1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
      SUBROUTINE DGBTRF( M, N, KL, KU, AB, LDAB, IPIV, INFO )
*
*  -- LAPACK routine (version 3.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            INFO, KL, KU, LDAB, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      DOUBLE PRECISION   AB( LDAB, * )
*     ..
*
*  Purpose
*  =======
*
*  DGBTRF computes an LU factorization of a real m-by-n band matrix A
*  using partial pivoting with row interchanges.
*
*  This is the blocked version of the algorithm, calling Level 3 BLAS.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  KL      (input) INTEGER
*          The number of subdiagonals within the band of A.  KL >= 0.
*
*  KU      (input) INTEGER
*          The number of superdiagonals within the band of A.  KU >= 0.
*
*  AB      (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
*          On entry, the matrix A in band storage, in rows KL+1 to
*          2*KL+KU+1; rows 1 to KL of the array need not be set.
*          The j-th column of A is stored in the j-th column of the
*          array AB as follows:
*          AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
*
*          On exit, details of the factorization: U is stored as an
*          upper triangular band matrix with KL+KU superdiagonals in
*          rows 1 to KL+KU+1, and the multipliers used during the
*          factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
*          See below for further details.
*
*  LDAB    (input) INTEGER
*          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.
*
*  IPIV    (output) INTEGER array, dimension (min(M,N))
*          The pivot indices; for 1 <= i <= min(M,N), row i of the
*          matrix was interchanged with row IPIV(i).
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value
*          > 0: if INFO = +i, U(i,i) is exactly zero. The factorization
*               has been completed, but the factor U is exactly
*               singular, and division by zero will occur if it is used
*               to solve a system of equations.
*
*  Further Details
*  ===============
*
*  The band storage scheme is illustrated by the following example, when
*  M = N = 6, KL = 2, KU = 1:
*
*  On entry:                       On exit:
*
*      *    *    *    +    +    +       *    *    *   u14  u25  u36
*      *    *    +    +    +    +       *    *   u13  u24  u35  u46
*      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
*     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
*     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   *
*     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    *
*
*  Array elements marked * are not used by the routine; elements marked
*  + need not be set on entry, but are required by the routine to store
*  elements of U because of fill-in resulting from the row interchanges.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
      INTEGER            NBMAX, LDWORK
      PARAMETER          ( NBMAX = 64, LDWORK = NBMAX+1 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, I2, I3, II, IP, J, J2, J3, JB, JJ, JM, JP,
     $                   JU, K2, KM, KV, NB, NW
      DOUBLE PRECISION   TEMP
*     ..
*     .. Local Arrays ..
      DOUBLE PRECISION   WORK13( LDWORK, NBMAX ),
     $                   WORK31( LDWORK, NBMAX )
*     ..
*     .. External Functions ..
      INTEGER            IDAMAX, ILAENV
      EXTERNAL           IDAMAX, ILAENV
*     ..
*     .. External Subroutines ..
      EXTERNAL           DCOPY, DGBTF2, DGEMM, DGER, DLASWP, DSCAL,
     $                   DSWAP, DTRSM, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAXMIN
*     ..
*     .. Executable Statements ..
*
*     KV is the number of superdiagonals in the factor U, allowing for
*     fill-in
*
      KV = KU + KL
*
*     Test the input parameters.
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( KL.LT.0 ) THEN
         INFO = -3
      ELSE IF( KU.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDAB.LT.KL+KV+1 ) THEN
         INFO = -6
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DGBTRF'-INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 )
     $   RETURN
*
*     Determine the block size for this environment
*
      NB = ILAENV( 1'DGBTRF'' ', M, N, KL, KU )
*
*     The block size must not exceed the limit set by the size of the
*     local arrays WORK13 and WORK31.
*
      NB = MIN( NB, NBMAX )
*
      IF( NB.LE.1 .OR. NB.GT.KL ) THEN
*
*        Use unblocked code
*
         CALL DGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO )
      ELSE
*
*        Use blocked code
*
*        Zero the superdiagonal elements of the work array WORK13
*
         DO 20 J = 1, NB
            DO 10 I = 1, J - 1
               WORK13( I, J ) = ZERO
   10       CONTINUE
   20    CONTINUE
*
*        Zero the subdiagonal elements of the work array WORK31
*
         DO 40 J = 1, NB
            DO 30 I = J + 1, NB
               WORK31( I, J ) = ZERO
   30       CONTINUE
   40    CONTINUE
*
*        Gaussian elimination with partial pivoting
*
*        Set fill-in elements in columns KU+2 to KV to zero
*
         DO 60 J = KU + 2MIN( KV, N )
            DO 50 I = KV - J + 2, KL
               AB( I, J ) = ZERO
   50       CONTINUE
   60    CONTINUE
*
*        JU is the index of the last column affected by the current
*        stage of the factorization
*
         JU = 1
*
         DO 180 J = 1MIN( M, N ), NB
            JB = MIN( NB, MIN( M, N )-J+1 )
*
*           The active part of the matrix is partitioned
*
*              A11   A12   A13
*              A21   A22   A23
*              A31   A32   A33
*
*           Here A11, A21 and A31 denote the current block of JB columns
*           which is about to be factorized. The number of rows in the
*           partitioning are JB, I2, I3 respectively, and the numbers
*           of columns are JB, J2, J3. The superdiagonal elements of A13
*           and the subdiagonal elements of A31 lie outside the band.
*
            I2 = MIN( KL-JB, M-J-JB+1 )
            I3 = MIN( JB, M-J-KL+1 )
*
*           J2 and J3 are computed after JU has been updated.
*
*           Factorize the current block of JB columns
*
            DO 80 JJ = J, J + JB - 1
*
*              Set fill-in elements in column JJ+KV to zero
*
               IF( JJ+KV.LE.N ) THEN
                  DO 70 I = 1, KL
                     AB( I, JJ+KV ) = ZERO
   70             CONTINUE
               END IF
*
*              Find pivot and test for singularity. KM is the number of
*              subdiagonal elements in the current column.
*
               KM = MIN( KL, M-JJ )
               JP = IDAMAX( KM+1, AB( KV+1, JJ ), 1 )
               IPIV( JJ ) = JP + JJ - J
               IF( AB( KV+JP, JJ ).NE.ZERO ) THEN
                  JU = MAX( JU, MIN( JJ+KU+JP-1, N ) )
                  IF( JP.NE.1 ) THEN
*
*                    Apply interchange to columns J to J+JB-1
*
                     IF( JP+JJ-1.LT.J+KL ) THEN
*
                        CALL DSWAP( JB, AB( KV+1+JJ-J, J ), LDAB-1,
     $                              AB( KV+JP+JJ-J, J ), LDAB-1 )
                     ELSE
*
*                       The interchange affects columns J to JJ-1 of A31
*                       which are stored in the work array WORK31
*
                        CALL DSWAP( JJ-J, AB( KV+1+JJ-J, J ), LDAB-1,
     $                              WORK31( JP+JJ-J-KL, 1 ), LDWORK )
                        CALL DSWAP( J+JB-JJ, AB( KV+1, JJ ), LDAB-1,
     $                              AB( KV+JP, JJ ), LDAB-1 )
                     END IF
                  END IF
*
*                 Compute multipliers
*
                  CALL DSCAL( KM, ONE / AB( KV+1, JJ ), AB( KV+2, JJ ),
     $                        1 )
*
*                 Update trailing submatrix within the band and within
*                 the current block. JM is the index of the last column
*                 which needs to be updated.
*
                  JM = MIN( JU, J+JB-1 )
                  IF( JM.GT.JJ )
     $               CALL DGER( KM, JM-JJ, -ONE, AB( KV+2, JJ ), 1,
     $                          AB( KV, JJ+1 ), LDAB-1,
     $                          AB( KV+1, JJ+1 ), LDAB-1 )
               ELSE
*
*                 If pivot is zero, set INFO to the index of the pivot
*                 unless a zero pivot has already been found.
*
                  IF( INFO.EQ.0 )
     $               INFO = JJ
               END IF
*
*              Copy current column of A31 into the work array WORK31
*
               NW = MIN( JJ-J+1, I3 )
               IF( NW.GT.0 )
     $            CALL DCOPY( NW, AB( KV+KL+1-JJ+J, JJ ), 1,
     $                        WORK31( 1, JJ-J+1 ), 1 )
   80       CONTINUE
            IF( J+JB.LE.N ) THEN
*
*              Apply the row interchanges to the other blocks.
*
               J2 = MIN( JU-J+1, KV ) - JB
               J3 = MAX0, JU-J-KV+1 )
*
*              Use DLASWP to apply the row interchanges to A12, A22, and
*              A32.
*
               CALL DLASWP( J2, AB( KV+1-JB, J+JB ), LDAB-11, JB,
     $                      IPIV( J ), 1 )
*
*              Adjust the pivot indices.
*
               DO 90 I = J, J + JB - 1
                  IPIV( I ) = IPIV( I ) + J - 1
   90          CONTINUE
*
*              Apply the row interchanges to A13, A23, and A33
*              columnwise.
*
               K2 = J - 1 + JB + J2
               DO 110 I = 1, J3
                  JJ = K2 + I
                  DO 100 II = J + I - 1, J + JB - 1
                     IP = IPIV( II )
                     IF( IP.NE.II ) THEN
                        TEMP = AB( KV+1+II-JJ, JJ )
                        AB( KV+1+II-JJ, JJ ) = AB( KV+1+IP-JJ, JJ )
                        AB( KV+1+IP-JJ, JJ ) = TEMP
                     END IF
  100             CONTINUE
  110          CONTINUE
*
*              Update the relevant part of the trailing submatrix
*
               IF( J2.GT.0 ) THEN
*
*                 Update A12
*
                  CALL DTRSM( 'Left''Lower''No transpose''Unit',
     $                        JB, J2, ONE, AB( KV+1, J ), LDAB-1,
     $                        AB( KV+1-JB, J+JB ), LDAB-1 )
*
                  IF( I2.GT.0 ) THEN
*
*                    Update A22
*
                     CALL DGEMM( 'No transpose''No transpose', I2, J2,
     $                           JB, -ONE, AB( KV+1+JB, J ), LDAB-1,
     $                           AB( KV+1-JB, J+JB ), LDAB-1, ONE,
     $                           AB( KV+1, J+JB ), LDAB-1 )
                  END IF
*
                  IF( I3.GT.0 ) THEN
*
*                    Update A32
*
                     CALL DGEMM( 'No transpose''No transpose', I3, J2,
     $                           JB, -ONE, WORK31, LDWORK,
     $                           AB( KV+1-JB, J+JB ), LDAB-1, ONE,
     $                           AB( KV+KL+1-JB, J+JB ), LDAB-1 )
                  END IF
               END IF
*
               IF( J3.GT.0 ) THEN
*
*                 Copy the lower triangle of A13 into the work array
*                 WORK13
*
                  DO 130 JJ = 1, J3
                     DO 120 II = JJ, JB
                        WORK13( II, JJ ) = AB( II-JJ+1, JJ+J+KV-1 )
  120                CONTINUE
  130             CONTINUE
*
*                 Update A13 in the work array
*
                  CALL DTRSM( 'Left''Lower''No transpose''Unit',
     $                        JB, J3, ONE, AB( KV+1, J ), LDAB-1,
     $                        WORK13, LDWORK )
*
                  IF( I2.GT.0 ) THEN
*
*                    Update A23
*
                     CALL DGEMM( 'No transpose''No transpose', I2, J3,
     $                           JB, -ONE, AB( KV+1+JB, J ), LDAB-1,
     $                           WORK13, LDWORK, ONE, AB( 1+JB, J+KV ),
     $                           LDAB-1 )
                  END IF
*
                  IF( I3.GT.0 ) THEN
*
*                    Update A33
*
                     CALL DGEMM( 'No transpose''No transpose', I3, J3,
     $                           JB, -ONE, WORK31, LDWORK, WORK13,
     $                           LDWORK, ONE, AB( 1+KL, J+KV ), LDAB-1 )
                  END IF
*
*                 Copy the lower triangle of A13 back into place
*
                  DO 150 JJ = 1, J3
                     DO 140 II = JJ, JB
                        AB( II-JJ+1, JJ+J+KV-1 ) = WORK13( II, JJ )
  140                CONTINUE
  150             CONTINUE
               END IF
            ELSE
*
*              Adjust the pivot indices.
*
               DO 160 I = J, J + JB - 1
                  IPIV( I ) = IPIV( I ) + J - 1
  160          CONTINUE
            END IF
*
*           Partially undo the interchanges in the current block to
*           restore the upper triangular form of A31 and copy the upper
*           triangle of A31 back into place
*
            DO 170 JJ = J + JB - 1, J, -1
               JP = IPIV( JJ ) - JJ + 1
               IF( JP.NE.1 ) THEN
*
*                 Apply interchange to columns J to JJ-1
*
                  IF( JP+JJ-1.LT.J+KL ) THEN
*
*                    The interchange does not affect A31
*
                     CALL DSWAP( JJ-J, AB( KV+1+JJ-J, J ), LDAB-1,
     $                           AB( KV+JP+JJ-J, J ), LDAB-1 )
                  ELSE
*
*                    The interchange does affect A31
*
                     CALL DSWAP( JJ-J, AB( KV+1+JJ-J, J ), LDAB-1,
     $                           WORK31( JP+JJ-J-KL, 1 ), LDWORK )
                  END IF
               END IF
*
*              Copy the current column of A31 back into place
*
               NW = MIN( I3, JJ-J+1 )
               IF( NW.GT.0 )
     $            CALL DCOPY( NW, WORK31( 1, JJ-J+1 ), 1,
     $                        AB( KV+KL+1-JJ+J, JJ ), 1 )
  170       CONTINUE
  180    CONTINUE
      END IF
*
      RETURN
*
*     End of DGBTRF
*
      END