struktur ein logischer Zusammenhang besteht (dies nennt man üblicherweise eine Syntax), dann kann man eine Baumstruktur verwenden. Ein einfaches Beispiel dafür ist ein Stammbaum. Dies ist in Abb. 9.7 dargestellt. Man sieht, daß Herr Schmidt zwei Kinder hat, einen Sohn Robert und eine Tochter Jane. Jane wiederum hat drei Kinder: Liz, Tom und Phil. Tom hat zwei Kinder: Max und Chris. Robert dagegen, auf der linken Seite der Abbildung, hat keine Nachkommen.

Dies ist ein strukturierter Baum. In Abb. 9.2 haben wir tatsächlich schon ein Beispiel für einen einfachen Baum eingeführt. Die Struktur des Inhaltsverzeichnisses war ein Baum mit zwei Ebenen. Bäume verwendet man vorzugsweise dann, wenn Elemente in eine feste Struktur eingeordnet werden können. Dies erleichtert das Einfügen und Löschen. Zusätz-

lich kann man Information strukturiert so gruppieren, daß die spätere Bearbeitung, z. B. durch Compiler oder Interpreter erleichtert wird.

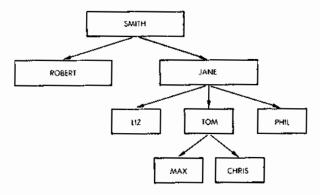


Abb. 9.7: Stammbaum

Doppelt verkettete Liste

Zwischen den Elementen einer Liste kann man zusätzliche Verkettungen einbauen. Das einfachste Beispiel ist eine doppelt verkettete Liste. Abbildung 9.8 veranschaulicht das. Wir sehen, daß wir von links nach rechts die übliche Folge von Verkettungen haben, außerdem eine zusätzliche Folge von Verkettungen von rechts nach links. Der Vorteil ist, daß man genauso einfach auf den Vorgänger des Elements zugreifen kann, das momentan bearbeitet wird, wie auf den Nachfolger. Dies kostet für jeden Block einen zusätzlichen Zeiger.

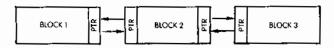


Abb. 9.8: Doppelt verkettete Liste

Suchen und Sortieren

Das Suchen und Sortieren von Elementen einer Liste hängt direkt von der Art der Struktur ab, die für die Liste verwendet wurde. Für die häufig verwendeten Datenstrukturen wurden viele Suchverfahren entwikkelt. Wir haben schon die indizierte Adressierung verwendet. Dies ist möglich, wenn die Elemente einer Tabelle nach einem bestimmten Kriterium geordnet sind. Auf solche Elemente kann man über ihre Nummer zugreifen.

Sequentielle Suche heißt, einen fortlaufenden Block linear zu durchsuchen. Dies ist natürlich nicht effizient, muß aber eventuell angewendet werden, wenn man kein besseres Verfahren hat, weil die Elemente nicht geordnet sind.

Binäre oder logarithmische Suchverfahren versuchen ein Element in einer sortierten Liste dadurch zu finden, daß das Suchintervall bei jedem Schritt halbiert wird. Wollen wir z. B. eine alphabetische Liste durchsuchen, können wir in der Mitte der Liste beginnen, und feststellen, ob der gesuchte Name vor oder hinter dieser Stelle steht. Liegt er dahinter, dann berücksichtigen wir die erste Hälfte nicht weiter und schauen das mittlere Element in der zweiten Hälfte an. Wir vergleichen diese Eintragung mit der gesuchten und beschränken die weitere Suche auf eine der beiden Hälften, usw. Die maximale Dauer der Suche geht mit log n, wobei n die Zahl der Elemente in der Tabelle ist.

Es gibt viele weitere Suchverfahren.

Zusammenfassung

Aufgabe dieses Abschnitts war es nur, gebräuchliche Datenstrukturen, die der Programmierer verwenden kann, kurz vorzustellen. Zwar wurden die allgemeinen Datenstrukturen zu Typen zusammengefaßt und mit Namen versehen, die gesamte Organisation der Daten in einem komplexen System kann jedoch irgendeine Kombination verwenden oder den Programmierer zwingen, passendere Strukturen selbst zu erfinden. Das Spektrum der Möglichkeiten wird nur von der Phantasie des Programmierers begrenzt. Ähnlich wurde eine große Zahl bekannter Such- und Sortierverfahren entwickelt, die mit den gebräuchlichen Datenstrukturen arbeiten. Eine zusammenfassende Beschreibung würde den Rahmen dieses Buchs sprengen. Dieser Abschnitt sollte zeigen, wie wichtig der Entwurf passender Strukturen für die Daten ist, die bearbeitet werden sollen, und er sollte die Grundwerkzeuge dazu liefern.

Tatsächliche Beispielprogramme werden jetzt genau vorgestellt.

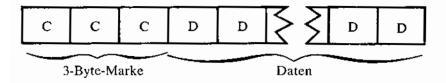
2. Teil - Beispiele zum Entwurf

į,

Einführung

Hier werden Beispiele für Anwendungen der typischen Datenstrukturen Tabelle, sortierte Liste und verkettete Liste, vorgestellt.

Praktische Algorithmen zur Suche, zum Einfügen und Löschen werden für diese Strukturen programmiert.


Der Leser, der sich für diese hochentwickelten Programmiertechniken interessiert, sei aufgefordert, die vorgestellten Programme genau zu untersuchen. Der Anfänger kann diesen Abschnitt zunächst überspringen und dann wieder darauf zurückkommen, wenn er sich dazu in der Lage fühlt.

Wenn man den Beispielen folgen will, dann muß man die Konzepte, die im ersten Abschnitt vorgestellt wurden, gut verstanden haben. Außerdem verwenden die Programme alle Adressierungsarten des Z80, und sie enthalten viele der Konzepte und Techniken, die in den vorhergehenden Kapiteln vorgestellt wurden.

Jetzt werden drei Strukturen eingeführt: eine einfache Liste, eine alphabetische Liste und eine verkettete Liste mit Inhaltsverzeichnis. Für jede Struktur werden drei Programme entwickelt, zum Suchen, Einfügen und Löschen.

Darstellung der Daten in der Liste

Sowohl die einfache Liste als auch die alphabetische Liste verwenden eine einheitliche Darstellung für jedes Element:

Jedes Element oder jede "Eintragung" enthält eine Marke und einen Block aus n Daten, wobei n zwischen 1 und 256 liegt. Deshalb belegt jede Eintragung maximal eine Seite (256 Byte). Innerhalb jeder Liste sind alle Elemente gleich lang (siehe Abb. 9.10). Die Programme, die mit

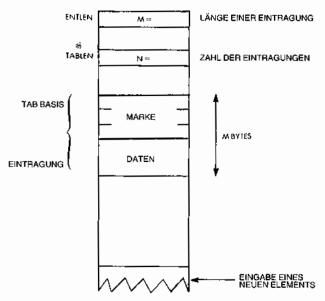


Abb. 9.9: Die Tabellenstruktur

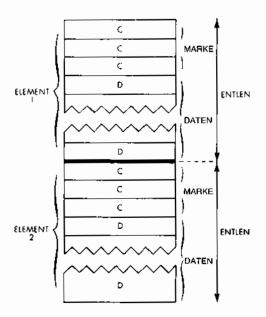


Abb. 9.10: Typische Eintragungen in die Liste

diesen beiden einfachen Listen arbeiten, verwenden einige gemeinsam festgelegte Variablen:

ENTLEN ist die Länge eines Elements. Enthält jedes Element

beispielsweise 10 Byte Daten, dann ist ENTLEN=3+10=13

TABASE ist der Anfang der Tabelle oder Liste im Speicher

POINTER ist der Zeiger auf das aktuelle Element

OBJECT ist das aktuelle Element, das gesucht, eingetragen oder gelöscht werden soll

TABLEN ist die Zahl der Eintragungen.

Es wurde angenommen, daß alle Marken unterschiedlich sind. Will man diese Vereinbarung ändern, sind kleinere Änderungen in den Programmen notwendig.

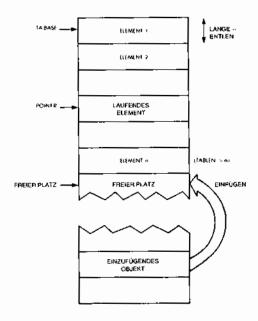


Abb. 9.11: Die einfache Liste

Eine einfache Liste

Die einfache Liste ist als Tabelle von n Elementen organisiert. Die Elemente sind nicht sortiert (siehe Abb. 9.11). Beim Suchen muß man die Liste von Anfang an durchgehen, bis man die Eintragung findet oder das Ende der Tabelle erreicht. Beim Einfügen werden neue Eintragungen an die bestehenden angehängt. Wird eine Eintragung gelöscht, werden eventuelle Eintragungen dahinter verschoben, um die Tabelle zusammenhängend zu halten.

Suchen

Es wird ein serielles Suchverfahren angewendet. Der Reihe nach wird das Markenfeld jeder Eintragung mit der Marke von OBJECT Buchstabe für Buchstabe verglichen. Der laufende Zeiger POINTR wird auf den Wert TABASE initialisiert.

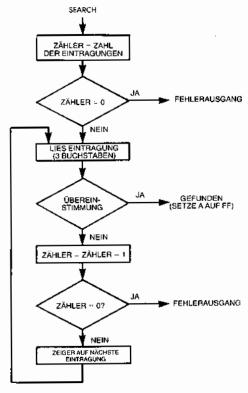


Abb. 9.12: Flußdiagramm zur Suche in der Tabelle

Die Suche wird auf naheliegende Art durchgeführt, Abbildung 9.12 zeigt das Flußdiagramm dazu. Das Suchprogramm erscheint in Abb. 9.16 am Ende des Abschnitts (das Programm "SEARCH"). Abbildung 9.17 zeigt einen Lauf des Programms als Beispiel.

Einfügen

Wird ein neues Element eingfügt, verwendet man dazu den ersten freien Block von (ENTLEN) Bytes am Ende der Liste (siehe Abb. 9.11).

Das Programm testet zuerst, ob die neue Eintragung nicht schon in der Liste vorhanden ist (in diesem Beispiel sollen alle Marken verschieden sein). Wenn nicht, dann wird die Listenlänge TABLEN inkrementiert und OBJECT ans Ende der Liste angehängt. Das entsprechende Flußdiagramm zeigt Abb. 9.13.

Das Programm wird in Abb. 9.16 gezeigt. Es heißt "NEW" und belegt die Speicherzellen 0135 bis 015E.

Das Indexregister IY zeigt auf die Quelle, HL und DE auf das Ziel.

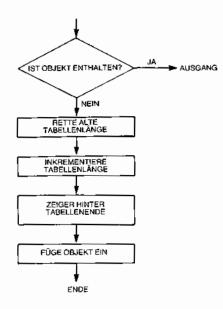


Abb. 9.13: Flußdiagramm zum Einfügen in die Tabelle

Löschen

Um ein Element aus der Liste zu löschen, werden die nachfolgenden Elemente bei den höheren Adressen um eine Elementposition nach unten verschoben. Dies ist in Abb. 9.14 dargestellt.

Das entsprechende Programm ist einfach und es erscheint in Abb. 9.16. Es wurde "DELETE" genannt und steht im Adreßbereich 015F bis 0187 im Speicher. Abb. 9.15 zeigt das Flußdiagramm.

Die Speicherstelle TEMPTR dient als Zeiger auf das aktuelle Element, das verschoben werden soll. Während des Transfers zeigt "POINTR" immer auf das "Loch" in der Liste, d. h. auf das Ziel des nächsten Blocktransfers.

Am Ausgang zeigt das Flag Z an, daß das Löschen erfolgreich ausgeführt wurde. Beachten Sie, daß der Befehl LDIR zum effizienten Blocktransfer benutzt wird (siehe Adresse 0178 in Abb. 9.16).

LD A,B Blockzähler
NEWBLOC LD BC,(ENTLEN) Blocklänge
LDIR
DEC A
JP NZ,NEWBLOC

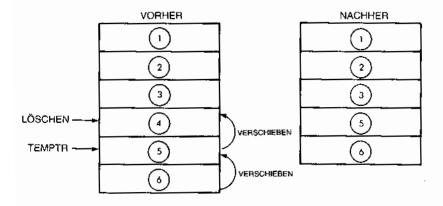


Abb. 9.14: Löschen einer Eintragung (einfache Liste)

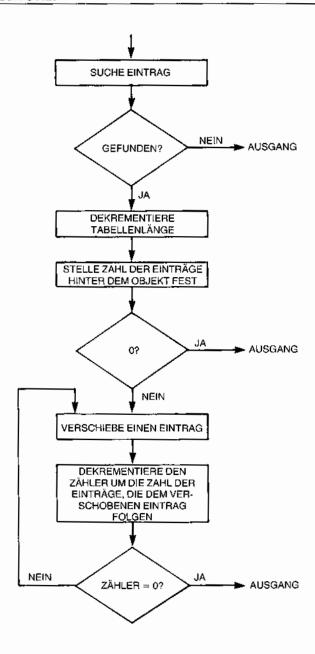


Abb. 9.15: Löschen in der Tabelle - Flußdiagramm

0000			ORG	0100H	
	(0187)	ENTLEN	DL.	ENDER	
	(0199)	TABLEN	DL.	ENDER+2	
	(018A)	TAHASE	ĐI	ENDER+3	
	(01BC)	LEMB.	[H.	CNDER #5	
0100	1600	SEARCH	1. (1)	D. 0	FCLEAR D
0102	348901	SEPH(CI)	L.D	Ar(TABLEN)	CHECK FOR A ZERO TABLE LENGTH
0105	A?		AND	A	ISET FLAGS
0106	63		RET	7.	,
0107	47		L.D	F.A	ASTORE TABLE LENGTH
0108	DD2ABA01		LD	JX;(TABASE)	FPUT BASE ADDR. IN IX
010C	DD7E00	1.00f	t. D	A. (IX+0)	ICHECK FIRST LETTER OF ENTRY
01 0F	FDREGO		CF	(1Y+O)	
0112	C22701		JP -	NZ + NEXTONE;	Address many a statement
0115 0118	DD7E01 FDRE01		(.f) CP	A,(1X+1) (1Y+1)	CHECK OND LETTER
0118	022701		JP	NZINEXTONE	
OLIE	DDZE02		LD	A. ([X12)	ACHECK BRD LETTER
0121	FDBE02		CP.	(IY+2)	
0124	CA3201		JF.	Z+FOUND	FEXIT IF ALL LETTERS MATCH
0127	05	NEXTONE	DEC	В	FDECREMENT TABLE LENGTH COUNTER
012B	C8		RET	7.	}CXIT IF AT END OF TABLE
0129	E0598701		f D	DE, (ENTLEN)	FSET IX TO NEXT ENTRY ADDR.
0170	DD19		ADD	IX-DE	
OLDE	C30C01		JF.	LDOP	FIRY AGAIN FSET D TO SHOW EX CONTAINS ADDR.
0132	16FF C9	FOUND	LD RET	D+OFFH	FREE D TO SHOW EX CONTAINS ADDR.
0134	LY	÷	KE I		FIGURE ENTRY IN THEFT.E.
		,			
0135	C00001	иЕМ	CALL	SEARCH	ISEE IF OBJECT IS THERE
0138	14		INC	D	
0139	CASEQI		41	ZIOUTE	FIF D WAS FF+ EXIC
013C	348901		LD	A. (TABLEN)	
013F 0140	5F 30		INC FB	E+A	FLOAD E WITH TABLE LENGTH
0141	328901		LII	A (TAPLEN)+A	FINCREMENT TABLE LENGTH
0144	1600		LD	Dro	7 INGRESHIAN CHECK CERNOTO
0146	208001		L.D	HL. (TARASE)	
0149	ED488701		LD	BC, (ENTLEN)	FSET B TO LENGTH OF AN ENTRY
0140	41		LD.	B+C	
014E	19	LOOPE	APP	HL - DE	
014F	1 OF II		DJNZ	1 00PE	FADO RL TO (ENTLENSTABLEN)
0151	F0488701		1 II	BC+ (ENTLEN)	
0155 0157	FDES Di		PUSH PDP	TY DE	FNOVE IY TO DE
0158	EB		EX	DE +HI	
0159	EDBO		LDIR	D. L. 7111	FMOVE HEMORY FROM OBJECT TO END
015R	OIFFFF		LD	BC OFFFFH	OF TARLE
015F	CP	DUTE	RET		
		;			
		•			
015F	CD0001	, DELETE	CALL	SEARCH	FIND ENTRY TO BE DELUTED
0152	14	CELETE	INC	DE MICH	SEE IF IT WAS FOUND
0163	C28601		JF	NZ - OUT	Pate. II (I was Pooks
0166	3/18/01		LD	A+ (TABLEN)	FDECREMENT TABLE LENGTH
0169	30		DEC	A	•
0160	328901		L.D	(TABLEN) +A	
0160	05		DEC	8	## NOW=# OF ENTRIES LEFT IN TABLE
016F	CA8301		JP	Z,EXIT	F.AFTER ONE 10 PE DELETED
0171	DRES		PUSH	IX	MOVE IX TO DE
0174	D1 2AB701		FOP LD	PE HL+(ENTLEN)	ISET HE ONE ENTRY AREAD OF DE
0177	19		ODD)	HL + DE	The same received the same of the
0178	78		1.0	ArH	FSET BLOCK COUNTER
0179	E0488701	NEWHI OC		RC+ (ENTI EN)	FRET BLOCK LENGTH COUNTER
0170	E.DRO		LUTE		ESHILL 1 ENTRY OF TABLE
017F	3D		DEC	Α	
0180	C27901		JF.	NZ : NEWRLOC	SHITET ANOTHER BLOCK
0183	01FFFF	EXIT	LD.	BC+OFF FFH	SHOW THAT IT WAS DONF
0186	C9	OUT	RET		
0187	(0000)	ENDER	END		

Abb. 9.16: Einfache Liste - die Programme

0450

0460 0470

```
SYMPOL TABLE
                                                        FOUND
                                                               0132
      015F
                           ENTLEN
                                  0187
                                          EXIT
                                                 0183
DELETE
             ENDER
                     0197
                                                        NEXTON
                                                               0127
LOOP
      0100
             LODGE
                     01.4F
                            NEW
                                  0135
                                          NEMBLO
                                                 0179
                                                               0189
                            SCARCH
                                                        TABLEN
DUT
      0186
             OUTE
                     015E
                                  0100
                                          TABASE
                                                 018A
TEMP
       0180
   Abb. 9.16: Einfache Liste – die Programme (Fortsetzung)
                                                   Liste der Objekte
               Anzeige des Speicherinhalts
                                                   mit ihren Adressen
                                                   im Speicher
       53 4F 4E 31 31 31 31 31 31 31 31 31 31 00 00 00
                                                  SONIIIIIIIIIIII
  0.500
  0310
       44
          41 44
               32 32 32 32
                          32-32 32 32 32 32 00 00 00
                                                  DAD222222222...
                                                  MDM3333333333...
                          33-33
                                 33 33 33 60 00
  0.530
       55 4F 43 34 34 34 34 34-34 34
                                 34 34 34 00 00
                                               00
                                                  UNC4444444444...
  0340
       41 4E 54 33 35 35 35 35-35 35 35 35 35 00 00 00
                                                  AN1555555555...
  0350
          0.550
       . . . . . . . . . . . . . . . . .
  0.120
         Setze IY auf 0300H (Zeiger auf Objekt)
  Y=0000 300
  -0193/196
               Starte 'INSERT'
  F=0196 0196'
                                                  Tabelle nach Start
                                                   des Programms
   [IN400
  0400
        53 4F 4E 31 31 31 31 31-31 31 31 31 31 00 00 00
                                                  SONIDITITIES
  0410
        00 00 00 00 00 00 00 00 00 00 00 00 00
                                               00
        00
  0430
        00.00 00 00 00 00 00 00 00
                               00 00 00 00 00 00
                                                   ................
  0440
       . . . . . . . . . . . . . . . . .
  0450
        00 00
             00
                          00--00
                               00 00
                                       00 00
               00 00
                    00
                       0.0
                                    00
                                            00
                                               00
        0460
                                               00
                                                   ................
        0470
  Y=0300 310
               Setze IY auf 0310H (nächstes Objekt)
  ~6193/L96
               Starte 'INSERT'
  P:0196 01961
                                                   Tabelle nach dem
                                                   zweiten Einfügen
   ·FM400
  0400
       53 4F 4F 31 31 31 31 31 31 31 31 31 31 44 41 44
                                                  SONITITITITIAN
  0410
       32 32 32 32 32 32 32 32 32-32 32 00 00 00 00 00 00
                                                   2222222222.....
                                               00
  0420
             00 00 00 00 00
                          00-00
                               00 00
                                    00 00 00
                                            00
  0430
       0440
          00
                                                   . . . . . . . . . . . . . . . .
  0450
       00
          00 00 00 00 00 00 00-00 00 00 00 00 00
                                            00
                                               00
  0460
       00
          00 00 00 00 00 00 00-00 00 00 00 00 00
                                            00
                                               00
                                                   . . . . . . . . . . . . . . . . .
  0420
       00
                                                   . . . . . . . . . . . . . . . . . . .
             ' '(weitere Einfügungen)' '
                                                   Tabelle nach meh-
                                                   reren Einfügungen
   PM400
  0400
       53 4F 4F 31 31 31 31 31-31 31 31 31 31 44 41 44
                                                  SON11111111110AD
  0410
       32 32 32 37 32 32 32 32 32-32 32 55 46 43 34 34 34
                                                   2222222220NG444
          34 34 34
                     34
                          40-- 4F
                               48
                                  33
                                    33
                                       33 33 33
                                               33
                                                   444444M0H333333
  0430
        33 33 33 33 41
                     4E 54 35 35 35 35 35 35 35 35
                                                   33334NT555355555
  0440
        35
          00 00 00 00 00 00 00-00 00 00 00 00 00
                                               00
```

Abb.9.17: Einfache Liste - ein Durchlauf als Beispiel

5.

. . . *. . .*

1

```
197
110340 320
 6170/123
               Starte 'SEARCH'
P 0193 01931
                            Register D zeigt.
                            daß Objekt gefunden wurde
                                                          Registerinhalte
-143
       A-40 BC 02FF DE FLOD HL 0340 S-0100 F-0193 01931 CARL 0135
      A' 00 B' =0000 b' 0000 H' =0000 X-0422 Y=0320 1:00
                                                            (01357)
                                           Adresse von Objekt
-6196/199
               Starte 'DELETE'
P 0199 01991
                                                      Tabelle nuch
                                                      dem Löschen
DM400
0100
      53 4F 41 31 31 31 31 31 31 31 31 31 31 31 44 41 44
                                                     SONT LITTLE LITTLE AB
     32 32 32 32 32 32 32 32 32-32 32 56 4E 43 34 34 34
0410
                                                     2222222222HN0444
0420
     34 34 34 34 34 34
35 35 35 35 41 40
                       34 41-4f, $4 35 35 35 35 35 35 35 54 36 35 35 35 35 35 35 35 35
                                                      4444444ANTSSSSSS
                                                      55055AN1555555555
      0440
0450
      0460
      0470
     . . . . . . . . . . . . . . . . . .
·SY
Y:0240 340
 6195/199
               Lösche den letzten Eintrag
                                                      Achtung: Keine
C: 0199 01997
                                                      sichtbare Änderung
                                                     in der Tabelle
·08400
                                                     SONTTTTTTTTTTTAN
022002222220000444
0400
     53 4F
32 33
        4F 4E 31
32 32 32
                 31 31 31 31 32
                         31 31 31 31 31 31 44 41 44
32 32 32 55 46 43 34 34 34
9419
0420
     34
        34 34 34 34 34 34 41-4E 54 35 35 35 35 35 35
                                                     44444446N1555555
0430
     35 35 35 35 41
35 00 00 00 00
                    4E 94 35 35 35 35 35 35 35 35 35 35 35 35
                                                     SSSUAN 1058855555
0450
     0460
        0420
     · DM18981
0189 03 -6190/193
               Speicherstelle 'TABLEN' gibt die Länge der Tabelle an
               Starte 'SEARCH' nach dem gelöschten Objekt
F:0193 01931

    D zeigt, daß Objekt nicht gefunden wurde

· Info
      - A-55 RC:001F RE-000D UL-0441 S:0100 P-0193 01937 CALL 0135
A7-00 R7-0000 D7-0000 H7-0000 X-041A Y:0340 1-00 C013
```

Abb. 9.17: Einfache Liste – ein Durchlauf als Beispiel (Fortsetzung)

Alphabetische Liste

Im Gegensatz zum letzten Beispiel enthält die alphabetische Liste alle Elemente in alphabetischer Reihenfolge. Dies erlaubt die Verwendung schnellerer Suchverfahren als im vorhergehenden Beispiel. Hier wird ein binäres Suchverfahren verwendet.

Suche

Der Suchalgorithmus ist ein klassisches binäres Suchen. Wir wollen uns daran erinnern, daß diese Technik im wesentlichen analog zu dem Verfahren ist, nach dem man einen Namen im Telefonbuch sucht. Man beginnt normalerweise irgendwo in der Mitte des Buchs und geht dann nach vorne oder nach hinten, abhängig von den Eintragungen, die man dort findet. Diese Methode ist schnell und kann relativ einfach eingebaut werden.

Das Flußdiagramm zur binären Suche zeigt Abb. 9.18, das Programm Abb. 9.23.

Die Liste enthält die Eintragungen in alphabetischer Reihenfolge und greift durch binäres oder "logarithmisches" Suchen auf sie zu. Abb. 9.19 zeigt ein Beispiel. Die Suche wird dadurch etwas erschwert, daß man verschiedene Bedingungen beachten muß. Das Hauptproblem ist es, zu vermeiden, daß man ein Element sucht, das es nicht gibt. In einem solchen Fall könnte man die Eintragungen mit unmittelbar höheren oder tieferen alphabetischen Werten ewig testen. Um dies zu verhindern, enthält das Programm ein Flag, in dem der Wert des Carryflags nach einem erfolglosen Vergleich gespeichert wird. Sobald INCMNT, das angibt, um wieviel der Zeiger beim nächsten Mal inkrementiert wird, den Wert "1" erreicht, wird ein anderes Flag namens "CLOSENOW" (abgekürzt "CLOSE") auf den WERT des Flags COMPRES gesetzt. Da ab dann jeweils um "1" inkrementiert wird, wird COMPRES verschieden von CLOSE, falls der Zeiger hinter die Stelle gelangt, wo das Element liegen sollte. Dann wird die Suche abgebrochen. Damit hat auch die Routine NEW die Möglichkeit festzustellen, wohin die logischen und physikalischen Zeiger zeigen und wohin das neue Element kommt.

Wenn das gesuchte Element nicht in der Tabelle steht und der Zeiger um Eins inkrementiert wird, wird das Flag CLOSE gesetzt. Im nächsten Durchgang durch das Programm ist das Ergebnis des Vergleichs umgekehrt wie vorher. Die beiden Flags stimmen nicht mehr überein und das Programm endet mit der Anzeige "nicht gefunden".

Das andere Hauptproblem, mit dem man sich befassen muß, ist die Möglichkeit, daß man über ein Ende der Tabelle hinausgerät, wenn man das Inkrement addiert oder subtrahiert. Dies wird dadurch gelöst, indem man eine Testaddition oder -subtraktion mit den logischen Zeigern und der Länge durchführt, die die tatsächliche Zahl der Eintragungen, nicht die physikalische Position im Speicher angeben.

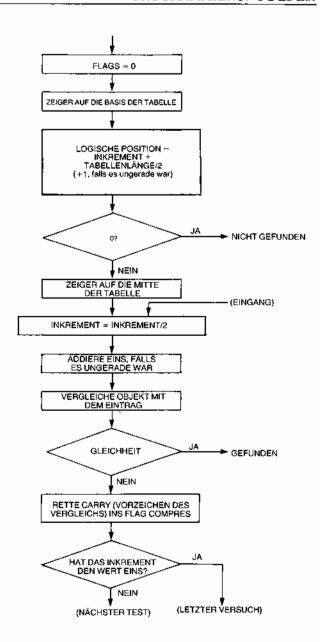
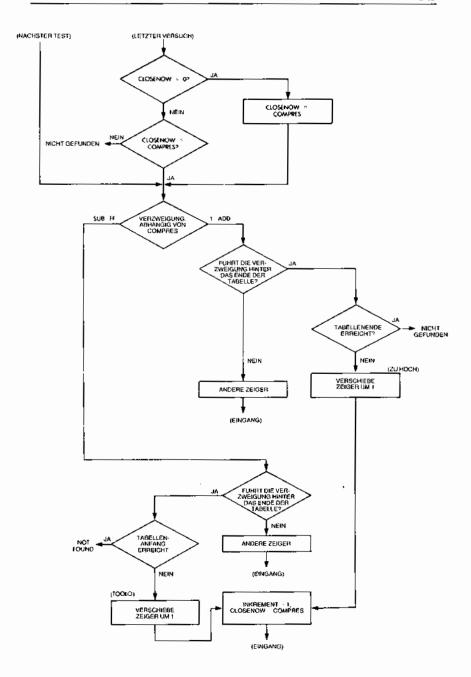



Abb. 9.18: Binäres Suchen – Flußdiagramm

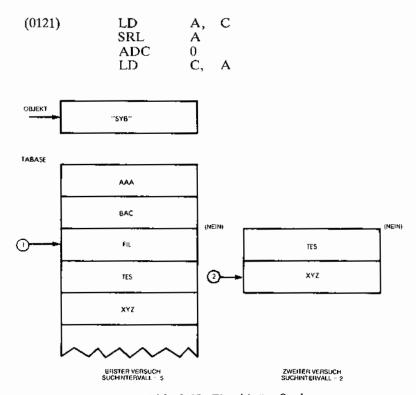


Abb. 9.19: Eine binäre Suche

Zusammengefaßt verwendet das Programm die beiden Flags COMP-RES und CLOSE, um Information zu speichern. Das Flag COMPRES gibt an, ob der Übertrag beim letzten Vergleich "0" oder "1" war. Dies gibt an, ob das verglichene Element größer oder kleiner war, als das, mit dem es verglichen wurde. War der Übertrag C "1" und das Element kleiner, dann wird COMPRES auf "1" gesetzt. War C "0", was anzeigt, daß das Element größer war, wird COMPRES auf "FF" gesetzt.

Als zweites Flag verwendet das Programm CLOSE. Wenn das Suchinkrement INCMNT "1" wird, ist dieses Flag gleich COMPRES. Es zeigt beim nächsten Durchgang an, daß das Element nicht gefunden wurde, wenn COMPRES nicht gleich CLOSE ist. Das Programm verwendet außerdem folgende Variablen:

LOGPOS gibt die logische Position in der Tabelle an (Elementnr)
INCMNT gibt an, um wieviel der laufende Zeiger beim nächsten Mal
inkrementiert oder dekrementiert wird, wenn der Vergleich
fehlschlägt

TABLEN gibt wie üblich die gesamte Länge der Tabelle an.

LOGPOS und INCMNT werden mit TABLEN verglichen, um sicherzustellen, daß die Grenzen der Liste nicht überschritten werden.

Das Programm mit dem Namen "SEARCH" ist in Abb. 9.23 dargestellt. Es belegt den Speicherbereich 0100 bis 01CF und es ist es Wert, sorgfältig studiert zu werden, da es erheblich komplizierter ist als die lineare Suche.

Eine zusätzliche Schwierigkeit besteht darin, daß die Suchintervalle jeweils eine gerade oder eine ungerade Zahl von Elementen enthalten können. Ist sie ungerade, muß eine Korrektur durchgeführt werden. (Man kann z. B. nicht auf das mittlere Element einer Tabelle aus vier Elementen zeigen.) Dann dient ein "Trick" dazu, auf das mittlere Element zu zeigen: Die Division durch 2 wird durch ein Rechts-Schieben ausgeführt. Das Bit, das nach dem Befehl SRL ins Carry "herausfällt", ist eine "1", wenn das Intervall ungerade war. Es wird einfach zum Zeiger addiert.

Das OBJECT wird dann mit der Eintragung in der Mitte des neuen Suchintervalls verglichen. Ist der Vergleich erfolgreich, wird das Programm beendet. Ansonsten ("NOGOOD") wird das Carry auf "0" gesetzt, wenn OBJECT kleiner ist als die Eintragung. Wenn INCMNT "1" wird, dann wird das Flag CLOSE (das anfangs auf Null gesetzt war) getestet, um zu sehen, ob es gesetzt war. Falls nicht, dann wird es gesetzt. War es gesetzt, dann wird getestet, ob die Stelle bereits passiert ist, an der OBJECT hätte stehen sollen.

Beachten Sie auch, daß der laufende Zeiger auf die Eintragung unterhalb von OBJFCT zeigt, wenn das Carry "1" war.

Einfügen eines Element

Um ein neues Element einzufügen, wird zunächst eine binäre Suche ausgeführt. Wird das Element in der Tabelle gefunden, dann braucht es nicht mehr eingefügt zu werden. (Wir nehmen hier an, daß alle Elemente verschieden sind.) Wurde das Element in der Tabelle nicht gefunden, muß es direkt vor oder direkt hinter dem Element eingefügt werden, mit dem es als letztes verglichen wurde. Nach der Suche gibt der Wert des Flags COMPRES an, ob es davor oder dahinter eingefügt werden muß. Alle Elemente hinter der Stelle, an der es eingefügt werden soll, werden um einen Block nach hinten verschoben und das neue Element wird eingefügt.

In Abb. 9.20 ist der Vorgang des Einfügens veranschaulicht, das entsprechende Programm erscheint in Abb. 9.23.

Das Programm heißt NEW und beginnt bei der Adresse 01D0. Beachten Sie, daß die automatischen Z80-Blocktransferbefehle LDDR und LDIR für einen effizienten Blocktransfer verwendet werden.

Löschen eines Elements

Es wird entsprechend eine binäre Suche ausgeführt, um das Element zu finden. Schlägt die Suche fehl, dann braucht es nicht gelöscht zu werden.

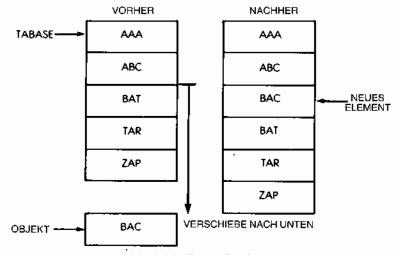


Abb. 9.20: Füge "BAC" ein

Ist die Suche erfolgreich, dann wird das Element gelöscht und alle folgenden Elemente um eine Blockposition nach oben verschoben. Abb. 9.21 zeigt ein entsprechendes Beispiel, und das Programm erscheint in Abb. 9.23. Abbildung 9.22 enthält das zugehörige Flußdiagramm.

Das Programm heißt DELETE und beginnt bei der Adresse 0221. In Abb. 9.24 ist ein Lauf des Programms als Beispiel dargestellt.

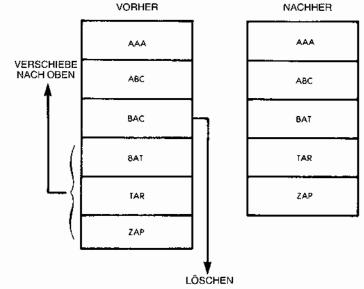


Abb. 9.21: Lösche "BAC"



Abb. 9.22: Flußdiagramm zum Löschen (alphabetische Liste)

0000			rusti	01000	
	(0540)	CLOSENOM		ENDED	
	(024):)	COMPRES	H	F MIN, JH T	
	(0240) (024p)	MINIAL	10 10	LABERTY	
	(024F)	UNITED	bi	ENDERES	
			V1		
0100	3E'00	SEARCH	i b	0.0	
0102	324002		1-11	COLOSENDALEA	FZERO TEAG TORCALLONS
0105	314801		1.10	(COMPRES) /A	
OLOH	57		I II	10.6	
0109 0100	204002 304002		 - - -	HE (CLABASE)	FENTELIALIZE HI
010F	CRSF		Skl	A	CHANGE BY 2
0111	CF OO		and:	0	TATOL LIS HOLE BACK IN
0113	4F		1.10	ČιΛ	ISTURE OF INCREMENT VOLUM
0114	47		1.10	H+A	ASTURE AS LUGICAL PUBLISHED VALUE
0115	CARACT		JF:	Z-NOTE REIND	DOTA 21 REDGET IT ACORDS
0113	13		1.0	E+A	WILLIAM OF THE AMERICAN A A REAL THORSE
0113	110		DCC	F	
OLIA	CDRUOT		CALL	BUL 1	
OHID	19		Ulifi	HI FOE	THE THE TO PETROLL, OF 1984 F.
01 IF 01 IF	ES DOLL	FNIKY	PHSH	HL	TOOL HE INTO IX
0121	79		F(0)*	n.r.	ADJVIDE INCREMENT VALUE BY INC.
0122	CR3F		SKI	A	AND AND DESCRIPTION OF THE
0124	CFOO		VIA:	0	
0126	4F		1.11	Ď r A	
0127	1007000		111	Ar(IXIO)	ROMEANC FIRST LETTER
	F [HrE] OO		CP	(TY10)	
	C24201		.IF	NZ+NOGOOD	
0130	bb2E01		1.0	A.CIXID	FOOMPORE ONE LETTER
0133	FUSE O1		CF.	(TYFE)	
0136	024201 htt///-02		,1F- 1 - D-	NZ - MOGNOD	FOUMPARE 3RD LETTER
0130	FDBF02		CP.	(1X15) (1X15)	FLAGRESIAN, SIND CELLER
01.4F	CARCOL		JI.	ZiFOUND	
0142	3F O1	MOGOOD	111	0.1	ESCI COMPARE RESULT LEAG TO
0144	DA4901		JF	0.16815	FIRESHEE OF COMPONE CLIED
0147	38 F (1.11	AJOFFH	
0149	324802	HSIS	111	COMPRESS TO	
0140	19		1.0	A+f:	FIB INCREMENT ANDM: IS
0141	31		DLC	^	
014E 0151	626901 304002		. H**	NZ+NEXTEST	TYES: US CLUSE FLAG SEL?
0154	67		ANI	A CCT OSENGWA	ATEMA OF GRADE FURO DE L.
0155	101.603		II.	ZyNOTCLOSE	
0158	57		1.0	11.0	CYLSISEE DE HAVE CASSED WHITE
0159	3A4BQT		1.1)	A CCOMERCS	FELLINTRY SHOULD BE DUT ISN'T
0150	92		SHE	I i	
0150	046901		"It-	Z+NEXTEST	
0160	C38VOI		.JF-	MULLOONU	
0163	364802	NOTCLOSE		Ay COUNDRESS	49ET CLOSE FLAG TO DIRECTION OF
0166	324002 1005	M. M. C.C.	H III PUSH	CCLOSCNOW) + A 1X	F. SPARCH TO PREVENT REFLECTION
9810	E t	NEXTEST	1401-14	H	FIREFRARE OF ENGREMENT VALUE
9160	59		1.14	FyC	THE THE THE THE THE TENT
0160	COMMO		CALL	าเมห	
0170	3A4R02		1.10	A # COOMPRESS	FIRST JE WANT TO ARD OR SUR
0123	3C		INC	A	•
0174	C29801		111.	NZ • ADDIT I	
0177	781		1 D	V • H	FIEST TO SET IF SIDE WILL BOW
0178	91		SHE	C	FIRE BUILDINGS TANGE
0177 0170	0A6501 UA6501		11. 11.	Z • 1000.0W C • 1000.0W	
0176	47		Liti	4.A	ASET NEW LOGICAL POSITION VALUE
0180	E082		19193	HI rill	*CHANGE ADDRESS LISELE
0193	CATEOL		.181	ENTRY	
0185	28	FOR OW	1.0	0-14	ASEE OF POSTURON IS I
0186	30		14.C	٨	
0187	Calinol		'lt.	ZANOTEODNÍ	if so, fxff
0100	I DSEAFOR		1.11	M.* (EMTEM)	FJUST SUB L ENTRY FUSTION
018F	37 3F		ccr. scr		
0190	5F F162		51C	H1. + 14	
0192	05		DEC	H	FCHANGE LOGICAL FOSTIFUN
0193	CJAFOL		JF'	REALCLUS	

Abb. 9.23: Binäres Suchprogramm

0196	384000	Almeri	Lh	A. CIAMILNO	THEST TO SEE OF CORRENT FORTEON
0199	90		SHE	16	*FRIDE INCIDENTENT WILL BE FAST
0156	[1005:01		.1F:	Calonnian	** * * * * * * * * * * * * * * * * * *
0196	19		Alib	10 -14	CLS ON CHANGE ACTUAL ARPRESS
019	78		1.0	Autr	CHANGE EDGECAL POS. MACH
OTAG	BI		OUT	t!	
0101	47		1.10	h.o	
01A2	17.3 [1.0]		.if:	INIRY	
OTAS	81	LIBERT COM	ሰመ	40	PER OF PRODUCTION IS AT THE OF
2106	CARADI		II ·	Z - NOTE (RUND)	COLONIA COME OS TODERNIO
0102	E05041-02		1.0	14 • CLMBLEND	FADD E ENTRY POSTITION
0101	19		ABIL	HI - DE	
O) I AF	0.4		INC	H	FINGREMENT LOGICAL POSTLEON
9108	01.01	REALTH OS		6.7.1	4SET INCIDENTIAL TO T
0.1361	3A4R02		1.11	A COMPRESS	ESET CLOSE CLASS TO COMPARE
0184	324002		1 1	COLORS MOMOLEY	1, 10 COM F
01107	f 3 DE 0 1		.101	ENTRY	
0190	1915	NULLEGONIE		11s OF FILE	
OTEC	CA	I IIIIN1i	RL I		
отык	1:-				
		ųili I	FIRST	HI	AMOUNTED DATE OF THE STATE OF T
01(0	05 1500		1.0801	Bu: No e	TX F NOT BE IN BE STATE.
0101	210000		1 [1	HI *0000	
0104	[P4P4L02		116	International	
OTCB	11		I EI	It. I.	
0109	12	AUDE M	Abb	hu a full	
OTCA	1011		D.MZ	AING M	
OTIC	f" E		EDE	HI.	
0100	F He		LX	\$1E +111	
0103	F 1		1:01	HE	
OLEE	1.9		Idl. f		
		;			
		:			
0110	£310001	NI W	COLL	SEARCH	ESTE TO DISTORT US ALPHADY TRADE
01143	14		IMI.	0	
0104	01029002		II.	MANGEL	1.18.11.11.11.11.11.11.11.11.11.11.11.11
01107	364000		1.0	OF CLUBITING	CULCK TOP 0 TABLE
011th	67 EAGE(0)*		ANI)	A Zainseni	
0100	SAAROS		L b	A CLUMPACE	
011.1	Manager 1.		IMI.	Δ	
0162	Cal box		11.	Z 001910)	
0115	FIRSTIAL OF		170	M + (FNTFFN)	COMPRES TO SEE HE ARROY MAILTO
911.9	19		oten	HI (10)	5 , OB. II 1 SHODD P 60
91FA	T.4F 61		. IF	SETTIFF:	77777
0.1F.D	0.1	HISTOR	DET	h.	AUTOMORES OF SELENTION SUBTRACT
01FT	to acro?	SE 1100	1.0	O . CENTRE I NO	ESEC HOW MONY LATRICS ORE 1411
011 1	20		SHIP	11	
0117	CA9092		.181	ZELNSLIKT	
OTES	50		1.11	E+A	ASCA DE 10 LASA COSTILON DELAST.
910 6	COMPO		CALL	MIR 1	Frat NID/Y
011.4	19		Atrib	141 + 101	
911-6	214		DE 1.	HI	
9111	FB		1 X	DE +III	SPET DE LEMINA UNION AND
01FT	264000		1.0	HE + TEMILE NO	
0.000	19		ABIL	HII + Inf	
0200		MITUEN	I. X	ME OH	THE P. LEWIS CO., LANSING MICH.
0.201	i files	CHINA IA	l p	RUNCENTI END	ESHILL FOR ONE ENTRY OF MEMORA
0707	114725		TO II	٨	
9000	C50105		.H.	n NZ+MHVIN	REPEAT HE NECKESSARY
0208	23		INC	MA + LANDAL LA	THE 4S INON I HE NOW EMPTY SEACE
0200	LDES	INSERT	FUSH	ΪΥ	FLOVE ORTHOL TRID FRUIT STACE
0.301	10		FIRE	l i F	7 100.00 1 100.00 110 11 10 10 10 10 10 10 10 10 10 10
0500	ER		i X	DEAHL	
0.210	FDARAFO?		1 1	BC+CLN1LLND	
0214	f fileO		THUR		
0216	304007		1.0	ALCIAIREN)	FINCKLIMENT TARLE LINGUR
0219	3 f.		INC	A	
9210	300000), D	([A [] A]) • A	
9210	OFFER		1]1	H14440*04	FOROM THAT IT MAS DONE
0000	ÇA	(10)	RF 1		
		•			
		÷ .			
		•			

Abb. 9.23: Binäres Suchprogramm (Fortsetzung)

0271	CD0001	DELETE	CALL	SEARCH		BET ADDR	ess or u	DBUECT	
0224	14		INC	Is .		SSEE IF O	RUFCT IS	S THERE	
0225	CA4902		JF'	Z DUTE					
9328	FRSR4FO2		LI	DE 2 CENTU	E.N)				
0320	ER		EX	DE • HL					
0530	19		ADD	HIL , DE		THE IS LOC	c. of a	BJECT, HL	15
0225	3A4002		1[4	A. CTABLE	N)	FLIGNE EN	TRY ORO	JF.	
0231	90		SUR	R		FSEL HOW I	MANY EN	IRTES ARE	LEFT
0232	DA3F 02		.14.	ZIDOWNIA	B				
0235	ED4R4F02	SHIFTIN	1.0	DC / CENTL	EN)				
0239	EDBO		LDIR			FORIST DO	NN 1 EN	TRY LENGT	н
0238	30		DEC	A					
023C	023502		JP	NZ - SHIFT	IN				
023F	364002	POWNTAB	L.D	AZ CTORLE	N)	*DECREHEN	1 TABLE	LENGTH	
0242	30		DEC	ń					
0243	374002		LD	CLARLEND	. A				
0246	OIFFFF		Lti	BC+OFFFF	H	ESHOW THAT	LACTIO	N MAS TAK	EN
0249	C9	OUTE	RE1						
0240	(0000)	ENDED	END						
SYMPO	L TABLE								
AUDEN	0109	ADDIT	0196	CLOSEN	024A	COMPRE	0248	DELETE	0221
DOWNT	A 023F	ENI(E.I)	024A	ENTLEN	024F	ENTRY	011E	FOUND	01BC
HISID	E OIED	INSERT	020C	HOVEN	0201	HUI. T	0150	NEW	0100
NEXTE	5 0169	NDGDQD	0142	NOTCLO	0163	NOTFOU	01BA	DUT	0220
OUTE	0249	REALCL	01AF	SEARCH	0100	SETUP	OIEE	SHIFTI	0235
TABAS		TAHLEN	024C	TESTS	0149	TODHIG	01A5	TOOLOW	0185
			14						

Abb. 9.23: Binäres Suchprogramm (Fortsetzung)

Verkettete Liste

Die verkettete Liste soll wie üblich die drei alphanumerischen Zeichen für die Marke enthalten, gefolgt von einem bis 250 Datenbytes, einem Zeiger aus zwei Byte, der die Startadresse der nächsten Eintragung enthält, und einer Markierung aus einem Byte. Ist diese Markierung auf "1" gesetzt, dann wird das Einfügeprogramm davon abgehalten, diese Eintragung durch eine neue zu ersetzen.

Weiterhin enthält ein Inhaltsverzeichnis einen Zeiger auf die erste Eintragung für jeden Buchstaben des Alphabets, um den Zugriff zu erleichtern. Es wird vom Programm angenommen, daß die Marken ASCII-Zeichen sind. Alle Zeiger am Ende der Liste werden auf ein Null-Zeichen gesetzt, das hier gleich der Anfangsadresse der Tabelle gewählt wurde, da dieser Wert nirgends in der verketteten Liste auftreten darf.

Das Einfüge- und das Löschprogramm führen die nötigen Manipulationen der Zeiger durch. Sie verwenden das Flag INDEXED, um anzuzeigen, ob ein Zeiger auf ein Objekt von einer vorhergehenden Eintragung stammt oder vom Inhaltsverzeichnis. Das entsprechende Programm erscheint in Abb. 9.29. Abb. 9.25 zeigt die Datenstruktur.

																	Ursprüngliche
1440	o																Tabelle
0400	0.0	00	00	00	00	00	00	00 (A) (I	00	00	90	00	00	00	00	***************
0410								00 -0					00	00	00	00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0420			90			00	00				00			00			
04.50					00									00		00	
0440			00		00	00	00					00		0.0		00	
0450			00			00	00							00			
9460								00 0						00			
04/0	00	00	00	OO.	00	(10)	00	00 -0	00	00	00	œ	ΩO	00	00	00	
																	Liste der Objekte
																	•
																	und ihrer Adressen
~IM30	0																im Speicher
0300		4F	41					31.									5000111111011
0.310		41	44	3.7		3.7	32		3.		333	32	3.7	40	00		DQU000000000000000000000000000000000000
0.370		46			33		4.3	33 -			3.3			90			MOM3333333333
0.330	55		41	.44	34	34	34			.51	34	.54		0.0		0.0	UNC 9494444444
0.340	41		5.4	.55		35					.55,			0.0		00	AN195555555
0.35-0		00	00	00	00							00		00		00	
0.360			00					00								00	
0370 - 5Y - 7-000 - 9243 - 1 026	0.0	00	00	00	00	90	00	00	00	00	90	00	00	00	00	100	
· 5Y			١.						•								
Y - 000	0 3	.0	1														
6233	7.76.	5	>	Sta	rte	'II	NSE	RT	,								
E 037			.1														
1. 0.56	0 11.	. 00															
			,														
			,														Tabelle nach dem
tim 40			,														Tabelle nach dem Einfügen
				3.3				33		33	3.5	3.3	.1.1	00	00	00	
timac	4[1	41	41)	33	5.5	3	4,4		3.5							00	Einfügen
tim 40 0400	4[2 00	41	41)	33	5.5	4.3 00	.;,; 00	.3.4	3.3 00	00	00	00	00	00	00	00	Einfügen MOM333333333
0400 0400 0410 0420 0430	4[1 00 00 00	41 00 00	411 00 00 00	3.3 00 00 00	5.5 00 00 00	63 00 00	5.7. 00 00 00	33 : 00 : 00 :	3.3 00 00 00	00 00 00	00 00	00 00	00 00	00	00 00	00 00	Einfügen MOM.3.5.3.3.3.3.3.3
0400 0400 0410 0420 0430 0440	4[1 00 00 00 00	41 00 00 00	411 00 00 00	33 00 00 00	6.5 00 00 00	63 00 00 00	5.5 00 00 00 00	3.3 00 00 00 00	3.3 00 00 00	00 00 00 00	00 00 00	00 00 00	00 00 00	00 00 00	00 00 00	00 00 00	Einfügen MOM.3.3.3.3.3.3.3
0400 0410 0410 0420 0430 0440	4[1 00 00 00 00	41 00 00 00 00	411 00 00 00 00	33 00 00 00 00	5.3 00 00 00 00	63 00 00 00 00	53. 00 00 00 00	33 : 00 : 00 : 00 :	3.3 00 00 00 00	00 00 00 00	00 00 00 00	00 00 00 00	00 00 00	00 00 00	00 00 00	00 00 00 00	Einfügen MOM.3.3.3.3.3.3.3
0400 0410 0410 0420 0430 0440 0450	4[2 00 00 00 00 00	41 00 00 00 00 00	411 60 60 60 60 60	33 00 00 00 00 00	5.3 00 00 00 00 00	63 00 00 00 00 00	5.7. 00 00 00 00 00	33 : 00 : 00 : 00 : 00 :	33 00 00 00 00	00 00 00 00 00	90 90 90 90 90	00 00 00 00	00 00 00 00	00 00 00 00	00 00 00 00	00 00 00 00 00	Einfügen MOMASSASASAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
0440 0410 0410 0420 0430 0440 0450 0450	4[a 00 00 00 00 00 00	41 00 00 00 00 00	411 60 60 60 60 60 60	33 00 00 00 00 00	53 00 00 00 00 00	63 00 00 00 00 00	53 00 00 00 00 00	33 : 00 : 00 : 00 : 00 : 00 : 00 : 00 :	33 00 00 00 00 00	00 00 00 00 00 00	90 90 90 90 90	00 00 00 00 00	00 00 00 00	00 00 00 00 00	00 00 00 00 00	00 00 00 00 00	Einfügen MOM333333333
0440 0410 0410 0420 0430 0440 0450 0450	4[a 00 00 00 00 00 00	41 00 00 00 00 00	411 60 60 60 60 60 60	33 00 00 00 00 00	53 00 00 00 00 00	63 00 00 00 00 00	53 00 00 00 00 00	33 : 00 : 00 : 00 : 00 : 00 : 00 : 00 :	33 00 00 00 00 00	00 00 00 00 00 00	90 90 90 90 90	00 00 00 00 00	00 00 00 00	00 00 00 00 00	00 00 00 00 00	00 00 00 00 00	Einfügen MOMASSASASAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
0440 0410 0410 0420 0430 0440 0450 0450	4[a 00 00 00 00 00 00	41 00 00 00 00 00	411 60 60 60 60 60 60	33 00 00 00 00 00	63 00 00 00 00 00	63 00 00 00 00 00	53 00 00 00 00 00	33 : 00 : 00 : 00 : 00 : 00 : 00 : 00 :	33 00 00 00 00 00	00 00 00 00 00 00	90 90 90 90 90	00 00 00 00 00	00 00 00 00	00 00 00 00 00	00 00 00 00 00	00 00 00 00 00	Einfügen MOMASSSASASA
0440 0410 0410 0420 0430 0440 0450 0450	4[a 00 00 00 00 00 00	41 00 00 00 00 00	411 60 60 60 60 60 60 60	33 00 00 00 00 00	63 00 00 00 00 00	63 00 00 00 00 00	53 00 00 00 00 00	33 : 00 : 00 : 00 : 00 : 00 : 00 : 00 :	33 00 00 00 00 00	00 00 00 00 00 00	90 90 90 90 90	00 00 00 00 00	00 00 00 00	00 00 00 00 00	00 00 00 00 00	00 00 00 00 00	Einfügen MOMASSASASAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
0440 0410 0410 0420 0430 0440 0450 0450	4[a 00 00 00 00 00 00	41 00 00 00 00 00	411 60 60 60 60 60 60 60	33 00 00 00 00 00	63 00 00 00 00 00	63 00 00 00 00 00	53 00 00 00 00 00	33 : 00 : 00 : 00 : 00 : 00 : 00 : 00 :	33 00 00 00 00 00	00 00 00 00 00 00	90 90 90 90 90	00 00 00 00 00	00 00 00 00	00 00 00 00 00	00 00 00 00 00	00 00 00 00 00	Einfügen MOMASSSASASA
0440 0410 0410 0420 0430 0440 0450 0450	4[a 00 00 00 00 00 00	41 00 00 00 00 00	411 60 60 60 60 60 60	33 00 00 00 00 00	53 00 00 00 00 00	63 00 00 00 00 00	53 00 00 00 00 00	33 : 00 : 00 : 00 : 00 : 00 : 00 : 00 :	33 00 00 00 00 00	00 00 00 00 00 00	90 90 90 90 90	00 00 00 00 00	00 00 00 00	00 00 00 00 00	00 00 00 00 00	00 00 00 00 00	Einfügen MOMASASASASASASASASASASASASASASASASASASA
0400 0410 0410 0420 0430 0440 0450	4[a 00 00 00 00 00 00	41 00 00 00 00 00	411 60 60 60 60 60 60	33 00 00 00 00 00	53 00 00 00 00 00	63 00 00 00 00 00	53 00 00 00 00 00	33 : 00 : 00 : 00 : 00 : 00 : 00 : 00 :	33 00 00 00 00 00	00 00 00 00 00 00	90 90 90 90 90	00 00 00 00 00	00 00 00 00	00 00 00 00 00	00 00 00 00 00	00 00 00 00 00	Einfügen MOMASASASASASASASASASASASASASASASASASASA
0440 0410 0410 0420 0430 0440 0450 0450	4[a 00 00 00 00 00 00	41 00 00 00 00 00	411 60 60 60 60 60 60	33 00 00 00 00 00	53 00 00 00 00 00	63 00 00 00 00 00	53 00 00 00 00 00	33 : 00 : 00 : 00 : 00 : 00 : 00 : 00 :	33 00 00 00 00 00	00 00 00 00 00 00	90 90 90 90 90	00 00 00 00 00	00 00 00 00	00 00 00 00 00	00 00 00 00 00	00 00 00 00 00	Einfügen MOM 3 5 3 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
5M40 0410 0410 0410 0430 0440 0450 0450 0450 0450 11 005	4[a 00 00 00 00 00 00 00 00 00 00 00 00	41 00 00 00 00 00	4II 000 000 000 000 000 000 000 000 000	33 00 00 00 00 00 00 Sta	\$3 00 00 00 00 00 00	(3 00 00 00 00 00 00 00	3.3 00 00 00 00 00 00	33 00 00 00 00 00	3.3 00 00 00 00 00 00 00	90 00 00 00 00 00 00	00 00 00 00 00 00 00	00 00 00 00 00	00 00 00 00	00 00 00 00 00	00 00 00 00 00	00 00 00 00 00	Einfügen MOM33333333333333333333333333333333333
5/14/0 04/0 04/0 04/0 04/0 04/0 04/0 04/0	46-00-00-00-00-00-00-00-00-00-00-00-00-00	41 00 00 00 00 00 00 10 6	4II 60 60 60 60 60 60 60 60 60 60 60 60 60	33 00 00 00 00 00 00 Sta	33 00 00 00 00 00 00 rte	(3 00 00 00 00 00 00 00	33 00 00 00 00 00 00 00 8EE	33 : 00 : 00 : 00 : 00 : 00 : 00 : 00 :	33 00 00 00 00 00 00 00 00 00	90 00 00 00 00 00 00	90 90 90 90 90 90 90 90	90 90 90 90 90	00 00 00 00 00	00 00 00 00 00	00 00 00 00 00 00	00 00 00 00 00	Liste der Tabelle nach dem Einfügen. Beachten Sie, daß die Tabelle alphabe- tisch gehatten wird.
5/14/00/00	46-00-00-00-00-00-00-00-00-00-00-00-00-00	41 00 00 00 00 00 00 00 60 00 60 00 00 00	4H 60 60 60 60 60 60 60 60 60 60 60 60 60	33 00 00 00 00 00 00 Sta	33 00 00 00 00 00 00 00 rte	33 00 00 00 00 00 00 00	33 00 00 00 00 00 00 00 8EI	33 : 00 : 00 : 00 : 00 : 00 : 00 : 00 :	33 00 00 00 00 00 00 00 00 00 00 00 32 33	90 90 90 90 90 90 90 90 90 90 90 90 90 9	90 90 90 90 90 90 90 90 90 90	90 90 90 90 90 90 90 and	00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00	09 00 00 00 00 00 00 00 kt	Einfügen MOM33333333333333333333333333333333333
DM400 0410 0410 0410 0430 0430 0440 0450 0450 0450 11 0053 11 0053	4P 00 00 00 00 00 00 00 44 0 0 0 44 33 00	41 00 00 00 00 00 00 60 00 60 60 60 60 60	4H 000 000 000 000 000 000 000 000 000 0	33 00 00 00 00 00 00 00 Sta	53 00 00 00 00 00 00 00 00 00 00	53 00 00 00 00 00 00 00 00 00 00 00 00 00	33 00 00 00 00 00 00 00 00 00 00 00 00 0	33	3.3 00 00 00 00 00 00 00 00 00 00 00 00 00	90 90 90 90 60 60 90 ein	00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 and	00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 4F 00	00 00 00 00 00 00 00 00 00 00	Einfügen MOM33333333333333333333333333333333333
5M40 9469 9410 9430 9430 9440 9450 9450 9450 FIGS3 1: 607	4P 00 00 00 00 00 00 00 00 00 00 00 00 00	41 00 00 00 00 00 00 00 6 41 33 00 00	4H 000 000 000 000 000 000 000 000 000 0	33 00 00 00 00 00 00 00 5ta	53 00 00 00 00 00 00 00 00 00 00 00	53 00 00 00 00 00 00 00 00 00 00 00 00 00	35 00 00 00 00 00 00 00 00 00 00 00 00 00	33 : 3 : 0 : 0 : 0 : 0 : 0 : 0 : 0 : 0 :	3.3 00 00 00 00 00 00 00 00 00 00 00 00 00	90 90 90 90 90 90 90 90 90 90 90 90 90 9	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00	Liste der Tabelle nach dem Einfügen. Beachten Sie, daß die Tabelle alphabe- tisch gehatten wird. beiden 2000 2000 2000 33333333333333333333333
DM400 9410 9410 9410 9430 9440 9440 9450 9450 9470 TM40 9490 9410 9420 9440 9440	4P 00 00 00 00 00 00 00 00 00 00 00 00 00	41 00 00 00 00 00 00 00 6 266 41 33 00 00	48 00 00 00 00 00 00 00 00 00 00 00 00 00	33 00 00 00 00 00 00 00 00 00 00 00 00 0	53 00 00 00 00 00 00 00 00 00 00 00 00 00	53 00 00 00 00 00 00 00 00 00 00 00 00 00	33 00 00 00 00 00 00 00 00 00 00 00 00 0	33 : 3 : 3 : 3 : 3 : 3 : 3 : 3 : 3 : 3	3.3 00 00 00 00 00 00 00 00 00 00 00 00 00	90 90 90 90 90 90 90 90 90 90 90 90 90 9	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	Einfügen MOM33333333333333333333333333333333333
5840 0410 0410 0410 0430 0440 0450 0450 0470 11 007 1840 0410 0410 0440 0440 0440 0440	46 00 00 00 00 00 00 00 00 00 00 00 00 00	41 00 00 00 00 00 00 00 6 6 41 33 60 00 00 00	4H 60 00 00 00 00 00 00 00 00 00 00 00 00	33 00 00 00 00 00 00 00 00 00 00 00 00 0	53 00 00 00 00 00 00 00 00 00 00 00 00 00	33 00 00 00 00 00 00 00 00 00 00 00 00 0	33 00 00 00 00 00 00 00 00 00 00 00 00 0	33 : 00 : 00 : 00 : 00 : 00 : 00 : 00 :	3.3 00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	Einfügen MOM353333333333333333333333333333333333
DM400 0410 0410 0410 0410 0430 0430 0450 0450 0450 0490 0490 0410 0430 0440 0450	49 00 00 00 00 00 00 00 00 00 00 00 00 00	41 00 00 00 00 00 00 00 6 5 266 41 33 00 00 00 00 00 00 00 00 00 00 00 00	411 600 600 600 600 600 600 600 600 600 6	33 00 00 00 00 00 00 00 00 00 00 00 00 0	32 33 00 00 00 00 00 00 00 00 00 00 00 00	53 00 00 00 00 00 00 00 00 00 00 00 00 00	33 00 00 00 00 00 00 00 00 00 00 00 00 0	33 - 1 00 00 00 00 00 00 00 00 00 00 00 00 0	3.3 000 000 000 000 000 000 000 000 000	90 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	32 00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	Liste der Tabelle nach dem Einfügen. Beachten Sie, daß die Tabelle alphabe- tisch gehalten wird. BottopsoppoppenMib 33333333333.
5840 0410 0410 0410 0430 0440 0450 0450 0470 11 007 1840 0410 0410 0440 0440 0440 0440	49 00 00 00 00 00 00 00 00 00 00 00 00 00	41 00 00 00 00 00 00 00 5 41 33 00 00 00 00	411 600 600 600 600 600 600 600 600 600 6	33 00 00 00 00 00 00 00 00 00 00 00 00 0	32 33 00 00 00 00 00 00 00 00 00 00 00 00	53 00 00 00 00 00 00 00 00 00 00 00 00 00	33 00 00 00 00 00 00 00 00 00 00 00 00 0	33 : 00 : 00 : 00 : 00 : 00 : 00 : 00 :	3.3 000 000 000 000 000 000 000 000 000	90 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	32 00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00	Einfügen MOM353333333333333333333333333333333333

... (weitere Einfügungen) ...

```
Tabelle, nachdem
                                               alle Objekte
                                               eingefügt wurden
-- I:M400
    41 4E 54 38 35 35 35 35-35 38 35 38 44 41 44
                                               ANTSSSSSSSSSSJANI
0400
                                               22222222222808233
0410
       32 32 32 32 32 32 32-32 32 40 4F 40 33 33 33
     33
                                               33.33333S0M111111
       33 33 33
               33 33 33 53-4F
                            4E
                              31 31 31
                                      31 31
                                           31
0430
       31 31 31 35 4E 43 34-34 34 34 34
     31
                                    30
                                      34 34
                                           34
                                               1111UNC4444444444
0440
     34
       0450
     0460
0470
     Y=0340 300
            Starte 'SEARCH' nach 'SON' (bei der Adresse 0300)
6260/263
Pri0263 02631
                         Gefunden
··DR
      A=4E RC=0401 RE=000D HL :0427 S:0100 P=0263 02637 CALL 0100
 7
      0'400 B'=0000 D'=0000 H'+0000 X+0427 Y+0300 1400
                                                     (01101)
                                   Adresse von Objekt in der Tabelle
                     (Uberprüfen Sie in der Tabelle, daß dies 'SON' ist)
-6266/249
                                               Tabelle nach dem
            Starte 'DELETE' mit 'SON'
                                               Löschen. Beachten
f=0269 02691
                                               Sie, daß UNC nach
                                               oben verschoben
                                               wurde. Die letzte
                                               Eintragung UNC
                                               darf nicht beachtet
                                               werden.
-- DN 400
                                               ANTSSSSSSSSSSDAU
0400
     41
       4E 54 35 35 35 35
                       35 35 35 38 38 44 41 44
       32 32
            32 32 32 32 32-32 32 40 4F 40 33 33 33
                                               22222222222M0M333
0410
     32
0420
     33 33 33 33 33 33 33
                       55 48 43 34 34 34 34 34 34
                                               3333333UNC444444
0430
     34
       34
         34 34 55 4E 43
                      34-34
                            34
                              34 34 34 34 34
                                           34
                                               4444UNC 44444444
0440
     34 00 00 00 00 00 00 00 00-00
                            00 00 00 00 00
                                         00 00
                                               4. . . . . . . . . . . . . . . . .
0450
     . . . . . . . . . . . . . . . . . .
     0460
                                               . . . . . . . . . . . . . . . . . .
       -G260/263
            Ein weiterer Versuch von 'SEARCH' (mit 'SON')
P=0263 02634
                         - Nicht gefunden
Fig
      APPE BC:0401 DESETTOD HE =0427 S-0100 F 0263 02631 CALL 0100
      A'=00 8'-0000 F'=0000 H'=0000 X=0427 Y"0300 f'00
                                                     (01001)
-6263/266
            Füge Objekt wieder ein ('SON')
PH0266 02661
                                               Momentane Tabelle.
                                               Vergleichen Sie sie
                                               mit der Tabelle vor
                                               Ausführung von
                                               DELETE.
·1M400
                                               ANTS0055555551(A)
0400
     41 46 54 35 35 35 35 35-35 35 35 35 35 44 41 44
                                               2222222222222MAA333
0410
     32 32 32 32 32 32 32 32 32-32 32 4D 4F 40 33 33 33
0430
     33 33 33 33 33 33 53-4F
                            4F 31 31 31 31 31 31
                                               33333333S0N111111
0430
     31
       31 31 31 35 4E 43 34 34 34 34 34 34 34 34 34
                                               1111UNC4444444444
0440
     34
       0450
     0460
     0470
                  Zeigt, daß der Befehl ausgeführt wurde.
-- Folk
      ATOS BC#FFFF DEMO434 BL 1030D 510100 FM0288 02881 CALL 0221
      A'-00 R'-0000 B'-0000 H'-0000 X-0427 Y-0300 1-00
                                                     (02214)
```

Abb. 9.24: Alphabetische Liste - ein Lauf als Beispiel (Fortsetzung)

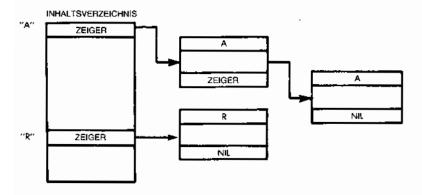


Abb. 9.25: Struktur der verketten Liste

Eine Anwendung für diese Struktur wäre ein computerisiertes Adreßbuch, in dem jede Person durch einen eindeutigen Kode aus drei Buchstaben (vielleicht die Initialien) gekennzeichnet wird und das Datenfeld Adresse und Telefonnummer enthält (bis zu 250 Zeichen). Wir wollen die Struktur in Abb. 9.23 genauer untersuchen. Das Format einer Eintragung ist:

Die üblichen Festlegungen sind:

ENTLEN gesamte Länge (in Byte)
TABASE Adresse des Listenanfangs

Vor Start des Programms muß die Adresse von OBJECT ins Register IY eingetragen werden. REFBASE zeigt hier auf die Anfangsadresse des Inhaltsverzeichnisses.

Jede Zweibyte-Adresse im Inhaltsverzeichnis zeigt auf das erste Auftreten des entsprechenden Buchstabens in der Liste. So bildet jede Gruppe von Eintragungen mit dem gleichen Anfangsbuchstaben der Marke tatsächlich eine getrennte Liste innerhalb der Struktur. Dies vereinfacht die Suche und ist analog zu einem Adreßbuch. Beachten Sie, daß beim Einfügen und Löschen keine Daten bewegt werden. Wie in jeder verketteten Listenstruktur werden nur Zeiger verändert.

Wird keine Eintragung mit einem bestimmten Anfangsbuchstaben gefunden, oder gibt es auf eine Eintragung keine alphabetisch folgende, dann zeigen die entsprechenden Zeiger auf den Tabellenanfang (= "Null"). Dort steht vereinbarungsgemäß ein Wert, der nicht zwischen "A" und "Z" liegt. Er bildet die Marke "Ende der Tabelle" (EOT). Hier wurde angenommen, daß die EOT-Marke den gleichen Speicherbereich einnimmt, wie eine normale Eintragung. Wenn nötig, genügt natürlich auch ein einzelnes Byte. Die Buchstaben sollen alphabetische Zeichen im ASCII-CODE sein. Wollte man dies ändern, müßte man die Konstante in der Routine PRETAB verändern.

Die Markierung Ende der Tabelle ist auf den Wert am Tabellenanfang ("Null") gesetzt.

Vereinbarungsgemäß werden die "Nullzeiger", die am Ende eines Strings stehen oder im Inhaltsverzeichnis an einer Stelle, die auf keinen String zeigt, auf den Wert am Tabellenanfang gesetzt, um eine einheitliche Identifikation zu haben. Man könnte auch eine andere Vereinbarung verwenden. Eine andere Markierung für EOT könnte teilweise etwas Platz sparen, da keine Nulleintragungen für leere Stellen vorhanden sein müßten.

Einfügen und Löschen wird auf die übliche Art und Weise durchgeführt (siehe den 1. Teil dieses Kapitels), indem nur die entsprechenden Zeiger geändert werden. Das Flag INDEXED dient dazu anzuzeigen, ob der Zeiger auf das Objekt im Inhaltsverzeichnis zeigt oder auf ein anderes Element.

Suchen

Das Programm SEARCH belegt den Speicherbereich 0100 bis 0155 und es benutzt das Unterprogramm PRETAB bei der Adresse 01D2.

Das Suchprinzip ist einfach.

- 1 Lies die Eintragung im Inhaltsverzeichnis, die dem Buchstaben in der ersten Stelle der Marke von OBJECT entspricht.
- 2 Lies den Zeiger. Greife auf das Element zu. Wenn Null, dann existiert kein Element.
- 3 Falls nicht Null, dann vergleiche das Element mit OBJECT. Ergibt sich Gleichheit, dann war die Suche erfolgreich. Falls nicht, dann lies den Zeiger auf die nächste Eintragung in der Liste.
- 4 Gehe zu 2 zurück.

In Abbildung 9.26 ist ein Beispiel gezeigt.

Einfügen

Das Einfügen ist im wesentlichen ein Suchen, dem eine Eintragung folgt, sobald eine "Null" gefunden wurde.

Für die neue Eintragung wird ein Speicherblock hinter der Markierung EOT gesucht, dessen Markierung "verfügbar" angibt.

Das Programm in Abb.9.29 heißt "NEW" und belegt den Bereich 0156 bis 01A3. Abbildung 9.27 zeigt ein Beispiel.

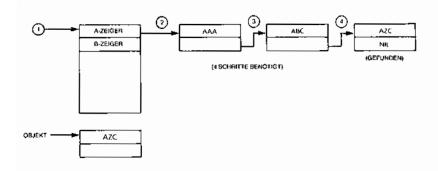


Abb. 9.26: Verkettete Liste - eine Suche

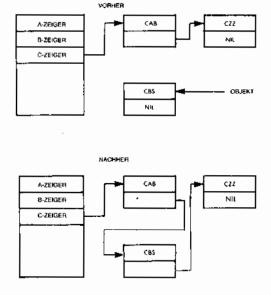


Abb. 9.27: Verkettete Liste: Beispiel für das Einfügen

Löschen

Das Element wird gelöscht, indem die Markierung auf "verfügbar" geäändert wird, und der Zeiger im Inhaltsverzeichnis oder im vorhergehenden Element, der auf dieses Element zeigt, geändert wird.

Das Programm heißt "DELETE", und es belegt den Adreßbereich 01A4 bis 01D1.

Abbildung 9.28 zeigt ein Beispiel für das Löschen.

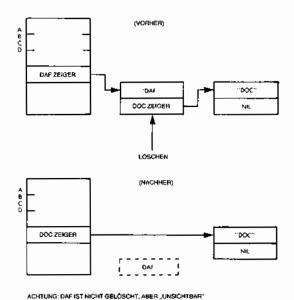


Abb. 9.28: Beispiel für das Löschen (Verkettete Liste)

0000,	(0)1.75	1 N to E 21 To	ORG	O LOOH LNDLR	
	(011.9)	LURUST II	[1] [1]	ENDERET	
	(01Fn)	RELIMONE	10	FN0FR13	
	(31110)	INIIIN	U	(N))) GP7	
0100	3E 00	SEARCH	1.0	A.D	19911401174-11000
0102	4.2		116	R+O	
0103	30;		INC	۸	
0104	324.201		1.15	COURT ALBOAR	
0107	Chicor		CVL	LRI TUIC	FORT ATOR OF INDEX POINTER
0104	IA AF		1 10	0.000	MOVE CHINTER CONTENTS TO HE
0100	13		INC	. ^ 4	
0100	10		1.0	O+Ch(-)	
DIOE	67		1.0	li _F A	
010F	€ 5		F1115H	HI	
0110	DDFT		0.06	IX	
0112	1071.00	COMPARE	DD DD	Λ+(1X10)	FIGUR AT CIRST LETTER OF ENTRY
0115 0117	1 570 025501		.16-	NC ANOTHER COND	ESTE OF TS LOT MARKER
OJIA	UD 28 00		1.0	Δ ₁ (1X(0)	ACOMPARE FIRST LCTURS
0111	FUREOD		LII.	(1110)	
0120	DAREOT		.111	C • NOGHOD	
0123	C25501		JI.	NZ - NOTE DOME	
0126	P07E01 FBB 01		1.0	A+(EXII)	FORMEAN PRO COLLEGE
0129	PASEOT		Ob.	CANOGORD	
012F	025501		JF:	N/+NDTFOUND	
01.32	10021-02		1.0	Ar CIXE23	#COMPARE 3kb LETTERS
01.33	FREE 02		EF:	(1117)	
0130	CA5.301		.JF*	Z+E CHIND	
01.3B	1055501		.16*	MC • MO D DOME	
01.05	100 5 10	NDGOOD	COC	1 X Di	
0141	2AF COT		1 11	HR + CENTLEND	SOUNCE TO POINTER OF ENTRY
0144	19		OBB	∤H → DE	7.72
0145	41		1.10	C+CHD+3	FED FOUNTER VALUE IN RE
0146	23		INC.	HI	
0147	46 03		1.0 1:05R	R+CIII) RC	A DAD EX WITH POINTER
0149	0.08.1		DOP	1 X	ALIMIE OF METHOD INTO THE
0148	SE 00		1.10	0.0	
0141	A;9, 20 I		6, [1	CINIO XU DO 10	FRESULT FLOG
0150	631201		.11	COMPAKE	
0153	OAET CY	LOBMI	1.0	R. OFFH	
0155	CA	NOTEDUNTO	KI I		
		÷			
		;			CANAL AND DESCRIPTION OF THE PARTY OF THE PA
0136 0137	C10001	M. M	1 MC	SEARCH	ESEL WHERE OBJECT SHOULD GO
0150	(A6301		16.	Z+UD1	
0150	10)		14150	IIF	ISTURE APPRA OF PREVIOUS ENTRY
Q15E	PAE 801		I fi	(4@AdA1) + 4H	FETHEL SPACE THE BALLE FOR NEW
0161	1 (1	MEXIONS	l X	14 -11L	EMOUT TO END OF NEXT ENTRY
0162	2ALC01 23		I D INC	HE - CENTIEN?	JADO 3 FOR REAL LENGTH OF ENTRY
0165	23		INC	HI.	ADDRESS OF STREET
0167	2.5		(NC	III	
0168	19		4110	HL #11f.	
0108	71		1.10	A) (BL)	
0156	310		14 G	۸	
91.6E	101981		.if: 1NC	7 + MEXTONS	THE SUMLINGING IS THERE. TRY AGAIN
0161	13 165		PUSH	I I F	USAME MOSTITION OF EMPTY SPACE
0170	F DES		1:11501	TY.	MOVE IN 10 HI
0172	t. J		LOF-	111	
0173	FD4RECO1		1,11	IRC+ O'NELLIND	PROOF ORJECT INTO TANKE
0177	€ 10H0		1.1(18)		THE ADD OF CALLS AS LESS ON POST
03 79	DDES ET		FUSH FOR	LX.	FPOL ABOR OF ENTRY AFTER OBJECT
0170	e B		LX	DE (III	TOTAL TRAINING THE STREET
0170	73		í îc	()II,) +E	
0176	2.3		INC	HI.	
017F	72		1.1)	(HL) + (I	
0180	73 3601		ENG	(HL) +1	ESE E DICTURANCY MARKILIK
0181	3601		1.10	(ni))]	EDG F THAT THE PROPERTY

Abb. 9.29: Verkettete Liste – die Programme

0193	E1		POP	HI.	FOR E ADDR OF WHERE THES SPACE IS
0134	3AF 201		1.11	A+CINDEXED	ASCI WHAT PREVIOUS POTABLES MOST
0187	3.54		to C	۸	4 (. RG SE 1
0188	CA9801		-JP	ZySELINX	
OUSE	F3		F X	(SE) (HE	FOLL ORDER OF ENTRY CREVIOUS TO
01HI;	EDS:RFC01		1.11	14, * (1	F. OBJECT & MOVE TO PURNICE ORIA
0170	19		ADD	HII. 7 10	
0131	111		1.(1),	(i)	FOR TRUEDLE ARREST OF TRUITED
0192	73		1.11	OHDAL	SEUT EL AT FOLKLE FORTLION
0193	23		INC	145	
0194	72		1.11	(HII) - ti	
0195	0.30001		.Jf-	FINISH	
0188	t: 1	SETTINX	1.01.	HC:	FOLENK OUT STOCK
0199	0.010304		COLL	DRI TOR	FIRET TRIDEX ADDRESS
0120	F F		ŁΧ	DE FIN	FLOUD BL TRIG LI
0190	73		LD	Chrost	
019I 019f	2:3		INC	NI Alle E. E.	
			1.10	(10 3 - 1)	
9100	011+11	FINISH	ti a t	BC + OF FUEH	ESHOW THAT IT WAS DONE
0103	1.7	OIL	161 1		
		;			
		;		,	
OLAA	CB0001	DEFETE	CALL	SLONGH	FOR LANDRESS OF OLDER
0107	04		INC	k	ASCE II II IS ABOUT
OLAR	6210104		.IF*	NZ+ODEL	11 11 13 11 N
0108	10F5		PUSH	1X	450 FILE TO PUTNIFICANTA OF ORGETT
0100	F 1		DOD	iii	The factor of the factor of the factor
01At	COMPECOL		1.0	100 - (LN11 1 N)	
0182	09		ABD	HI IR	
0183	46		1.11	1,4 (11)	SRI DECEMBER POINTER
0184	23		ENC	HII	
0185	16		1.0	Restill 1	
9110	23		fNI:	HII	
0197	3600		4.0	(HI) +0	FREMOVE DOPUPANCY MARKER
0189	3AL 701		11:	OF CENTIL XE BO	HOLE IN THE STATE & HANGING
OTBL.	30		DEC	0	
0180	020201		.]]-	NZ +I TRANGEM	
0.1100	CED201		PAFI	FIG. 1019	SYLEMPTE ADDR. INDU. III
0.111.3	ER		FΧ	14 +18	
0.1104	0.30360 I		JI.	MOVEN	
0107	20FL01	CHANGEM	I EI	HI > (FAILFA)	ASE FOR THE TOTAL PROPERTY OF THE PROPERTY OF
OTCA	19		ALIL	III - [1]	
0.1C/c	7 t	HUKLIN	1.11	CHL 3 + C	STOLLARM OLDS TE SUCKE THAT WHAT SHE
Oten	2.3		LMC.	III	For CLUMB R. INDEX OR ENTRY?
OFCD	70		1.31	CIR 1 + B	
0163	OTELLU		1.0	BUL-OFFIFIE	
01101	0.9	116111	141-1		
		÷			
		•			
0102	4.	i Porter d'acti			
	()	PRE LOB	PUSH	10	100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0103 0106	(*f) 2) 00 3):		1 IC DEC	V (11.10)	ACCENT FOR THE FOR THE OR THE PROPERTY OF THE
0107	51) 1640		SHE	401)	PREMOVE ASCEL LEADER
0109	C1C27		51 A	4017	AMOUNTABLE A BY 19
0107	201.001		31.0	n HL - (REL MASSE)	THE THE PERSON
Orbit	81		ADD	F (
21 (4	61		l le	1 70	
OIFO	D2F 404		.01	MC*ETXIII.	
011-3	24		INC	H T T T X UI	
01F4	T BI	L EXPIP	1 %	in -18	
0165	11		POP	117	
016.6	1.5		RET	***	
011.7	(0000)	ENDER	LND		
SYMBI	1 1001				
				B. I. F. I.	ENDER AND AND ADDRESS OF THE ADDRESS
CHANG		COMPAR	0112	DELETT DIA4	ENDER OILZ ENTIEN OILC
1.1013		LEXUE	01F4	FOUND 0153	INDEXE OFF MOVEN OFCR
NEW	0156	NEXTON	0161	NOCOOD 013F	MOTEON OTES ONE OTOS
DUTE	0110	PRUTAB	0100	RELIGAS OUTA	SEARCH 0100 SELLMY 019R
TABAS	8110				

Abb. 9.29: Verkettete Liste - die Programme (Fortsetzung)

				Die	e O	bje	kte	ím	Sp	eic	her						Liste der Objekte und ihrer Lage
186,500																	im Speicher
0.00	5.4		41	3.1	.51	5.1	34		.51	4.1		31			00		SOMETHURSTING
0.010	44	41	41	33	3.2	13	3.5	3,4	33	33	33	32	33	60	00	00	PARCESCREPED 22
0330	5.5	41	4.5	34	.34	.54	34	14	34	40	.54	54	14	00	(H)	00	IINI.444444444
0340	41	41	54	35	35	50	357	45	.54	35	.524	31,	3%	00	00	00	ON LODGE CONTRACTOR
9350	41	41	41	34	325	3.5	36		- 36		36	36	44	00	90	0.0	0006666666666
0.360	5.3	49		37		47	30	32	37	37	40	37		00	90	00	6777777777777 57140488888888
7.1.70		47	74	.169	311	-143	.311	.165	.9:1	.1/1	311	ж•	3:1	(4)	-5(1	(10)	TIRMUMINIMON. I.
DHAO	0																EOT-Zeichen in der urspränglichen
9400		064	on	00	90	66	oo	00	oo.	00	on	00	00	00	oo	00	L Talielle
0410			00	00	040	0.0	00	00	00	00	00	00	00	00	00		
04.40	00	00	00	OO	œ	$\mathbf{o}\mathbf{o}$	00	00	00	00	00	OQ.	(H)	00	90	00	
94 (0	00	00	00	00	0.0	00	00	00	00	on		40	00	00	90	00	• • • • • • • • • • • • • • • • • • • •
0440	00	00	00	00	00	00	00	00	00	00	00	00	00	90	00	00	
0450	96	on		00	OQ	00	on		00	00		do	00		00	00	
0470	60	00	(4)	00	r)(x	04	00	(H)	en)	00	00	(H)	00	90	OΩ	QQ	
-1045-0																	Inhaltsverzeichnis am Anfang
0500		04	σю	04	no	04	00	04	00	04	00	04	go	04	oo	04	
0510	0.0	04	00	(2.2		04	00	04		04	00	04	00	04		04	
0,00		04		04	$\alpha\alpha$	04	00	04		04	00	04	00	04	QO	04	
01.50	~ ",	04	90	0.4		00	00	on	00	00	00	60	00	00	00	00	• • • • • • • • • • • • • • • • • • • •
05/40 Q55/0	00	00	00	00	00	20	00	00	00	00	00	00	00	00	90	00	
0540			06					00			00	00		00	00	90	
05/20	00	00	90	90	00	80	00	00	-00	00	00	00	00	00	00	00	***************************************
								N	iar	kie	run	g "	bel	egt	–	7	
								.,				_	ige	.,		1	Tabelle nach
															ı	-	verschiedenen
Tem dica															1	-	Eintragungen
0400		00	00	60	00	00	no.	on	00	00	00	on	go	500	00	50	(
9410	91	41	5.4	51	374	t:	4";	51.	504	51,	3:	511	.50	70	04	61	pertubation of the con-
0410	44	41	44	50	357	40	47	401	3.7	400	30	301	1.3	90	04	0.1	DATE CONTROL OF THE C
0440	- 11	46	41	34	31	-34	36	36	34	31	34	36	3.5	00	04	01	50NTTT111111
9450	4 [1	41	41:		35	5.3	5.5	33	5.5	3.5	.5 4	31	4.3	00	04	01	MOM.3.5.13.13.13.33
0450	5.3	17	49		3H		.111		.59	351	537	.551	341	40	64	0.1	CI I INSPERMENTATION (*)
0420	41		10	17	37	\$7	37	17	37	17	37	17	47	(10)	0.4	91	6777777777777
Y 032			}	Lö	sch	e e	ine	Eir	ntra	igu	ng						
r op	ny 10	0539	.}														Einzige
1914	10																Veränderung
0400	71		96				no		ĐĐ								
6416	41		1.1														AN Introduction (Assets a
0420	44		11	44					37		42					<u> </u>	1 BAB00000000000000000000000000000000000
2446	5.3		41	31		11		31	\$1	- 50	51	41	- 10	00		01	CONTITIIIELLI
0450	4	41	411	.54	4.4	3.4	4.4	.5 4	4.5	4.5			4.5	Qt,	04	91	MON3333333333
0450	5.4															0.1	a temanggagaga.
9470	4]			17	17	\$7	47		17	11	57	.07	11	99	04	0.1	AZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

Abb. 9.30: Verkettete Liste - ein Lauf als Beispiel

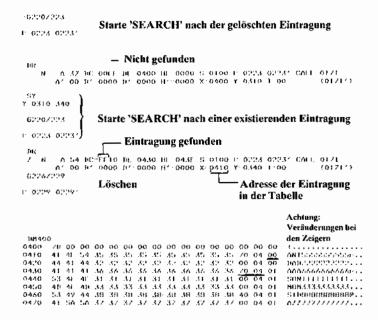


Abb. 9.30: Verkettete Liste - ein Lauf als Beispiel

Zusammenfassung

Der Programmiererneuling braucht sich noch nicht mit den Einzelheiten des Einbaus und der Verwaltung von Datenstrukturen befassen. Effiziente Programmierung von nicht-trivialen Algorithmen setzt jedoch ein gutes Verständnis von Datenstrukturen voraus. Die Beispiele in diesem Kapitel sollen dem Leser helfen, eine solches Verständnis zu erlangen und alle die allgemeinen Probleme zu lösen, die mit geeigneten Datenstrukturen verbunden sind.

10

Entwicklung von Programmen

Einführung

Alle Programme, die wir bisher entwickelt haben, wurden ohne jede Unterstützung durch Software oder Hardware von Hand entwickelt. Die einzige Verbesserung gegenüber der direkten binären Kodierung war die Verwendung mnemotechnischer Symbole, nämlich der Assemblersprache. Um Software effizient entwickeln zu können, muß man wissen, welche Hardware- und Softwarehilfsmittel es gibt. Es ist die Aufgabe dieses Kapitels, diese Hilfsmittel vorzustellen und zu bewerten.

Grundlegende Entscheidungen

Es gibt drei prinzipielle Alternativen: Man kann ein Programm binär oder hexadezimal schreiben, man kann es in Assemblersprache oder in einer höheren Programmiersprache schreiben. Wir wollen diese Möglichkeiten genauer betrachten.

Hexadezimale Kodierung

Ein Programm wird normalerweise in Assemblersprache geschrieben. Viele billige Einplatinencomputer haben jedoch keinen Assembler. Der Assembler ist das Programm, das die Abkürzungen, die man im Programm verwendet, automatisch in den benötigten Binärkode übersetzt. Ist kein Assembler verfügbar, dann muß man diese Übersetzung von der Assemblersprache in den Binärkode von Hand ausführen. Die binäre Darstellung ist nicht bequem zu handhaben und führt leicht zu Fehlern, so daß man normalerweise die hexadezimale Darstellung verwendet. In Kapitel 1 wurde gezeigt, daß eine Hexadezimalziffer vier binäre Bits darstellt. Deshalb nimmt man zwei Hexadezimalziffern, um den Inhalt jedes Bytes anzugeben. Eine Tabelle, die die hexadezimalen Äquivalente der Z80-Befehle angibt, steht im Anhang.

Kurz gesagt, der Programmierer muß dann ein Programm von Hand in hexadezimale Darstellung übersetzen, wenn die Hilfsmittel des Benutzers begrenzt sind und kein Assembler zur Verfügung steht. Dies kann man vernünftigerweise nur mit einer kleinen Anzahl von Befehlen tun (vielleicht mit 10 bis 100). Für umfangreichere Programme ist dieses Verfahren langwierig und fehleranfällig, so daß es nicht zu empfehlen ist. Man muß jedoch bei fast allen Einplatinencomputern die Programme hexadezimal eingeben. Um die Kosten gering zu halten, sind diese nicht mit einem Assembler und einer vollen alphanumerischen Tastatur ausgestattet.

Zusammengefaßt ist die hexadezimale Kodierung keine günstige Art, ein Programm in einen Computer einzugeben. Es ist nur eine billige Art. Man muß die Kosten für einen Assembler und eine Tastatur gegen die Arbeit aufwiegen, ein Programm in den Speicher einzugeben. Dies ändert jedoch nicht die Art und Weise, wie das Programm selbst geschrieben wird. Das Programm wird trotzdem in Assemblersprache geschrieben, so daß es der menschliche Programmierer überprüfen und verstehen kann.

Programmierung in Assemblersprache

Programmierung in Assemblersprache betrifft sowohl die Programme, die man in hexadezimaler Form eingibt, als auch die, die in symbolischer Assemblersprache in den Rechner eingegeben werden können. Wir wollen jetzt untersuchen, wie ein Programm direkt in seiner Darstellung in Assemblersprache eingegeben wird. Dazu braucht man ein Assemblerprogramm. Der Assembler liest jeden mnemonischen Befehl des Programms und übersetzt ihn in das entsprechende Bitmuster, wobei er ein bis fünf Byte belegt, wie es durch die Kodierung des Befehls festgelegt ist. Zusätzlich bietet ein guter Assembler eine Anzahl weiterer Hilfen zum Schreiben des Programms. Diese werden in dem Abschnitt über Assembler unten dargestellt. Speziell sind Direktiven verfügbar, die den Wert von Symbolen verändern. Man kann symbolisch adressieren und Sprünge zu symbolischen Adressen angeben. Wenn ein Benutzer während der Testphase Befehle entfernt oder hinzufügt, dann muß man nicht das ganze Programm ändern, wenn ein zusätzlicher Befehl zwischen einem Sprungbefehl und der Stelle eingefügt wird, auf die der Sprung zielt, solange man symbolische Marken verwendet. Der Assembler berücksichtigt das automatisch, wenn er bei der Übersetzung die symbolischen Marken in Adressen umrechnet. Zusätzlich erlaubt es der Assembler, Fehler in der symbolischen Darstellung des Programms zu suchen. Wenn man den Inhalt einer Speicherstelle untersuchen und den Assemblerbefehl, den er darstellt, rekonstruieren will, dann kann man einen Disassembler verwenden. Die verschiedenen Softwarehilfsmittel, die auf einem System normalerweise zur Verfügung stehen, werden unten vorgestellt. Wir wollen jetzt die dritte Alternative untersuchen.

Abb. 10.1: Programmierebenen

Höhere Programmiersprachen

Man kann ein Programm in einer höheren Sprache wie BASIC, APL oder PASCAL schreiben. Die Techniken der Programmierung in diesen verschiedenen Sprachen werden in speziellen Büchern behandelt, und sie werden hier nicht vorgestellt. Wir wollen deshalb diese Art der Programmierung nur kurz skizzieren. Eine höhere Programmiersprache bietet leistungsfähige Anweisungen, die die Programmierung erheblich leichter und schneller machen. Diese Anweisungen müssen dann von einem komplizierten Programm in die endgültige binäre Form umgesetzt werden, die ein Mikroprozessor ausführen kann. Typischerweise wird eine Anweisung in einer höheren Programmiersprache in eine Vielzahl einzelner binärer Befehle übersetzt. Das Programm, das diese Übersetzung durchführt, heißt Compiler oder Interpreter. Ein Compiler übersetzt alle Anweisungen eines Programms nacheinander in Objektcode. In einer getrennten Phase wird der Code dann ausgeführt. Im Gegensatz dazu interpretiert ein Interpreter einen einzigen Befehl, führt ihn aus, übersetzt dann die nächste Anweisung und führt diese aus. Ein Interpreter bietet den Vorteil einer interaktiven Arbeitsweise, ist aber weniger effizient als ein Compiler. Diese Besonderheiten werden hier nicht weiter studiert. Wir wollen uns der Programmierung eines tatsächlichen Mikroprozessors auf Assemblersprachebene zuwenden.

Software-Unterstützung

Wir wollen hier die hauptsächlichen Softwarehilfsmittel besprechen, die in einem vollständigen System zur Softwareentwicklung vorhanden sind (oder sein sollten). Einige der Begriffe wurden bereits eingeführt. Sie werden hier zusammengefaßt und die weiteren wichtigen Programme werden definiert, bevor wir fortfahren.

Der Assembler ist das Programm, das die mnemonische Darstellung von Befehlen in ihr binäres Äquivalent übersetzt. Er übersetzt normalerweise einen symbolischen Befehl in einen binären Befehl (der 1, 2, 3 oder 4 Byte belegen kann). Der resultierende Binärkode wird Objektkode genannt. Er kann direkt von dem Mikroprozessor ausgeführt werden. Als Nebeneffekt erzeugt der Assembler eine komplette symbolische Liste des Programms, außerdem eine Äquivalenztabelle für den Programmierer und eine Liste der Symbole in dem Programm. Beispiele werden später in diesem Kapitel vorgestellt.

Zusätzlich listet der Assembler Syntaxfehler, wie Befehl falsch geschrieben oder unzulässig, fehlerhafte Verzweigung, doppelte oder fehlende Marken.

Er erkennt aber keine logischen Fehler (das ist Ihr Problem).

Ein Compiler ist ein Programm, das Anweisungen aus einer höheren Programmiersprache in eine binäre Form übersetzt.

Ein Interpreter ist ein Programm, das ähnlich wie der Compiler auch Anweisungen aus einer höheren Sprache in binären Kode übersetzt, diese aber nicht speichert, sondern sofort ausführt. Tatsächlich wird der binäre Kode oft gar nicht erzeugt, sondern die Anweisungen in der höheren Sprache werden direkt ausgeführt.

Ein Monitor ist das Grundprogramm, das unverzichtbar ist, wenn man die Hardwaremöglichkeiten des Systems nutzen will. Er fragt die Eingabegeräte ständig auf Eingaben ab und verwaltet die restlichen Geräte. Beispielsweise muß ein minimaler Monitor für einen Einplatinencomputer, der mit einer Tastatur und einer LED-Anzeige ausgestattet ist, die Tastatur fortlaufend auf Eingaben des Benutzers abfragen und den festgelegten Inhalt auf den Leuchtdioden ausgeben. Zusätzlich muß er eine begrenzte Zahl von Befehlen von der Tastatur verstehen, z. B. START, STOP, CONTINUE (mache weiter), LOAD MEMORY (lade Speicher), EXAMINE MEMORY (überprüfe Speicher). Auf einem großen System bildet der Monitor oft das Überwachungsprogramm, wenn komplexe Dateiverwaltung oder Taskverwaltung verfügbar ist. Die Gesamtheit aller Funktionen heißt dann Betriebssystem. Stehen die Dateien auf einer Platte, wird das Betriebssystem als Platten-Betriebssystem oder DOS (Disk Operating System) bezeichnet.

Ein Editor ist ein Programm, das die Eingabe und die Korrektur von Texten oder Programmen vereinfacht. Er erlaubt dem Benutzer, Zei-

chen einzugeben, sie anzuhängen oder einzufügen, Zeilen einzufügen und zu löschen und Zeichen oder Zeichenketten zu suchen. Er ist ein wichtiges Hilfsmittel, um Text bequem und effektiv einzugeben.

Ein Debugger ist zur Fehlersuche in Programmen nötig. Wenn ein Programm nicht richtig arbeitet, dann ergibt sich oft kein Hinweis, woran das liegt. Deshalb kann der Programmierer in dieses Programm Haltepunkte (Breakpoints) einbauen, um die Ausführung an der angegebenen Adresse zu unterbrechen und an dieser Stelle Inhalte von Registern und Speichern anschauen zu können. Dies ist die hauptsächliche Funktion eines Debuggers. Der Debugger bietet die Möglichkeit, ein Programm zu unterbrechen, die Ausführung fortzusetzen und Inhalte von Registern und Speicherzellen zu überprüfen, anzuzeigen und zu ändern. Ein guter Debugger besitzt oft noch zusätzliche Fähigkeiten, z. B. die, Daten in symbolischer Form, hexadezimal, binär oder in anderen gebräuchlichen Darstellungen zu überprüfen und in diesem Format einzugeben.

Ein Loader oder Linking Loader plaziert verschiedene Blöcke von Objektkode an angegebene Stellen im Speicher und paßt ihre symbolischen Zeiger so an, daß sie aufeinander zugreifen können. Er wird dazu verwendet, Programme oder Blöcke in verschiedene Speicherbereiche zu legen.

Ein Simulator hat die Aufgabe, die Funktion eines Bausteins, meist des Mikroprozessors, zu simulieren, wenn man ein Programm auf einem simulierten Prozessor entwickelt, bevor man es auf die endgültige Karte überträgt. Mit diesem Werkzeug wird es möglich, Programme zu unterbrechen, zu ändern und im Speicher zu halten. Die Nachteile eines Simulators sind:

- 1 Normalerweise simuliert er nur den Prozessor, keine Ein-/Ausgabegeräte.
- 2 Die Ausführung ist langsam und man arbeitet in einer simulierten Zeitskala. Es ist deshalb nicht möglich, Bausteine unter Echtzeitbedingungen zu testen. Synchronisationsprobleme können aber auch dann noch auftreten, wenn sich die Logik eines Programms schon als fehlerfrei erwiesen hat.

Ein *Emulator* ist im wesentlichen ein Simulator unter Echtzeitbedingungen. Er verwendet einen Prozessor, um einen anderen zu simulieren, und er simuliert ihn in allen Einzelheiten.

Hilfs- oder Dienstprogramme (Utility Routines) sind im wesentlichen alle die Programme, die bei den meisten Anwendungen nötig sind, und von denen sich der Benutzer wünscht, daß der Hersteller sie mitliefert! Dies kann Programme für Multiplikation, Division und andere arithmetische Operationen einschließen, Routinen zum Verschieben von Blökken, Tests von Zeichen, Treiber für Ein-/Ausgabegeräte usw.

Wie man schrittweise ein Programm entwickelt

Wir wollen jetzt die typische Vorgehensweise bei der Entwicklung eines Programms auf Assemblersprachebene untersuchen. Wir wollen annehmen, daß alle üblichen Softwarehilfsmittel zur Verfügung stehen, um ihre Nützlichkeit zu demonstrieren. Stehen diese in einem speziellen System nicht zur Verfügung, dann kann man trotzdem Programme entwikkeln, die Entwicklung wird aber umständlicher und die Zeit, die man bei der Fehlersuche verbraucht, wird länger werden.

Normalerweise geht man so vor, daß man zuerst einen Algorithmus entwirft und die Datenstrukturen für das Problem festlegt, das gelöst werden soll. Danach wird ein zusammenhängender Satz von Flußdiagrammen entwickelt, die den Ablauf des Programms darstellen. Schließlich werden die Flußdiagramme in die Assemblersprache des entsprechenden Mikroprozessors umgesetzt, dies ist die Phase der Kodierung.

Als nächstes gibt man das Programm in einen Rechner ein. Im nächsten Abschnitt wollen wir die Hardwarehilfsmittel ansprechen, die man in dieser Phase benutzt.

Unter Kontrolle des Editors wird das Programm in den RAM-Speicher des Systems eingegeben. Sobald ein Abschnitt des Programms eingegeben ist, z. B. ein oder mehrere Unterprogramme, wird er getestet.

Zuerst verwendet man den Assembler. Steht der Assembler nicht schon im System zur Verfügung, dann lädt man ihn von einem externen Speicher, z. B. einer Platte. Danach wird das Programm assembliert, d. h. in den Binärkode übersetzt. Dies ergibt ein Objektprogramm, das zur Ausführung bereit ist.

Normalerweise erwartet man nicht, daß ein Programm auf Anhieb richtig arbeitet. Um seine Arbeitsweise zu überprüfen, setzt man an kritischen Stellen Haltepunkte, wo man leicht testen kann, ob die Zwischenergebnsse stimmen. Dafür wird der Debugger verwendet. An ausgewählten Stellen legt man Haltepunkte fest. Dann gibt man einen Befehl "Go" ein, mit dem das Programm gestartet wird. An jedem Haltepunkt wird das Programm automatisch angehalten. Der Programmierer kann dann überprüfen, ob die Daten bis dahin korrekt sind, indem er die Inhalte von Registern und Speicherzellen untersucht. War alles in Ordnung, macht man bis zum nächsten Haltepunkt weiter. Sobald falsche Daten auftreten, hat man einen Fehler im Programm erkannt. An dieser Stelle nimmt sich der Programmierer normalerweise die Liste des Programms vor, und er untersucht, ob die Kodierung stimmt. Kann dabei kein Fehler gefunden werden, dann mag ein logischer Fehler vorliegen, und man muß die Flußdiagramme zu Rate ziehen. Wir wollen hier annehmen, daß die Flußdiagramme von Hand getestet wurden und in Ordnung sind. Der Fehler dürfte dann in der Kodierung liegen. Es wird deshalb nötig werden, einen Teil des Programms zu ändern. Steht die symbolische Darstellung des Programms noch im Speicher, werden wir einfach wieder in den Editor gehen, die entsprechenden Zeilen ändern und

danach den vorhergehenden Ablauf wiederholen. In manchen Systemen mag der Speicher nicht groß genug sein, so daß man die symbolische Darstellung des Programms auf Diskette oder auf Kassette auslagern muß, bevor man den Objektkode ausführt. In einem solchen Fall muß man natürlich die symbolische Darstellung des Programms von dem Externspeicher neu laden, bevor man den Editor startet.

Das obige Verfahren wird solange wiederholt, bis die Ergebnisse stimmen. Wir wollen betonen, daß Vorbeugen besser ist als Heilen. Ein korrekter Entwurf führt typischerweise zu einem Programm, das sehr bald korrekt läuft, sobald die üblichen Tippfehler oder offensichtliche Fehler bei der Kodierung behoben sind. Ein schlampiger Entwurf kann jedoch zu Programmen führen, die eine extrem lange Zeit zur Fehlersuche brauchen. Kurz gesagt lohnt es sich immer, mehr Zeit in den Entwurf zu stecken, um die Fehlersuche zu verkürzen.

Mit diesem Verfahren ist es möglich, die gesamte Organisation des Programms zu testen, es ist jedoch unmöglich, das Programm unter Echtzeitbedingungen mit Ein-/Ausgabebausteinen zu testen. Müssen Ein-/Ausgabebausteine getestet werden, dann besteht die direkte Lösung darin, daß man das Programm in ein EPROM überträgt, dieses auf der Karte einbaut und schaut, ob es funktioniert.

Es gibt dafür allerdings eine bessere Lösung. Es ist die Verwendung eines In-Circuit-Emulators. Ein In-Circuit-Emulator benutzt den Mikroprozessor Z80 (oder einen anderen), um den Z80 unter Echtzeitbedingungen nachzubilden. Der Z80 wird physikalisch annulliert. Der Emulator hat ein Kabel mit einem 40-poligen Stecker, der genau die gleiche Belegung hat, wie der Z80. Diesen Stecker kann man in die Anwendungskarte stecken, die man entwickelt. Die Signale, die der Emulator erzeugt, sind genau die des Z80, höchstens etwas langsamer. Der wesentliche Vorteil ist es, daß das Programm, das getestet werden soll, im RAM-Speicher des Entwicklungssystems bleibt. Es erzeugt genau die Signale, die mit den Ein-/Ausgabegeräten kommunizieren, die man verwenden will. Als Ergebnis ist es möglich, das Programm mit all den Hilfsmitteln des Entwicklungssystems zu entwickeln (Editor, Debugger, symbolische Werkzeuge, Dateisystem), während Ein-/Ausgaben unter Echtzeitbedingungen getestet werden.

Zusätzlich bietet ein guter Emulator weitergehende Möglichkeiten, z. B. Trace (eine Spur verfolgen). Ein Trace ist die Aufzeichnung der letzten Befehle oder der Zustände auf den verschiedenen Bussen des Systems vor einem Haltepunkt. Kurz gesagt, liefert ein Trace einen Film der Ereignisse, die vor einem Haltepunkt oder vor einem Fehler abliefen. Es kann auch bei einer festgelegten Adresse oder beim Auftreten einer speziellen Bitkombination ausgelöst werden. Eine solche Möglichkeit ist von großem Wert, da es in der Regel zu spät ist, wenn der Fehler erkannt wird. Die Befehle oder die Daten, die den Fehler ausgelöst haben, traten vor dessen Entdeckung auf. Ist ein Trace vorhanden, dann kann der Benutzer herausfinden, welcher Teil seines Programms den

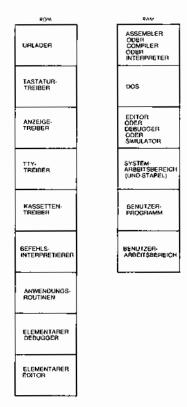


Abb. 10.2: Ein typischer Speicherbelegungsplan

Fehler ausgelöst hat. Ist der Trace nicht lang genug, dann setzt man einfach einen früheren Haltepunkt.

Dies schließt unsere Beschreibung ab, wie man bei der Entwicklung eines Programms normalerweise vorgeht. Wir wollen jetzt die Hardware-Hilfsmittel betrachten, die es zur Programmentwicklung gibt.

Alternativen bei der Hardware

Ein-Platinen-Computer

Ein Ein-Platinen-Computer bietet die billigste Möglichkeit zur Programmentwicklung. Er hat normalerweise eine hexadezimale Tastatur und einige zusätzliche Funktionstasten sowie eine sechsstellige LED-Anzeige, mit der man Adressen und Daten anzeigen kann. Da er nur relativ wenig Speicher hat, ist ein Assembler normalerweise nicht verfügbar. Bestenfalls besitzt er einen kleinen Monitor und außer einigen we-

nigen Befehlen keine Möglichkeiten zum Editieren und zum Debuggen. Deshalb müssen alle Programme hexadezimal eingegeben werden. Sie werden auch in hexadezimaler Form auf den LEDs angezeigt. Ein Ein-Platinen-Computer hat theoretisch die gleiche Hardwareleistung wie jeder andere Computer auch. Er besitzt jedoch nicht alle die nützlichen Hilfsmittel eines größeren Systems und macht die Programmentwicklung viel langwieriger, einfach weil sein Speicherbereich und seine Tastatur eingeschränkt sind. Da es sehr umständlich ist, Programme im hexadezimalen Format zu entwickeln, ist ein Ein-Platinen-Computer zur Aus- und Weiterbildung gut geeignet, da nur Programme beschränkter Länge entwickelt werden und da die begrenzte Länge keine Einschränkung bei der Arbeit bedeutet. Ein-Platinen-Computer sind die wohl billigste Möglichkeit, programmieren zu lernen, indem man es praktiziert. Sie können jedoch nicht zur Entwicklung komplexer Programme verwendet werden, solange man keine zusätzlichen Speicherkarten anschließt und die gebräuchlichen Software-Hilfsmittel verfügbar macht.

Das Entwickungssystem

Ein Entwicklungssystem ist ein Mikrocomputersystem, das einen großen Speicher besitzt (32k, 48k) und auch die benötigten Ein-/Ausgabegeräte, wie Bildschirm, Drucker, Floppy-Disk und üblicherweise einen PROM-Programmierer, vielleicht auch einen In-Circuit-Emulator. Ein Entwicklungssystem wurde speziell dafür entworfen, die Entwicklung von Programmen in industrieller Umgebung zu erleichtern. Es bietet normalerweise alle oder die meisten der Software-Hilfsmittel, die wir im letzten Abschnitt vorgestellt haben. Im Prinzip ist es das ideale Werkzeug zur Entwicklung von Software.

Eingeschränkt ist ein Mikrocomputer-Entwicklungssystem bisweilen in dem Punkt, daß es eventuell nicht in der Lage ist, einen Compiler oder Interpreter zu betreiben. Dies liegt daran, daß ein Compiler typischerweise einen sehr großen Speicherbereich benötigt, oft mehr, als das System enthält. Zur Entwicklung von Programmen auf Assemblersprachebene bietet es jedoch alle nötigen Hilfsmittel. Da Entwicklungssysteme im Vergleich zu Hobbycomputern in relativ kleinen Stückzahlen verkauft werden, sind sie wesentlich teurer.

Mikrocomputer für Hobbyisten

Die Hardware von Hobbycomputern ist natürlich völlig analog zu der eines Entwicklungssystems. Der Hauptunterschied liegt darin, daß ein Hobbycomputer normalerweise nicht mit der hochentwickelten Software ausgerüstet ist, über die ein industrielles Entwicklungssystem verfügt. Beispielsweise bieten viele Mikrocomputer für Hobbyzwecke nur einfache Assembler, einfache Editoren, minimale Dateiverwaltungssysteme und keine Möglichkeit, einen PROM-Programmierer anzuschließen, keinen In-Circuit-Emulator und keinen leistungsfähigen Debugger. Sie bilden deshalb einen Zwischenschritt zwischen den Ein-Platinen-Com-

putern und den vollständigen Entwicklungssystemen. Für einen Anwender, der Programme von mittlerer Komplexität entwickeln will, sind sie wahrscheinlich der beste Kompromiß, da sie bei niedrigen Kosten einen brauchbaren Satz von Software-Hilfsmitteln anbieten, auch wenn sie nur über beschränkten Komfort verfügen.

Time-Sharing Systeme

Man kann sich bei verschiedenen Firmen Terminals mieten, die an Datenübertragungsnetze angeschlossen werden können. Mit einem solchen Terminal erhält man einen Anteil an der Zeitscheibe eines Großrechners und kann von allen Vorteilen einer großen Anlage profitieren. Auf nahezu allen kommerziellen Time-Sharing Systemen sind Cross-Assembler für die meisten Mikroprozessoren verfügbar. Ein Cross-Assembler ist einfach ein Assembler, sagen wir für den Z80, der z. B. auf einer IBM 370 läuft. Formal ist ein Cross-Assembler ein Assembler für den Prozessor X, der auf dem Prozessor Y läuft. Welchen Computer man dazu verwendet, ist ohne Bedeutung. Der Benutzer schreibt die Programme in der Z80-Assemblersprache, und der Cross-Assembler übersetzt sie in die entsprechenden Bitmuster. Der Unterschied ist jedoch, daß das Programm dann nicht sofort ausgeführt werden kann. Es kann mit einem simulierten Prozessor ausgeführt werden, wenn einer zur Verfügung steht und wenn das Programm keine Ein-/Ausgabegeräte anspricht. Dieses Verfahren wird deshalb nur in der Industrie angewendet.

Eigene Rechenanlagen

Verfügt man (in der Firma) über eine eigene Rechenanlage, dann können auch Cross-Assembler zur Programmentwicklung vorhanden sein. Läuft der Rechner im Time-Sharing System, dann entspricht diese Möglichkeit im wesentlichen der oben angegebenen. Bietet der Rechner nur Stapelverarbeitung an (d. h. die eingegebenen Programme werden der Reihe nach abgearbeitet), dann ist die Programmentwicklung sehr unbequem, da die Verarbeitung von Assemblerprogrammen im Stapelbetrieb zu sehr langen Entwicklungszeiten führt.

Anzeige auf der Frontplatte oder nicht?

Die Frontplatte ist ein Hardwarezubehör, das man oft verwendet, um die Fehlersuche in Programmen zu vereinfachen. Traditionell ist sie ein Werkzeug, das den binären Inhalt eines Registers oder eines Speichers bequem anzeigt. Alle Funktionen der Frontplatte kann man jedoch auch von einem Terminal aus durchführen, und mit dem Vordringen der Bildschirmanzeigen werden Möglichkeiten geboten, die der Darstellung binärer Werte auf der Frontplatte vollkommen entsprechen. Der zusätzliche Vorteil einer Bildschirmanzeige ist es, daß man statt der binären Darstellung auch eine hexadezimale, eine symbolische oder eine dezi-

male Darstellung wählen kann (natürlich unter der Voraussetzung, daß die entsprechenden Umwandlungsprogramme zur Verfügung stehen). Der Nachteil eines Bildschirms ist es, daß man mehrere Tasten drücken und nicht nur einen Schalter umlegen muß, um die entsprechende Anzeige zu erhalten. Da jedoch die Kosten für eine Anzeige auf der Frontplatte durchaus entscheidend sind, haben die meisten Hersteller dieses Hilfsmittel für die Fehlersuche verbannt. Der Wert einer Frontplatte wird oft mehr auf der Basis emotionaler Argumente beurteilt, die von den persönlichen Erfahrungen bestimmt sind, als auf der Basis der Zweckmäßigkeit. Sie ist sicher nicht unverzichtbar.

Zusammenfassung der Hardware-Betriebsmittel

Man kann drei hauptsächliche Fälle unterscheiden. Wenn Sie lernen wollen, wie man programmiert, aber nur ein begrenztes Budget haben, dann sei Ihnen der Kauf eines Ein-Platinen-Computers empfohlen. Wenn Sie mit ihm arbeiten, dann können Sie alle die einfachen Programme aus diesem Buch entwickeln und viele weitere. Wenn Sie allerdings Programme aus mehr als einigen hundert Befehlen entwerfen wollen, dann werden Sie an die Grenzen dieser Lösung stoßen.

Wenn Sie industrieller Anwender sind, dann brauchen Sie ein vollständiges Entwicklungssystem. Jede Lösung, die nicht alle Möglichkeiten nutzt, wird eine deutlich längere Entwicklungszeit verursachen. Der Handel ist klar: Hardware-Eigenschaften gegen Programmierzeit. Wenn man nur relativ einfache Programme entwickeln muß, dann kann man natürlich eine billigere Lösung wählen. Wenn jedoch komplexere Programme entwickelt werden müssen, dann kann man kaum irgendwelche Einsparungen an der Hardware rechtfertigen, wenn man ein Entwicklungssystem kauft, da die Kosten für die Programmierung bei jedem Projekt weit dominieren werden.

Für den Hobbyisten bietet ein Hobbycomputer normalerweise ausreichende, wenn auch eingeschränkte Möglichkeiten. Es wird jedoch auch für viele Hobbycomputer gute Entwicklungssoftware zunehmend mehr angeboten. Der Benutzer kann dann sein System um die Komponenten erweitern, die in diesem Kapitel vorgestellt wurden.

Wir wollen jetzt das wichtigste Hilfsmittel genauer untersuchen: den Assembler.

Der Assembler

Das ganze Buch hindurch haben wir die Assemblersprache benutzt, ohne ihre formale Syntax oder ihre Definition vorzustellen. Jetzt ist die Zeit gekommen, diese Definition zu bringen. Eine Assemblersprache wird so entworfen, daß der Benutzer eine bequeme symbolische Darstellung verwenden kann, aber auch so, daß das Assemblerprogramm diese Abkürzungen leicht in ihre binäre Form übersetzen kann.

Assembler-Felder

Wenn wir ein Programm für den Assembler eingegeben haben, dann haben wir gesehen, daß verschiedene Felder verwendet werden. Dies sind:

Das Markenfeld, das bei Bedarf eine symbolische Adresse für den laufenden Befehl enthalten kann.

Das Befehlsfeld, das den Opcode und irgendwelche Operanden enthält (eventuell kann man ein spezielles Operandenfeld unterscheiden).

Das Kommentarfeld ganz rechts, das man wahlweise benutzen kann, und das zur Erklärung eines Programms dient.

Das Programmierformular in Abb. 10.3 zeigt diese Felder.

Wurde der Assembler mit dem Programm gefüttert, dann produziert er eine Assembler-Liste davon. Beim Erzeugen der Liste fügt der Assembler drei weitere Felder an, üblicherweise auf der linken Seite. Abb. 10.4 zeigt ein Beispiel. In der dritten Spalte steht die Zeilennummer. Jede Zeile, die der Programmierer eingetippt hat, erhält eine Zeilennummer. Das nächste Feld rechts ist das aktuelle Adreßfeld, das den hexadezima-

len Wert des Befehlszählers enthält, wenn er auf diesen Befehl zeigt. Rechts davon finden wir die hexadezimale Darstellung des Befehls.

Dies zeigt eine mögliche Anwendung des Assemblers. Auch wenn wir Programme für einen Ein-Platinen-Computer entwerfen, der sie nur hexadezimal akzeptiert, sollten wir die Programme trotzdem auf Assemblerebene schreiben, falls wir Zugang zu einem System haben, auf dem ein Assembler läuft. Wir können das Programm dann auf dem System mit dem Assembler bearbeiten. Der Assembler erzeugt automatisch den richtigen Hexadezimalkode. Dies zeigt den Wert zusätzlicher Software-Hilfsmittel an einem einfachen Beispiel.

Tabellen

Wenn der Assembler das symbolische Programm in die binäre Form übersetzt, führt er im wesentlichen zwei Aufgaben aus:

- 1 Er übersetzt die mnemonischen Operationskodes (englisch: Opcodes) in ihre binäre Kodierung.
- 2 Er übersetzt die Symbole, die für Konstanten und Adressen verwendet werden, in ihre binäre Darstellung.

Um die Fehlersuche im Programm zu erleichtern, druckt der Assembler am Ende der Liste die Symbole und ihre hexadezimalen Werte. Dies nennt man die Symboltabelle.

Einige Symboltabellen enthalten nicht nur die Symbole und ihre hexadezimalen Werte, sondern auch noch die Nummern der Zeilen, in denen die Symbole auftreten. Damit wird eine zusätzliche Hilfe gegeben.

Fehlermeldungen

Bei der Assemblierung erkennt der Assembler Syntaxfehler und gibt sie in der Liste an. Typische Fehlermeldungen sind: undefinierte Symbole,

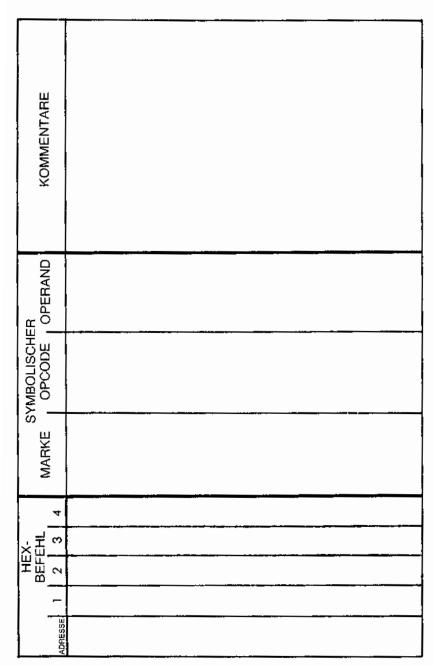


Abb. 10.3: Programmierformular für einen Mikroprozessor

Marke schon definiert, unzulässiger Opcode, unzulässige Adresse, unzulässige Adressierungsart. Viele genauere Fehlermeldungen sind natürlich erwünscht und werden üblicherweise auch geliefert. Dies variiert allerdings von Assembler zu Assembler.

Die Assemblersprache

Opcodes wurden bereits definiert. Wir wollen hier die Symbole definieren, die man als Teil der Assemblersyntax verwenden kann.

Symbole

Symbole dienen dazu, numerische Werte, Daten oder Adressen darzustellen. Symbole dürfen bis zu sechs Zeichen lang sein, und sie müssen mit einem Buchstaben beginnen. Die Zeichen sind auf die Buchstaben des Alphabets und auf die Ziffern beschränkt. Außerdem darf der Benutzer keine Namen verwenden, die mit den Z80-Opcodes, mit den Namen der Register A, B, C, D, E, H, L, AF, BC, DE, HL, IX, IY, SP oder mit einigen weiteren Namen übereinstimmen, die man Pseudoanweisungen des Assemblers nennt. Die Namen dieser "Assemblerdirektiven" sind in dem entsprechenden Abschnitt unten angegeben. Auch die Abkürzungen, die die entsprechenden Flags bezeichnen, sollte man nicht als Symbole verwenden: C, Z, PE, NC, NZ, PO.

Zuordnung eines Werts zu einem Symbol

Marken sind spezielle Symbole, deren Wert der Programmierer nicht zu definieren braucht. Deren Wert wird automatisch vom Assembler festgelegt, immer wenn er eine Marke findet. Der Wert einer Marke ist der Inhalt des Befehlszählers, wenn er auf den Befehl zeigt, vor dem die Marke steht. Will man Marken neue Startwerte zuweisen oder ihnen einen bestimmten Wert geben, dann gibt es dafür spezielle Pseudobefehle.

00000		0001	ORG	9100H	
	(00000)	0000 MPRAD	tu	02000	
	(0.20.2)	0003 NPDAU	tu.	00'02'H	
	(0204)	0004 RESAU	Id	0.2040	
		(90(0%) #			
3100	r handoo,*	adde whiteat	1.14	Proc (MPPARO)	STRUCK BUILDING THE CANADA
0101	11060	0007	1.10	16.54	SECTOR DEL COMPLE
0106	1.00000202	0008	1 11	THE CHIEDATE	1 000 MILLER DOWN THEO 1
0100	1400	0009	L Je	14.0	ACCULATE DE
0101	.10000	0010	1.11	IN - 0	CM 1 14 SHL 5 4 9 (6)
1010	1.1639	9011 8061	533	1	PERSONAL MARKETS AND RATE TOTAL PARKS
0111	3001	001.5	.Ht.	NEASONAIN	Macal Contact
0113	17	0013	0.000	In .tu	FAOR BUTCHO MESSAGE
0110	104453	0014 NDADD	194.0	1	45-1888 1 7M/FD 1 1 1 3
0114	0.101.25	0015	141	10	\$5500 BIT 431 D
13110	0:,	9018	14.17	I¢	191 CREMENT SHOULD CONTINUE
9117	100 OF 10 1	0017	16.	M2 + MURT	(90) 14 (66)(19) 19 (4)(0)(14) (8)
otti.		0018	1,10	ORI GAILUSTII	4.5 (1984 - 1917) (1911 - 1
0111	COOCHE	0.015	1 NII		

Abb. 10.4: Assemblerliste - ein Beispiel

Andere Symbole, die man für Konstanten oder Speicheradressen verwendet, müssen jedoch vom Programmierer definiert werden, bevor sie benutzt werden.

Um einem Symbol einen Wert zuzuordnen, benutzt man eine spezielle Assemblerdirektive. Eine Direktive ist im wesentlichen ein Befehl an den Assembler, der nicht in eine ausführbare Anweisung übersetzt wird. Beispielsweise wird die Konstante LOG definiert durch:

Dies weist der Variablen LOG den hexadezimalen Wert 3002 zu. Die Assemblerdirektiven werden später detailliert beschrieben.

Konstanten oder Literals

Konstanten kann man traditionell dezimal, hexadezimal, oktal, binär oder als alphanumerische Zeichenketten darstellen. Damit man die Basis erkennen kann, die zur Darstellung der Zahl verwendet wurde, muß man ein Symbol angeben. Um "0" in den Akkumulator zu laden, schreiben wir einfach:

Hinter der Konstanten hätten wir auch ein "D" schreiben können.

Eine hexadezimale Konstante wird durch das Symbol "H" gekennzeichnet. Um den Wert "FF" in den Akkumulator zu laden, schreiben wir:

Eine oktale Konstante endet auf "O" oder "Q", eine binäre Konstante auf "B".

Um beispielsweise den binären Wert "11111111" in den Akkumulator zu laden, schreiben wir:

Auch ASCII-Zeichen im Operandenfeld müssen gekennzeichnet werden. Das ASCII-Symbol wird in Hochkommata eingeschlossen. Um z. B. das Zeichen S in den Akkumulator zu laden, schreiben wir:

Aufgabe 10.1: Wird mit den beiden folgenden Befehlen der gleiche Wert in den Akkumulator geladen: LD A,'5' und LD A,5H?

Beachten Sie, daß Klammern nach der Zilog-Konvention eine Adresse kennzeichnen. Beispiel:

gibt an, daß der Akkumulator mit dem Inhalt der Speicherzelle 10 (dezimal) geladen werden soll.

Operatoren

Um das Schreiben symbolischer Programme weiter zu vereinfachen, sollte ein Assembler die Verwendung von Operatoren zulassen. Minimal sollten dies Plus und Minus sein, so daß man beispielsweise schreiben kann:

LD A,(ADRESS) LD A,(ADRESS+1)

Es ist wichtig zu verstehen, daß der Ausdruck ADRESS+1 vom Assembler ausgerechnet wird, um die tatsächliche Speicheradresse zu erhalten, deren binäres Äquivalent gebildet werden muß. Dieser Ausdruck wird bei der Assemblierung berechnet, nicht bei der Ausführung des Programms.

Zusätzlich können weitere Operatoren möglich sein, z. B. Multiplikation und Division, was die Arbeit mit Tabellen erleichtert. Außerdem kann es weitere spezielle Operatoren geben, wie größer und kleiner, die einen Zweibytewert in sein oberes und sein unteres Byte zerlegen.

In der Regel muß ein Ausdruck ein positives Ergebnis liefern. Normalerweise kann man keine negativen Zahlen verwenden, sondern muß diese hexadezimal angeben.

Um den Inhalt des Befehlszählers in der aktuellen Zeile anzugeben, verwendet man traditionell ein spezielles Symbol: "\$". Dieses Symbol sollte man interpretieren als "aktueller Stand" (des Befehlszählers).

Aufgabe 10.2: Was ist der Unterschied zwischen den folgenden Befehlen?

LD A,10101010B LD A,(10101010B)

Aufgabe 10.3: Welche Wirkung hat der folgende Befehl?

JR NC,\$-2

Ausdrücke

Die Spezifikation des Z80-Assemblers läßt einen weiteren Bereich von Ausdrücken mit arithmetischen und logischen Befehlen zu. Der Assembler berechnet die Ausdrücke von rechts nach links, unter Beachtung der Prioritäten, die in der Tabelle in Abb. 10.5 angegeben sind. Um eine bestimmte Reihenfolge bei der Berechnung zu erzwingen, kann man Klammern verwenden. Äußere Klammern geben jedoch an, daß der Inhalt der Adresse behandelt werden soll.

Assemblerdirektiven

Direktiven sind spezielle Anweisungeni, die der Programmierer an den Assembler gibt, und die festlegen, daß bestimmte Werte in Symbolen oder im Speicher abgelegt werden, oder die die Druckausgabe des Assemblers steuern. Die Direktiven, die die Druckausgabe steuern, heißen auch "Kommandos" und werden in einem speziellen Abschnitt beschrieben.

Als Beispiel wollen wir hier die 11 Assemblerdirektiven angeben, die auf dem Zilog-Entwicklungssystem verfügbar sind:

ORG nn

Diese Direktive setzt den Befehlszähler des Assemblers auf den Wert nn. Mit anderen Worten, der erste ausführbare Befehl nach dieser Direktive steht bei der Adresse nn. Mit dieser Direktive können verschiedene Programmteile für verschiedene Speicherbereiche festgelegt werden.

EOU nn

Diese Direktive dient dazu, einem Symbol den Wert nn zuzuweisen.

DEFL nn

Auch diese Direktive weist einem Symbold den Wert nn zu, darf aber innerhalb des Programms mehrmals mit verschiedenen Werten für das gleiche Symbol wiederholt werden, während EQU nur einmal verwendet werden darf.

DEFB n

Diese Direktive weist der Speicherzelle, auf die momentan der Befehlszähler zeigt, den Inhalt n zu.

DEFB'S'

wiest derSpeicherzelle den ASCII-Wert von "S" zu.

DEFW nn

In die Speicherzelle, auf die momentan der Befehlszähler zeigt, und in die Zelle dahinter wird der Zweibytewert nn eingetragen.

DEFS nn

reserviert einen Speicherblock der Länge nn Byte, beginnend bei der aktuellen Adresse des Befehlszählers.

DEFM'S'

speichert die angegebene Zeichenkette ab der Speicherstelle, auf die der Befehlszähler zeigt. Die Zeichenkette darf maximal 63 Byte lang sein.

MACRO P0 P1 . . . Pn

dient dazu, eine Marke als Makro zu definieren, und die formale Parameterliste anzugeben. Makros werden weiter unten definiert.

END

kennzeichnet das Programmende.

ENDM

kennzeichnet das Ende eines Makros.

OPERATOR	FUNKTIÓN	PRIORITÁT
+ - .NOT. or \ .RES. ** * .MOD. .SHR. .SHL. + -	FUNKTION VORZEICHEN PLUS VORZEICHEN MINUS LOGISCHES NICHT ERGEBNIS POTENZ MULTIPLIKATION DIVISION MODULO LOGISCH RECHTS SCHIEBEN LOGISCH LINKS SCHIEBEN ADDITION SUBTRAKTION LOGISCHES UND LOGISCHES UND	PRIORITÁT 1 1 2 3 3 3 4 4 5
.OR. or 1 .XOREQ. or = .GT. or > .LT. or < .UGTULT.	LOGISCHES ODER LOGISCHES EXKLUSIVES ODER GLEICH GRÖSSER ALS KLEINER ALS BETRAGSMÄSSIG GRÖSSER ALS BETRAGSMÄSSIG KLEINER ALS	6 7 7 7 7

Abb. 10.5: Priorität der Operatoren

Assembler-Kommandos

Kommandos dienen dazu, das Format der Liste zu steuern, die der Assembler erzeugt. Alle Kommandos beginnen mit einem Stern in Spalte Eins. Der Z80-Assembler erkennt sieben Kommandos. Typische Beispiele sind:

*EJECT

was einen Seitenvorschub veranlaßt und

*LIST OFF

bewirkt, daß mit diesem Befehl der Listenausdruck beendet wird. Die anderen Kommandos: *HEADING S, *LIST ON, *MACLIST ON, *MACLIST OFF, *INCLUDE FILENAME.

Makros

Ein Makro ist einfach ein Name, den man einer Gruppe von Befehlen gibt. Wird die gleiche Gruppe von Befehlen mehrfach in einem Programm benutzt, dann kann man ein Makro definieren, das sie repräsentiert, anstatt jedesmal die ganze Gruppe zu schreiben. Wir könnten beispielsweise schreiben:

SAVREG MACRO
PUSH AF
PUSH BC
PUSH DE
PUSH HL
ENDM

Statt die obigen Befehle zu schreiben, genügt dann die Angabe des Namens "SAVREG". Immer wenn wir SAVREG schreiben, wird dieser Name durch die entsprechenden fünf Zeilen ersetzt. Ein Assembler, der Makros verarbeiten kann, wird Makro-Assembler genannt. Immer wenn der Makro-Assembler ein SAVREG findet, ersetzt er es durch die entsprechenden Zeilen.

Makro oder Unterprogramm

An dieser Stelle sieht es so aus, als ob ein Makro wie ein Unterprogramm funktioniert. Dies ist aber nicht der Fall. Wenn der Assembler den Objektkode erzeugt, dann ersetzt er jeden Makronamen durch die Befehle, für die er steht. Zur Ausführungszeit erscheint die Gruppe von Befehlen, so oft in dem Programm, wie es der Name des Makros tat.

Im Gegensatz dazu wird ein Unterprogramm nur einmal definiert und gespeichert und kann dann wiederholt aufgerufen werden. Das Programm springt dann zur Adresse des Unterprogramms. Ein Makro ist ein Hilfsmittel bei der Assemblierung. Ein Unterprogramm ist ein Hilfsmittel zur Ausführungszeit. Die Arbeitsweise ist vollkommen verschieden.

Makroparameter

Jeder Makro kann mit einer Anzahl Parameter versehen werden. Als Beispiel wollen wir den folgenden Makro betrachten:

SWAP	MACRO	M, N, T	
	LD	A, M	M nach A
	LD	T,A	A nach $T(=M)$
	LD	A, N	N nach A
	LD	M,A	A nach $M (=N)$
	LD	A, T	T nach A
	LD	N,A	A nach $N (=T)$
	ENDM		` ,

Dieser Makro bewirkt, daß die Inhalte der Speicherzellen M und N vertauscht werden. Ein Austausch zwischen zwei Registern oder zwei Speicherstellen ist eine Operation, die es beim Z80 nicht gibt. Mit einem Makro kann man sie einbauen. "T" ist in diesem Fall einfach der Name eines Zwischenspeichers, den das Programm benötigt. Als Beispiel wollen wir die Inhalte der Speicherzellen ALPHA und BETA vertauschen. Der Befehl, der dies tut, ist folgender:

SWAP (ALPHA),(BETA),(TEMP)

In diesem Befehl ist TEMP der Name eines Zwischenspeichers, von dem wir wissen, daß er frei ist, und den der Makro benutzen kann. Der Assembler erzeugt dann folgende Makroerweiterung:

LD A,(ALPHA) LD (TEMP),A LD A,(BETA) LD (ALPHA),A LD A,(TEMP) LD (BETA),A

Die Nützlichkeit eines Makros sollte jetzt klar sein. Für den Programmierer ist es bequem, Pseudobefehle zu verwenden, die durch Makros definiert wurden. Auf diese Art kann der tatsächliche Befehlssatz des Z80 beliebig erweitert werden. Man muß sich allerdings darüber im klaren sein, daß jeder Makro unglücklicherweise in so viele Befehle erweitert wird, wie sie in der Definition benutzt wurden. Ein Makro wird deshalb erheblich langsamer abgearbeitet, als ein einzelner Befehl, allerdings schneller als ein Unterprogramm, da dort noch Unterprogrammaufruf und Rücksprung bearbeitet werden müssen. Wegen der Bequemlichkeit bei der Entwicklung längerer Programme wünscht man sich die Makroeigenschaften für solche Anwendungen.

Zusätzliche Möglichkeiten von Makros

Zur einfachen Makrofähigkeit können noch viele andere Direktiven und syntaktische Möglichkeiten hinzukommen. Makros können verschachtelt werden, d. h. Makroaufrufe können innerhalb einer Makrodefinition auftreten. Mit dieser Eigenschaft kann sich ein Makro mit einer verschachtelten Definition selbst modifizieren! Ein erster Aufruf erzeugt eine Erweiterung, während jeder weitere Aufruf aus demselben Makro eine andere Erweiterung erzeugt. Dies ist beim Z80-Assembler zugelassen, verschachtelte Definitionen sind dagegen nicht erlaubt.

Bedingte Assemblierung

Bedingte Assemblierung ist eine andere Möglichkeit, die der Z80-Assembler bietet. Mit der Möglichkeit einer bedingten Assemblierung kann der Programmierer ein Programm für verschiedene Fälle entwerfen und dann die Segmente des Kodes, die für eine spezielle Anwendung gebraucht werden, bedingt assemblieren. Beispielsweise kann ein industrieller Benutzer ein Programm zur Steuerung beliebig vieler Ampeln an einer Straßenkreuzung für verschiedene Steueralgorithmen schreiben. Er bekommt dann von dem lokalen Verkehrsplaner die Angaben, wie viele Ampeln an einer Kreuzung stehen sollen und welcher Steueralgorithmus verwendet werden soll. Der Programmierer setzt dann einfach die entsprechenden Parameter in seinem Programm und assembliert bedingt. Die bedingte Assemblierung führt dann zu einem "Benutzerprogramm", das nur die Routinen enthält, die für die Lösung dieses speziellen Problems benötigt werden.

Die bedingte Assemblierung ist deshalb von besonderem Wert beim Schreiben industrieller Programme für Anwendungen, bei denen es verschiedene Optionen gibt, und bei denen der Programmierer Programmteile abhängig von äußeren Parametern schnell und automatisch assemblieren will.

In der Standardversion des Makro-Assemblers, den Zilog liefert, sind nur zwei bedingte Pseudobefehle eingebaut:

COND NN und ENDC

wobei NN einen Ausdruck darstellt. Der Pseudobefehl "COND NN" veranlaßt die Berechnung des Ausdrucks NN. Ergibt sich der Wert "wahr" (nicht Null), dann werden die Befehle hinter COND assembliert. Ergibt sich jedoch der Wert "falsch", d. h. wird der Wert Null berechnet, dann werden alle folgenden Befehle bis zu demBefehl ENDC nicht assembliert.

ENDC dient dazu, ein COND zu beenden, so daß die nachfolgenden Befehle in jedem Fall assembliert werden. Der Pseudobefehl COND kann nicht verschachtelt werden.

Theoretisch könnte es noch leistungsfähigere Möglichkeiten der bedingten Assemblierung geben, mit den Spezifikationen "IF" und "ELSE". Diese könnten in zukünftigen Versionen des Assemblers verfügbar werden.

Zusammenfassung

Dieses Kapitel hat die Techniken und die Hardware- und Software-Werkzeuge vorgestellt, die man zur Entwicklung eines Programms braucht, zusammen mit den verschiedenen Vorzügen und Alternativen. Bei der Hardware reichen diese von Ein-Platinen-Computern bis zum kompletten Entwicklungssystem, bei der Software von der einfachen binären Eingabe bis zu den höheren Programmiersprachen.

Die Auswahl müssen Sie treffen, je nach Ihren Zielen und Möglichkeiten.

11

Schluß

Wir haben jetzt alle wichtigen Aspekte der Programmierung abgehandelt, von den Definitionen und Grundkonzepten über die interne Manipulation der Register des Z80, die Verwaltung der Ein-/Ausgabegeräte bis hin zur Beschreibung der Hilfsmittel zur Software-Entwicklung. Was ist der nächste Schritt? Dies kann man aus zwei Blickwinkeln betrachten. Der erste bezieht sich auf die Entwicklung der Technologie, der zweite auf die Weiterentwicklung Ihrer eigenen Kenntnisse und Fähigkeiten. Diese beiden Punkte wollen wir noch ansprechen.

Die technologische Entwicklung

Der Fortschritt bei der Integration von MOS-Strukturen macht es möglich, immer komplexere Chips herzustellen. Die Kosten für den Einbau der Prozessorfunktionen selbst nehmen ständig ab. Das Ergebnis ist, daß viele Ein-/Ausgabechips oder Peripheriesteuerbausteine, die man in einem System verwendet, selbst schon einen einfachen Prozessor enthalten. Dies heißt, daß die LSI-Bausteine in dem System programmierbar werden. Daraus entwickelt sich ein interessantes Dilemma der Konzeption. Um die Software-Entwicklung zu vereinfachen und die Zahl der Bauteile im System zu verringern, enthalten die neuen Chips hochentwickelte programmierbare Eigenschaften: Viele programmierte Algorithmen werden jetzt in den Chip eingebaut. Als Ergebnis wird die Entwicklung von Programmen jedoch dadurch erschwert, daß alle diese Ein-/Ausgabegeräte völlig unterschiedlich sind und vom Programmierer genau studiert werden müssen! Die Programmierung des Systems ist nicht mehr alleine die Programmierung des Mikroprozessors, sondern auch die Programmierung aller anderen Chips, die daran angeschlossen sind. Die Zeit, die man braucht, um den Umgang mit einem Chip zu lernen, kann durchaus erheblich sein.

Natürlich ist dies nur ein scheinbarer Zwiespalt. Gäbe es diese Bausteine nicht, dann wäre das Interface, das man aufbauen muß, und auch die entsprechenden Programme erheblich komplizierter. Die Schwierigkeit, die neu auftritt, ist, daß man mehr als nur einen Prozessor programmieren und dazu die unterschiedlichen Eigenschaften der verschiedenen Bausteine eines Systems lernen muß. Es ist jedoch zu hoffen, daß die Techniken und Konzepte, die in diesem Buch vorgestellt wurden, diese Aufgabe verhältnismäßig einfach machen.

Der nächste Schritt

Sie haben jetzt die grundlegenden Techniken gelernt, die man braucht, um einfache Anwendungen auf dem Papier zu lösen. Dies war das Ziel dieses Buchs. Der nächste Schritt ist die Praxis, und dafür gibt es keinen Ersatz. Es ist unmöglich, Programmieren nur auf dem Papier zu lernen. Praktische Übung ist unumgänglich. Sie sollten jetzt in der Læge sein, eigene Programme zu schreiben. Wir hoffen, daß Sie Spaß daran haben. Denjenigen von Ihnen, die meinen, sie könnten aus einem zusätzlichen Buch Nutzen ziehen, sei das Z80 Applikationsbuch empfohlen. Dieses Buch ist die begleitende Ausgabe zum vorliegenden Buch und es stellt einen weiten Bereich von echten Anwendungen vor, die man mit einem Z80-Mikrocomputer verwirklichen kann.

Anhang A

Tabelle zur Umwandlung von Hexadezimalzahlen

HEX	٥	- 1,	3	- 3	4	5	6	7	8	9	А	8	_C	Q	E	F	00	000
0	o	1	5	3	4	5	- 6	7	в	9	10	11	12	13	14	15	0	0
1	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	256	4096
2	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	512	8192
3	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	768	12288
4	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	1024	16384
5	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	1280	20480
6	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111	1536	24576
7	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	1792	28672
8	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	2048	32768
9	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	2304	36864
h A	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	2560	40960
В	176	177	178	179	180	181	192	183	184	185	186	187	188	189	190	191	2816	45056
C	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	3072	49152
D	208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	3328	53248
E	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	3584	57344
F	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	3840	61440

	5		4		3		2		L		0
HEX	DEZ	HEX	DEZ	HEX	DEZ	н٤х	DEZ	HEX	DEZ	HEX	DEZ
0	0	0	0	0	Ö	0	Ö	0	0	ō	0
1	1,048,576	1	65,536	1_	4,096	1	256	1	16	1	1
2	2,097,152	2	131,072	2	8,192	2	512	2	32	2	2
3	3,145,728	3	196,608	3	12,288	3	768	3	48	3	3
4	4,194,304	4	262,144	4	16,384	4	1,024	4	64	4	4
5	5,242,880	5	327,680	5	20,480	5	1,280	5	80	5	5
6	6,291,456	6	393.216	6	24,576	6	1,536	6	96	6	6
	7,340,032	7	458,752	7	28,672	7_	1,792	7	112	7_	7
8	8,388,608	8	524,288	8	32,768	8	2,048	8	128	8	8
9	9,437,184	9	589,824	9	36,864	9	2,304	9	144	9	9
Α	10,485,760	Α.	655,360	Α	40,960	Α	2,560	Α	160	Α	10
В.	11,534,336	В	720,896	В	45,056	В	2,816	В	176	8	11
C	12,582,912	C	786,432	С	49,152	C	3,072	C	192	С	12
0	13,631,488	D	851,968	D	53,248	D	3,328	D	208	. D.	13
E	14,680,064	E	917,504	Ε	57,344	E	3,584	E	224	E	14
F	15,728,640	F	983,040	F	61,440	F	3,840	F	240	F	15

Anhang B

ASCII-Tabelle

HEX	MSD	0	1	2	3	4	5	6	7
LSD	BITS	000	001	010	011	100	101	110	111_
0	0000	NUL	DLE	SPACE	0	@	P	-	р
1	0001	SOH	DC1	ł	1	Α	Q	а	q
2	0010	STX	DC2	0	2	В	R	b	r
3	0011	ETX	DC3	#	3	С	S	c	s
4	0100	EOT	DC4	\$	4	D	Т	d	t
5	0101	ENQ	NAK	%	5	Œ	U	e	น
6	0110	ACK	SYN	&	6	F	V	f	٧
7	0111	BEL	ETB	,	7	G	W	g	w
8	1000	BS	CAN	(8	н	Х	h	x
9	1001	HT	EM)	9	- 1	Y	i	y
A	1010	LF	SUB	•	:	J	Z	j	Z
В	1011	VT	ESC	+	;	ĸ	[k	{
С	1100	FF	FS	•	<	L	Ž	- 1	-;-
D	1101	CR	GS	_	=	М]	មា	}
E	1110	· so	RS		>	N	٨	n	~
F	1111	SI	UŞ	/	?	0	-	0	DEL

Die ASCII-Symbole

NUL	Null	DŁE	Data Link Escape
SOH	-Start of Heading	DC	- Device Control
STX	-Start of Text	NAK	 Negative Acknowledge
ETX	End of Text	SYN	- Synchronous Idle
EOT	— End of Transmission	€TB	- End of Transmission Block
ENQ	- Enquiry	CAN	— Cancel
ACK	— Acknowledge	EM	- End of Medium
BEL	- Bell	SU∄	— Substitute
BS	-Backspace	ESC	Escape
HT	- Horizontal Tabulation	FS	- File Separator
Lf	-Line Feed	G\$	-Group Separator
VΤ	- Vertical Tabulation	RS	- Record Separator
FF	- Form Feed	บร	- Unit Separator
CR	- Carriage Return	\$P	Space (Blank)
SO	-Shift Out	DEL	— Delete
-	OL:44 I-		

Anhang C

Tabelle relativer Sprungdistanzen

Relative Vorwärtssprünge

MSD.	0	1	3	3	4	5	6	7	8	9	A	В	c	D	ε	f
0	0		2	3	4	5	Ó	7	8	9	10	11	12	13	14	15
1	16	17	18	19	20	21	22	23	24	25	26	27	28	59	30	31
2	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
3	48	49	50	51	52	53	54	55	56	57	58	59	60,	· 61	62	63
4	64	65	66	67	68	98	70	71	72	73	74	75	76	77	78	79
5	BO	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
6	96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111
7	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127

Relative Rückwärtssprünge

						-	-										
MSI	50	0	1	2	3	4	5	6	7	8	9	А	В	c	D	E	۴
8	П	128	127	126	125	124	123	122	121	120	119	118	117	116	115	114	113
9		112	111	110	109	108	107	106	105	104	103	102	101	100	99	98	97
-	$\overline{}$	96	95	94	93	63	91	90	BP	88	87	Bó	85	84	83	82	81
8	3	80	79	78	77	76	75	74	73	72	71	70	69	68	67	66	65
	:	64	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49
)	46	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33
E	П	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17
F	:	16	15	14	13	12	11	10	Ŷ	8	7	6	5	4	3	2	- 1

Anhang D

Umwandlung Dezimal nach BCD

DECIMAL	BCD	DEC	BCD	DEC	BCD
		-			
0	0000	10	00010000	90	10010000
1	0001	11	00010001	91	10010001
2	0010	12	00010010	92	10010010
. 3	0011	13	00010011	93	10010011
4	0100	14	00010100	94	10010100
5	0101	15	00010101	95	10010101
6	0110	16	00010110	96	10010110
7	0111	17	00010111	97	10010111
8	1000	18	00011000	98	10011000
9	1001	19	00011001	99	10011001
L					

Anhang E

Der Befehlssatz des Z80

OBJ	QUEL	LBEFEHL
86	ADC	A.(HL)
DD8E	ADC	A,((X+d)
FD8E	ADC	A,IIY+d}
8F	ADC	A,A
88	ADC	A,B
89	ADC	A,C
8A	ADC	A.D
88	ADC	A,E
8C	ADC	A,H
8D	ADC	A,L
CE	ADC	A,n
ED4A	ADC	HL,BC
ED5A	ADC	HL,DE
ED6A	ADC	HL,HL
ED7A	ADC	HL,SP
86	ADD	A,(HL)
DD86	ADD	A,(IX+d)
FD86.,	ADD	A,(1Y+d)
87	ADD	A,A
80	ADD	A,B
81	ADD	A,C
82	ADD	A,D
83	ADD	A,E
84	ADD	A,H
85	OOA	A,L
C6	ADD	A,n
09	ADD	HL,BC
19	ADD	HL,DE
29	ADD	HL,HL
39	ADD	HL,SP
DD09	ADD	IX,BC
DD19	ADD	IX,DE
DD29	ADD	XIXI
DD39	ADD	IX,SP
FD09	ADD	IA'BC
FD19	ADD	IY,DE
FD29	ADD	IY,IY
FD39	ADD	IY,SP
A6	AND	(HL)
DDA6	AND	(IX+d)
₽DA6,,	AND	(IY+d)
A7	AND	A
A0	AND	В
A1	AND	С
A2	AND	D
A3	AND	E
A4	AND	н
A5	AND	L

OBJ	QUEL	LBEFEHL
£6	AND	n
CB46	BIT	0,(HL)
DDCB 46	BIT	0'(1X+9)
FDCB 46	BIT	0.(IY+d)
CB47	BIT	0,A
CB40	BIT	0,8
CB41	BIT	0,C
CB42	BIT	0,D
C843	BIT	0,Ε
CB44	BIT	Н, О
CB45	віт	0,L
CB4E	віт	1 (HL)
DDCB 4E	віт	1,(IX+d)
FOCB., 4E	BIT	1.(!Y+d)
CB4F	BIT	1,A
CB48	ВІТ	1,B
CB49	BIT	1,C
CB4A	BIT	1,D
CB4B	BIT	1, €
CB4C	BIT	1,H
CB4D	BIT	1.L
CB56	81T	2.(HL)
DDC856	BIT	2,(IX+d)
FDCB 56	BIT	2,(IY+d)
CB57	BIT	2.A
CB50	BIT	2,B
CB51	BIT	2,C
CB52	B1T	2,D
CB53	B∤T	2,E
CB54	BIT	2,H
CB55	817	2,∟
CB5E	BIT	3,(HL)
DDC8 5E	BIT	3,((X+d)
FDCB5E	BIT	3,(IY+d)
CB5F	BIŢ	3,A
CB58	BIT	3,8
CB59	BIT	3.C
C85A	BIT	3,0
CB5B	BIT	3,E
CB5C	BIT	3,H
CB5D	BIT	3,L
CB66	B 110	4,(HL)
DDC866	BIT	4,(1X+d)
FDCB., 66	BIT	4,(1Y+d)
CB67	BIT	4,A
CB60	BIT	4,B
CB61	BIT	4,C
CB62	BIT	4,D

OBJ		
CODE	QUE	LLBEFEHL
CB63	BIT	4,E
CB64	BIT	4, H
CB65	BIT	4,1,
CB6E	B!T	5,(HL)
DDCB6E FDCB6E	BIT BIT	5,((X+d) 5,((Y+d)
CB6F	81T	5,(17 Ta) 5.A
C868	BIT	5,A 5.B
CB69	віт	5.C
C86A	BIT	5,D
CB6B	BIT	5,E
CB6C	BIT	5,H
CB6D	BIT	5,L
CB76	BIT	6,(HL)
ODCB 76	BIT	6,(IX+d)
FDCB76	BIT	6,(1Y+d)
CB77 CB70	BIT BIT	6,A
CB70	BIT	6,B 6,C
CB72	BIT	6.D
CB73	BIT	6.E
C874	віт	6,H
CB75	BIT	6,L
C87E	BIT	7,(HL)
DDCB7E	BIT	7,(IX+d)
FDCB7E	BIT	7,(IY+d)
C87F	BIT	7,A
CB78 CB79	8IT	7,B
CB7A	BIT BIT	7,C 7,D
CB78	BIT	7,E
CB7C	BIT	7,H
C87D	BIT	7.L
DC	CALL	C,nn
FC	CALL	M,nn
D4	CALL	NC,nn
C4	CALL	NZ,nn
F4	CALL	P,nn
EC	CALL	PE,nn
E4,	CALL	PO,nn
CC	CALL	Z,nn
CD 3F	CALL	nn
SF BE	CP	(HL)
DDBE	CP	(IX+d)
FDBE,,	CP	((Y+d)
BF	CP	A
88	CP	В
B9	CP	С
BA	CP	D
B6	CP	E
BC BD	CP	H
FE	CP CP	L n
EDA9	CPD	
EDB9	CPDR	

OBJ	QUE	LLBEFEHL
CODE		
EDB1 EDA1	CPIR CPI	
2F	CPL	
27	DAA	
35	DEC	(HL)
DD35	DEC	(IX+d)
FD35	DEC	(IY+d)
30	DEC	A
05	DEC	В
OB	DEC	BC
OD	DEC	C
15	DEC	D
1B	DEC	DE
1D	DEC	E
25	DEC	н
28 DD 2 8	DEC	HL IX
FD28	-	IX IY
2D	DEC	
20 38	DEC	L SP
F3	DI	35
10	DJNZ	e
FB	ΕI	
£3	EX	(SP),HL
DDE3	EX	(SP), IX
FDE3	EX	(SP),IY
08	EX	AF,AF'
E8	EΧ	DE,HL
09	EXX	
76	HALT	
ED46	IM	0
ED56	IM	1
ED5E	IM	2
ED78	IN	A,(C)
ED40	IN	8,(C)
ED48	IN.	C,(C)
ED50	N ₁	D.(C)
ED58 ED60	IN IN	E.(C)
£ D68	101	H,(C)
34	INC	L,(¢) (H L)
DD34	INC	(IX+d)
FD34	INC	(IX+d)
3C	INC	A
04	INC	В
03	INC	вс
0C	INC	C
14	INC	D
13	INC	DE
1C	INC	E
24	INC	н
23	INC	HL
DD23	INC	IX
FD23	INC	IY
2C	INC	L
33 DB	INC	\$P
	١N	Almi

OBJ	Q	UELLBEFEHL
EDAA	INĐ	
EDBA	INOR	
EDA2	INI	
ED82	INIR	
C3	JP	оп
E9	JР	(HL1
DUE9	JÞ	(XII
FDE9	JP	IIY)
DA	JP	C,an
FA	JP	M,nn
02	JP	NC,nn
C2)b	NZ,nn I
F2	JP JP	P,on
EA	Jb Jb	PE,nn
E2	76	PO,nn Z nn
38	JR JR	Z,nn . C.e
30	JR	NC.e
20	JR	NZ.e
28	JR	Z,e
18	JR	e e
02	LD	H3C1,A
12	1.0	(DE),A
77	LD	(HL),A
70	LD	(HL),B
71	ŁD	{HL},C
72	LD	(HL),D
73	LO	(HL),E
74	EO	(HC),H
75	ĻD	(HL).L
36	LD	{HL},n
DD77	LD	A,{b+XI}
DD70	LD	(IX+d) B
DD71	LD	(IX+d),C (IX+d),D
DD72 DD73	10	(1X+d),E
DD74	LD LD	(IX+d).H
0074	LD LD	(IX+d),L
DD3620	LD	(IX+d) n
FD7/	LD	A,(b+YI)
FD70	LD	(IY+d),B
FD71	LD	(IY+d),C
FD72	LD	(IY+d),D
FD73	LD	3,(b+Y1)
FD74,,	LO	(IY+d),H
FD75	LD	{IY+d),L
FD3620	LD	{{Y+d},n
32	LD	(nn),A
ED43	LD	(nn),BC
E053	LD	(nn),DE
22	LD	(nn).HL
DO22	LD	(nn),IX
FD22	LD	(nn),IY
ED73,,,,	LD	(nn),SP
0A 1A	LD LD	A,(BC) A,(DE)
76	LD	A,(HL)
1		,

CODE	QU	ELLBEFEHL
DD7£	L.D	A,(IX+d)
FO7F.,	LĐ	A,(1Y+d)
3A	LD	A,(nn)
7 F	LD	A,A
78	LŪ	A,B
79	LO	A,C
7A	LD	A,D
78	LD	A.E
7C	LD	A,H
ED57 70	LD LD	A,L A,L
3E	LD	A.n
EDSF	ED	A.R
46	LD	B,[HL)
OD46	LD	B,(IX+d)
FD46	LD	B _i (IY+d)
47	LD	B,A
40	LÜ	8,9
41	LD	8,C
42	LD	B,D
43	r.D	3,8
44 45	LD LD	8,H 8,L
06	ĽĎ	8,n
EL/4B	LD	BC,(nn)
01	LD	BC,nn
4£	LD	C,(HL)
D04E	L.D	C,(IX+d)
FD4E	LD	C.(IY+d)
4F	LD	C,A
48	LD	C.8
49	ŁD	C,C
4A	LD	C,D
4B	LÜ	C,E
4C	LD	C'H
4D	LD	C,L
0E	LD	C,n
56	LD	D,{HL1
DD56	LD	D,iIX+dl
FD56	ΓĎ	D/(IX+q)
57	LO	D,A
50	ĹD	D,B
51	LD	D,C
52	ĽĎ	D,D
53	LD	D,E
54	LD	D,H
55 16	ĽĐ	D,L
16	LD	D,n
EO58	ro ro	DE,(nn)
11 5E	LD LD	DE,nn E (HL)
DD5E	LD	E,(HL) E,(IX+d)
FDSE	LD	E,(IY+d)
5F	LD	E,(17+0) E,A
58	LD	£,B
59	LD	E,C
5A	LD.	E,D
		-,-

OBJ			
CODE	QU	ELLBEFEHL	
5B	LD	E.E	
5C	LD	E,H	
50	LD	E,L	
15	LD	F,n	
66	LD	H,(HL)	
DD66	LD	H,(1X+d)	
FD66	LD	H,(IY+d)	
67	LO	H,A	
60 61	ĹΒ	H,6 H,C	
62	LÞ	H,D	
63 64	LD LD	H.E H.H	
65	LD	H,L	
26	ĻĎ	H,n	
2A	LD	HL,(nn)	
21	LD	HL,nn	
ED47	LD	I.A	
DD2A	L.D	IX.(nn)	
DD21	LO	1X,nn	
FD2A	LD	(nn),(Y	
FD21	LD	lY,nn	
6 E	LD	L,(HL)	
DD6E	LD	L,(IX+d)	
FD6E.,	r-D	L,(TY+d)	
6F 68	LD LD	L,A L,B	
69	FD.	L,C	
6A	LD	L,D	
6B	ĹÖ	L,E	
6C	LD	L,H	
6D	LD	L,L	
2E	LO	L,n	
ED4F	LD	R,A	
ED78	LD	SP,(nn)	
F9	LD	SP,HL	
DDF9	LD	SP,IX	
FDF9	LD	SP,IY	
31	LD	SP,nn	
EDA8	LOD		
EDB8 EDA0	LDDR		
EDB0	LDIR LDIR		
ED44	NEG		
00	NOP		
В6	OR	(HL)	
DD86	OR	(IX+d)	
FD86	QR	(IY+d)	
B7	08	A	
BO .	OR	B	
B1	OR	C	
B2 B3	OR OR	D E	
B3 B4	OR OR	H	
B5	ÓR	r L	
F6	OR	n	
EDBB	OTDR		

OBJ	QUE	LLBEFEHL	
CODE			
EDB3	OTIR		
ED79	OUT	(C),A	
ED41	OUT	(C),B	
EO49	OUT	(C),C	
ED51	OUT	(C),D	
ED59	OUT	(C),E	
ED61	OUT	(C),H	
ED69 D3	OUT	(C),L	
EDAB	atuo	Inl,A	
EDA3	OUTI		
F1	POP	AF	
C1	POP	BC	
D1	POP	DΕ	
ε1	POP	HŁ	
DDE1	POP	IX	
FDE1	POP	IY	
F5	PUSH	AF	
Ç5	PU\$H	BC	
D5	PUSH	DΕ	
E 5	PUSH	HL	
DDE5	PUSH	ΙΧ	
FDE5	PU\$H	1Y	
C886	RES	O.(HL)	
DDCB 86	RES	0,(1X+d)	
FDCB86 C887	RES	0,(1Y+d)	
CB80	RES	0,A	
CB81	RES	0,B 0,C	
C882	RES	0,0	
CB83	RES	0,E	
CB84	RES	0,H	
CB85	RES	0,r, 0.L	
CB8E	RES	1,(HL)	
DDCB BE	RES	1.(!X+d)	
FDCB8E	RES	1,(IY+a)	
C88F	RES	1,A	
CB88	RES	1,8	
CB89	RES	1,C	
CB8A	RES	1,0	
C888	RE\$	1,E	
CB8C	RES	1,H	
CB8O	RES	1,L	
C896	RES	2,(HL)	
DDCB 96	RES	2,(IX+d)	
FDCB,.96	RE\$	2,(IY+d)	
CB97	RES	2.A	
CB90	RE\$	2,8	
CB91	RE\$	2,C	
CB92	RES	2,D	
CB93	RES	2,E	
CB94	RES	2.H	
CB95	RES	2,L	
CB9E	RES	3,[HL]	
DDC8 9E	RE\$	3,(1X+d)	
FDC8.,9E	RE\$	3,(IY+d)	

CODE	QUE	LLBEFEHL
		-11
C89F	RES	3,A
CB98 CB99	RES RES	3,B 3.C
C89A	RES	3.D
C89B	RES	3,E
CB9C	RES	3,H
CB9D	RES	3, L
CBA6	RES	4,(HL)
DDCB A6	RES	4.(1X+d)
FDCB A6	RES	4.(IY+d)
CBA7	RES '	4,A
CBAO	RES	4,B
CBA1	RES	4.C
CBA2	RES	4,D
DBA3	RES	4,E
CBA4	RES	4,H
CBA5	RES	4,L
CBAE	RE\$	5.(HL)
DDC8., AE	RES	5,(1X+d)
FDCB,, AE	RES	5.(IY+d)
CBAF	RE\$	5,A
CBA8	RES	5,8
CBA9	RES	5,C
CBAA	RES	5,D
CBAB	RE\$	5,E
CBAC	RE\$	5,H
ÇBAD	RE\$	5,L
C886	RES	6,(HL)
DDCB., B6	RE\$	6,(1X+d)
FDCB86	RES	6,(IY+d)
CBB7	RES	6,A
CBB0	RE\$	6, B
CBB1	RES	6,C
C882	RES	6,D
CBB3	RES	6,E
CBB4	RE\$	6,H
CBB5	RES	6,L
CBBE	RES	7,(HL)
DDCB8E	RES	7,(IX+d)
FDCBBE	RES	7,(IY+d)
CBBF	RES	7,A
Ç888 2882	RE\$	7,B
CBB9	RES	7,C
CBBA	RES	7,0
CBBB	RES	7,E
CBBC	RES	7,H
CBBD C9	RE\$ RET	7,L
D8	RET	c
F8	RET	M
DO	RET	NC
CO	RET	NZ
F0	RET	P
E8	RET	PE
EO	RET	PO
C8	RET	z
		_

OBJ	QUE	LLBEFEHL
CODE		LEBETEINE
ED4D	RETI	
ED45	RETN	
CB16	AL.	(HL)
DDC816	AL.	(1X+d)
FDCB16 CB17	RL RL	(IY+d) A
C810	RL	В
CB11	RL	Č
C812	RL	D
CB13	RL	F
CB14	RL	н
CB15	RL	_
17	RLA	
CB 06	RLC	(HL)
DDCB., 06	RLC	{IX+d}
FDCB,,06	RLC	(IX+q)
C807	RLC	A
CB00	RLC	8
CB01	RLC	С
C802	RLC	D
CB03	RLC	E
CB04	RLC	н
CB05 07	RLC RLCA	L
ED6F	RLD	
CB1E	RR	(HL)
DDCB1E	88	(IX+d)
FDCB1E	RR	(1Y+d)
CB1F	RR	A
ÇB18	RR	В
CB19	RR	Ç
CBIA	AR	D
CB1B	RR	E
C81C	RR	Н
CB1D	RR	L
1F C80E	RRA RRC	(HL)
DDCB QE	RRC	(IX+d)
FDCBQE	RRC	(IY+d)
CBOF	ARC	A
CB08	RRC	В
CB09	RRC	С
CBOA	RRC	D
CBOB	RRC	E
CBOC	RRC	Н
C80D	RRC	L
OF ED67	RRCA RRD	
C7	RST	00н
CF	RST	08H
D7	RST	10H
DF	RST	18H
E 7	R\$T	20H
EF	RST	28H
F7	RST	30 H
FF	R\$T	38H
DE	SBC	A,n

CODE	Q	VELLBEFEHL
9E	\$BC	A,(HL)
DD9E	SBC	A.(IX+d)
FD9E 9E	\$8¢ \$8¢	A,(IY+d)
98	SBC	A,A A,B
99	SBC	A,C
9A	SBC	A,D
9B	SBC	A,E
90	SBC	A,H
90	SBC	A,L
ED42	SBC	HL,BC
ED52	SBC	HL,DE
ED62	SBC	HL,HL
ED72	SBC	HL,SP
37	SCF	
CBC6	SET	0.(HL)
DDC806	SET	0,(!X+d)
FDCB.,C6	SET	0,(IY+d)
C8C7	SET	0,A
CBC0 CBC1	SET SET	0.8
CBC2	SET	0,C 0,D
CBC3	SET	0,5 0,E
CBC3	SET	0,E 0,H
CBC5	SET	0,E
CBCE	SET	1,(HL)
DDCBCE	SET	1,(IX+d)
FDCBCE	SET	1,(1Y+d)
CBCF	ŞET	1,A
C8C8	SET	1,8
CBC9	SET	1,C
CBCA	SET	1,D
CBCB	SET	1,E
CBCC	SET	1,H
CBCD	SET	1,L
CBD6	SET	2,(HL)
DDC8 Q6	SET	2.(1X+d)
FDCB D6	SET	2,(IY+d)
CBD7	SET	2,A
CBD0	SET	2,8
CBD1	SET	2,C
CBD2	\$E T	2,D
CBD3	SET	2,€
CBD4	SET	2,Н
CBO5	SET	2,L
CBD8	ŞET	3,B
CBDE	SET	3,(HL)
DDCB., DE	SET	3.(IX+d)
FDC8., DE	SET	3,(IY+d)
CBDF	SET	3,A
CBD9	SET	3,C
CBDA	SET	3,D
CBDB CBDC	SET SET	3,E 3,H
CBDD	SET	3,H 3,L
CBE6	SET	3,L 4,(HL)
COLO	361	4,1110/

CODE	QUI	ELLBEFEHL
DDCBE6 FDCBE6	SET SET	4,(1X+d) 4,(1Y+d)
C8E7	SET	4,() (+ a)
CBE0	SET	4,A 4,B
CBE1	SET	4,C
CBE2	SET	4.D
CBE3	SET	4,E
CBE4	SET	4,H
CBE5	SET	4.L
CBEE	SET	5,(HL)
DDCB EE	SET	5,(1X+d)
FDC8., EE	SE T	5,({Y+d)
CBEF	ŞET	5,A
C8E8	\$ ET	5,8
CBE9	SET	5,C
CBEA	SET	5,D
CBEB	SET	5, E
CBEC	SET	5,H
C8ED	SET	5,L
CBF6	SET	6,(HL)
DDCB F6	SET	6,(1X+d)
FDCBF6	SET	6,(IY+d)
CBF7	SET	6,A
CBFO	SET	6,B
CBF1	SET	6.C
CBF2	SET	6,D
CBF3	SET	6,E
CBF4	SET	6.H
CBF5	SET	6,L
CBFE	SET	7,(HL)
DDCB FE	SET	7,(IX+d) 7,(IY+d)
FDCBFE CBFF	SET SET	7,017+0) 7,A
CBF8	SET	7,8
CBF9	SET	7,C
CBFA	ŞET	7,0
CBF8	SET	7,E
CBFC	SET	7.H
CBFD	SET	7,L
CB26	ŞLA	(HL)
DDCB., 26	SLA	(IX+d)
FDCB 26	SLA	(IY+d)
CB27	SLA	A
CB20	SLA	8
CB21	SLA	С
CB22	SLA	D
C823	SLA	E
CB24	\$LA	н
C825	SLA	L :
CB2E	ŞRA	(HL)
DDC8 2E	SRA	((X+d)
FDCB2E	\$RA	(LX+9)
C82F	SRA	A
CB28	SRA	В
CB29	SRA	С
CB2A	\$RA	Ð

001		
CODE	QUE	LLBEFEHL
CB2B	SRA	E
CB2C	SHA	н
CB2D	SRA	L
CB3E	\$RL	(HL)
DDCB 3E	\$RL	(1X+d)
FDCB., 3E	\$RL	(IY+d)
CB3F	SRL	A
CB38	SRL	В
CB39	SRL	c
CB3A	SRL	a
CB3B	SRL	E
CB3C	SAL	н
CB3D	SRL	L
96	SU8	(HL)
DD96	SUB	(IX+d)
FD96	SUB	(IY+d)
97	SUB	A
90	\$U8	₿
91	\$UB	C
92	\$UB	D
93	SUB	E
94	SUB	Н
95	SUB	L
D 6	\$U8	n
AE	XOR	(HL)
DDAE	XOR	(IX+d)
FDAE	XOR	(IY+d)
ΑF	XOR	A
A8	XOR	В
A9	XOR	C
AA	XOR	D
AB	XOR	E
AC	XOR	н
AD	XOR	L
EE	XOR	n

(Courtesy of Zilog Inc.)

Anhang F

Äquivalente Befehle: Z80-8080

Z80	8080	Z80	8080	Z80	8080
ADC A, (HL)	ADC M	EX (SP), HL	XTHL	ORn	ORI [82]
ADC A, n	ACI [82]	HALT	нц	OR r	ORA r
ADC A, r	ADC r	IN A, (n)	IN (82)	OR (HL)	ORA M
ADD A, (HL)	ADD M	INC BC	INX 8	OUI (n), A	OUT [82]
ADD A, n	ADI [82]	INC DE	INX D	POP AF	POP PSW
ADD A, r	ADD r	INC HE	INXH	POP BC	POP B
ADD HL, BC	DAD B	INC /	INR	POP DE	POP D
ADD HL, DE	DADD	INC SP	INX SP	POP HL	POP H
ADD HL, HL	DAD H	INC (HL)	INR M	PUSH AF	PU\$H P\$W
ADD HL, SP	DAD SP	JPC, nn	JC [82] [83]	PUSH BC	PUSH B
AND n	ANI (82)	JPM, nn	JM (B2][B3]	PUSH DE	PUSH D
AND r	ANA	JP NC, nn	JNC [82] [83]	PU\$H HL	PU\$H H
AND (HL)	ANA M	JP nn	JMP [82] [83]	RET	RET
CALL C, on	CC [82] (83)	JP NZ, on	JNZ [82] [83]	RETC	RC
CALL M, nn	CM [B2] [B3]	JPP, no	JP (B2) [B3]	RET M	RM
CALL NC, nn	CNC [82] [83]	JP PE, nn	JPE [82][83]	RET NC	RNC
CALL on	CALL	JP PO, no	JPO [B2][B3]	RET NZ	RNZ
CALL NZ, nn	CNZ [B2] [B3]	JP Z, nn	JZ (B2) [83]	RETP	RP
CAŁL P, nn	CP [82] [83]	JP (HL)	PCHL	RET PE	RPE
CALL PE, nn	CPE [82] [83]	LD A, (DE)	LDAX	RET PO	RPO .
CALL PO, no	CPO [82] [83]	IDA, (nn)	LDA [B2] [B3]	RETZ	RZ
ÇALL Z, nn	CZ [B2] [B3)	LD DE, no	LXID, [B2] [B3]	RLA	RAL
CCF	CWC	LD SP, nn	LXI SP, [82] [83]	RLÇA	RLC
CPr	CMP r	LD (BC), A	STAX 8	RRA	RAR
CP (HL)	CMPM	LD (DE), A	STAX D	RRCA	RRC
CPL	CMA	LD (HL), r	MOV M, r	RST P	RST P
CP n	CPI [B2]	ID (nn), A	\$TA [82] [83]	SBC A, (HL)	SBB M
DAA	DAA	LD (nn), HL	SHLD [82] [83]	SBC A, n	581 (82)
DEC BC	DCX B	LDA, (BC)	LDAX B	SBC A, r	\$ 66 r
DEC DE	DCX D	LD BC, nn	LXIB, [82] [83]	SCF	STC
DEC HL	DCX H	LO Ht, (nn)	LHLD [82] [83]	SUB n	SUI [B2]
DECi	DCR r	LD HL, nn	LXI H [82] [83]	SUBr	SUB r
DEC SP	DCX SP	LD r, (HC)	MOV 1, M	SUB (HL)	SUB M
DEC (HL)	DCR M	LDr. n	MVIr, [82]	XOR n	XRI [62]
Dr	DI	LDr, r	MOV rl. r2	XOR r	XRA r
EI	E!	LD SP, HL	SPHL	XOR (HL)	XRA M
EX DE. HL	XCHG	NOP	NOP		

Anhang G

Äquivalente Befehle: 8080-Z80

8080	Z80	8080	Z80	8080	Z8 0
ACI [B2]	ADC A, n	IN [B2]	IN A, (n)	POPH	POPHL
ADC M	ADC A, (HL)	INR M	INC (HL)	POP P\$W	POP AF
ADC r	ADC A, r	INR r	INC r	PU\$H 8	PUSH BC
ADD M	ADD A, (HL)	INX B	INC BC	PUSH D	PUSH DE
ADD r	ADD A, r	INX D	INC DE	PUSH H	PUSH HL
ADI [B2]	A00 A, n	INX H	INC HL	PUSH PSW	PUSH AF
ANA M	AND (HL)	INX SP	INC \$P	RAL	RLA
ANA r	AND:	JC [B2] [B3]	JP C, nn	RAR	RRA
ANI [B2]	AND n	JM [82] (B3)	JP M, nn	RC	RET C
CALL	CALLrin	JMP [B2] [B3]	JP no	RET	RET
CC (82) [83]	CALL C, no	JNC [82] [83]	JP NC, nn	RL⊂	RLCA
CM [82] [83]	ÇALL M, nn	JNZ [B2] [B3]	JP NZ, nn	₹M	RET M
ÇMA	CPL	JP [82] [83]	JPP, on	RNC	REI NC
CWC	CCF	JPf. [B2] [B3]	JP PE, nn	RNZ	RETNZ
CMPM	CP (HL)	JPO [82] [83]	JP PO, no	RP	RET P
CMPr	CPr	JZ [B2] [B3]	JP Z, nn	RPE	RET PE
CNC [82] [83] ·	CALL NC, nn	LDA (82) [83]	ID A, (no)	RPO	RET PO
CNZ [B2] [B3]	CALL NZ, nn	LDAX B	LD A, (BC)	RRC	RRÇA
CP (82) [83]	CAU P, nn	(DAX D	1D A, (DE)	RST	R\$T P
CPE [B2] [B3]	CALL PE, no	LXI D [82] [83]	LD HL, {nn}	RZ	RET Z
CPI [82]	CPn	(XIB (B2) (B3)	LO BC, no	588 M	\$8C A, (HL)
CPO [82] [83]	CALL PO, on	LDID [B2] [B3]	LD DE, nn	\$8 8 r	\$BÇ A, r
CZ [B2] [B3]	ÇALL Z, nn	LXI H [B2] [B3]	LO HL, nn	SBI (B2)	SBC A, n
DAA	DAA	LXI \$P (B2) [B3]		\$HtD [82] [83]	LO (nn), HL
DAD B	ADD HL, BC	MOV M, r	LD (HL), r	SPHL	LD SP, HL
DAD D	ADD HL, DE	MOV r. M	LDr. (HL)	STA (B2) [B3]	LD (nn), A
DADH	ADD HL, HL	MOV rl, r2	LD r. r 1	STAX 8	LD (BC), A
OAD SP	ADD HL, SP	MVIM	(D (Ht), n	STAX D	LD (DE), A
DCR M	DEC (HL)	MVI r [82]	LD r, n	STC	SCF
DCR r	DEC	NOP	NOP	SUB M	SUB (HL)
DCX 8	DEC BC	ORA M	OR (HL)	SUB r	SUB r
DCX D	DEC D€	ORA	QR r	\$UI [B2]	SUB n
DCX H	DEC HL	ORI [B2]	ORn	XCHG	EX DE, HL
DCX 5P	DEC SP	OUT [B2]	OUT (n), A	XRA M	XOR (HL)
DI	DI	PCHL	JP (HL)	XRA r	XQR r
EI	EI	POP B	POPBC	XRI [B2]	XOR n
HALT	HLT	POPD	POP DE	XTHL	EX (SP), HL

Übungen

1.1: Der dezimale Wert von 1111 1100 ist 252.

$$0 * 1 = 0 (2^{0})
0 * 2 = 0 (2^{1})
1 * 4 = 4 (2^{2})
1 * 8 = 8 (2^{3})
1 * 16 = 16 (2^{4})
1 * 32 = 32 (2^{5})
1 * 64 = 64 (2^{6})
1 * 128 = 128 (2^{7})
252$$

- **1.2:** Die duale Darstellung von 257 ist 1 0000 0001.
- 1.3: Der dezimalen 19 entspricht die Dualzahl 10011, denn

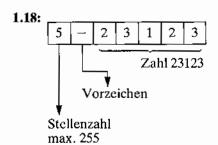
19: 2 = 9 Rest 1
$$\rightarrow$$
 1 * (2°) (niederwertigstes Bit)
9: 2 = 4 Rest 1 \rightarrow 1 * (2')
4: 2 = 2 Rest 0 \rightarrow 0 * (2°)
2: 2 = 1 Rest 0 \rightarrow 0 * (23)
1: 2 = 0 Rest 1 \rightarrow 1 * (24)

1.4:

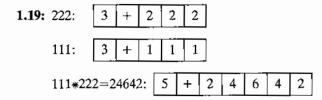
Probe:

$$1 * 1 = 1 (20)
1 * 2 = 2 (21)
1 * 4 = 4 (22)
1 * 8 = 8 (23)
15$$

1.5:


Mit vier Bits lassen sich nur die positiven Zahlen 0-15 darstellen. Für das Ergebnis 10000 werden fünf Bits benötigt.

- 1.6: -5 wird in vorzeichenbehafteter Darstellung als 10000101 dargestellt, wenn das erste Bit als Vorzeichenbit interpretiert wird und keine Komplementdarstellung verwendet wird!
- 1.7: Die Einerkomplement-Darstellung von -6 ist die invertierte Darstellung von 0000 0110 (für +6) also: 1111 1001.
- 1.8: Die Zweierkomplement-Darstellung von +127 ist 0111 1111.
- **1.9:** Die Zweierkomplement-Darstellung von -128 ist 10000000.
- 1.10: Bei Verwendung von einem Byte zur Darstellung ist die kleinste darstellbare Zahl −128, die größte +127.
- 1.11: Das Zweierkomplement von 20 errechnet sich so:


$$00010011$$
 (Einerkomplement von -20)
 $+00000001$ (addiere 1 zum Einerkomplement)
 00010100 (20 in dualer Darstellung)

1.12:

- 1.13: Bei der Addition zweier Zahlen mit verschiedenen Vorzeichen kann kein Überlauf auftreten. Diese Aussage gilt unabhängig von der Anzahl der zur Darstellung verwendeten Bytes. Man kann sich diese Tatsache ohne exakten mathematischen Beweis anschaulich klarmachen, wenn man sich überlegt, daß die betragsmäßig größte negative Zahl addiert zur kleinsten positiven Zahl, das ist immer die 0, wieder sich selbst ergibt, während die größte Zahl addiert zur betragsmäßig kleinsten negativen Zahl, das ist immer die -1, sich selbst vermindert um 1 ergibt. Die Ergebnisse für alle anderen Wertepaare mit unterschiedlichem Vorzeichen müssen zwischen diesen Werten liegen.
- 1.14: Die mit zwei Bytes im Zweierkomplement kleinste darstellbare Zahl ist -2¹⁵=-32768 (1000 0000 0000 0000), die größte darstellbare Zahl ist 2¹⁵-1=32767 (0111 1111 1111 1111). Der Zahlenbereich ist unsymmetrisch, da es im Gegensatz zur Einerkomplement-Darstellung nur eine Darstellung der 0 gibt.
- **1.15:** Die betragsmäßig größte negative Zahl im dreifachgenauen Format ist $-2^{23} = -8388640$ (1000 0000 0000 0000 0000 0000).
- **1.16:** Die BCD-Darstellung von 29 ist 0010 1001, von 91 1001 0001.
- 1.17: 1010 0000 ist keine zulässige BCD-Darstellung, da die 4-Bit-Kombinationen 1010,1011,1100,1101,1110 und 1111 keine BCD-Ziffern sind.

Die binäre Form hat die Darstellung 00000101 00010010 00110001 00100011.

- 1.20: Stellt man 9999 im BCD-Format dar, so werden 28 Bits benötigt. In der Zweierkomplement-Darstellung reichen 15 Bits (9999 < 2¹⁴-1).
- 1.21: Mit einer Mantisse von 23 Bits kann man $log_{10}(2^{23})=6,92$ Dezimalziffern darstellen. Anschaulich kann man sich diese "krumme" Zahl folgendermaßen deuten: Mit 23 Bits kann man die Zahlen 0 bis 8388640 darstellen. Hat die darzustellende Zahl 7 Ziffern und fällt in diesen Bereich, so kann sie ohne Genauigkeitsverlust dargestellt werden. Fallen die ersten 7 Ziffern der darzustellenden Zahl nicht in den Bereich, so kann die Zahl nur mit 6 Stellen Genauigkeit dargestellt werden. Es gibt allerdings Rechner, die bei einer Mantisse von 23 Bits trotzdem mit einer Genauigkeit rechnen, als wäre die Mantisse 24 Bits lang. Die Konstrukteure solcher Rechner haben dabei die Tatsache ausgenutzt, daß die binäre Darstellung der Mantissen von Zahlen, die zur Basis 2 normiert wurden, immer mit einer 1 beginnen. Deshalb wird diese 1 beim Speichern einfach weggelassen und erst vor Rechenoperationen in der CPU wieder ergänzt. Man nennt diese Darstellung "Hidden first Bit" (Verstecktes erstes Bit). Man gewinnt dadurch eine Genauigkeitssteigerung von $\log_{10}(2^{24}) - \log_{10}(2^{23}) = 7.22 - 6.92 = 0.3$ Dezimalstellen.

1.22:	Zeichen	P	7-Bit-ASCII-Darstellung
	0	0	0110000
	1	1	0110001
	2	1	0110010
	3	0	0110011
	4	1	0110100
	5	0	0110101
	2 3 4 5 6 7	0	0110110
	7	1	0110111
	8	1	0111000
	9	0	0111001
1.23:	Α	0	1000001
	\mathbf{B}	0	1000010
	C	1	1000011
	D	0	1000100
	E	1	1000101
	F	1	1000110
1.24:			8-Bit-ASCII ohne Parität
	· A		01000001
	?		00111111
	?		00110011
	b		01100010

P = Paritätsbit für gerade Parität

- 1.25: Die Hexadezimaldarstellung von 1010 1010 ist AA.
- 1.26: Das binäre Äquivalent zu hexadezimal FA ist 1111 1010.
- 1.27: Die oktale Darstellung von binär 01 000 001 ist 101.
- 1.28: Der Vorteil von Zahlen in der Zweierkomplement-Darstellung liegt darin, daß die elementare arithmetischen Operationen Addition und Subtraktion so durchgeführt werden können, als wären die Zahlen nicht vorzeichenbehaftet. Das C- und das V-Bit erlauben nach der Operation die Kontrolle, ob der darstellbare Zahlenbereich verlassen wurde, je nachdem, ob die Zahlen als vorzeichenlose Zahlen (C-Bit gesetzt) oder als Zahlen in Zweierkomplement-Darstellung (V-Bit gesetzt) interpretiert werden. Es gibt auch Divisions- und Multiplikationsverfahren, die Zahlen im Zweierkomplement ohne explizite Behandlung des Vorzeichens verarbeiten.
- 1.29: Die Darstellung von 1024 ist
 - a) direkt dual: 100 0000 0000
 - b) vorzeichenbehaftet 0 000 0100 0000 0000 (erweitert auf 16 Bits, erstes Bit ist Vorzeichen)
 - c) im Zweierkomplement 0000 0100 0000 0000 (für positive Zahlen identisch mit b)
- 1.30: Das V-Bit gibt an, ob bei einer Additions- oder Subtraktionsoperation mit Werten im Zweierkomplement der darstellbare Zahlenbereich verlassen wurde und somit das erhaltene Ergebnis falsch ist, da die Anzahl der zur Verfügung stehenden Bits zur Darstellung des Ergebniswertes nicht ausreichte. Technisch ist das V-Bit bei 8 Bit-Operationen das Exklusive-Oder zwischen dem Übertrag aus Bit 6 und dem Übertrag aus Bit 7. Der Programmierer sollte das V-Bit dann testen, wenn er Additionsoder Subtraktionsoperationen auf Werten ausführt, die er als Zweierkomplement-Darstellungen interpretieren will.
- 1.31: Zahl Zweierkomplement-Darstellung
 - +16 00010000
 - +17 00010001
 - $+18 \quad 00010010$
 - -16 11110000
 - -17 11101111
 - -18 11101110
- 1.32: 4E 41 43 48 52 49 43 48 54

```
2.1: Befehl
                                   Binärkode
       LD B.C
                                   01000001
      ADD A.B
2.2:
                                   10000000
3.1:
               LO HL.LOC1
                              : LADE HU MIT BER ADRESSE LOCI.
               LD A, (LOC2)
                              LADE A MIT DEM INHALI VON LOCA.
                               ; ADDIERE INHALT VON LOCE 20 A.
               ADD A. (HL)
               LD (L003),A
                                (SPEICHERE A AUF ADRESSE LOCA,
               2 F T
       EOC1: DB 23
                                ; BEISFIELWERT.
       LBC2: DB 59
       L003:
              DS 1
                                :RESERVIERE EIN BYTE FOR DAS ERGEBNIS.
                END
3.2:
               LD A, (A0R1)
                              TLADE UNYERE HALFTE VON OP1.
                              ADDRESSE DER UNTEREN HALFTE VON OP2.
ADDIERE DIE UNTEREN HALFTEN VON OP1 9ND OP2.
SPEICHERE DIE UNTERE HALFTE DES ERGEBNISSES.
                LD HL, ADR2
                ADD A, (HL)
                LD (ADR3),A
                LD A. (ADRI+1) : LADE DIE OBERE MALETE VON OF1.
                            (ADDRESSE DER OBEREN HALFTE VON OPZ.
                INC HE
                ADC A. (BL)
                               (OPI+OP2) OBEN «OBERTRAG.
(SPE)CHERE DIE OBERE HALFTE DES ERGERNISSES.
                LD (AGR3+1),A
       ADR L:
               DR 22H
                                : UNIERE HALFTE VON OPI.
                DB 33H
                                ; OBERE
       ADR2:
                DB 44H
                                :UNTERS HALFTE VON DP2.
                D8 55H
                                ; OBERE
       ADR3:
                DS 2
                                RESERVISRE 2 BYTES FOR DAS ERGEBUIS.
                END
3.3:
               LD A. (ADRI-1)
                               :LADE UNTERE HÄLFTE VON OF1.
               LD HL,ADR2-1
                                :ADDRESSE DER UNTEREN HÄLFTE VON OP2.
               ADD A, (HL)
                                :ADDIERE DIE UNTEREN HALFTER VON OPT UND OF2.
               LD (ADR3-1),A ; SPEICHERE DIE UNTERE HÄLFTE DES ERBEBNISSES.
               LD A. (ADRI) ; LADE DIE OBERE HÄLFTE VON OP1.
               INC HL
                               :ADDRESSE DER OBEREN HÄLFTE VON OP2.
                              ; (OF1+0P2) OBEN + OBERTRAS.
               ADC A. (BL)
               LD (ADR3), A
                                SPETCHERE DIE OBERE HALFTE DES ERGEBNISSES.
               RET
               DB 11H
                                :UNTERE HÄLFTE VON OP1.
       ADR1:
               D# 22H
                                ; OBERE
                DB 33H
                                JUNTERE HALFTE VON DF2.
       ADR2:
                DB 44H
                                OBERE
               DB 0
                                ; UNTERE HALFTE DES ERGERNISSES.
       ADR3:
               DB 0
                                OBERE
                END
```

- 3.4: Lösung im Text angegeben.
- 3.5: Lösung im Text angegeben.

```
3.6:
```

```
LD A. (ADR1) : LADE UNTERE HXLETE YON OP1.
         LD HL,ADR2 ;ADDRESSE DER UNTEREN HÄLFTE VON OF2.
         SUB (HL) ; SUBTRAHIERE DIE UNTEREN HALFTER VON OP1 UND OF2.
LD (ADR3),A ; SPEICHERE DIE UNTERE HALFTE DES ERGEBNISSES.
LD A, (ADRI+I) ; LADE DIE OBERE HALFTE VON OP1.
         INC HL ;ADDRESSE DER UBEREN HALFTE VON UP2.
SBC A, (HL) ; (OP1-OP2) OBEN -ÖBERTRAG.
         LD (ADR3+1),A | SPEICHERE DIE OBERE HALFTE DES ERGEBNISSES.
         RET
ADR1:
         DB 22H
                             ;UNTERE HALFTE VON D81.
         DB 33H
                             ; OBERE
ADR2:
         DB 44H
                             UNTERE HALFTE VON OP2.
                            38380;
         DB 55H
ADR3:
         DS 2
                             RESERVIERE 2 BYTES FOR DAS ERGEBRIS.
          END
                           ; LADE OPI NACH A.
         LD A, (ADRE)
         LD HL,ADR2
                           ; LADE HL MIT DER ADRESSE VON OF2.
```

3.7:

```
SUB (RL) :0P1 - 0P2.
LD (ADR3),A ;SPEICHERE DAS ERGEBNIS AUF ADRESSE ADR3.
RET

ADR1: DB LIH :BEISPIELWERT.
ADR2: DB 22H ;BEISPIELWERT,
ADR3: DS 1 ;RESERVIERE EIN BYTE FUR DAS ERGEBRIS.
END
```

- 3.8: Lösung im Text angegeben.
- 3.9: Nein, denn das Ergebnis wurde bereits durch LD (ADR),A abgespeichert. DAA wirkt nur auf den Akkumulator.
- 3.10: Der Unterschied liegt in dem Dezimalabgleich durch den Befehl DAA, der jeweils dem Additionsbefehl folgt.
- 3.11: Nein, denn den Befehl SBC A,(DE) gibt es nicht.

3.12:

```
LLADE UNTERE HALFTE YOM OP1.
        LD A. (ADEI)
        LD ML, AD92
                          ; ADRESSE DER UNTEREN HALFTE VON UP2.
                          ; SUBTRAHIERE DIE UNTEREN HALFTEN VON DP1 UND OF2.
        98B (6L)
        DAA
                          ; DEZIMALANPASSUNG.
        LO (ADR3),A SPEICHERE DIE UNTERE HALFTE DES ERGEBNISSES.
LO A, (ADR1+1) :LADE DIE OBERE HALFTE VON OP1.
        (NC PL (ADRESSE DER OBEREN HALFTE VON OP2.
SBC A. (HL) (OF1-0P2) OBEN -UBERTRAG.
        AAG
                           ; DEFIMALANPASSUNG.
        LO (ADR3+1).A (SPETCHERE DIE OBERE HALFTE DES ERGEBNISSES,
        REL
4€RI:
        9.6 209
                         UNIERE HALFTE VON OPI.
                         : OBERE
        OB 33H
        DB 44H
AUSCI
                          JUNITERE HALFTE VON 9P2.
        D8 55F
                          ; OBERE
ADRS:
       DS 2
                          :RESERVIERE 2 BYTES FOR DAS ERGEBNIS.
```

3.13:	Schritt	MPD	MPR	Ergebnis
	1	00100	111	00000
	2	00100	1 11	00100
	3	01000	111	00100
	4	01000	111	00100
	5	01000	111	01100
	6	10000	111	01100
	7	10000	111	01100
	8	10000	111	11100

keine Veränderung des Ergebnisses bei der Verarbeitung weiterer Bits

- 3.14: Im Prinzip ja. Der Befehl BIT erlaubt jedoch nur das Testen eines Bits an einer fest im Befehl selbst anzugebenden Position. Deshalb müßte jeder Test einzeln programmiert werden. Dadurch würde das Programm erheblich länger. Es würde allerdings auch schneller, da die Schleifenkontrolle wegfiele.
- 3.15: Ja, der Vorteil läge in der kürzeren Darstellung (2 anstelle von 3 Bytes), allerdings wäre die Ausführungszeit etwas höher, da JR bei erfüllter Bedingung 12 anstatt 10 T-Zustände von JP benötigt.
- 3.16: Ja, das ist nicht nur kürzer, sondern auch etwas schneller: Ein T-Zustand wird gegenüber

DEC B
JP NZ,MULT

gewonnen.

- 3.17: Ja. Das Programm wird um ein Byte kürzer und um einen T-Zustand schneller (16 T-Zustände gegenüber 17 sonst). Der Nachteil liegt in der schlechteren Verständlichkeit für andere Programmierer. Solche Befehlsfolgen sind gute Kandidaten für Makros.
- 3.18: Lösung im Text angegeben.
- 3.19:

```
MPYRR: LD BC. (MPRAD)
LO B.S
LD A. (MPDAD)
LD D.A
LD D.A
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
LD E.O
L
```

```
LD (RESAD), ML ; DANACH ENTHALT ML DAS KORREKTE ERGEBNIS.

RET

HPRAD: DB 2 : BEISPIELWERT.

RESAD: DS 2 : RESERVIERE 2 BYTES FOR DAS ERGEBNIS.

END
```

3.20:

```
; T-ZUSTÄNDE
MPY88C: LD HL, (MPRAD-1) : 16
       LD L,0
       LD DE,(MPDAD)
                         20
       10.0,0
                         7
       LD B,8
                         - 7
       ADO HL , HL
HULT:
                    ; [1
       JR NC, NOADD : 12/7
       ADD ML.DE
                   ; 16
NOADD: DJNZ MULT
                        13/8
       DJNZ MULT ;
LD (RESAD),HL ;
                       16
                        10
       RET
                     ;
```

Programmteil	T-Zustände
Initialisierung	57
innere Schleife	
Bedingung erfüllt 4 * 23	92
Bedingung nicht erf. 4 * 29	116
Schleifenende 7 * 13 + 1 * 8	99
Rücksprung	10
Summe	: 390

390 T-Zustände entsprechen 196 Mikrosekunden bei 2-MHz-Takt.

- 3.21: Ein anderes Register müßte dann die Rolle eines Zählers übernehmen, und DJNZ müßte entsprechend ersetzt werden.
- 3.22: Erklärung folgt im Text.

3.23:

```
HETTE: ED GC, (MPRAD)
        LD DE. (MPDAD)
        LD BL,0
        LD A,16
HULT:
        SPL 9
        RR C
        JR NC, NOADD
        ADD HL, DE
NCADD:
        EX DE, HL
        ADD HL,HL
        EX DE,HL
        DEC A
        JR WZ, MULT
        LD (RESAD), HL
        RET
MPRAD: DW FFH
MPDAD: DW AAH
RESAD: DS 2
        END
```

Während der Speicherplatz bei beiden Versionen weniger ins Gewicht fällt, ist der Aufwand an Laufzeit bei der obigen Version um 8 T-Zustände pro Schleifendurchlauf höher, in der Summe 128 T-Zustände = 64 Mikrosekunden (bei 2-MHz-Takt) für die gesamte Schleife. Dem stehen nur wenige T-Zustände weniger Initialisierungsaufwand entgegen, so daß der ursprünglichen Version der Vorzug zu geben ist.

3.24: SLA E RL D

3.25: Ein Überlauf kann durch den hinter ADD HL,HL eingeschobenen Befehl JR C,OVERR erkannt und ab der Marke OVERR behandelt werden.

3.26:

```
MUL32: LD 80,(MPD)
                         ; HULTIPLIKAND.
        LD DE, (NPR)
                         ; MULTIPLIKATOR UND OBERE HÄLFTE DES ERGEBNISSES.
        LD BL,O
                         ; UNTERE HALFTE DES ERGEBNISSES.
        LD A,160
                         ; ZAHLER.
HULT:
        ADD HL,HL
                         ; ERGEBNIS NACH LINKS, UND INAR HL
        RL E
                         ; UND DE,
                         ; DABEL MULTIPLIKATORBIT INS CARRY.
        RL D
        JR NC, NOADD
                         :WENN O. DANN KEINE ADDITION.
        ADD HL,BC ;SONST ADDIERE MULTIPLIKANDEN
JR MC,MOADD ;UND ADDIERE EIN EVTL. CARRY
        INC DE
                         IN DER OBEREN HALFTE DES ERGEBNISSES.
NOADD:
        DEC A
                         ¿FÜHRE DOS INSGESAMT 16MAL DURCH.
        JR NZ, MULT
        RET
H2R:
        BN 10249
MPD:
        DW 10240
        END
```

3.27:

```
0103
      3A 911E"
                           DEV168: LD A, (OVSAD)
                                  LD 0,A
0106' 57
0107" 15 00
                                   LD E.O
0109" 2A 011F"
                                   LD HL, (DVOAD)
01001
      66 68
                                   LD 8,9
010E'
       C3 01121
                                   JP REIR
0111
      29
                           DIV:
                                   ADD HL, HL
0112' AF
                           REIN: IOR A
0113. ED 52
                                   SBC HL, DE
0115. 53
                                   THE HL
                                   JP P.NOADD
0116
      £2 011B"
01:9
      F9
                                   ADD HL.DE
01 EA 1
       28
                                   DEC HL
0118" to F4
                           VIC INGO : CORON
01 tB : C9
                                   RET
011E' 07
                           DVSAD: DB 7
911F" 628C
                           DVDAD: DN 2000
```

Marke Befehl	_ A	В ↓	ĦL
0103 LD A, (011)	•	90	0000
0105 LD D.A	07	00	0000
0107 LB E.00	ŷ7	0.0	9090
0109 LD HL,(01		00	0280
010C LD 8,09	07	09	02BC
010E JP 0112 0112 XOS A	07 06	09 09	0280 0280
0113 SBC HL,DE	90	09	F880
0115 INC HL	00	09	FBBD
0118 JP P,0118	00	09	F880
0119 AGO HL, DE	0.0	0.5	0380
OLIA DEC HL	00	09	0280
0118 DJNZ 0111 0111 ADD HL,HL	00 00	99 80	028€ 0578
0111 ADD HL,HL 0112 XDR A	00	98	0578
OII3 SBC HL,DE	00	08	FE78
0115 INC HL	00	08	FE79
0116 JP P,011B	00	80	FE79
OLIS ADD HE, DE	00	98	0579
OLIA DEC HL	00	08	0578
0118 DJN2 0111 0111 ADD HL,HL	00 00	07 07	0578 0AFO
0111 ADD HL,HL 0112 XOR A	90	07	OAFO
0113 SBC HL,DE	00	0.7	03F0
0115 INC HL	0.0	0.7	03F1
0116 JP P.011B	60	0.7	ÚŠF i
011B DJNZ 0111	00	9.6	03F1
0111 ADD HL,HL 0112 XOR A	00	30	07E2
0112 XOR A 0113 SBC HL,DE	00	06 30	07E2
0115 INC HL	90	06	00E3
0116 JP P,0118	00	06	0083
011B DJN7 0111	0.0	95	00E3
OIIL ADD HL,HL	00	05	6010
0112 X0R A	00	95	01 C 6 FAC6
0113 SBC HL, DE 0115 INC HL	00 00	9 5 95	FAC7
0116 JP P,011B	00	05	FAC7
0119 ADD HL,DE	00	05	0107
OTTA DEC HL	00	95	0168
OTTB DUNZ OTT	0.0	04	0106
JH, JR DOG 1110	0.0	04	0286
0112 XOR A 0113 SBC HE,DE	00 00	04 04	038C FCBC
OII3 SBC ME, DE OII5 INC HL	00	04	FCBD
0116 JP P,011B	90	04	FCOD
0119 ADD HL,DE	00	04	0380
Olia DEC HL	00	0.4	0380
OTTB DJMZ OTTT	00	03	03 8C
0111 ADD HL,HL 0112 XOR A	00 00	03 03	0718 0718
OIIS SBC HL,DE	00	03	0018
0115 INC HL	00	03	0019
0116 JP P,011B		03	0019
011B DJNZ 0111	0.0	02	0019
Olil ADD HL,HL	00	02	0032
0112 X9R A	90 90	0.2	0032 F932
0113 58C HL,DE 0115 INC HL	90	02 02	F932
0116 JP P,0118		02	F933
0119 ADD HL, DE	00	02	0033
OLIA DEC HL	90	02	0032
011B DJNZ 0111	00	01	0032
OLET ADD HL,HL	99	01	0064
0]12 X 0 R A	60	01	0064

Marke Befehl		Α	В	НĻ
<u>~</u>		\downarrow	\downarrow	~~
0113 SBC	HL,DE	90	01	F964
0115 INC	HL	0.0	0.1	F965
0116 JP	P,011B	0.0	0.1	F965
0119 ADD	HL , DE	0.0	01	0065
011A DEC	RL	0.0	٥ı	0064
0118 DJ#7	0111	ሳሶ	40	0084
OFID RET				

- 3.28: Übersichtlichkeit und Effizienz scheinen manchmal im Gegensatz zu stehen. Das Programm auf Seite 131 ist dafür ein gutes Beispiel. Um sich ein Bild vom Kontrollfluß des Programms zu machen, empfiehlt es sich, Sprungbefehle und Sprungmarken durch Pfeile am linken Rand zu verbinden. Dann werden Sie merken, daß die Unübersichtlichkeit des Programms den Grund in überlappenden Kontrollstrukturen hat. Solche Überlappungen behindern nicht nur das Verständnis ungemein, sie führen auch fast immer unweigerlich zu fehlerhaften Programmen. Sie sollten solche Programmstrukturen vermeiden, da sie sich immer umgehen lassen.
- 3.29: LD A,(LOC) beeinflußt bei der Ausführung keines der Flags, der zweite Befehl CP 00H ist notwendig, um den geladenen Wert auf 0 zu testen.
- 3.30: LD A,(24D) CP 00101010B JP Z.STERN
- 3.31: Antwort im Text gegeben.
- 3.32: Die angegebenen Multiplikationsverfahren zerstören die ursprünglichen Inhalte der Flags. Um dies zu vermeiden, müssen zu Beginn des Programms sämtliche in Frage kommenden Werte gerettet und am Ende wiederhergestellt werden. Auch hier bietet sich der Stapel an, die zu rettenden Werte aufzunehmen.
- 3.33: Grundsätzlich ist es zulässig, daß ein Unterprogramm sich selbst aufruft. Zwei Punkte gilt es generell zu beachten:
 - Die Daten, die vom Unterprogramm verarbeitet werden sollen, sollten nicht im Programmbereich des Unterprogramms abgelegt werden.
 - Das Unterprogramm sollte einen Zweig besitzen, der keinen rekursiven Aufruf enthält. Sonst bricht das Programm nämlich mit Sicherheit nicht ab, und der Stapel läuft über.
- 3.34: Der Rücksprung ist schneller, da nur noch die Rücksprungadresse vom Stapel geholt werden muß. Beim Einsprung in das Unterprogramm muß nicht nur die Rücksprungadresse auf dem

Stapel abgelegt werden, sondern auch die Startadresse des Unterprogramms aus dem Speicher in den Befehlszähler geladen werden.

- 3.35: Für die Rekursion ist die Methode 3 am besten geeignet. Rekursive Verfahren wählt man dann, wenn die Anzahl der durch das Programm durchzuführenden Wiederholungsschritte nicht von Anfang an bekannt ist, und daher die Anzahl der abzulegenden Parametersätze stark schwanken kann.
- **4.1:** LD A,WORT AND 10111111B AND 11111101B
- 4.2: Der Inhalt des Akkumulators bleibt unverändert.
- 4.3: Der Inhalt des Akkumulators bleibt unverändert.
- 4.4: Der Inhalt des Akkumulators wird auf 0FFH gesetzt.
- 4.5: Der Inhalt des Akkumulators wird auf 0FFH gesetzt.

5.1:

```
RUNKER EOU 5

START: LD B, NUMBER 1.D IX, NUMBER-1
HEXT: ED A, (IX+FROM)
LD (IX+YD).A
DEC IX
DJN2 MEXT
RET

FROM: DB 0,1,2,5,4
TO: DB 5,6,7,6,9
```

END

5.2:

```
NUMBER
             EQU 5
FROM OFFSET
             EQU FROM - SELTÉ
TO OFFSET
               EOU TO - SELTE
START: LD B.NUMBER
       LD IX, NUMBER-1+SEITE
NEXT: LD A, (1X+FROM_OFFSET)
         LD (IX+TO_OFFSET),A
         DEC IX
         DUNZ NEXT
         RET
        086 ($/128+1)*128
SELTE: DB "IRGEND ETWAS STEHT AM ANFANG DER SELTE"
FROM:
        D8 0,1,2,3,4
10:
        DB 5,6,7,8,9
```

```
5.3:
```

```
LD A."*"
        LD BC.COUNT
        LD HL, STRING+COUNT-1
        CPDR
        RET
                        ; WENH GEFUNDEN, DANN Z-817-1, SONST O.
STRING: "IN DIESEH STRING IST EIN ""*"" ENTHALTEN!"
      £QU $ - STR!NG
        END
```

5.4: Ja, setze Count auf 4.

COUNT

5.5: Ja, setze Count auf 8.

5.6:

```
COUNT
        EDU 5
BLKADD: LD [X,BLK]
        LD IY, BLK2
        LD HL, BLK3
        LD B, COUNT
        XOR A
                          ¿LöSCHE C-BIT.
LOOP:
        LD A, ([X+0]
        ADD A, (IY+0)
        LD (HL),A
        DEC IX
        DEC IY
        DEC HL
        DJNZ LOOP
        RET
        DB 11H, 22H, 33H, 44H
8LK1;
        DB 55H
                                  LETZTES ZEICHEN VON BLK1.
        DB 22H, 33H, 44H, 55H
        166° BC
BLK2:
                                  :LETZTES ZEICHEN VON BLK2.
        08 0,0,0,0
8LK3;
                                   LETZTES ZEICHEN VON BLK3.
        DB 0
        END
```

Ersetze in der Lösung zu Aufgabe 5.6 den ADC-Befehl durch einen SBC-Befehl.

5.8:

```
COUNT
         E₽U 5
BEKADD: LD IX, BLKI
         LO JY, BLK2
         LO HL, BLK3
         LD B, COUNT
         XOR A
LOOP:
         LD A, ([X+0]
         ADC A, (IY+0)
         LO (HL),A
         INC IX
         INC IY
         INC HL
         DJNZ LOOP
         RET
BLK1:
         DB 11H, 22H, 33H, 44H, 55H
BLK2:
         DB 22H, 33H, 44H, 55H, 66H
BLK3:
         DB 0,0,0,0,0
```

Zu den Lösungen der Aufgaben 5.9, 5.10, 5.11: Es gibt häufig viele richtige Lösungen für eine Aufgabenstellung. In den Lösungen zu den drei Aufgaben wird versucht, einige Lösungsvarianten für die doch sehr ähnliche Aufgabenstellung aufzuzeigen.

5.9:

```
LD HL, BASE
        LD B,100
        LD IX, SUN
        XQR A
LOOP:
        ADD A. (HL)
        JR NC. NOCARRY
        INC ([X+1)
NOCARRY: INC HL
        DJNZ LOBP
        LD (IX+0), A
        RET
BASE:
        DB 0,1,2,3,4,5,6,7,8,9
SUH:
        DW 0
        END
```

5.10: Es werden zwei Lösungen angegeben.

```
MIT INDIZIERUNG.
: YERSION 1
        LD IX, BASE
        LD B, LOD
        LD D.O
        LD HL,0
LOOP:
        LD E. (1X+0)
        ADD HL, DE
        INC 1%
        DUNZ LOOP
BASE:
        UB 0,1,2,3,4,5,6,7,8,9
        END
                          OHNE INDIZIERUNG.
: YERSIDN 2
        t⊅ HL,SUKHi
        LD DE, BASE
        LB A.O.
        LD C.A
        LD (SUMHE),A
        LD 8,100
LOGP:
        LD A. (DE)
        ADD A.C
        1.0 C,A
        JR HC, NOCARRY
        INC (HL)
NOCARRY: INC. DE
         DJN2 LOOP
        LU (SUMEO), A
         RET
BASE: 08 0,1,2,3,4,5,6,7,8,9
SUMEO: DS I
SUMBI: DS I
         END
```

```
5.11:
               LD B,100
               UD 11.0
                                (IX NIMM) INISCHENERGEBNISSE AUF.
               LD (REVER).1%
               LD HL. BASE+9
               LD D,O
                                ; OBERES BYTE VON DE.
       L608:
               LD E, (HL)
               ADD IX.DE
               0€C KL
                DUNY LOOP
               LO (REVER), IX
               RET
               DB 0,1,2,3,4,5,6,7,8,9
       PASE:
       REVER: DS 2
               END
5.12:
               LD B, 100
                               INITIALISIERE DEN ZÄHLER
               LD HL, BASE
                                JUND BEN ZEIGER AUF DEN ANFANG DER LISTE.
                                (DAS ERSTE ELEMENT WIRD DAS VORLAUFIGE MAXIMUM.
               LD A, (HL)
       NEXT;
               CP (HL)
                                ; IST DAS LAUFENDE ELEHENT GRÖSSER?
               JR NC, LE
                                ; NEIM, DANN MEITER BEI LE,
; SUNST LADE NEUES MAXIMUM
               LD A, (HL)
               INC HE
       LE:
                                ;UND VERARBEITE DEN REST
               DJNZ NEXT
                               ; DER LISTE.
               LD (LARSE),A
                              ; A ENTHÄLT DAS HAXIMUM.
               RET
       BASE:
               DB 4,3,2,4,9,5,7,1,0,8
       LARGE: DS (
               END
5.13:
                                ; INITIALISIERE DEN ZÄHLER UND
               LD A. (LENGTH)
               LD HL, BASE1
                                    DIE ZEIGER
                                ì
               LD DE, BASE2
                                     AUF DIE
                                :
               LD IX, BASE3
                                     TABELLEN UND
                               ŧ
               LD 8.0
                                     DAS OBERE BYTE VON BC UND
                               ;
                                     DAS REGISTER TY FOR DIE ZWISCHENERGEBNISSE.
               LD IY.0
                                :
       NEXT:
               LD C. (HL)
               ADD 17.80
               LD C. (1X+0)
               ADD IY, BC
               EX DE.HL
                                :ALS ERSATZ FUR LD C. (DE).
               LD C. (HL)
               ADD IY.BC
               EX DE, HI.
               FINC BL
                                SETTE DIE ZEIGER WELTER.
               INC DE
               ENC 17
               A 23G
               JR NZ NEXT
               ED (SUM), 1Y
                               :IY ENTHALT DIE GESAMTSUMME.
               RET
       LENGIN: 4
       EASET: DB 0,1,2,3
       BASE2: 08 4,5,6,7
       BASEC: DB 8,9,100,0FFH
               08 2
       SUM:
               END
```

6.1:

```
: HINIHALE VERZÖGERUNG
                          T-ZUSTANDE
                                          MIKROSEKUNDEN BEI 2-MH2-TAKT
       LD A.L
                                7
                        :
NEXTHIN: DEC A
                                 4
                        :
        JR NZ.NEXTMIN
                                7
                        ;
                        ;GES. 18
                                                 9
                        ï
MAXIMALE VERZÖGERUNG
        LD A.O
                        ;
NEXTHAX: DEC A
                            256+4
        JR NZ, NEXTHAX
                        ;255+12+7
                        ; BES. 4098
                                                 2049
        END
```

6.2:

6.3: Wir können das auf Seite 454 angegebene 24-Bit-Verzögerungsprogramm mit einer kleinen Modifikation verwenden. Wir fügen in den Initialisierungsteil der inneren Schleife ein NOP ein, so daß die Verzögerung der inneren Schleife bei einem Wert von 68 für COUNTL 22+68*23 T-Zustände = 2000 T-Zustände beträgt. Dies entspricht bei einem Takt von 2MHz exakt einer Millisekunde. COUNTH=100 löst dann die Aufgabe.

; LÖSUNG MIT VERZÖGERUNGSSCHLEIFE ÜBER 24-BIT-ZAHLER . ; ES WERDEN ZUNÄCHST DIE MINIMALE UND MAYTHALE VERZÖGERUNG BERECHNET. ; UND DANN MERDEN DIE KONSTANTEN FÜR 100 MILLISEKUNDEN EINGESETZT.

COUNTL EQU OFFFFH COUNTH EQU 0

CDUNTH	E0 N 0				
		;	T-ZUSTÄNI	ЭE	MIKROSEKUNDEN
		; BEFEHL	MIN	MAX	MAXIMAL
	LD B, COUNTH	, 7	7	7	3.5
	LD DE 1-1	; 10	10	10	5
LOOPA:	LD HL,COUNTL-1	10	10	258 + 10	1280
	NOP	4	4	256*4	512
LOOPB:	ADD HL, DE	; I1	11	65536×11	3604BB*256
	JR C,LOOPB	12/7	7	65535+12+7	393213.5+256
	DJNZ LOOPA	; 13/8	8	255*13+8	1661.5
		;			= 192949894
;8E1 10	O MILLISEKUNDEN				
		;	T-ZUSTANI	DE	HIKROSEKUNDEN
		, BEFEHL	MIN	BEI 100MS	
		_	_	_	

THET TOO HILLETDENGHOEM					
	;	Ť.	T-ZUSTANDE		HIKROSEKUNDEN
	÷	BEFEHL	MIN	BEI 100MS	
LD B,100P	;	7	7	7	3.5
LD DE,-1	;	10	10	10	5
LODPA1: LD HL,86D	;	10	10	100*10	500
NOP	•	4	4	100 * 4	200
LOOPB1: ADD HL,DE	;	11	I 1	86 * 11	473+100
JR C,LOOPBI	;	12/7	7	85*12+7	513.5+100
DJNZ LBOPA1	;	13/8	8	100×13+B	654
	;				= 100012.5
RFT					

END

6.4:

```
PARAL: LO HL, (COUNT) ; 16

LD DE, -1 ; 10

NATCH: IN A, (STATUS) ; 11

BIT 7,A ; 8

JR 2, WATCH ; 12/7

IN A, (INPUT) ; 11

PUSH AF ; 11

ADD HL, DE ; 11

JR C, WATCH ; 12/7

BET
```

Gegenüber der Originalversion ergibt sich eine zusätzliche Verzögerung von 7 T-Zuständen in der Schleife.

- **6.5:** 1) Die Verwendung von JP anstelle von JR bringt nur im letzten Befehl eine Verbesserung von 2 T-Zuständen (14 zu 16).
 - 2) Die Verwendung von DJNZ bringt eine zusätzliche Einsparung von einem T-Zustand.
 - 3) Bei der Verwendung von INDR ergibt sich folgendes Programm:

```
LD C.(IMPUT

LD C.(CDUNT)

LD HL,BUFFTOP ;ODER BUFFBOT FOR INTR.

121 T-ZUSTANDE PRO ÜBERTRAGUNG. 16 FOR DIE LETZTE.
```

Unter der Voraussetzung, daß immer ein Byte zur Übertragung zur Verfügung steht, überträgt dieses Programm 93 K Worte pro Sekunde. Lassen wir allerdings den Kode für den Statustest in der Originalversion auch fort, so kommen wir dort auf 38 T-Zustände pro Byte, entsprechend 52 K Worte pro Sekunde.

6.6:

		;	T-ZUSTÄNDE
SERIAL:	LD C,0	;	7
	LD A.(COUNT)	;	4
L00P:	IN A, (INPUT)	;	! 1
	BIT 7,A	;	θ
	JR Z,LOOP	3	12/7
	SRL A	;	В
	RL C	;	8
	JR NC,LOOP	,	12/7
	PUSH BC	;	1 i
	LD C,OI	;	7
	DEC B	:	4
	JR MZ,LOOP	;	12/7

Zur Berechnung der maximalen Lesegeschwindigkeit lassen wir die Initialisierungsphase mit 24 T-Zuständen außer acht. Unter der Voraussetzung, daß immer ein Datenbit bereitsteht, werden pro Bit 11+8+7+8+8+12=54 T-Zustände benötigt. Beim achten Bit sind es 5 weniger. Unser Programm ist also in der Lage, maximal 36 K Bit pro Sekunde zu lesen. Allerdings müssen jeweils 8 Bit zu einem Wort zusammengefaßt und abgelegt wer-

den. Nimmt man diese Zeit noch hinzu, so ergeben sich 8*54-5+22=461 T-Zustände (230.5 Mikrosekunden bei 2-MHz-Takt) pro Byte, entsprechend 4338 Bytes pro Sekunde.

6.7: Im Prinzip ist die Position des Status- und des Datenbits im INPUT-Port zwar gleichgültig, das höchst- und niederwertigste Bit lassen sich jedoch am leichtesten weiterverarbeiten (z.B. ins C-Bit schieben).

6.8 und 6.9:

Verwendet man anstelle des Befehls IN A, (INPUT) den Befehl IN r, (C), bei dem die Portadresse im Register Cangegeben ist, so werden die Statusbits in Abhängigkeit vom geladenen Wert gesetzt bzw. gelöscht, und ein expliziter Test kann gespart werden. Das ist sonst nicht der Fall. So kann "automatisch" in Abhängigkeit von Bit 7 gesprungen werden. Der Akkumulator ist zum Sammeln der Datenbits frei.

		1	T-ZUSTÄNDE
	LD C, INPUT	•	7
	LD A, (COUNT)		7
	LD B.A	;	4
	LD A,01	;	7
LOOP:	IN D. (C)	,	12
	JP P,190P	,	10
	SRL D		8
	RL A	3	Θ
	JR NC,LOOP	-	12/7
	PUSH AF	1	11
	LD A,01	,	7
	DEC B		4
	JR NZ,LOOP	;	12/7

Pro Datenbit werden 12+10+8+8+12=50 T-Zustände benötigt. Das sind 4 weniger als in der Originalversion. Die Anzahl der gelesenen Bits steigt auf 39 K Bit pro Sekunde, die Anzahl der gelesenen Bytes auf 4608 pro Sekunde.

6.10: Es genügt, das Register C am Anfang mit dem Wert 1 zu initialisieren.

6.11:

```
SERIAL: LD C,0 ; Lösche Eingangswort.

LD HLBASE ; ZEIGER AUF SPEICHERBEREICH.
LD B,A ;

LOOP: IN A,(INPUT) ; LIES PORT.
BIT 7,A ; BIT 7 IST STATUS, BIT 0 DATEN.
JR Z,LOOP ; MARTE AUF EINE I.
SRL A ; SCHIEBE DATENBIT INS CARRY.
RL C ; SCHIEBE DATENBIT VON CARRY NACH C.
JR NC,LOOP ; SOLANGE BIS 8 BITS VORHANDEN SIND.
LD (HL),C ; SPEICHERE WORT
INC HL ; UND SETZE ZEIGER HEITER.
LD C,01 ; SETZE MARKIERUNGSBIT.
DEC B ; DEKREMENTIERE BYTEZÄHLER.
JR NZ,LOOP ; STELLE NACHSTES WORT ZUSAMMEN.
```

6.12:

```
SERIAL: LD C,0 ;LOSCHE EINGANGSWORT.

LD HL.BASE ;ZEIGER AUF SPEICHERBEREICH.
LD 8,A ;

LOOP: IN A,(INPUT) ;LIES PORT.

BIT 7,A ;BIT 7 IST STATUS, BIT 0 DATEN.
JR Z,LOOP ;MARYE AUF EINE 1.

SRL A ;SCHIEBE DATENBIT INS CARRY.
RL C ;SCHIEBE DATENBIT VON CARRY NACH C,
JR NC,LOOP ;SOLANGE BIS 8 BITS VORHANDEN SIND.
PUSH BC ;SPEICHERE WORT AUF DEM STAPEL.
LD C,01 ;SETZE MARKIERUNGSBIT.
CP 'S' ;S' BEENDET ZEICHENEINLESEN.
JR NZ,LOOP ;STELLE NACHSTES WORT ZUSAMMEN.
```

6.13:

```
SERIAL: LD C,0 ; LÖSCHE EINGANGSWORT.
LD HL, BASE ; ZEIGER AUF SPEICHERBEREICH.
LD A,(COUNT) ; LADE B HIT ZAHL DER BYTES.
LD B,A ;
LOOP: IN A,(INPUT+1) ; LIES STATUSPORT.
JR Z,LOOP ; WARTE AUF EINE 1.
IN A,(INPUT) ; LIES DATENPORT. BIT 0 IST DATENWERT.
SRL A ; SCHIEBE DATENBIT INS CARRY.
RL C ; SCHIEBE DATENBIT INS CARRY NACH C,
JR NC,LOOP ; SOLANGE BIS B BITS VORHANDEN SIND.
PUSH BC ; SPEICHERE WORT AUF DEN STAPEL.
LD C,01 ; SETZE MARKIERUNGSBIT.
DEC B ; DEKREMENTIERE BYTEZAHLER.
JR NZ,LOOP ; STELLE NXCASTES WORT ZUSAMMEN.
```

6.14: Es ließen sich maximal zwei Befehle einsparen:

```
BIT 7, (SIAIUS) fur IN A, (SIAIUS)
BIT 7, A
Und OUT (PRNT), (CHAR) für LD A, (CHAR)
OUT (PRNTD), A
```

Man beachte, daß die Notation für diese nicht vorhandenen Befehle nicht ganz eindeutig ist.

6.15:

```
INIT: LD A,00000001B ;LADE KODE FÜR STARTBEFEHL.

DUT (STATUS) ; STARTE DRUCKER.

HAIT: IN A,(STATUS) ;
BLT 7,A ;TEST, UB BEREIT.
JR Z,MAIT ;ANSONSTEN WARTEN,
LD A,(CHART) ;HOLE ZEICHEN.

OUT (PRNTD),A ;DRUCKE DAS ZEICHEN.
JR WAIT ;SPRUNG ZUM NÄCHSTEN ZEICHEN.
```

6.16: Bei der Ausführung des Befehls IN r,(C), bei dem die Portadresse im Register C steht, werden die Statusbits in Abhängigkeit vom geladenen Wert gesetzt bzw. gelöscht. Ein expliziter Test kann dann entfallen. Ein Vorteil des Befehls BIT ist es, auch andere Bits testen zu können.

6.17:

INIT LD HL, STRING ; ZEIGER AUF ZEICHENKETTE.
LD 8, (HL) ; ERSTES BYTE ENTHÄLT LÄNGE.
INC HL ; ZEIGER AUF ERSTES ZEICHEN.
WAIT: IN A, (STATUS) ;
BIT 7,A ; TEST, OB BEREIT.
JR Z, WAIT ; ANSONSTEN WARTEN.
LD A, (HL) ; HOLE ZEICHEN AUS ZEICHENKETTE.
INC HL ; SETZE ZEIGER AUF NÄCHSTES ELEMENT.
OUT (PRNTD), A ; BRUCKE DAS ZEICHEN.
DJNZ WAIT ; ZÄMLER NICHT NULL, DANN NÄCHSTES ZEICHEN.

6.18:

INIT LD HL, STRING ; ZEIGER AUF ZEICHENKETTE.
LD B, (HL) ; ERSTES BYTE ENTHALT LANGE.
INC HL ; ZEIGER AUF ERSTES ZEICHEN.

NAIT: IN A, (STATUS) ;
BIT 7,A ; TEST, OB BEREIY.
JR Z, WAIT ; ANSONSTEN MARTEN.
LD A, (HL) ; HOLE ZEICHEN AUS ZEICHENKETYE.
INC HL ; SETZE ZEIGER AUF NACHSTES ELEMENT.
GUT (PRNYD),A ; DRUCKE DAS ZEICHEN.
CP ODH ; MAGEMRÖCKLAUFZEICHEN?.
RET Z ; DANN ABBRUCH.
DJNZ WAIT ; SONST NACHSTES ZEICHEN, WENN ZÄHLER NICHT NULL.
RET

6.19:

Zeichen LED-Kode G F E **В** С В 3**F** 06 0 0 0 0 1 5B 1 0 1 1 0 1 2 3 4F 1 0 0 1 1 4 66 1 1 0 0 1 1 0 5 6 D i 1 6 71) 1 1 L 1 1 7 07 0 0 0 7.F 8 1 1 1 1 1 1 9 1 1 0 0 I 1 77 76 39 A 1 1 1 0 1 1 1 В 1 1 1 0 1 1 1 C 1 Ô 0 1 5E 79 1 0 1 1 1 1 D Ė 1001 71 I 1 1 0 0 0 1

6.20: Durch Einfügen der folgenden Befehle hinter ADD HL, DE:

LD A,0 OUT (SGDRV),A

6.21: Durch das Verschieben der Marke wird die Verzögerung etwas vergrößert. Auf das Aussehen der Anzeige hat das jedoch keinen sichtbaren Einfluß.

- 6.22: Der Nachteil dieses Verfahrens ist es, daß es nicht funktionieren kann, da die indizierte Adressierung über IX und IY beim Z80 nur mit festen Adreß-Offsets arbeitet, die zur Assemblierungszeit berechnet werden. Unser Problem ist es aber, indiziert über die vorliegende Hexadezimalziffer auf die Tabelle zuzugreifen. Soll SEGBSL als Distanzfeld des Befehls dienen, so müßte zu SEGBSH in IX der Wert der Hexadezimalziffer addiert werden, um dann etwa durch LD A, (IX+SEGBSL) auf die Kodierung der Hexadezimalziffer zuzugreifen. Dieses Vorgehen geht aber am Sinn der indizierten Adressierung des Z80 vorbei.
- **6.23:** Ja, und zwar über Befehle, die am Anfang die Register in diese Speicherzellen retten und sie vor dem Rücksprung wieder zurückholen. Dieses Verfahren funktioniert aber nur, wenn das Unterprogramm sich nicht selbst aufruft.
- 6.24: Die Werte der Register können über PUSH-Befehle auf dem Stapel abgelegt werden und vor dem Rücksprung über POP-Befehle (in der umgekehrten Reihenfolge) wieder restauriert werden.

6.25:

```
LD 8,2000
      CALL DELAY
L:
      DJNZ E
       RET
                        T-ZUSTÄNDE
                   ;
                        787 = (9090+2 - 79) / 23
COUNT EQU 797D
DELAY: PUSH DE
      PUSH KL
                            11
      LD DE,-1
                            10
      LD DE, -1 ;
                            10
LOOP: ADD HL, DE ;
JR C, LOOP ;
                           11
                           12/7
       NOP
                            4
       NOP
                            4
       NOP
                    ;
       POP HL
                            10
       POP DE
                            10
                    4
       RET
                            10
                    :GES. 84 + COUNT * 23 - 5
       END
```

- 6.26: Lösung ist im Text angegeben.
- 6.27: Ändere die ersten zwei Zeilen in:

TTYIN: IN A, (TTYBIT) BIT 1,A

6.28: 4 PUSH-Befehle mit 11 und 4 POP-Befehle mit 10 T-Zuständen, insgesamt 84 T-Zustände, entsprechend 42 Mikrosekunden bei 2-MHz-Takt.

6.29: Die Befehlsfolge zum Retten der Register

PUSH AF PUSH BC PUSH DE PUSH HL PUSH IX PUSH IY

vermindert pro Aufruf den verfügbaren Platz auf dem Stapel um insgesamt 12 Bytes. Hinzu kommen 2 Bytes für die Rücksprungadresse pro Interrupt. Es können also 21 verschachtelte Interrupts zugelassen werden. Diese Zahl vermindert sich, wenn das laufende Programm oder auch die Interruptroutinen Unterprogramme aufrufen und so den Stapel zusätzlich belasten.

6.30:

```
:INTEGRUPT TRITE AUF.
          ; 1-ZUSTANDE
RST p
PUSH AF
                    1 i
               ;
PUSH 6C
              ; 11; 15; 15; 15
                     11
PUSH DE
PUSH IX
PUSH IX
                               BEARBELTUNG DES INTERRUPTS.
             : 14
: 14
: 10
POP IY
PBP IX
POP HL
POP DE
                      10
               ;
POP BC
POP AF
                      10
                      10
Εŀ
                       4
RETE
                       14
               ; INSG. 171 T-ZUSTÄNDE, ENTSPRECHEND 135.5 MIKRO-
                I SEKUNDEN BET 2-MHz-TAKT.
```

6.31:

Zeichen	LED-kode	6	F	Ε	Ð	C	Б	Α
н	76	1	1	Ē	0	í	1	0
I	96	Q	0	Ó	Ó	1	i	0
J	Q F	0	0	0	1	1	1	1
L	38	0	1	1	1	Q	0	Ú
0	3F	Ü	ı	1	1	1	£	1
P	73	1	1	1	0	o	ı	1
5	6D	1	1	0	1	1	0	1
U	3€	0	ı	Ł	ı	t	1	0
Y	66	1	1	0	0	1	1	0
9	6F	1	1	0	1	1	1	L
í	04	0	0	Q	0	ı	Ç	Ó
Ĺ	30	0	0	0	1	1	0	0
1	30	Û	L	ı	Ó	0	Ò	0
n	54	ŧ	0	1	0	1	0	o
۵	58	1	0	1	0	1	1	Q
P	73	ı	1	ł	0	0	1	í
r	50	1	ņ	1	Ú	Ó	Q	ø
t	31	0	ı	1	0	0	Q	1
u	1 C	0	0	1	ı	1	0	ø
Y	63	1	1	0	Ç	0	1	1

6.32:

a) Hardware: Erkennen der Unterbrechungsanforderung

Setzen der Maske

Identifizieren des Geräts (bedingt)

Software:

Retten der Register Maske rücksetzen Identifizieren des Geräts (bedingt)

Interruptbehandlung

Wiederherstellen der Register Beenden der Unterbrechung

- b) Um zu erkennen, welche Unterbrechungen erlaubt sind.
- c) Alle Register, die in der Interruptroutine verändert werden.
- d) Entweder implizit durch den RST-Befehl der im IMO vom Gerät geliefert wird, oder durch direkte Abfrage der Ports im IM1 oder durch einen explizit vom Gerät gelieferten Vektor.
- e) Er informiert zusätzlich zum Rücksprung das Gerät, das den Interrupt verursacht hatte, daß die Interruptbehandlung abgeschlossen wurde.
- f) Durch Tests, ob der Stapel noch genügend freie Einträge hat, an solchen Stellen im Programm, wo ein bestimmter größerer Bedarf (z.B. vor dem Retten sämtlicher Register) abgesehen werden kann.
- g) Der Zeitverlust ist abhängig von dem Aufwand zur Sicherung des Zustandes vor der Unterbrechung und schwankt zwischen ca. 30 und 150 Mikrosekunden bei 2-MHz-Takt.

8.1:

```
: DIESES SPEICHERTESTPROGRAMM TESTET MAXIMAL
                                   :64 K ABZÜGLICH SEINER EIGENEN LÄNGE.
BYTECHT EQU 2560
          LD B<sub>1</sub>4 ;4 MUSTER SOLLEN GETESTET WERDEN.
LD IX,PATTERN ;1X ZEIGT AUF DAS ERSTE.
MEMIST: LD B,4
NXTPTRN:PUSH BC :RETTE AUSSEREN ZÄHLER,
LD HL,BLOCK :UND SETZTE DIE REGISTE
           LU HL, BLOCK ; UND SETZTE DIE REGISTERWERTE,
LD DE. BLOCK+1 ; UM DEN SOFFONDER
                                  ;UM DEN SPEICHERBEREICH HIT DEM
           LD BC, BYTECHT-1 ; BEFEHL LBIR AUF EINMAL ZU INITIALISIEREN.
           LD A. (IX+0) ; LADE AKTUELLES MUSTERBYTE
           LD (HL),A
                                : NACH (HL)
                                 ; UND INITIALISIERE DEN SPETCHERBEREICH.
           UDIR
           LD IV, BYTECHT-1 (DAS TESTEN ERFOLOT EINZELN, IV ENTRALT DEN ZAHLER,
           LD BC, -1 ; BC DIE KONSTANTE -1.
CP (HL) ; VERGLEICHE (HL) HIT DEM AKKUMULATOR.
RET NZ ; BEI UNGLEICHMEIT RÜCKSPRUNG MIT Z-BIT=O.
DEC HL ; ZEIGER AUF WACHSTES BYTE,
ADD IY, BC ; BIS ANFANG DES BLOCKS MIEDER
JR C, CHECK ; ERREICHT.
CHECK: EP (NL)
```

```
INC IX
                               : IX ZEIGT AUF DAS NACHSTE TESTMUSTER.
               POP BC
                               RESTAURIERE DEN AUSSEREN ZAHLER FOR DIE MUSTER.
               DEC B
                               INDCH EIN MUSTER ZU TESTEN?
               JR MZ,NXTPTRM
               RET
                               :RUCKSPRUNG MIT Z-BIT=1.
       BLOCK: DS BYTECHT
       PATTERN: DB 0,010101018,10101010B
               END
8.2:
                               :DAS FULLEN DES SPEICHERS HIT NULLEN UND EINSEN
                               ; WURDE ALS BITWEISE WULL UND EINS INTERPRETIERT.
               LO HL.BLOCK
                              ; ANFANG DES TESTBEREICHS.
               LD B,0
                               ; DER 256 BYTES LANG IST.
               LB A.O
                               : ERSIES BYTE SOLL OF WERDEN.
       Fill:
               LD (HL), A
                               DER BEREICH WIRD ABNECHSELND HIT DO
               INC HL
                               ; UND OFFH GEFÖLLT,
               XOR OFFH
               DJNZ FILL
              XOR OFFH
                               UND DANACH
       CHECK:
               DEC HI.
                               RÜCKWÄRTS
               CP (HL)
                               :WIEDER ÜBERPRÖFT.
               RET NZ
                               ; BEI EINEM FEHLER RUCKSPRUNG MIT 7-917-0,
               DJNZ CHECK
               RET
                               ; SONST RUCKSPRUNG MIT Z-BIT=1.
       BLOCK: DS 2560
               FNO
8.3:
       Das Programm erfüllt die Aufgabenstellungen von a) und b).
               EXT PUTCHAR
               EXT GETCHAR
               EXT PUTLINE
       SPC
               EQU LAH
                               ; KODE DES SPEZIALZEICHENS (CNTRL"2).
       STRING: PUSH BC
                              ; B ENTHALT DEN
               LD B,O
                              : LOKALEN ZAHLER.
                             ; ZEIGER AUF PUFFER.
               LD HL, BUFFER
       NEXI:
               CALL GETCHAR
                              :HOLE EIN ZEICHEN
               CALL PUTCHAR
                              ;UND GIB ES AUS.
               CP SPC
                               ; TESTE AUF SPEZIALZEICHEN.
                              :GEFUNDEN? DANN SCHLUSS.
               JR Z,OUT
               LD (HL),A
                              SPEICRERE ZEICHEN IM PUFFER.
               INC HL
                               :NACHSTER PLATZ IN PUFFER.
               DJNZ NEXT
                               (MEHR ALS 256 ZEICHEN?
               LD HL, ERRMSG
                               ; DANN GIB FEHLERHELDUNG AUS,
```

8.4: Nein. Das Paritätsbit wird nicht beachtet, und der Befehl SUB 10H muß korrekt SUB 10D lauten, um zu überprüfen, ob der Inhalt des Akkumulators kleiner als 10 dezimal ist. Außerdem wird der Inhalt des Akkumulators im Gegensatz zum ersten Programm, das nur dessen Wert testet, verändert.

RESTAURIERE BC.

ERRMSG: DB LAST-ERRMSG-1: LANGE DER FEHLERMELDUNG

:256 EINTRAGE IM PUFFER

DB 7,130,100,"STRING ZU LANG" ; TEXT DER FEHLERMOLDUNG.

CALL PUTLINE

POP BC

RET BUFFER: D\$ 256D

ENO

0U1:

LAST:

:DAS PROGRAMM ERKENNT SONOHL KLEIN- ALS AUCH

```
8.5:
```

8.6:

```
(GROSSBUCHSTABEN UND IGNORIERT EIN PARTTÄTSBIT,
        EXT SETCHAR
        EXT PUTCHAR
LOOP:
        CALL GETCHAR
                        ;HOLE ZEICHEN.
                        ; IGNORIERE PARITAT
        AND 5FH
                        LUND WANDLE KLEIN ZU GROSS.
        CF 40H
                        ; < A
        JP N.BUT
        CP 5BH
                        :00ER >2?
        JP P,OUT
                       ; DANN KEIN BUCHSTAGE.
        CALL PUTCHAR
                       ;318 BUCHSTABEN AUS.
DUT:
        JR LOOP
        END
                        ; EIN BYTE SOLL ZWEI BCB-ZIFFERN ENTHALTEN.
        EXT PUTCHAR
        EXT PUTLINE
BEDASC: LD A. (LOC)
                        :LADE BYTE MIT BCD-ZIFFERN
        SRL A
                        ; UND WANDLE ZUNACHSY LINKE ZIFFER UM.
        SRL A
        SRL A
        SRL A
        CP GAH
                       :GROSSER ALS 9 DEZIMAL?
        JP P, ILLEGAL DANN ILLEGAL.
                       BERECKNE ASCII-DARSTELLUNG
        ADD A.30H
                      ; UND GIB DIE ZIFFER AUS,
        CALL PUTCHAR
        LD A, (LOC)
                        : WANDLE RECHTE ZJFFER.
        AND OFH
        CP OAH
        JP P. HULEGAL
        ADD A,30H
        CALL PUTCHAR
ILLEGAL: PUSH HL
                        ; AUSGABE EINER FEHLERMELDUNG.
        LD HL.ERRMSG
        CALL PUTLINE
        POP HL
        RET
ERRHSG: DØ LOC-ERRHSG-1 ; LÄNGE DER FEHLERMELBUNG.
        DB "KEINE BCD-ZIFFER" : TEXT DER FEHLERMELDUNG.
LOC:
        D8 45H
                       ; UNZUWANDELNDE BED-ZIFFERN.
        FNA
```

8.7: Es werden zwei Lösungen angeboten. Zunächst eine etwas einfachere, bei der der dezimale Wert eines Bytes mit zwei BCD-Ziffern berechnet wird, dann der Fall einer "beliebigen" BCD-Ziffernfolge, wobei der duale Wert in 16-Bit-Zweierkomplement darstellbar sein muß.

```
; VERSION I ZUNACHST ZWEI BCD-ZIFFERN NACH DUAL.
;
LD A. (CHAR)
AND OFH
LD B.A
LD A. (CHAR)
AND OFOH
; WELL NERT JST DIE ZIFFER SELBST.NACH B.
; NUN DIE LINKE ZIFFER,
AND OFOH
; MAKKU STEHT DEREN NERT*16.
```

```
SRL A
                        ; WERT +8
        SRL A
                        ; WERT +4
                        MERKE DIESEN WERT.
        LD C.A
        SRL A
                        :WERT *2
                        ; WERT
        SRL A
        ADD A,C
                        ; WERT+WERT*4=WERT+5
        SLA A
                        : {WERT +5} +2=WERT +10
                        ; + NERT DER RECHTEN ZIFFER=DUALER WEFT DER BCD-
        ADD A.B
                        : 21FFERN.
        RET
        DB 65B
                        :UMZUWANDELNDE ZIFFERN.
CHAR:
        END
:VERSION 2
                          UNWANDLUNG DER BCD-DARSTELLUNG VON SELLE 35
                         (NACH DUAL, DAS ERGEBNIS 15T EINE 16-B!T-ZAHL
                         IN ZWEIERKOMPLEMENT.
                        : 1X ZEIGT AUF DEN BCD-STRING.
BCDUAL: LD IX, BCDSTR
                         DE FUR ZWISCHENERGEBNISSE.
        LD DE,0
        LD HL,0
                         INL NIMMY DAS ENDERGEBRIS AUF.
        LD 6,0
                         ; HILFSREGISTER ALS MERKER FUR L1./RE. BCD-
                         ; 7 IFFER.
        LD A. (1X+0)
                         ¿BERECHNE VORZEICHEN, UND SPEICHERE ES UNTER
                         ; SIGN.
        AND OFH
                        :
        LD (SIGN),A
                        (BERECHNE ANZANL DER BCD-ZIFFERN, UND SPEICHERE SIE
        LB A, (IX+0)
        AND OFOH
                        ; IN REGISTER B.
        SEL A
        SRL A
        SRL A
        SRL A
        LD 8,A
        INC IX
                         ; SETZE ZEIGER AUF ERSTES BOD-ZIFFERNPAAR.
NXTNBL: CALL GETNBL
                        :LADE NACHSTE EINZELNE DCD-ZIFFER RECHTBON. IN DE.
        ADD HL,DE
                        ; ADDIERE SIE ZUM LAUFENDEN WERT VON HL.
        DEC B
                         :LETZTE ZIFFER BEHANDELT?
        JR Z,SIGNLAG
                        ; DANN BEHANDLE VORZEICHEN,
                         : SONST MULTIPLIZIERE HL MIT 100.
        PUSH HL
        POP DE
                         ; FUR LD DE, KL.
        ADD HL,HL
                         ₹HL*2
        ADD HL, HL
                         : (HL *2) *2
        ADD HL, DE
                         ; ((HL*2) *2) *HL=HL*5
        ADD HL,HL
                         ; (HL #S) #2=HL #10
        JR NXTNBL
                         ; NACHSTE BCD-ZIFFER.
SIGNLAB: LD A, (SIGN)
                        ; IST DAS VORZEICHEN FIN +?
        CP OFH
                         ; DANN IST KEINE WEITERE BEARBEITUNG
        JP NZ, READY
                        :DES ENDERGEBNISSES NOTIG.
        LD DE,O
                         ; SONST BERECHNE INETERKOMPLEMENT VON HE
                         ;ALS HL:=0-HL.
        EX DE, HL
        SCF
        CCF
        SEC HL, DE
READY: REI
GETNBL: LD D.O.
                         :UNTERPROGRAMM, UM NACHSTE BCD-ZIFFER KECHTSBUNGIG
        LD A, (1X+0)
                         ; IN DE ZURÖCKZULIEFERN.
        INC C
                         TOGGLE BIT O IN C. MERKER FUR LI./RE. BCD-ZIFFER
        BIT O.E
        JR Z,RIGHT
LEFT:
        SRL A
                         ; SCHIEBE LINKE ZIFFER NACH RECHTS.
        SRL A
        SRL A
        SRL A
```

```
LD E,A ;DE ENTHALT BCD-ZIFFER.

RIGHT: AND OFH ;BLENDE LINKE ZIFFER AUS.
LD E,A ;DE ENTHALT 8CD-ZIFFER.
INC IX

RET

BCDSTR: DB 50H,32H,76H,50H ;KODIERUNG FÜR +32765
SIGN: END
```

8.8:

```
EXT PUTCHAR
       LD A.SEH
                      ; 5FH SOLL UMGEWANDELT WERDEN.
       CALL HZASC
                       :UMWANDLUNG DBER UNTERPROGRAMM.
       RET
H2ASC: PUSH AF
                      : WANDLE ZUERST LINKE HEX-ZIFFER.
       SRL A
                       SCHIEBE DIESE NACH RECHTS
       SRL A
       SRL A
       SRL A
                     :UND WANDLE SIE UM, ERGEBNIS IM AKAU.
       CALL HEXASC
       CALL PUTCHAR ; GIB ERGERNIS AUS.
                      NUN RECHTE ZIFFER.
       CALL HEXASC
                      :WANDLE UM
       CALL PUTCHAR : UND GIB DIE ZIFFER AUS.
                       : BEHANDLE NUR DIE UNTEREN VIER BITS.
HEXASC: AND OFK
       ADD A.30H
                       : BERECHNE ASCII-WERT FOR O BIS 9.
        CP 3AH
       RET M
                      ;KORREKTUR FÜR A BIS F.
        ADD A.7
        RET
                       ; DER AKKUMULATOR ENTHÄLT DEN ASCII-WERT.
        END
```

8.9: Es werden zwei Lösungen angeboten. Zunächst eine "Geradeaus"-Lösung, bei der das beim Z80 verfügbare V-Bit nicht beachtet wird, dann die effiziente Lösung unter Berücksichtigung des V-Bits.

```
: VERSION 1
                           "GERADEAUS"-VERSION DER LäSUNG.
                          DIE TABELLE BEGINNT BET BASE UND
        LD HL, BASE
        LD B, (HL)
                         DER ERSTE EINTRAG ENTHALT IHRE LANGE.
        INC HE
                         ; DAS MAXIMUM IST ZUNACHST DAS ERSTE ELEMENT.
        LD (INDEX),HL
        LD A, (HL)
:900.1
        BIT 7,A
                         ; IST DAS MAXIMUM POSITIV?
        JP 7,205
                         DANN WEITER BE: POS.
        911 7, (RL)
NER:
                        ; 1ST DER TABELLENWERT POSITIV?
        JP Z, NEWHAX ; DANN IST ER AUCH DAS NEUE MAXIMUM.
        CP (HL) ; IST ER NEGATIV, DANN VERGLEICHE.
JP N,NEWMAX ; ERGEBNIS NEGATIV, DANN IST TABELLENWERT DAS MAXIMUM,
JR DLDMAX ; SONST BLEIBT DAS ALTE MAXIMUM.
        BIT 7, (HL)
                        IST DER TABELLENWERT AUCH POSITIV?
P05:
        JP NZ, OLDMAX ; NEIN, DANN BLEIST DAS ALTE HAXIMUM,
        CP (HE)
                        ; SONST VERGLEICHE.
         JP F, OLDHAX ; ERGEBNIS POSITIV, DANN BLEIBT DAS ALTE MAXIMUM.
```

```
LD A, (HL) ;LADE AKKUMULATOR MIT DEN MERT UND
LD (INDEX),HL ;INDEX MIT DER ADRESSE DES NEGEN MAXIMUMS.
NEWMAX: ED A.(HL)
                                                                                   BEHANDLE NACHSTES TABELLENELEMENT.
OLDMAX: INC HL
                             DEC B
                             JR NZ,LOOP
                             RET
INDEX: DW 0
BASE:
                             DB LAST-BASE-1
                             DB -200,-5,-1,-1280,1270,-1
I AST .
                             END
 : VERSION 2
                                                                                            EFFIZIENTE LÖSUNG DER AUFGABE.
                                                                                       :DIE TABELLE BEGINNT BEI BASE UND
                              LD HL.BASE
                              LD B. (HL)
                                                                                       ; DER ERSTE EINTRAG ENTHÄLT IHRE LÄNGE.
                                                                                       ; DAS ERSTE HAXIMUM IST DAS ERSTE ELEMENT.
                              INC HL
                              LD (INDEX),HL ;
                             LD A. (HL)
                             CP (HL) ; VERGLEICHE MAXIMUM UND LAUFENDES TABELLENELEMENT.

JR Z,OLDMAX ; BEI GLEICHHEIT BLEIBT DAS ALTE MAXIMUM.

JP H,SIVX ; DAS LAUFENDE TABELLENELEMENT IST KLEINER ALS DAS

JP PD,OLDMAX ; MAXIMUM, WENN V-BIT UND VORZEICHENBIT UNTERSCHIEDLICH

JP NEMMAX ; CAND DIE COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR TOUR COLOR 
                       CP (HL)
LOOP:
JP NEWHAX ;SIND. DIES GILT NUR FÜR ZAMLEN IN DER
SIVX: JP PE,OLDMAX ;ZWEIERKOMPLEHENT-DARSTELLUNG!
NEMMAX: LD A,(HL) ;LADE DEN AKKUMULATOR HIT DEM MERT UND
                              LD (INDEX), HE : INDEX HIT DER ADRESSE DES NEUEN MAXIMUMS.
 OLDHAX: INC HL
                                                                                       ; BEHANDLE NÄCHSTES TABELLENELEMENT.
                              DEC 8
                               JR NZ,LOGP
                              RET
  INDEX: DW O
  BASE:
                              DB LAST-BASE-1
                               DB -200,-5,-1,-1280,1,7,440,1270
 LAST:
                               END
```

- 8.10: Das ursprüngliche Programm ohne Anpassung an negative Zahlen arbeitet auch mit ASCII-Zeichen. Allerdings empfiehlt es sich, das Paritätsbit auszublenden. Eine weitere Warnung: Die Reihenfolge der ASCII-Zeichen ist nicht die lexikographische Reihenfolge im Sinne des Duden!
- 8.11: Wir benutzen zur Lösung der Aufgabe ein einfaches Verfahren, das dem Beispielprogramm auf Seite 513 recht ähnlich ist. Aus der Folge von Zahlen, die an der Adresse BASE+1 beginnt und deren Länge an der Adresse BASE angegeben ist, wird das Minimum gesucht und dieses gegen das erste Element der Folge vertauscht. Dasselbe Verfahren wird dann auf die Restfolge angewendet, bis die Restfolge die Länge 1 hat. Für den Prozeß des Suchens und Vertauschens verwenden wir ein Unterprogramm. Als Parameter übergeben wir den Zeiger auf das erste Element der Folge in HL und die Länge der Folge in Register C. Es ist

(VERSION 1

jeweils ein Programm für vorzeichenlose Zahlen und für solche in Zweierkomplement-Darstellung angegeben.

FOR VORZEICHENLOSE ZAKLEN.

```
LD HL, BASE
                        DIE TABELLE BEGINNT BEI BASE UND
        LD 8, (HL)
                        DER ERSTE EINTRAG ENTHALT IHRE LÄNGE.
NEXT:
        INC N
                        THE ZEIGT AUF DAS ERSTE TABELLENELEMENT.
        CALL HIN
                        : SUCHE MINIMUM UND "BRINGE ES NACH VORN",
        DEC B
                        : TABELLE VOLLSTANDIG SORTIERT?
        JR NZ, NEXT
                        ; NEIN, DANN SORTIERE RESTLICHE TABELLE.
        RET
HIN:
        PUSH BC
                        :UNTERPROGRAMM ZUR MINIMUMSUCHE UND ZUM VERTAUSCHEN.
        PUSH HL
                        FÜR LD DE, HL, HL ZEIGT AUF DAS ERSTE ELEMENT
        POP DE
                        ; DER (REST) TABELLE.
LOOP:
        LD A.(DE)
                        ; IST DAS LAUFENDE TABELLENELEMENT
        CP (NL)
                        ;KLEINER ALS (HL)?
        JP P, NOMIN
                        INEIN, DANN VERGLEICHE DAS NÄCHSTE.
       LD C, (HL)
                        SONST VERTAUSCHE DAS LAUFENDE ELEMENT
        LD (RL),A
                        HIT DEN BISHERIGEN HINIMUN OBER DAS
        LD A.C
                        ; HILFSREGISTER C.
        LD (DE),A
                        ;UND BEHANDLE DEN REST
HINON:
       INC DE
        DEC B
                        :DER TABELLE.
        JR NZ,LOOP
        POP BC
        RET
RASE .
        DB LAST-BASE-1
        100,9,8,7,6,5,4,3,2,1,0
LAST:
        END
: VERSION 2
                         FOR ZAHLEN IM ZWEIERKOMPLEHENT.
                        ; DIE TABELLE BEGINNT BEI BASE UND
       LD HL, BASE
       LD B. (HL)
                        : DER ERSTE EINTRAG ENTHÄLT IHRE LÄNGE.
NEXT:
                        THE ZEIGT AUF DAS ERSTE TABELLENELEMERT.
        INC HL
        CALL MIN
                        ; SUCHE MINIMUM UND BRINGE ES NACH VORN".
        DEC B
                        : TABELLE VOLLSTANDIG SORTIERT?
        JR NZ, WEXT
                        ; NEIN, DANN SORTIERE RESTLICHE TABELLE.
        RET
                        SUNTERPROGRAMM ZUR MIRIMUMSUCHE UND ZUM VERTAUSCHER.
HIN:
        PUSH BC
                        FOR ED DE, HE, HE ZEIGT AUF DAS ERSTE ELEMENT
        PUSH HL
        POP DE
                        ; DER (REST) TABELLE.
                        ; IST DAS LAUFENDE TABELLENELEMENT
L002:
        LD A. (DE)
        CP (HL)
                        :KLEINER ALS (HL)?
        JP 7,NOHIN
                        ; NEIN, DANN VERGLEICHE DAS NACHSTE.
        JP H.SIVX
                        DAS LAUFENDE TABELLENELEMENT IST KLEINER ALS
        JP PO.NOMIN
                        ; DAS AKTUELLE MINIMUM, WENN DAS VORZEICHENBIT UND
        JP NEWMIN
                        ; DAS V-BIT GLEICH SIND,
SIVX:
        JP PE, NOHIN
                        ; SONST VERTAUSCHE DAS LAUFENDE ELEMENT
NEWHIN: LD C. (HL)
        LD (HL),A
                        INIT DEM BISHERIGEN MINIHUM DBER DAS
        LD A.C
                        ; HILFSREGISTER C,
        LD (DE),A
NORIN: INC DE
                        JUND BEHANDLE DEM REST
        DEC B
                        : DER TABELLE.
        JR NZ,LOOP
```

BASE:

LAST:

POP BC RET

FND

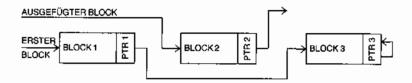
DB LAST-BASE-1

```
8.12:
                               DAS PROGRAMM FUNKTIONIERT MIT MAMEN BELIEBIGER
       NAMLEN EQU 3
                                :LANGE < 256.
               LD IX, NAMES
                               ; DIE NAMEN BEGINNEN BEI NAMES, DER ERSTE EINTRAG
               LD B. (1X)
                                ENTHALT THRE ANZAHL.
               INC 1X
                                ; ZEIGER AUF ERSTEN HANEN.
       NEXT:
               CALL MINNAM
                                ISUCHE KLEINSTEN NAMEN UND BRINGE IHR NACH VORN.
               CALL MOVIX
                                SETZE ZEIGER AUF NACHSTEN NAMEN
               DEC 8
                                OND WIEDERHOLE DEN VORGANG AUF DER RESTLICHEN FOLGE.
                                IBIS DER LETZTE NAME ERREICHT IST.
               JR RZ,NEXT
               RET
                                : ENDE DES SORTIERPROGRAMMS.
       MINNAM: PUSH BC
                               .FOR LD IY.IX.
               PUSH 1X
                                IX ZEIGT AUF ERSTEN, IY AUF LAUFENDEN NAMEN.
               PBP IV
       NXTNAM: CALL CPNAM
                                : VERGLEICHE AKTUELLES MINIMUM UND LAUFENDEN NAMEN.
               CALL P, EXXNAM
                                ; VERTAUSCHE DIE NAMEN, FALLS NEUES MINIMUM GEFUNDEN.
                                SETZE ZEIGER FÜR LAUFENDEN NAMEN WEITER.
               CALL MOVIY
                                BIS ENDE DER FOLGE ERREICHT.
               DEC B
               JR NZ,NXTNAH
               POP BC
               RET
       EPNAM: PUSH SC
                                :UNTERPROGRAMM ZUM ZEICHENWEISEN GRÖSSENVERGLEICH
               PUSH IX
                                : DER DURCH IX UND IY ADRESSIERTEN NAMEN.
               PUSH IY
               LD B, NAMLEN
                                ; ZEICHEN AUS AFTUELLEH MINIMUH.
       CPCHR:
               LD A, (1X+0)
               CP (IY+0)
                                : VERGLICHEN MIT ZEICHEN AUS LAUFENDEM NAMEN.
               JP M,EXIT
                                KEIN NEUES MINIMUM GEFUNDEN.
                                ; NEUES MINIHUM GEFUNDEN.
               JP NZ.EXIT
                INC IX
                                BEI GLEICKHEIT WIRD WEITER VERGLICHEN.
                                ; SO LANGE, BIS EINE ENTSCHEIDUNG GETROFFEN DDER
                INC IY
               OEC B
                                :DAS ENDE DER NAMEN ERREICHT WIRD.
               JR NZ, CPCHR
               POP IY
       EXIT:
                                : DIE ALTEN WERTE VON BC. IX UND IY WERDEN
               POP IX
                                (RESTAURIERT.
               POF BC
               RET
                                : NEUES MINIMUM GEFUNDEN, WENN AKKUMULATOR POSITIV.
       EXXNAM: PUSH BC
                                ; UNTERPROGRAMM ZUM VERTAUSCHEN DER BURCH 1% UND 14
               LD B, NAMLEN
                                ; ADRESSIERTEN NAMEN, SELBSTERKLÄREND.
               PUSH IX
                PUSH IY
       NXTCHR: CALL EXXCHR
                INC IX
                INC TY
                DEC 8
                JR NZ, NXTCHR
                POP LY
                POP IX
                POP BC
                RET
```

-1,-1270, FOD, 9, 540, 8, F240, 7, -5, 6, 5, 4, F270, 3, 2, 1, 0, -1280

```
EXXCHR: PUSH BC
                        ; UNTERPROGRAMM ZUM VERTAUSCHEN ZWEIER ZEICHEN.
        LD B, (1X+0)
                         : SELBSTERKLÄREND.
        LD C, (1Y+0)
        LD (1x+0),C
        LD (1Y+0),8
        POP BC
        RET
HOVIX: PUSH DE
                         :UNTERPROGRAMM ZUM WEITERSETZEN VON IX.
        LD DE NAMLEN
        ADD IX, DE
        POP DE
        RET
MOVIY: PUSH DE
                        (UNTERPROGRAMM ZUM WEITERSETZEN VON 17.
        LD DE, NAMEEN
        ADD IY, DE
        POP DE
        RET
MAMES: DB( LAST-MAMES-1)/MAMLEN ; ANZAHL DER MAMEN.
        DB "LEO"
        DB "181"
        DB "ADA"
        DB "BIO"
        DB "DEO"
        DB "ONA"
        DB "UHU"
        DB "ULK"
LAST:
        END
```

8.13: Das Programm erfüllt die Aufgabenstellung von a), b) und c).


```
SUNIG: LD BC.BASE+2
                        :DIE ERSTEN BELDEN EINTRAGE DER BEI BASE BEGINNENDEN
       LD HL, (BASE)
                        ; TABELLE ENTHALTEN DIE ANZAHL DER SUMMANDEN.
       LD DE,-I
                       ; IX ZEIGT AUF DAS HOCKSTE BYTE DER 24-BIT-SUHME.
        LD LX,SUHRI
        LD A,O
                        ; DIE MIT MULL INITIALISIERT WIRD.
        LD (1x+0),A
        LD ([X+1),A
        LD (IX+2),A
        LD (1X+3),A
ADLOOP: LD A, (BC)
                       :HOLE BYTE AUS DER TABELLE.
                       ; ADDIERE ZU UNTERSTEM BYTE DER 24-BIT-SUMME.
        ADD A, (1X+3)
        LD (IX+3),A
                       ; SPEICHERE NEUES SUMMENBYTE.
        JR NC. NOCARRY : 1ST EIN CARRY ZU BERÜCKSICHTIGEN?
                       ; JA, DANN INKREHENTIERE DAS ENTSPRECHENDE BYTE.
        INC (1X+2)
                       TRAT HIERBEI EIN CARRY AUF? (BEI INC WIRD DAS C-BIT
        JR NZ, NOCARRY
        INC (IX+1)
                       INICHT GESETZE, JR NZ, NOCARRY IST ABER IN DIESEM FALL
        JR NZ, NOCARRY
                       :FUNKTIONAL IDENTISCH) USW.
        INC (IX+0)
        JR NZ, NOCARRY
                       : OBERLAUF AUS HÖCKSTEM BYTE.
        SCF
                        ; SETZE C-FLAG ZUR ANZEIGE,
        RET
                        UND BEENDE AUFSUMMIERUNG.
NOCARRY: INC. BC.
                        (ADDIERE RESTLICHE SUMMANDER.
        ADD HL, DE
        JR C,AULOUP
        RET
SUMHI: DS 4
BASE:
        DW OFFFFH
        END
```

8.14: Das Programm erfüllt die Aufgabenstellung von a), b) und c).

```
STARS
       FOIL 6
CHARS
       EQU 1
DIGITS EQU 2
                       :DIE TABELLE DER ZAKLER BEGINNE BEI CHTTAB
        LD IX.CNTTAB
        LD (EX+STARS), 0 ; UND WIRD MIT NULLEN INITIALISIERT.
        LD (IX+CHARS),0
        LD (IX+DIGITS),0
        LD DE,BASE
                     DE ZEIGT AUF DEN ANFANG DER ZEICHENZETTE
                       DEREN ERSTES ELEMENT DIE LANGE ANGIBT.
        LD A, (DE)
        LD B,A
        INC DE
NXTCHR: LD A. (DE)
                       :LADE AKTUELLES ZEICHEN IN DEN AKKUMULATOR.
                       (BLENDE DAS PARTTATSEL: AUS.
        AND 7FH
        LD HL, MOVENT (UND LADE IN HL DIE "FUR!"-PUCKSPRUMGADRESSE.
        CALL CHISTRS : FOR DEN FALL, DASS GERICHBEIT MIT EINEM ZU
        CALL CHTCHRS ; ZAHLENDEN ZEICHEN AUFTRITT UND DIE RESTLICHEN
        CALL CHIDGIS
                        ITESTS GRERFLUSSIG SIND.
MOYPHT: INC DE
                        BEARBEITS DIE RESTLICHEN ZEICHER.
        DEC B
        JR WZ.NXTCHR
        RET
CNTSTRS: CP '*'
                        :UNTERPROGRAMM ZUM ZAHLEN DER ≠.
        RET NZ
        INC (IX+STARS)
        EX (SP),HL
                        : RESTLICHE TESTS SIND ÜBERFLÜSSIS.
        RET
CNTCHRS: LD C.A
                        :UNTERPROGRAMM ZUM ZÄHLEN DER BUCHSTABEN.
        AND 5FH
                        :EGAL OB GROSS ODER KLEIN.
        CP 41H
        JP H.NOCHAR
        CP SBH
        JP P,NOCHAR
        INC (IX+CHARS)
        EX (SP),HL
                      RESTLICHE TESTS SIND ÜBERFLÜSSIG.
        RET
NOCHAR: LD A.C.
                        RESTAURIERE DEN AKKUMULATORINHALT.
        RET
                        ; UNTERPROGRAMM ZUN ZÄHLEN VON ZIFFERN.
CNTBGTS: CP 30H
        RET M
        CP 3AH
        RET P
        INC (1X+D1G1TS)
        RET
CHITAB: DS 3
        DB LAST-BASE-1
        DB "IN DIESEM TEXT SIND 41 BUCHSTABEN, 1 STERN (*) UND 4 ZIFFERN"
LAST:
        END
```

9.1: Der tatsächliche Inhalt des Zeigers auf Tist 00 50, falls die Adressen Hexadezimalzahlen sind. Bei 16-Bit-Werten wird das niederwertige Byte als erstes abgelegt.

9.2:

- 10.1: Nein. LD A,'5' lädt den ASCII-Wert des Zeichens '5', das ist 035H, LD A,5 lädt hingegen den Wert 5 in den Akkumulator.
- 10.2: LD A,10101010B l\u00e4dt die Konstante 10101010B=0AAH=170D in den Akkumulator. LD A,(10101010) l\u00e4dt den Inhalt der Speicherzelle mit der Adresse 00AAH in den Akkumulator.
- 10.3: JR NC,\$-2 bewirkt bei nicht gesetztem Carry-Flag einen Rücksprung auf die Adresse, deren Wert sich aus dem Befehlszählerstand bei der Ausführung des Befehls vermindert um 2 ergibt. Da der Befehlszähler bei der Ausführung die Adresse des Befehls enthält, der auf den Sprungbefehl folgt, und der Sprungbefehl selbst 2 Bytes lang ist, erfolgt der Rücksprung auf den Sprungbefehl selbst. Eine Veränderung des Carry-Flags kann in einem solchen Fall also nur durch ein Programm erfolgen, das durch einen Interrupt aktiviert wird.

Stichwortverzeichnis

A		Ausdruck	579
absolute Adressierung	102, 431, 436	Ausführen	67
ADC, A, s	180	Ausgabe	449
ADC HL, ss	182	Ausgabebefehl	175
ADD A, (HL)	184	Austauschbefehl	154
ADDA, (IX + d)	186		
ADDA, (IY + d)	188	В	
ADD A, n	190	BASIC	565
ADD A, r	191	Baudot-Kode	472
ADD HL, ss	193	Baum	530
ADD IX, rr	195	BCD	34
ADD IY, rr	197	BCD-Addition	104
Addition 90	, 94, 104, 445	BCD-Arithmetik	101
Adreßbus	44	BCD-Subtraktion	104
Adressierungstechniken	429	Bearbeitung von Daten	148
Adreßregister	47, 48	bedingte Assemblicrung	582
Akkumulator	46	bedingter Befehl	47
Algorithmus	17, 18	Befehl	18, 90
alphabetische Liste	543	Befehlsfeld	574
ALU	43, 46, 57	Befehlsregister	51, 60
AND s	199	Befehlstypen	106
AND	159	Befehlszähler	49
APL	565	Benchmark	458
Arithmetik	157	Betriebssystem	566
Arithmetik-Logik-Einhei	it 43	binär	39
Arithmetikprogramme	90	Binärziffer	19
arithmetische Befehle	106	BIT b, (HL)	201
ASCII	37, 472	BIT b, $(IX + d)$	203
ASCII-Tabelle	38	BIT b, (IY + d)	205
Assembler	566, 573	BIT b, r	207
Assemblerdirektive	579	Bitadressierung	438
Assemblerdirektiven	138	Bitverarbeitung	163
Assembler-Kommando	580	Block	529
Assembler-Liste	574	Blocksuchbefehl	156
Assembler-Programm	90	Blocktransfer	440
Assemblersprache	63, 564, 576	Blocktransferbefehl	155
asynchrone Übertragung	459	Bootstrap	45

			
Breakpoint	567	Direktiven	564
Break-Zeichen	457	Division	125, 127, 129
Bubble-Sort	519	DJNZ e	235
Bus	44	DMA	86, 478, 483
BUSAK	86	Dokumentation	18
Busrequest	483	DOS	566
BUSRQ	86, 483	duale Form	20
Byte	20	Dualsystem	20
С		E	
Ċ	165	EBCDIC	37
CALL cc, pq	209	Editor	566
CALL pq	212	EI	237
Carry	165	Ein-/Ausgabebefehl	173
CCF	214	Ein-/Ausgabegeräte	497
chronologische Struktur	50	Ein-/Ausgabetechniken	449
Codeumwandlung	511	Einerkomplement	25
Compiler	565, 566	Einfügen	536, 547, 556
CP s	215	Eingabe	449
CPD	217	Eingabebefehl	176
CPDR	219	Emulator	567
CPI	221	Entwicklungssystem	571
CPIR	223	erweiterte Adressierung	
CPL	225	EX AF, AF'	238
CPU	43	EX DE, HL	239
CRC	504	EX (SP), HL	240
Cross-Assembler	572	EX (SP), IX	242
C1033-1135CH101C1	312	EX (SP), IX EX (SP), IY	242
D		Ex (SF), 11 Execute	244 51
DAA	226	exklusives OR	160
Datenbus	44		36
Datenstrukturen	525	Exponent EXX	246
Datenübertragung	106	EAA	240
Datenverarbeitung	157	F	
Debugger	567	_	574
Debugging	18	Fehlermeldung Fernschreiber	
DEC m	228	Fetch	472
DECI	230		51
DEC IX	232	Flag	30, 47, 169
DECIY	232	Flag-Register	57
Decode	51		
Dekoder	60	G	30
Dekodieren	67	ganze Zahl	20
Dekodierlogik	45	gepackte BCD	34, 101
Dekrementierbefehl	113	getaktete Logik	81
DI	234	Gleitkomma	36
	234 567	U	
Dienstprogramme direkte Adressierung	432	H	163
direkte Indizierung	432	H Hulbübartrag	167 167
direkter Befehl	432 83	Halbübertrag	
anektel Delett	6.3	HALT	86, 247

Haltanunkt	567	•	
Haltepunkt	567	J	272
Handshaking	465 50	JP cc, pq	272 274
Hardwarestapel		JP pq	274
Hardwareverzögerung	454	JP (HL)	
HDLC	504	JP (IX)	276
hexadezimal	39	JP (IY)	277
Hexadezimal-Tabelle	41	JR cc, e	278
hexadezimale Kodierung	•	JR e	280
Hilfsprogramme	567	•,	
I		K Kodierung	18
	504	D	10
IBM-BSC		Kombination der	425 420
IM0	248 249	Adressierungsarten	435, 438
IM1		Kombinationsbaustein	45
IM2	250	Kommentarfeld	90, 574
implizierte Adressierung		Konstante	577
implizite Adressierung	429	Kontrollbus	44
impliziter Befehl	70	Kurzadressierung	431
Impuls	451	Kurzbefehl	20
IN r, (C)	251	kurze Adressierung	439
IN A, (N)	253		
In-Circuit-Emulator	569	L	
INC r	254	Ladebofchi	91
INC rr	255	lange Adressierung	439
INC (HL)	257	LD dd, (nn)	281
INC(IX + d)	258	LD dd, nn	283
INC(IY + d)	260	LDr, n	285
INC IX	262	LD r, r'	287
INC IY	263	LD (BC), A	289
IND	264	LD (DE), A	290
Indexregister	49	LD (HL), n	291
indirekte Indizierung	432	LD (HL), r	293
indirekte Adressierung	438	LDr, (IX + d)	295
Indizieren	59	LDr, (IY + d)	297
indizierte Adressierung	153, 432, 437	LD(IX + d), n	299
INDR	266	LD(IY + d), n	301
Inhaltsverzeichnis	527	LD(IX + d), r	303
INI	268	LD(IY + d), r	305
INIR	270	LD A, (nn)	307
Initialisierung	109	LD (nn), A	309
Instruction Register	51	LD (nn), dd	311
TNT	86	LD (nn), HL	313
INTA	487	LD (nn), IX	315
Interfacebaustein	45	LD (nn), IY	317
Interpreter	565, 566	LD A, (BC)	319
Interpretieren	64	LD A, (DE)	320
Interrupt	465, 480, 486	LD A, I	321
Interrupt Acknowledge	487	LD I, A	322
Interruptregister	59	LD A, R	323
IORO	86	LD A, K LD HL, (nn)	323
IONQ	80	LL FIL, (IIII)	324

LD IX, nn	326	normalisiert	36
LD IX, (nn)	328	Null	168
LD IY, nn	330	_	
LD IY, (nn)	332	0	
LDR, A	334	Objektkode	566
LDr, (HL)	335	okta!	39
LD SP, HL	337	Operator	578
LD SP, IX	338	OR s	350
LD SP, IY	339	OR	159
LDD	340	OTOR	352
LDDR	342	OTIR	354
LDI	344	OUT (C), r	356
LDIR	346	OUT (N), A	358
LED	468	OUTD	359
Lesespeicher	44	OUTI	361
LIFO	50		
Liste	526, 535	P	
Literal	431, 577	P/V	166
Loader	567	Parallel-Ein-/Ausgabebaustein	45
Löschen	537, 547, 558	parallele Übertragung	456
Logik	158	Parität	166
logische Operationen	132	Paritätsbit	511
logische Befehle	132	PASCAL	565
		PC	49
M		Peripherie	478
M1	87	•	45, 497
Makro	580	Polling	478
Makroparameter	581	POP qq	363
Mantisse	36	POP IX	365
Markenfeld	574	POPIY	367
mehrfache Genauigkeit	94	Pop	50
Memory Mapped I/O	150	Port	501
Mikrobefehl	81	Programm Counter	49
mnemotechnisch	63	Programm	18
Monitor	45, 566	Programmierebenen	565
MPU	43, 500	Programmiersprache	17
MREO	87	Programmierung	18
Multiplikation	106, 108, 123	Programmschleife	113
Muluplikation	100, 108, 123	2	515
N		Prüfsumme Pseudobefehl	94
N	166		57
	166 17	Pufferregister Pull	50
natürliche Sprache NEG	348	Pulsdauer	455
Nibble	348 20		
	-	PUSH qq	369
nicht wiederherstellende		PUSH IX	371
Verfahren	126	PUSH IY	373
nicht wiederherstellende		Push	50
nichtmaskierbarer Intern			
NMI	86, 485	Q	
NOP	349	Queltregister	63

R		Seite-Null-Adressie	•
RAM	45	sequentielle Liste	526
Random-Access-Memory	45	serielle Übertragung	•
Raute	108	SET b, s	415
RD	87	Sign	168
Refreshregister	59	Signal	450
Registeradressierung	429	Simulator	567
Rekursion	140	SLA s	418
relative Adressierung	432, 437	Softwarestapel	50
relativer Sprung	149	Sortieren	531
RES b, s	375	SP	49
RESÉT	87	Speicherzyklus	51
Restart	173	Sprung	83, 149, 163
RET	378	Sprungbefehl	171
RET cc	380	SRA s	420
RETI	382	SRL s	422
RETN	384	Stapel	50, 529
RFSH	87	Stapelzeiger	49
Richtungsregister	501	Startbit	472
Ringliste	530	Status	80
RL s	386	Statusbit	461
RLA	388	Statusinformation	498
RLCr	390	Statusregister	47
RLC (HL)	392	Steuerbefehl	150, 176
RLC(IX + d)	394	Steuerregister	498
RLC (IY + d)	396	Steuerwerk	60
RLCA	389	Stopbit	472
RLD	398	Stromschleife	472
ROM	44	SUBs	424
Rotieren	46, 160	Subtraktion	99, 104, 166
RR's	400	Suchen	531, 536, 543, 556
RRA	402	Symbol	576
RRC s	403	symbolisch	63
RRCA	405	symbolische Adress	
RRD	406	synchrone Übertrag	•
RST p	408	Systemarchitektur	43
RST	173	Ojoremarementar	
Rubout	457		
Rücksprung	134	Т	
Rucksprung	,,,,,	Tabelle	512, 574
s			312, 374 461
S	168	Taktbit	401
-	410	Taktgeber	, -
SBC A, s	412	Test	149, 163, 510
SBC HL, ss SCF		Time-Sharing	572
	414	Timer	454
Schieben	46, 160	Trace	569
Schlange	528	Transfer	147, 151
Schleife	59	Transferbefehl	147
Schreib-/Lesespeicher	45	Treiber	45
SDLC	504	TTY	473

U		Verzweigung 18	, 83, 106, 108
UART	465	Vorzeichen	168
Überlappungstechnik	73	vorzeichenbehaftete Dars	stellung 24
Überlauf	29, 166		
Übertrag	29, 165	w	
Überziehung	125	WAIT	86
Universalregister	47	wiederherstellendes Verf	
unmittelbare Operation	64	WR	amen 120 87
unmittelbare		***	0,
Adressierung 102, 15	52, 431, 436		
Unterprogramm	581	X	
Unterprogrammaufruf	134	XOR s	426
Unterprogrammbibliothek	141	XOR	159
Unterprogramme	134		
Unterprogrammparameter	140	Z	
unzulässiger Kode	101	Z	168
Urlader	45	Z80-PIO	502
USRT	504	Z80-SIO	504
Utility Routines	567	Zähler	48, 454
•		Zehnerkomplement	103
\mathbf{v}		Zeiger	48, 525
Vektorinterrupt	490	Zeitgeber	454
Vergleich	517	Zero	168
verkettete Liste	527, 529	Zielregister	63
verschachtelte Aufrufe	137	Zweierkomplement	26
Verzögerung	452	Zwischenspeicher	57

SYBEX-VERLAG GmbH Vogelsanger Weg 111 4000 Düsseldorf 30 Tel.: (0211) 618 02-0 Telex: 8588 163

Fordern Sie ein Gesamtverzeichnis unserer Verlagsproduktion an:

SYBEX INC 2344 Sixth Street Berkeley, CA 94710, USA Tel.: (415) 848-8233 Telex: 287639 SYBEX UR SYBEX 6-8, Impasse du Curé 75018 Paris Tel.: 1/203-95-95

Telex: 211.801