trf (getrf)

compute an $L U$ factorization of a general $M \times N$ matrix A using partial pivoting with row interchanges

Synopsis

```
template <typename FS>
    int
    trf(GeMatrix<FS> &A, DenseVector<Array<int> > &P);
```


Purpose

computes an $L U$ factorization of a general $M \times N$ matrix A using partial pivoting with row interchanges. The factorization has the form $A=P L U$ where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if $m>n$), and U is upper triangular (upper trapezoidal if $m<n$).

Arguments

A	(input/output)
	On entry, the $M \times N$ matrix to be factored. On exit, the factors L and U from the factorization $A=P L U$; the unit diagonal elements of L are not stored.
P	(output)
	The pivot indices; for $1 \leq i \leq \min \{M, N\}$, row i of the matrix was interchanged with row $P(i)$.

Returns

$i=0 \quad$ successful exit
$i>0 \quad$ then $U(i, i)$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.

tri (getri)

compute the inverse of a matrix using the $L U$ factorization computed by trf

Synopsis

```
template <typename FS>
    int
    tri(GeMatrix<FS> &A, DenseVector<Array<int> > &P);
```


Purpose

tri computes the inverse of a matrix using the LU factorization computed by trf. This function inverts U and then computes A^{-1} by solving the system $A^{-1} * L=$ U^{-1} for A^{-1}.

Arguments

A (input/output)
On entry, the factors L and U from the factorization $A=P L U$ as computed by trf. On successful exit, the inverse of the original matrix A.

P
(input)
The pivot indices from trf; for $1 \leq i \leq N$, row i of the matrix was interchanged with row $P(i)$.

Returns

$i=0 \quad$ successful exit
$i>0 \quad$ then $U(i, i)$ is exactly zero; the matrix is singular and its inverse could not be computed.

trf (gbtrf)

compute an $L U$ factorization of a real $M \times N$ band matrix A using partial pivoting with row interchanges

Synopsis

```
template <typename BS>
    int
    trf(GbMatrix<BS> &A, DenseVector<Array<int> > &P);
```


Purpose

trf computes an $L U$ factorization of a real $M \times N$ band matrix A using partial pivoting with row interchanges. This is the blocked version of the algorithm, calling Level 3 BLAS.

Arguments

A (input/output)
On entry, the matrix A in band storage and on exit overwritten with the $L U$ factorization. Matrix A is required to have a total of k_{l} subdiagonals and $k_{l}+k_{u}$ superdiagonals where on entry only the elements within the k_{l} subdiagonals and k_{u} superdiagonals need to be set (See Further Details).
P (input)
The pivot indices; for $1 \leq i \leq N$, row i of the matrix was interchanged with row $P(i)$.

Returns

$i=0 \quad$ successful exit
$i>0 \quad$ then $U(i, i)$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.

Further Details

Assume non-zero elements of A reside within a band of k_{l} subdiagonals and k_{u} superdiagonals. Then storing its $L U$ factorization requires a band of k_{l} subdiagonals and $k_{l}+k_{u}$ superdiagonals. Hence, the GbMatrix holding the matrix A needs to have k_{l} subdiagonals and $k_{l}+k_{u}$ superdiagonals allocated; but only the elements within its k_{l} subdiagonals and k_{u} superdiagonals must be set.

If, for example, A is a tridiagonal matrix (i. e. $k_{l}=k_{u}=1$), then matrix U will have in general two super-diagonals. This requires the GbMatrix storing A has
allocated an additional superdiagonal (as indicated by ' $*$ '):

$$
A=\left(\begin{array}{ccccc}
a_{1,1} & a_{1,2} & * & 0 & 0 \\
a_{2,1} & a_{2,2} & a_{2,3} & * & 0 \\
0 & a_{3,2} & a_{3,3} & a_{3,4} & * \\
0 & 0 & a_{4,3} & a_{4,4} & a_{4,5} \\
0 & 0 & 0 & a_{5,4} & a_{5,5}
\end{array}\right) \rightsquigarrow \quad A_{L U}=\left(\begin{array}{ccccc}
u_{1,1} & u_{1,2} & u_{1,3} & 0 & 0 \\
m_{2,1} & u_{2,2} & u_{2,3} & u_{2,4} & 0 \\
0 & m_{3,2} & u_{3,3} & u_{3,4} & u_{3,5} \\
0 & 0 & m_{4,3} & u_{4,4} & u_{4,5} \\
0 & 0 & 0 & m_{5,4} & u_{5,5}
\end{array}\right) .
$$

Elements of L are stored (in general rearranged due to pivoting) on the subdiagonal of $A_{L U}$.

trs (getrs)

solve a system of linear equations $A X=B$ or $A^{T} X=B$ with a general $N \times N$ matrix A using the $L U$ factorization computed by trf

Synopsis

```
template <typename MA, typename MB>
    int
    trs(Transpose trans, const GeMatrix<MA> &A,
                const DenseVector<Array<int> > &P, GeMatrix<MB> &B);
template <typename MA, typename VB>
    int
    trs(Transpose trans, const GeMatrix<MA> &A,
        const DenseVector<Array<int> > &P,
        DenseVector<VB> &B);
```


Purpose

trs solves a system of linear equations $A X=B$ or $A^{T} X=B$ with a general $N \times N$ matrix A using the $L U$ factorization computed by trf.

Arguments

```
trans (input)
            Specifies the form of the system of equations:
                trans = NoTrans }AX=B\mathrm{ (No transpose)
                trans = Trans }\mp@subsup{A}{}{T}X=B\mathrm{ (Transpose)
        trans = ConjTrans }\mp@subsup{A}{}{H}X=B(\mathrm{ Conjugate transpose }=\mathrm{ Transpose)
        (input)
        The factors L and U from the factorization A=PLU as computed by
        trf.
P (input)
    The pivot indices from trf; for 1\leqi\leqN, row i of the matrix was
    interchanged with row }P(i)\mathrm{ .
B (input/output)
    On entry, the right hand side matrix B. On exit, the solution matrix
    X.
```


Returns

$i=0 \quad$ successful exit

trs (gbtrs)

solve a system of linear equations $A X=B$ or $A^{T} X=B$ with a general band matrix A using the LU factorization computed by trf

Synopsis

```
template <typename MA, typename MB>
    int
    trs(Transpose trans, const GbMatrix<MA> &LU,
        const DenseVector<Array<int> > &P, GeMatrix<MB> &B);
template <typename MA, typename VB>
    int
    trs(Transpose trans, const GbMatrix<MA> &LU,
        const DenseVector<Array<int> > &P,
        DenseVector<VB> &B);
```


Purpose

trs solves a system of linear equations $A X=B$ or $A^{T} X=B$ with a general band matrix A using the $L U$ factorization computed by trf.

Arguments

```
trans (input)
Specifies the form of the system of equations:
trans = NoTrans }\quadAX=B\mathrm{ (No transpose)
trans = Trans }\quad\mp@subsup{A}{}{T}X=B\mathrm{ (Transpose)
trans = ConjTrans }\mp@subsup{A}{}{H}X=B(\mathrm{ Conjugate transpose = Transpose)
(input)
Details of the LU factorization of the band matrix }A\mathrm{ , as computed by
trf. U is stored as an upper triangular band matrix in the diagonal and
the }\mp@subsup{k}{l}{}+\mp@subsup{k}{u}{}\mathrm{ superdiagonals of }A\mathrm{ ; the multipliers (i.e. the elements of L
rearranged due to pivoting) used during the factorization are stored in
the }\mp@subsup{k}{l}{}\mathrm{ subdiagonals of }A\mathrm{ .
P (input)
The pivot indices from trf; for 1\leqi\leqN, row i of the matrix was
interchanged with row }P(i)\mathrm{ .
B (input/output)
On entry, the right hand side matrix B. On exit, the solution matrix
X.
```


Returns

$i=0 \quad$ successful exit

sv (gesv)

compute the solution to a real system of linear equations $A X=B$

Synopsis

```
template <typename MA, typename MB>
    int
    sv(GeMatrix<MA> &A, DenseVector<Array<int> > &P, GeMatrix<MB> &B);
template <typename MA, typename VB>
    int
    sv(GeMatrix<MA> &A, DenseVector<Array<int> > &P, DenseVector<VB> &B);
```


Purpose

computes the solution to a real or complex system of linear equations $A X=B$, where A is an $N \times N$ matrix and X and B are $N \times R$ matrices.

The $L U$ decomposition with partial pivoting and row interchanges is used to factor A as

$$
A=P L U,
$$

where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations $A X=B$.

Arguments

A	(input/output)
	On entry, the $N \times N$ coefficient matrix A. On exit, the factors L and U from the factorization $A=P L U$; the unit diagonal elements of L are not stored.
P	(output)
	The pivot indices; for $1 \leq i \leq \min \{M, N\}$, row i of the matrix was interchanged with row $P(i)$.
B	(input/output)
	On entry, the $N \times R$ matrix of right hand side matrix B. On exit, if function returned 0 , the $N \times R$ solution matrix X.

Returns

$i=0 \quad$ successful exit
$i>0 \quad$ then $U(i, i)$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution could not be computed.

sv (gbsv)

compute the solution to a real system of linear equations $A X=B$, where A is a band matrix of order N with k_{l} subdiagonals and k_{u} superdiagonals, and X and B are $N \times R$ matrices

Synopsis

```
template <typename MA, typename MB>
    int
    sv(GbMatrix<MA> &A, DenseVector<Array<int> > &P, GeMatrix<MB> &B);
template <typename MA, typename VB>
    int
    sv(GbMatrix<MA> &A, DenseVector<Array<int> > &P, DenseVector<VB> &B);
```


Purpose

sv computes the solution to a real system of linear equations $A X=B$, where A is a band matrix of order N with k_{l} subdiagonals and k_{u} superdiagonals, and X and B are $N \times R$ matrices. The $L U$ decomposition with partial pivoting and row interchanges is used to factor A as $A=L U$, where L is a product of permutation and unit lower triangular matrices with k_{l} subdiagonals, and U is upper triangular with $k_{l}+k_{u}$ superdiagonals. The factored form of A is then used to solve the system of equations $A X=B$.

Arguments

A (input/output)
On entry, the matrix A in band storage and on exit overwritten with the $L U$ factorization. Matrix A is required to have a total of k_{l} subdiagonals and $k_{l}+k_{u}$ superdiagonals where on entry only the elements within the k_{l} subdiagonals and k_{u} superdiagonals need to be set (See Further Details).
P (input)
The pivot indices; for $1 \leq i \leq N$, row i of the matrix was interchanged with row $P(i)$.
B (input/output)
On entry, the right hand side matrix B. On exit, the solution matrix X.

Returns

$i=0 \quad$ successful exit
$i>0 \quad$ then $U(i, i)$ is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.

Further Details

Assume non-zero elements of A reside within a band of k_{l} subdiagonals and k_{u} superdiagonals. Then storing its $L U$ factorization requires a band of k_{l} subdiagonals and $k_{l}+k_{u}$ superdiagonals. Hence, the GbMatrix holding the matrix A needs to have k_{l} subdiagonals and $k_{l}+k_{u}$ superdiagonals allocated; but only the elements within its k_{l} subdiagonals and k_{u} superdiagonals must be set.

If, for example, A is a tridiagonal matrix (i. e. $k_{l}=k_{u}=1$), then matrix U will have in general two super-diagonals. This requires the GbMatrix storing A has allocated an additional superdiagonal (as indicated by ' $*$ '):

$$
A=\left(\begin{array}{ccccc}
a_{1,1} & a_{1,2} & * & 0 & 0 \\
a_{2,1} & a_{2,2} & a_{2,3} & * & 0 \\
0 & a_{3,2} & a_{3,3} & a_{3,4} & * \\
0 & 0 & a_{4,3} & a_{4,4} & a_{4,5} \\
0 & 0 & 0 & a_{5,4} & a_{5,5}
\end{array}\right) \rightsquigarrow \quad A_{L U}=\left(\begin{array}{ccccc}
u_{1,1} & u_{1,2} & u_{1,3} & 0 & 0 \\
m_{2,1} & u_{2,2} & u_{2,3} & u_{2,4} & 0 \\
0 & m_{3,2} & u_{3,3} & u_{3,4} & u_{3,5} \\
0 & 0 & m_{4,3} & u_{4,4} & u_{4,5} \\
0 & 0 & 0 & m_{5,4} & u_{5,5}
\end{array}\right) .
$$

Elements of L are stored (in general rearranged due to pivoting) on the subdiagonal of $A_{L U}$.

trs (trtrs)

solve a triangular system of the form $A X=B$ or $A^{T} X=B$

Synopsis

```
template <typename MA, typename MB>
    int
    trs(Transpose trans, const TrMatrix<MA> &A, GeMatrix<MB> &B);
template <typename MA, typename VB>
    int
    trs(Transpose trans, const TrMatrix<MA> &A, DenseVector<VB> &B);
```


Purpose

trs solves a triangular system of the form $A X=B$ or $A^{T} X=B$, where A is a triangular matrix of order N, and B is an $N \times R$ matrix. A check is made to verify that A is nonsingular.

Arguments

trans	(input)
Specifies the form of the system of equations:	
trans $=$ NoTrans $\quad A X=B$ (No transpose)	
trans $=$ Trans	$A^{T} X=B$ (Transpose)
A \quadtrans $=$ ConjTrans \quad (input)	
B \quadThe (unit or non-unit) triangular matrix A. (input/output)	
	On entry, the $N \times R$ matrix of right hand side matrix B. On exit, if function returned 0 , the $N \times R$ solution matrix X.

Returns

$i=0 \quad$ successful exit
$i>0 \quad$ then $A(i, i)$ is zero, indicating that the matrix is singular and the solutions X have not been computed.

qrf (geqrf)

compute a $Q R$ factorization of a real $M \times N$ matrix A

Synopsis

```
template <typename MA, typename VT>
    int
    qrf(GeMatrix<MA> &A, DenseVector<VT> &tau);
```


Purpose

qrf computes a $Q R$ factorization of a real $M \times N$ matrix A :

$$
A=Q R .
$$

Arguments

A
(input/output)
On entry, the $M \times N$ matrix A. On exit, the elements on and above the diagonal of the array contain the $\min \{M, N\} \times N$ upper trapezoidal matrix R (R is upper triangular if $m \geq n$); the elements below the diagonal, with the array tau, represent the orthogonal matrix Q as a product of $\min \{m, n\}$ elementary reflectors (see Further Details).
tau (output)
The scalar factors τ of the elementary reflectors (see Further Details).

Returns

$$
i=0 \quad \text { successful exit }
$$

Further Details

The matrix Q is represented as a product of elementary reflectors

$$
Q=H_{1} H_{2} \cdots H_{k}, \text { where } k=\min \{m, n\} .
$$

Each H_{i} has the form

$$
H_{i}=I-\tau * v * v^{\prime}
$$

where τ is a real scalar, and v is a real vector with $v_{1}=\ldots v_{i-1}=0$ and $v_{i}=1$; $\left(v_{i+1}, \ldots, v_{m}\right)$ is stored on exit in $\mathrm{A}(\mathrm{i}+1, \mathrm{i}), \ldots, \mathrm{A}(\mathrm{m}, \mathrm{i})$ and τ in tau(i).

orgqr (orgqr)

generate an $M \times N$ real matrix Q with orthonormal columns

Synopsis

```
template <typename MA, typename VT>
    int
    orgqr(GeMatrix<MA> &A, const DenseVector<VT> &tau);
```


Purpose

orgqr generates an $M \times N$ real matrix Q with orthonormal columns, which is defined as the first N columns of a product of k elementary reflectors of order M

$$
Q=H_{1} H_{2} \cdots \cdot H_{k}
$$

as returned by qrf.

Arguments

A (input/output)
On entry, the i-th column must contain the vector which defines the elementary reflector H_{i}, for $i=1,2, \ldots, k$, as returned by qrf in the first k columns of its matrix argument A. On exit, the $M \times N$ matrix Q.
tau (input)
TAU(i) must contain the scalar factor of the elementary reflector H_{i}, as returned by qrf.

Returns

$i=0 \quad$ successful exit

ormqr (ormqr)

Synopsis

```
template <typename MA, typename VT, typename MC>
    int
    ormqr(BlasSide side, Transpose trans,
        const GeMatrix<MA> &A, const DenseVector<VT> &tau,
        GeMatrix<MC> &C);
```


Purpose

ormqr overwrites the general real $M \times N$ matrix C as follows:

$$
C \leftarrow \begin{cases}Q C & \text { if side=Left and trans=NoTrans } \\ Q^{T} C & \text { if side=Left and trans=Trans } \\ C Q & \text { if side=Right and trans=NoTrans } \\ C Q^{T} & \text { if side=Right and trans=Trans }\end{cases}
$$

where Q is a real orthogonal matrix defined as the product of k elementary reflectors

$$
Q=H_{1} H_{2} \cdots \cdots H_{k}
$$

as returned by qrf. Q is of order M if side=Left and of order N if side=Right.

Arguments

side	(input)
	side $=$ Left apply Q or Q^{T} from left
	side $=$ Right apply Q or Q^{T} from right
trans	(input)
	trans=NoTrans No transpose, apply Q
	trans=Trans Transpose, apply Q^{T}
A	(input)
	On entry, the i-th column must contain the vector which defines the elementary reflector H_{i}, for $i=1,2, \ldots, k$, as returned by qrf in the
	first k columns of its matrix argument A. A is modified by the routin but restored on exit.
tau	(input)
	TAU(i) must contain the scalar factor of the elementary reflector H_{i}, as returned by qrf.
C	(input/output)
	On entry, the $M \times N$ matrix C.
	On exit, C is overwritten by $Q C$ or $Q^{T} C$ or $C Q^{T}$ or $C Q$.

Returns

$$
i=0 \quad \text { successful exit }
$$

ls (gels)

solve overdetermined or underdetermined real linear systems involving an $M \times N$ matrix A, or its transpose, using a $Q R$ or $L Q$ factorization of A

Synopsis

```
template <typename MA, typename MB>
    int
    ls(Transpose trans, GeMatrix<MA> &A, GeMatrix<MB> &B);
```


Purpose

ls solves overdetermined or underdetermined real linear systems involving an $M \times N$ matrix A, or its transpose, using a $Q R$ or $L Q$ factorization of A. It is assumed that A has full rank. The following options are provided:

1. If trans $=$ NoTrans and $M \geq N$: find the least squares solution of an overdetermined system, i.e., solve the least squares problem

$$
\|B-A X\| \rightarrow \min .
$$

2. If trans $=$ NoTrans and $M<N$: find the minimum norm solution of an underdetermined system $A X=B$.
3. If trans $=$ Trans and $M \geq N$: find the minimum norm solution of an undetermined system $A^{T} X=B$.
4. If trans $=$ Trans and $M<N$: find the least squares solution of an overdetermined system, i.e., solve the least squares problem

$$
\left\|B-A^{T} * X\right\| \rightarrow \min
$$

Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the $M \times R$ right hand side matrix B and the $N \times R$ solution matrix X.

Arguments

```
trans (input)
    trans = NoTrans the linear system involves A;
    trans = Trans the linear system involves }\mp@subsup{A}{}{T}\mathrm{ .
A
(input/output)
On entry, the M\timesN matrix A. On exit, if M\geqN,A is overwritten
by details of its QR factorization as returned by qrf; if M<N,A is
overwritten by details of its }LQ\mathrm{ factorization as returned by lqf.
```

B (input/output)
On entry, the matrix B of right hand side vectors, stored column-wise; B is $M \times R$ if trans=NoTrans, or $N \times R$ if trans=Trans.
On exit, B is overwritten by the solution vectors, stored column-wise:

1. if trans=NoTrans and $M \geq N$, rows 1 to N of B contain the least squares solution vectors; the residual sum of squares for the solution in each column is given by the sum of squares of elements $N+1$ to M in that column;
2. if trans=NoTrans and $M<N$, rows 1 to N of B contain the minimum norm solution vectors;
3. if trans=Trans and $M \geq N$, rows 1 to M of B contain the minimum norm solution vectors;
4. if trans=Trans and $M<N$, rows 1 to M of B contain the least squares solution vectors; the residual sum of squares for the solution in each column is given by the sum of squares of elements $M+1$ to N in that column.

Returns

$i=0 \quad$ successful exit

lss (gelss)

compute the minimum norm solution to a real linear least squares problem using a singular value decomposition (SVD)

Synopsis

```
template <typename MA, typename MB>
    int
    lss(GeMatrix<MA> &A, GeMatrix<MB> &B);
```


Purpose

lss computes the minimum norm solution to a real linear least squares problem:

$$
\|b-A x\|_{2} \rightarrow \min
$$

using the singular value decomposition (SVD) of A. A is an $M \times N$ matrix which may be rank-deficient.

Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the $M \times R$ right hand side matrix B and the $N \times R$ solution matrix X.

The effective rank of A is determined by treating as zero those singular values which are less than RCOND times the largest singular value.

Arguments

A (input/output)
On entry, the $M \times N$ matrix A. On exit, the first $\min \{m, n\}$ rows of A are overwritten with its right singular vectors, stored row-wise.
B (input/output)
On entry, the $M \times R$ right hand side matrix B.
On exit, B is overwritten by the $N \times R$ solution matrix X. If $M \geq N$ and $\operatorname{rank}(A)=N$, the residual sum-of-squares for the solution in the i-th column is given by the sum of squares of elements $B_{N+1, i}, \ldots, B_{M, i}$.

Returns

$i=0 \quad$ successful exit
$i>0 \quad$ the algorithm for computing the SVD failed to converge; more precisely, i off-diagonal elements of an intermediate bi-diagonal form did not converge to zero.

To-do

1. Provide a version of lss for a single right-hand side, i. e. handle the case where B would be a $M \times 1$ matrix (as was done for sv).
2. In this form the wrapper for gelss suppresses some of the output computed by its underlying LAPACK routine (e.g. the singular values).

ev (geev,real)

compute for an $N \times N$ real non-symmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors

Synopsis

```
template <typename MA, typename WR, typename WI, typename VL, typename VR>
    int
    ev(bool leftEV, bool rightEV,
        GeMatrix<MA> &A, DenseVector<WR> &wr, DenseVector<WI> &wi,
        GeMatrix<VL> &vl, GeMatrix<VR> &vr);
```


Purpose

ev computes for an $N \times N$ real non-symmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors. The right eigenvector v_{j} of A satisfies

$$
A v_{j}=\lambda_{j} v_{j}
$$

where λ_{j} is its eigenvalue.
The left eigenvector u_{j} of A satisfies

$$
u_{j}^{H} A=\lambda_{j} u_{j}^{H}
$$

where u_{j}^{H} denotes the conjugate transpose of u_{j}.
The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.

Arguments

leftEV	(input) specifies whether left eigenvectors of A are computed. (input) specifies whether right eigenvectors of A are computed. (input/output)
AOn entry, the $N \times N$ matrix A.	
wr,wi	On exit, A has been overwritten. (output) wr and wi contain the real and imaginary parts, respectively, of the computed eigenvalues. Complex conjugate pairs of eigenvalues appear consecutively with the eigenvalue having the positive imaginary part
vl first.	
(output)	

If leftEV=true, the left eigenvectors u_{j} are stored one after another in the columns of vl , in the same order as their eigenvalues. If leftEV=false, then vl is not referenced.
If the j-th eigenvalue is real, then u_{j} is stored in the j-th column of vl . If the j-th and $(j+1)$-th eigenvalues form a complex conjugate pair, then

$$
u_{j}=\mathrm{vl}\left(\mathbf{Z}_{-}, \mathrm{j}\right)+\mathrm{i} * \mathrm{vl}\left(\mathbf{Z}_{-}, \mathrm{j}+1\right)
$$

and

$$
u_{j+1}=\mathrm{vl}\left(\left(_{-}, j\right)-i * \operatorname{vl}\left(\left(_{-}, j+1\right)\right.\right.
$$

vr
(output)
If rightEV=true, the left eigenvectors u_{j} are stored one after another in the columns of vr , in the same order as their eigenvalues. If rightEV=false, then vr is not referenced.
If the j-th eigenvalue is real, then u_{j} is stored in the j-th column of vr. If the j-th and $(j+1)$-th eigenvalues form a complex conjugate pair, then

$$
u_{j}=\operatorname{vr}(-, j)+i * \operatorname{vr}(-, j+1)
$$

and

$$
u_{j+1}=\operatorname{vr}\left(__{-}, j\right)-i * \operatorname{vr}\left(_, j+1\right)
$$

Returns

$i=0 \quad$ successful exit
$i>0 \quad$ the $Q R$ algorithm failed to compute all the eigenvalues, and no eigenvectors have been computed; elements $i+1$ to N of wr and wi contain eigenvalues which have converged.

ev (geev,complex)

compute for an $N \times N$ complex non-symmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors

Synopsis

```
template <typename MA, typename W, typename VL, typename VR>
    int
    ev(bool leftEv, bool rightEv,
        GeMatrix<MA> &A, DenseVector<W> &w, GeMatrix<VL> &vl, GeMatrix<VR> &vr);
```


Purpose

ev computes for an $N \times N$ complex non-symmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors. The right eigenvector v_{j} of A satisfies

$$
A v_{j}=\lambda_{j} v_{j}
$$

where λ_{j} is its eigenvalue.
The left eigenvector u_{j} of A satisfies

$$
u_{j}^{H} A=\lambda_{j} u_{j}^{H}
$$

where u_{j}^{H} denotes the conjugate transpose of u_{j}.
The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.

Arguments

leftEV	
rightEV	(input) specifies whether left eigenvectors of A are computed. (input) specifies whether right eigenvectors of A are computed. (input/output) On entry, the $N \times N$ matrix A. On exit, A has been overwritten. (output) contains the computed eigenvalues. (output)
w	
If leftEV=true, the left eigenvectors u_{j} are stored one after ano-	
ther in the columns of vl, in the same order as their eigenvalues. If	
leftEV=false, then vl is not referenced.	
(output)	

Returns

$i=0 \quad$ successful exit
$i>0 \quad$ the $Q R$ algorithm failed to compute all the eigenvalues, and no eigenvectors have been computed; elements $i+1$ to N of wr and wi contain eigenvalues which have converged.

ev (syev)

compute all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A

Synopsis

```
template <typename MA, typename VW>
    int
    ev(bool compEV, SyMatrix<MA> &A, DenseVector<VW> &w);
```


Purpose

ev computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A.

Arguments

compEV (input)
A
specifies whether eigenvectors of A are computed.
(input/output)
On entry, the symmetric matrix A.
On successful exit and if compEV=true, then the underlying full storage
scheme of A contains the orthonormal eigenvectors of the matrix A.
If compEV=false, then on exit the referenced triangle of the underlying
full storage scheme is destroyed.
(output)
On successful exit, the eigenvalues in ascending order.

Returns

$i=0 \quad$ successful exit
$i>0 \quad$ the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero.

ev (sbev)

compute all the eigenvalues and, optionally, eigenvectors of a real symmetric band matrix A

Synopsis

```
template <typename MA, typename VW, typename MZ>
    int
    ev(bool compEV, SbMatrix<MA> &A, DenseVector<VW> &w, GeMatrix<MZ> &Z);
```


Purpose

ev computes all the eigenvalues and, optionally, eigenvectors of a real symmetric band matrix A.

Arguments

compEV (input)
specifies whether eigenvectors of A are computed.
A (input/output)
On entry, the symmetric band matrix A.
On exit, A is overwritten by values generated during the reduction to tridiagonal form.
w (output)
On successful exit, the eigenvalues in ascending order.
Z If compEV=true, then on successful exit, Z contains the orthonormal eigenvectors of the matrix A, with the i-th column of Z holding the eigenvector associated with $w(i)$.
If compEV=false, then Z is not referenced.

Returns

$i=0 \quad$ successful exit
$i>0 \quad$ the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero.

ev (spev)

compute all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix in packed storage

Synopsis

```
template <typename MA, typename VW, typename MZ>
    int
    ev(bool compEV, SpMatrix<MA> &A, DenseVector<VW> &w, GeMatrix<MZ> &Z);
```


Purpose

ev computes all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix in packed storage.

Arguments

compEV (input) specifies whether eigenvectors of A are computed.
A (input/output)
On entry, the symmetric matrix A in packed storage format.
On exit, A is overwritten by values generated during the reduction to tridiagonal form.
w (output)
On successful exit, the eigenvalues in ascending order.
Z If compEV=true, then on successful exit, Z contains the orthonormal eigenvectors of the matrix A, with the i-th column of Z holding the eigenvector associated with $w(i)$.
If compEV=false, then Z is not referenced.

Returns

$i=0 \quad$ successful exit
$i>0 \quad$ the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero.

ev (heev)

compute all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A

Synopsis

```
template <typename MA, typename VW>
    int
    ev(bool compEV, HeMatrix<MA> &A, DenseVector<VW> &W);
```


Purpose

ev computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A.

Arguments

compEV (input) specifies whether eigenvectors of A are computed.
A (input/output)
On entry, the Hermitian matrix A.
On successful exit and if compEV=true, A contains the orthonormal eigenvectors of the matrix A. If compEV=false, then on exit the referenced triangle of the underlying full storage scheme is destroyed.
w (output)
On successful exit, the eigenvalues in ascending order.

Returns

$i=0 \quad$ successful exit
$i>0 \quad$ the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero.

ev (hbev)

compute all the eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A

Synopsis

```
template <typename MA, typename VW, typename MZ>
    int
    ev(bool compEV, HbMatrix<MA> &A, DenseVector<VW> &w, GeMatrix<MZ> &Z);
```


Purpose

ev computes all the eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A.

Arguments

compEV (input)
specifies whether eigenvectors of A are computed.
A (input/output)
On entry, the Hermitian band matrix A.
On exit, A is overwritten by values generated during the reduction to tridiagonal form.
w (output)
On successful exit, the eigenvalues in ascending order.
Z If compEV=true, then on successful exit, Z contains the orthonormal eigenvectors of the matrix A, with the i-th column of Z holding the eigenvector associated with $w(i)$.
If compEV=false, then Z is not referenced.

Returns

$i=0 \quad$ successful exit
$i>0 \quad$ the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero.

ev (hpev)

compute all the eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix in packed storage

Synopsis

```
template <typename MA, typename VW, typename MZ>
    int
    ev(bool compEV, HpMatrix<MA> &A, DenseVector<VW> &w, GeMatrix<MZ> &Z);
```


Purpose

ev computes all the eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix in packed storage.

Arguments

compEV (input) specifies whether eigenvectors of A are computed.
A (input/output)
On entry, the Hermitian matrix A in packed storage format.
On exit, A is overwritten by values generated during the reduction to tridiagonal form.
w (output)
On successful exit, the eigenvalues in ascending order.
Z If compEV=true, then on successful exit, Z contains the orthonormal eigenvectors of the matrix A, with the i-th column of Z holding the eigenvector associated with $w(i)$.
If compEV=false, then Z is not referenced.

Returns

$i=0 \quad$ successful exit
$i>0 \quad$ the algorithm failed to converge; i off-diagonal elements of an intermediate tridiagonal form did not converge to zero.

svd (gesvd)

compute the singular value decomposition (SVD) of a complex or real $M \times N$ matrix A, optionally computing the left and/or right singular vectors

Synopsis

```
template <typename MA, typename VS, typename VU, typename VVT>
            int
    svd(SVectorsJob jobu, SVectorsJob jobvt, GeMatrix<MA> &A,
                DenseVector<VS> &S, GeMatrix<VU> &U, GeMatrix<VVT> &VT);
/* calls: svd(All,All,A,s,U,V) */
template <typename MA, typename VS, typename MU, typename MV>
    int
    svd(GeMatrix<MA> &A, DenseVector<VS> &s, GeMatrix<MU> &U, GeMatrix<MV> &VT);
```


Purpose

svd computes the singular value decomposition (SVD) of a real (or complex) $M \times N$ matrix A, optionally computing the left and/or right singular vectors. The SVD is written

$$
A=U \Sigma V^{T} \quad\left(\text { or } A=U \Sigma V^{H}\right)
$$

where Σ is an $M \times N$ matrix which is zero except for its $\min \{m, n\}$ diagonal elements, U is an $M \times N$ orthogonal (or unitary) matrix, and V is an $N \times N$ orthogonal (or unitary) matrix. The diagonal elements of Σ are the singular values of A; they are real and non-negative, and are returned in descending order. The first $\min \{m, n\}$ columns of U and V are the left and right singular vectors of A. Note that the routine returns V^{T} (or V^{H}), not V.

Arguments

jobu Specifies options for computing all or part of the matrix U : jobu $=$ All all M columns of U are returned in matrix U jobu $=$ SmallDim the first $\min \{m, n\}$ columns of U (the left singular vectors) are returned in the matrix U jobu $=$ Overwrite the first $\min \{m, n\}$ columns of U (the left singular vectors) are overwritten on the matrix A jobu = None no columns of U (no left singular vectors) are computed
jobvt Specifies options for computing all or part of the matrix V^{T} (or V^{H}):

```
jobu = All all N rows of V}\mp@subsup{V}{}{T}(\mathrm{ or }\mp@subsup{V}{}{H})\mathrm{ are returned in matrix
VT
jobu = SmallDim the first min{m,n} rows of }\mp@subsup{V}{}{T}(\mathrm{ or }\mp@subsup{V}{}{H})\mathrm{ (the
    right singular vectors) are returned in the ma-
    trix VT
jobu = Overwrite the first min{m,n} rows of V}\mp@subsup{V}{}{T}\mathrm{ (or }\mp@subsup{V}{}{H}\mathrm{ ) (the
    right singular vectors) are overwritten on the
    matrix A
jobu = None no rows of }\mp@subsup{V}{}{T}(\mathrm{ or }\mp@subsup{V}{}{H})(\mathrm{ no right singular vec-
tors) are computed
```

Note: jobu and jobvt can not both be set to be Overwrite.
A (input/output)
On entry, the $M \times N$ matrix A.
On exit, if jobu = Overwrite, A is overwritten with the first $\min \{m, n\}$ columns of U (the left singular vectors, stored columnwise); if jobvt = Overwrite, A is overwritten with the first $\min \{m, n\}$ rows of V^{T} (or V^{H}) (the right singular vectors, stored rowwise); if jobu \neq Overwrite and jobu \neq Overwrite, the contents of A are destroyed.
(output)
The singular values of A, sorted so that $S(i) \geq S(i+1)$.
(output)
If jobu $=\mathrm{All}, \mathrm{U}$ contains the $M \times M$ orthogonal (or unitary) matrix U; if jobu $=$ SmallDim, U contains the first $\min \{m, n\}$ columns of U (the left singular vectors, stored columnwise); if jobu $=$ None, then U is not referenced.
VT (output)
If jobvt $=$ All, VT contains the $N \times N$ orthogonal (or unitary) matrix $V^{T}\left(\right.$ or $\left.V^{H}\right)$; if jobu $=$ SmallDim, VT contains the first $\min \{m, n\}$ rows of V^{T} (or V^{H}) (the right singular vectors, stored rowwise); if jobu $=$ None, then VT is not referenced.

Returns

$i=0 \quad$ successful exit
$i>0 \quad$ the algorithm failed to converge; i specifies how many superdiagonals of an intermediate bidiagonal form B did not converge to zero.

