Content

LQ Factorization

In this example we compute the \(LQ\) factorization and use it for solving a system of linear equations. In this example we do not setup matrix \(Q\) explicitly.

Example Code

#include <iostream>
#include <flens/flens.cxx>

using namespace std;
using namespace flens;

typedef double   T;

int
main()
{
    GeMatrix<FullStorage<double> >     A(4,4);
    DenseVector<Array<double> >        b(4);
    DenseVector<Array<double> >        tau;
    //DenseVector<Array<double> >      work;

    A =  2,   3,  -1,   0,
        -6,  -5,   0,   2,
         2,  -5,   6,  -6,
         4,   6,   2,  -3;

    b = 20,
       -33,
       -43,
        49;

    cout << "A = " << A << endl;
    cout << "b = " << b << endl;

    lapack::lqf(A, tau);
    // lapack::lqf(A, tau, work);

    blas::sv(NoTrans, A.lower(), b);

    lapack::ormlq(Left, Trans, A, tau, b);
    // lapack::ormlq(Left, Trans, A, tau, b, work);

    cout << "x = " << b << endl;
}

Comments on Example Code

Compute the factorization \(A = LQ\). Note that the workspace gets created implicitly and temporarily. So you might not want to do this inside a loop.

    lapack::lqf(A, tau);
    // lapack::lqf(A, tau, work);

Solve \(L u = b\). Vector \(b\) gets overwritten with \(u\).

    blas::sv(NoTrans, A.lower(), b);

Compute \(x = Q^T u\). Vector \(b\) gets overwritten with \(x\).

    lapack::ormlq(Left, Trans, A, tau, b);
    // lapack::ormlq(Left, Trans, A, tau, b, work);

Compile

$shell> cd flens/examples                                                       
$shell> g++ -std=c++11 -Wall -I../.. -o lapack-gelqf lapack-gelqf.cc                                                     

Run

$shell> cd flens/examples                                                       
$shell> ./lapack-gelqf                                                          
A = 
            2             3            -1             0 
           -6            -5             0             2 
            2            -5             6            -6 
            4             6             2            -3 
b = 
           20            -33            -43             49 
x = 
            1              9              9              9 

Example with Complex Numbers

Example Code

#include <iostream>
#include <flens/flens.cxx>

using namespace std;
using namespace flens;

typedef double   T;

int
main()
{
    typedef complex<double>             Complex;
    const Complex                       I(0,1);

    GeMatrix<FullStorage<Complex> >     A(4,4);
    DenseVector<Array<Complex> >        b(4);
    DenseVector<Array<Complex> >        tau;
    //DenseVector<Array<Complex> >      work;

    A =  2,   3,  -1,   0,
        -6,  -5,   0,   2,
         2,  -5,   6,  -6,
         4,   6,   2,  -3;
    A *=I;

    b = 20,
       -33,
       -43,
        49;
    b *= I;

    cout << "A = " << A << endl;
    cout << "b = " << b << endl;

    lapack::lqf(A, tau);
    // lapack::lqf(A, tau, work);

    blas::sv(NoTrans, A.lower(), b);

    lapack::unmlq(Left, ConjTrans, A, tau, b);
    // lapack::unmlq(Left, ConjTrans, A, tau, b, work);

    cout << "x = " << b << endl;
}

Comments on Example Code

Compute the factorization \(A = LQ\). Note that the workspace gets created implicitly and temporarily. So you might not want to do this inside a loop.

    lapack::lqf(A, tau);
    // lapack::lqf(A, tau, work);

Solve \(L u = b\). Vector \(b\) gets overwritten with \(u\).

    blas::sv(NoTrans, A.lower(), b);

Compute \(x = Q^T u\). Vector \(b\) gets overwritten with \(x\).

    lapack::unmlq(Left, ConjTrans, A, tau, b);
    // lapack::unmlq(Left, ConjTrans, A, tau, b, work);

Compile

$shell> cd flens/examples                                                       
$shell> g++ -DUSE_CXXLAPACK -framework vecLib -std=c++11 -Wall -I../.. -o lapack-complex-gelqf lapack-complex-gelqf.cc                                             

Run

$shell> cd flens/examples                                                       
$shell> ./lapack-complex-gelqf                                                  
A = 
                       (0,2)                        (0,3)                      (-0,-1)                        (0,0) 
                     (-0,-6)                      (-0,-5)                        (0,0)                        (0,2) 
                       (0,2)                      (-0,-5)                        (0,6)                      (-0,-6) 
                       (0,4)                        (0,6)                        (0,2)                      (-0,-3) 
b = 
                      (0,20)                      (-0,-33)                      (-0,-43)                        (0,49) 
x = 
             (1,8.88178e-16)              (9,-1.30045e-15)              (9,-1.94289e-15)              (9,-2.02977e-16)