
trf (getrf)

compute an LU factorization of a general M ×N matrix A using partial pivoting
with row interchanges

Synopsis

template <typename FS>
int
trf(GeMatrix<FS> &A, DenseVector<Array<int> > &P);

Purpose

computes an LU factorization of a general M ×N matrix A using partial pivoting
with row interchanges. The factorization has the form A = PLU where P is
a permutation matrix, L is lower triangular with unit diagonal elements (lower
trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).

Arguments

A (input/output)
On entry, the M ×N matrix to be factored. On exit, the factors L and
U from the factorization A = PLU ; the unit diagonal elements of L
are not stored.

P (output)
The pivot indices; for 1 ≤ i ≤ min{M,N}, row i of the matrix was
interchanged with row P (i).

Returns

i = 0 successful exit
i > 0 then U(i, i) is exactly zero. The factorization has been completed, but

the factor U is exactly singular, and division by zero will occur if it is
used to solve a system of equations.

tri (getri)

compute the inverse of a matrix using the LU factorization computed by trf

Synopsis

template <typename FS>
int
tri(GeMatrix<FS> &A, DenseVector<Array<int> > &P);

Purpose

tri computes the inverse of a matrix using the LU factorization computed by trf.
This function inverts U and then computes A−1 by solving the system A−1 ∗ L =
U−1 for A−1.

Arguments

A (input/output)
On entry, the factors L and U from the factorization A = PLU as
computed by trf. On successful exit, the inverse of the original matrix
A.

P (input)
The pivot indices from trf; for 1 ≤ i ≤ N , row i of the matrix was
interchanged with row P (i).

Returns

i = 0 successful exit
i > 0 then U(i, i) is exactly zero; the matrix is singular and its inverse could

not be computed.

trf (gbtrf)

compute an LU factorization of a real M×N band matrix A using partial pivoting
with row interchanges

Synopsis

template <typename BS>
int
trf(GbMatrix<BS> &A, DenseVector<Array<int> > &P);

Purpose

trf computes an LU factorization of a real M × N band matrix A using partial
pivoting with row interchanges. This is the blocked version of the algorithm, calling
Level 3 BLAS.

Arguments

A (input/output)
On entry, the matrix A in band storage and on exit overwritten with the
LU factorization. Matrix A is required to have a total of kl subdiagonals
and kl + ku superdiagonals where on entry only the elements within
the kl subdiagonals and ku superdiagonals need to be set (See Further
Details).

P (input)
The pivot indices; for 1 ≤ i ≤ N , row i of the matrix was interchanged
with row P (i).

Returns

i = 0 successful exit
i > 0 then U(i, i) is exactly zero. The factorization has been completed, but

the factor U is exactly singular, and division by zero will occur if it is
used to solve a system of equations.

Further Details

Assume non-zero elements of A reside within a band of kl subdiagonals and ku su-
perdiagonals. Then storing its LU factorization requires a band of kl subdiagonals
and kl + ku superdiagonals. Hence, the GbMatrix holding the matrix A needs to
have kl subdiagonals and kl + ku superdiagonals allocated; but only the elements
within its kl subdiagonals and ku superdiagonals must be set.

If, for example, A is a tridiagonal matrix (i. e. kl = ku = 1), then matrix U
will have in general two super-diagonals. This requires the GbMatrix storing A has

allocated an additional superdiagonal (as indicated by ‘∗’):

A =

a1,1 a1,2 ∗ 0 0
a2,1 a2,2 a2,3 ∗ 0
0 a3,2 a3,3 a3,4 ∗
0 0 a4,3 a4,4 a4,5

0 0 0 a5,4 a5,5

 ALU =

u1,1 u1,2 u1,3 0 0
m2,1 u2,2 u2,3 u2,4 0

0 m3,2 u3,3 u3,4 u3,5

0 0 m4,3 u4,4 u4,5

0 0 0 m5,4 u5,5

.

Elements of L are stored (in general rearranged due to pivoting) on the sub-
diagonal of ALU .

trs (getrs)

solve a system of linear equations AX = B or ATX = B with a general N × N
matrix A using the LU factorization computed by trf

Synopsis

template <typename MA, typename MB>
int
trs(Transpose trans, const GeMatrix<MA> &A,

const DenseVector<Array<int> > &P, GeMatrix<MB> &B);

template <typename MA, typename VB>
int
trs(Transpose trans, const GeMatrix<MA> &A,

const DenseVector<Array<int> > &P,
DenseVector<VB> &B);

Purpose

trs solves a system of linear equations AX = B or ATX = B with a general N×N
matrix A using the LU factorization computed by trf.

Arguments

trans (input)
Specifies the form of the system of equations:
trans = NoTrans AX = B (No transpose)
trans = Trans ATX = B (Transpose)
trans = ConjTrans AHX = B (Conjugate transpose = Transpose)

A (input)
The factors L and U from the factorization A = PLU as computed by
trf.

P (input)
The pivot indices from trf; for 1 ≤ i ≤ N , row i of the matrix was
interchanged with row P (i).

B (input/output)
On entry, the right hand side matrix B. On exit, the solution matrix
X.

Returns

i = 0 successful exit

trs (gbtrs)

solve a system of linear equations AX = B or ATX = B with a general band
matrix A using the LU factorization computed by trf

Synopsis

template <typename MA, typename MB>
int
trs(Transpose trans, const GbMatrix<MA> &LU,

const DenseVector<Array<int> > &P, GeMatrix<MB> &B);

template <typename MA, typename VB>
int
trs(Transpose trans, const GbMatrix<MA> &LU,

const DenseVector<Array<int> > &P,
DenseVector<VB> &B);

Purpose

trs solves a system of linear equations AX = B or ATX = B with a general band
matrix A using the LU factorization computed by trf.

Arguments

trans (input)
Specifies the form of the system of equations:
trans = NoTrans AX = B (No transpose)
trans = Trans ATX = B (Transpose)
trans = ConjTrans AHX = B (Conjugate transpose = Transpose)

A (input)
Details of the LU factorization of the band matrix A, as computed by
trf. U is stored as an upper triangular band matrix in the diagonal and
the kl + ku superdiagonals of A; the multipliers (i. e. the elements of L
rearranged due to pivoting) used during the factorization are stored in
the kl subdiagonals of A.

P (input)
The pivot indices from trf; for 1 ≤ i ≤ N , row i of the matrix was
interchanged with row P (i).

B (input/output)
On entry, the right hand side matrix B. On exit, the solution matrix
X.

Returns

i = 0 successful exit

sv (gesv)

compute the solution to a real system of linear equations AX = B

Synopsis

template <typename MA, typename MB>
int
sv(GeMatrix<MA> &A, DenseVector<Array<int> > &P, GeMatrix<MB> &B);

template <typename MA, typename VB>
int
sv(GeMatrix<MA> &A, DenseVector<Array<int> > &P, DenseVector<VB> &B);

Purpose

computes the solution to a real or complex system of linear equations AX = B,
where A is an N ×N matrix and X and B are N ×R matrices.

The LU decomposition with partial pivoting and row interchanges is used to
factor A as

A = PLU,

where P is a permutation matrix, L is unit lower triangular, and U is upper
triangular. The factored form of A is then used to solve the system of equations
AX = B.

Arguments

A (input/output)
On entry, the N ×N coefficient matrix A. On exit, the factors L and U
from the factorization A = PLU ; the unit diagonal elements of L are
not stored.

P (output)
The pivot indices; for 1 ≤ i ≤ min{M,N}, row i of the matrix was
interchanged with row P (i).

B (input/output)
On entry, the N × R matrix of right hand side matrix B. On exit, if
function returned 0, the N ×R solution matrix X.

Returns

i = 0 successful exit
i > 0 then U(i, i) is exactly zero. The factorization has been completed, but

the factor U is exactly singular, so the solution could not be computed.

sv (gbsv)

compute the solution to a real system of linear equations AX = B, where A is a
band matrix of order N with kl subdiagonals and ku superdiagonals, and X and
B are N ×R matrices

Synopsis

template <typename MA, typename MB>
int
sv(GbMatrix<MA> &A, DenseVector<Array<int> > &P, GeMatrix<MB> &B);

template <typename MA, typename VB>
int
sv(GbMatrix<MA> &A, DenseVector<Array<int> > &P, DenseVector<VB> &B);

Purpose

sv computes the solution to a real system of linear equations AX = B, where A
is a band matrix of order N with kl subdiagonals and ku superdiagonals, and X
and B are N ×R matrices. The LU decomposition with partial pivoting and row
interchanges is used to factor A as A = LU , where L is a product of permutation
and unit lower triangular matrices with kl subdiagonals, and U is upper triangular
with kl+ku superdiagonals. The factored form of A is then used to solve the system
of equations AX = B.

Arguments

A (input/output)
On entry, the matrix A in band storage and on exit overwritten with the
LU factorization. Matrix A is required to have a total of kl subdiagonals
and kl + ku superdiagonals where on entry only the elements within
the kl subdiagonals and ku superdiagonals need to be set (See Further
Details).

P (input)
The pivot indices; for 1 ≤ i ≤ N , row i of the matrix was interchanged
with row P (i).

B (input/output)
On entry, the right hand side matrix B. On exit, the solution matrix
X.

Returns

i = 0 successful exit

i > 0 then U(i, i) is exactly zero. The factorization has been completed, but
the factor U is exactly singular, and division by zero will occur if it is
used to solve a system of equations.

Further Details

Assume non-zero elements of A reside within a band of kl subdiagonals and ku su-
perdiagonals. Then storing its LU factorization requires a band of kl subdiagonals
and kl + ku superdiagonals. Hence, the GbMatrix holding the matrix A needs to
have kl subdiagonals and kl + ku superdiagonals allocated; but only the elements
within its kl subdiagonals and ku superdiagonals must be set.

If, for example, A is a tridiagonal matrix (i. e. kl = ku = 1), then matrix U
will have in general two super-diagonals. This requires the GbMatrix storing A has
allocated an additional superdiagonal (as indicated by ‘∗’):

A =

a1,1 a1,2 ∗ 0 0
a2,1 a2,2 a2,3 ∗ 0
0 a3,2 a3,3 a3,4 ∗
0 0 a4,3 a4,4 a4,5

0 0 0 a5,4 a5,5

 ALU =

u1,1 u1,2 u1,3 0 0
m2,1 u2,2 u2,3 u2,4 0

0 m3,2 u3,3 u3,4 u3,5

0 0 m4,3 u4,4 u4,5

0 0 0 m5,4 u5,5

.

Elements of L are stored (in general rearranged due to pivoting) on the sub-
diagonal of ALU .

trs (trtrs)

solve a triangular system of the form AX = B or ATX = B

Synopsis

template <typename MA, typename MB>
int
trs(Transpose trans, const TrMatrix<MA> &A, GeMatrix<MB> &B);

template <typename MA, typename VB>
int
trs(Transpose trans, const TrMatrix<MA> &A, DenseVector<VB> &B);

Purpose

trs solves a triangular system of the form AX = B or ATX = B, where A is a
triangular matrix of order N , and B is an N×R matrix. A check is made to verify
that A is nonsingular.

Arguments

trans (input)
Specifies the form of the system of equations:
trans = NoTrans AX = B (No transpose)
trans = Trans ATX = B (Transpose)
trans = ConjTrans AHX = B (Conjugate transpose = Transpose)

A (input)
The (unit or non-unit) triangular matrix A.

B (input/output)
On entry, the N × R matrix of right hand side matrix B. On exit, if
function returned 0, the N ×R solution matrix X.

Returns

i = 0 successful exit
i > 0 then A(i, i) is zero, indicating that the matrix is singular and the solu-

tions X have not been computed.

qrf (geqrf)

compute a QR factorization of a real M ×N matrix A

Synopsis

template <typename MA, typename VT>
int
qrf(GeMatrix<MA> &A, DenseVector<VT> &tau);

Purpose

qrf computes a QR factorization of a real M ×N matrix A:

A = QR.

Arguments

A (input/output)
On entry, the M×N matrix A. On exit, the elements on and above the
diagonal of the array contain the min{M,N} × N upper trapezoidal
matrix R (R is upper triangular if m ≥ n); the elements below the
diagonal, with the array tau, represent the orthogonal matrix Q as a
product of min{m,n} elementary reflectors (see Further Details).

tau (output)
The scalar factors τ of the elementary reflectors (see Further Details).

Returns

i = 0 successful exit

Further Details

The matrix Q is represented as a product of elementary reflectors

Q = H1H2 · · ·Hk, where k = min{m,n}.

Each Hi has the form
Hi = I − τ ∗ v ∗ v′

where τ is a real scalar, and v is a real vector with v1 = . . . vi−1 = 0 and vi = 1;
(vi+1, . . . , vm) is stored on exit in A(i+1,i), .., A(m,i) and τ in tau(i).

orgqr (orgqr)

generate an M ×N real matrix Q with orthonormal columns

Synopsis

template <typename MA, typename VT>
int
orgqr(GeMatrix<MA> &A, const DenseVector<VT> &tau);

Purpose

orgqr generates an M × N real matrix Q with orthonormal columns, which is
defined as the first N columns of a product of k elementary reflectors of order M

Q = H1H2 · · · · ·Hk

as returned by qrf.

Arguments

A (input/output)
On entry, the i-th column must contain the vector which defines the
elementary reflector Hi, for i = 1, 2, . . . , k, as returned by qrf in the
first k columns of its matrix argument A. On exit, the M ×N matrix
Q.

tau (input)
TAU(i) must contain the scalar factor of the elementary reflector Hi,
as returned by qrf.

Returns

i = 0 successful exit

ormqr (ormqr)

Synopsis

template <typename MA, typename VT, typename MC>
int
ormqr(BlasSide side, Transpose trans,

const GeMatrix<MA> &A, const DenseVector<VT> &tau,
GeMatrix<MC> &C);

Purpose

ormqr overwrites the general real M ×N matrix C as follows:

C ←

QC if side=Left and trans=NoTrans

QTC if side=Left and trans=Trans

CQ if side=Right and trans=NoTrans

CQT if side=Right and trans=Trans

where Q is a real orthogonal matrix defined as the product of k elementary reflec-
tors

Q = H1H2 · · · · ·Hk

as returned by qrf. Q is of order M if side=Left and of order N if side=Right.

Arguments

side (input)
side = Left apply Q or QT from left
side = Right apply Q or QT from right

trans (input)
trans=NoTrans No transpose, apply Q
trans=Trans Transpose, apply QT

A (input)
On entry, the i-th column must contain the vector which defines the
elementary reflector Hi, for i = 1, 2, . . . , k, as returned by qrf in the
first k columns of its matrix argument A. A is modified by the routine
but restored on exit.

tau (input)
TAU(i) must contain the scalar factor of the elementary reflector Hi,
as returned by qrf.

C (input/output)
On entry, the M ×N matrix C.
On exit, C is overwritten by QC or QTC or CQT or CQ.

Returns

i = 0 successful exit

ls (gels)

solve overdetermined or underdetermined real linear systems involving an M ×N
matrix A, or its transpose, using a QR or LQ factorization of A

Synopsis

template <typename MA, typename MB>
int
ls(Transpose trans, GeMatrix<MA> &A, GeMatrix<MB> &B);

Purpose

ls solves overdetermined or underdetermined real linear systems involving anM×N
matrix A, or its transpose, using a QR or LQ factorization of A. It is assumed
that A has full rank. The following options are provided:

1. If trans = NoTrans and M ≥ N : find the least squares solution of an over-
determined system, i. e. , solve the least squares problem

||B − AX|| → min.

2. If trans = NoTrans and M < N : find the minimum norm solution of an
underdetermined system AX = B.

3. If trans = Trans and M ≥ N : find the minimum norm solution of an un-
determined system ATX = B.

4. If trans = Trans and M < N : find the least squares solution of an overde-
termined system, i. e. , solve the least squares problem

||B − AT ∗X|| → min.

Several right hand side vectors b and solution vectors x can be handled in a single
call; they are stored as the columns of the M × R right hand side matrix B and
the N ×R solution matrix X.

Arguments

trans (input)
trans = NoTrans the linear system involves A;
trans = Trans the linear system involves AT .

A (input/output)
On entry, the M × N matrix A. On exit, if M ≥ N , A is overwritten
by details of its QR factorization as returned by qrf; if M < N , A is
overwritten by details of its LQ factorization as returned by lqf.

B (input/output)
On entry, the matrix B of right hand side vectors, stored column-wise;
B is M ×R if trans=NoTrans, or N ×R if trans=Trans.
On exit, B is overwritten by the solution vectors, stored column-wise:

1. if trans=NoTrans and M ≥ N , rows 1 to N of B contain the
least squares solution vectors; the residual sum of squares for the
solution in each column is given by the sum of squares of elements
N + 1 to M in that column;

2. if trans=NoTrans and M < N , rows 1 to N of B contain the
minimum norm solution vectors;

3. if trans=Trans and M ≥ N , rows 1 to M of B contain the
minimum norm solution vectors;

4. if trans=Trans and M < N , rows 1 to M of B contain the
least squares solution vectors; the residual sum of squares for the
solution in each column is given by the sum of squares of elements
M + 1 to N in that column.

Returns

i = 0 successful exit

lss (gelss)

compute the minimum norm solution to a real linear least squares problem using
a singular value decomposition (SVD)

Synopsis

template <typename MA, typename MB>
int
lss(GeMatrix<MA> &A, GeMatrix<MB> &B);

Purpose

lss computes the minimum norm solution to a real linear least squares problem:

||b− Ax||2 → min

using the singular value decomposition (SVD) of A. A is an M ×N matrix which
may be rank-deficient.

Several right hand side vectors b and solution vectors x can be handled in a
single call; they are stored as the columns of the M ×R right hand side matrix B
and the N ×R solution matrix X.

The effective rank of A is determined by treating as zero those singular values
which are less than RCOND times the largest singular value.

Arguments

A (input/output)
On entry, the M ×N matrix A. On exit, the first min{m,n} rows of A
are overwritten with its right singular vectors, stored row-wise.

B (input/output)
On entry, the M ×R right hand side matrix B.
On exit, B is overwritten by the N × R solution matrix X. If M ≥ N
and rank(A) = N , the residual sum-of-squares for the solution in the
i-th column is given by the sum of squares of elements BN+1,i, . . . , BM,i.

Returns

i = 0 successful exit
i > 0 the algorithm for computing the SVD failed to converge; more precise-

ly, i off-diagonal elements of an intermediate bi-diagonal form did not
converge to zero.

To-do

1. Provide a version of lss for a single right-hand side, i. e. handle the case where
B would be a M × 1 matrix (as was done for sv).

2. In this form the wrapper for gelss suppresses some of the output computed
by its underlying LAPACK routine (e. g. the singular values).

ev (geev,real)

compute for an N ×N real non-symmetric matrix A, the eigenvalues and, optio-
nally, the left and/or right eigenvectors

Synopsis

template <typename MA, typename WR, typename WI, typename VL, typename VR>
int
ev(bool leftEV, bool rightEV,

GeMatrix<MA> &A, DenseVector<WR> &wr, DenseVector<WI> &wi,
GeMatrix<VL> &vl, GeMatrix<VR> &vr);

Purpose

ev computes for an N × N real non-symmetric matrix A, the eigenvalues and,
optionally, the left and/or right eigenvectors. The right eigenvector vj of A satisfies

Avj = λjvj

where λj is its eigenvalue.
The left eigenvector uj of A satisfies

uH
j A = λju

H
j

where uH
j denotes the conjugate transpose of uj.

The computed eigenvectors are normalized to have Euclidean norm equal to 1
and largest component real.

Arguments

leftEV (input)
specifies whether left eigenvectors of A are computed.

rightEV (input)
specifies whether right eigenvectors of A are computed.

A (input/output)
On entry, the N ×N matrix A.
On exit, A has been overwritten.

wr,wi (output)
wr and wi contain the real and imaginary parts, respectively, of the
computed eigenvalues. Complex conjugate pairs of eigenvalues appear
consecutively with the eigenvalue having the positive imaginary part
first.

vl (output)

If leftEV=true, the left eigenvectors uj are stored one after ano-
ther in the columns of vl, in the same order as their eigenvalues. If
leftEV=false, then vl is not referenced.
If the j-th eigenvalue is real, then uj is stored in the j-th column of vl.
If the j-th and (j + 1)-th eigenvalues form a complex conjugate pair,
then

uj = vl(_,j) + i * vl(_,j+1)

and
uj+1 = vl(_,j) - i * vl(_,j+1)

vr (output)
If rightEV=true, the left eigenvectors uj are stored one after ano-
ther in the columns of vr, in the same order as their eigenvalues. If
rightEV=false, then vr is not referenced.
If the j-th eigenvalue is real, then uj is stored in the j-th column of vr.
If the j-th and (j + 1)-th eigenvalues form a complex conjugate pair,
then

uj = vr(_,j) + i * vr(_,j+1)

and
uj+1 = vr(_,j) - i * vr(_,j+1)

Returns

i = 0 successful exit
i > 0 the QR algorithm failed to compute all the eigenvalues, and no eigen-

vectors have been computed; elements i+ 1 to N of wr and wi contain
eigenvalues which have converged.

ev (geev,complex)

compute for an N × N complex non-symmetric matrix A, the eigenvalues and,
optionally, the left and/or right eigenvectors

Synopsis

template <typename MA, typename W, typename VL, typename VR>
int
ev(bool leftEv, bool rightEv,

GeMatrix<MA> &A, DenseVector<W> &w, GeMatrix<VL> &vl, GeMatrix<VR> &vr);

Purpose

ev computes for an N ×N complex non-symmetric matrix A, the eigenvalues and,
optionally, the left and/or right eigenvectors. The right eigenvector vj of A satisfies

Avj = λjvj

where λj is its eigenvalue.
The left eigenvector uj of A satisfies

uH
j A = λju

H
j

where uH
j denotes the conjugate transpose of uj.

The computed eigenvectors are normalized to have Euclidean norm equal to 1
and largest component real.

Arguments

leftEV (input)
specifies whether left eigenvectors of A are computed.

rightEV (input)
specifies whether right eigenvectors of A are computed.

A (input/output)
On entry, the N ×N matrix A.
On exit, A has been overwritten.

w (output)
contains the computed eigenvalues.

vl (output)
If leftEV=true, the left eigenvectors uj are stored one after ano-
ther in the columns of vl, in the same order as their eigenvalues. If
leftEV=false, then vl is not referenced.

vr (output)
If rightEV=true, the left eigenvectors uj are stored one after ano-
ther in the columns of vr, in the same order as their eigenvalues. If
rightEV=false, then vr is not referenced.

Returns

i = 0 successful exit
i > 0 the QR algorithm failed to compute all the eigenvalues, and no eigen-

vectors have been computed; elements i+ 1 to N of wr and wi contain
eigenvalues which have converged.

ev (syev)

compute all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A

Synopsis

template <typename MA, typename VW>
int
ev(bool compEV, SyMatrix<MA> &A, DenseVector<VW> &w);

Purpose

ev computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix
A.

Arguments

compEV (input)
specifies whether eigenvectors of A are computed.

A (input/output)
On entry, the symmetric matrix A.
On successful exit and if compEV=true, then the underlying full storage
scheme of A contains the orthonormal eigenvectors of the matrix A.
If compEV=false, then on exit the referenced triangle of the underlying
full storage scheme is destroyed.

w (output)
On successful exit, the eigenvalues in ascending order.

Returns

i = 0 successful exit
i > 0 the algorithm failed to converge; i off-diagonal elements of an interme-

diate tridiagonal form did not converge to zero.

ev (sbev)

compute all the eigenvalues and, optionally, eigenvectors of a real symmetric band
matrix A

Synopsis

template <typename MA, typename VW, typename MZ>
int
ev(bool compEV, SbMatrix<MA> &A, DenseVector<VW> &w, GeMatrix<MZ> &Z);

Purpose

ev computes all the eigenvalues and, optionally, eigenvectors of a real symmetric
band matrix A.

Arguments

compEV (input)
specifies whether eigenvectors of A are computed.

A (input/output)
On entry, the symmetric band matrix A.
On exit, A is overwritten by values generated during the reduction to
tridiagonal form.

w (output)
On successful exit, the eigenvalues in ascending order.

Z If compEV=true, then on successful exit, Z contains the
orthonormal eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with w(i).
If compEV=false, then Z is not referenced.

Returns

i = 0 successful exit
i > 0 the algorithm failed to converge; i off-diagonal elements of an interme-

diate tridiagonal form did not converge to zero.

ev (spev)

compute all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix
in packed storage

Synopsis

template <typename MA, typename VW, typename MZ>
int
ev(bool compEV, SpMatrix<MA> &A, DenseVector<VW> &w, GeMatrix<MZ> &Z);

Purpose

ev computes all the eigenvalues and, optionally, eigenvectors of a real symmetric
matrix in packed storage.

Arguments

compEV (input)
specifies whether eigenvectors of A are computed.

A (input/output)
On entry, the symmetric matrix A in packed storage format.
On exit, A is overwritten by values generated during the reduction to
tridiagonal form.

w (output)
On successful exit, the eigenvalues in ascending order.

Z If compEV=true, then on successful exit, Z contains the
orthonormal eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with w(i).
If compEV=false, then Z is not referenced.

Returns

i = 0 successful exit
i > 0 the algorithm failed to converge; i off-diagonal elements of an interme-

diate tridiagonal form did not converge to zero.

ev (heev)

compute all eigenvalues and, optionally, eigenvectors of a complex Hermitian ma-
trix A

Synopsis

template <typename MA, typename VW>
int
ev(bool compEV, HeMatrix<MA> &A, DenseVector<VW> &w);

Purpose

ev computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian
matrix A.

Arguments

compEV (input)
specifies whether eigenvectors of A are computed.

A (input/output)
On entry, the Hermitian matrix A.
On successful exit and if compEV=true, A contains the orthonormal
eigenvectors of the matrix A. If compEV=false, then on exit the refe-
renced triangle of the underlying full storage scheme is destroyed.

w (output)
On successful exit, the eigenvalues in ascending order.

Returns

i = 0 successful exit
i > 0 the algorithm failed to converge; i off-diagonal elements of an interme-

diate tridiagonal form did not converge to zero.

ev (hbev)

compute all the eigenvalues and, optionally, eigenvectors of a complex Hermitian
band matrix A

Synopsis

template <typename MA, typename VW, typename MZ>
int
ev(bool compEV, HbMatrix<MA> &A, DenseVector<VW> &w, GeMatrix<MZ> &Z);

Purpose

ev computes all the eigenvalues and, optionally, eigenvectors of a complex Hermi-
tian band matrix A.

Arguments

compEV (input)
specifies whether eigenvectors of A are computed.

A (input/output)
On entry, the Hermitian band matrix A.
On exit, A is overwritten by values generated during the reduction to
tridiagonal form.

w (output)
On successful exit, the eigenvalues in ascending order.

Z If compEV=true, then on successful exit, Z contains the
orthonormal eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with w(i).
If compEV=false, then Z is not referenced.

Returns

i = 0 successful exit
i > 0 the algorithm failed to converge; i off-diagonal elements of an interme-

diate tridiagonal form did not converge to zero.

ev (hpev)

compute all the eigenvalues and, optionally, eigenvectors of a complex Hermitian
matrix in packed storage

Synopsis

template <typename MA, typename VW, typename MZ>
int
ev(bool compEV, HpMatrix<MA> &A, DenseVector<VW> &w, GeMatrix<MZ> &Z);

Purpose

ev computes all the eigenvalues and, optionally, eigenvectors of a complex Hermi-
tian matrix in packed storage.

Arguments

compEV (input)
specifies whether eigenvectors of A are computed.

A (input/output)
On entry, the Hermitian matrix A in packed storage format.
On exit, A is overwritten by values generated during the reduction to
tridiagonal form.

w (output)
On successful exit, the eigenvalues in ascending order.

Z If compEV=true, then on successful exit, Z contains the
orthonormal eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with w(i).
If compEV=false, then Z is not referenced.

Returns

i = 0 successful exit
i > 0 the algorithm failed to converge; i off-diagonal elements of an interme-

diate tridiagonal form did not converge to zero.

svd (gesvd)

compute the singular value decomposition (SVD) of a complex or real M × N
matrix A, optionally computing the left and/or right singular vectors

Synopsis

template <typename MA, typename VS, typename VU, typename VVT>
int
svd(SVectorsJob jobu, SVectorsJob jobvt, GeMatrix<MA> &A,

DenseVector<VS> &S, GeMatrix<VU> &U, GeMatrix<VVT> &VT);

/* calls: svd(All,All,A,s,U,V) */
template <typename MA, typename VS, typename MU, typename MV>

int
svd(GeMatrix<MA> &A, DenseVector<VS> &s, GeMatrix<MU> &U, GeMatrix<MV> &VT);

Purpose

svd computes the singular value decomposition (SVD) of a real (or complex) M×N
matrix A, optionally computing the left and/or right singular vectors. The SVD
is written

A = UΣV T (or A = UΣV H)

where Σ is an M × N matrix which is zero except for its min{m,n} diagonal
elements, U is an M × N orthogonal (or unitary) matrix, and V is an N × N
orthogonal (or unitary) matrix. The diagonal elements of Σ are the singular values
of A; they are real and non-negative, and are returned in descending order. The
first min{m,n} columns of U and V are the left and right singular vectors of A.
Note that the routine returns V T (or V H), not V .

Arguments

jobu Specifies options for computing all or part of the matrix U :
jobu = All all M columns of U are returned in matrix U

jobu = SmallDim the first min{m,n} columns of U (the left sin-
gular vectors) are returned in the matrix U

jobu = Overwrite the first min{m,n} columns of U (the left sin-
gular vectors) are overwritten on the matrix A

jobu = None no columns of U (no left singular vectors) are
computed

jobvt Specifies options for computing all or part of the matrix V T (or V H):

jobu = All all N rows of V T (or V H) are returned in matrix
VT

jobu = SmallDim the first min{m,n} rows of V T (or V H) (the
right singular vectors) are returned in the ma-
trix VT

jobu = Overwrite the first min{m,n} rows of V T (or V H) (the
right singular vectors) are overwritten on the
matrix A

jobu = None no rows of V T (or V H) (no right singular vec-
tors) are computed

Note: jobu and jobvt can not both be set to be Overwrite.
A (input/output)

On entry, the M ×N matrix A.
On exit, if jobu = Overwrite, A is overwritten with the first
min{m,n} columns of U (the left singular vectors, stored columnwise);
if jobvt = Overwrite, A is overwritten with the first min{m,n} rows
of V T (or V H) (the right singular vectors, stored rowwise); if jobu 6=
Overwrite and jobu 6= Overwrite, the contents of A are destroyed.

S (output)
The singular values of A, sorted so that S(i) ≥ S(i+ 1).

U (output)
If jobu = All, U contains the M ×M orthogonal (or unitary) matrix
U ; if jobu = SmallDim, U contains the first min{m,n} columns of U
(the left singular vectors, stored columnwise); if jobu = None, then U

is not referenced.
VT (output)

If jobvt = All, VT contains the N ×N orthogonal (or unitary) matrix
V T (or V H); if jobu = SmallDim, VT contains the first min{m,n} rows
of V T (or V H) (the right singular vectors, stored rowwise); if jobu =

None, then VT is not referenced.

Returns

i = 0 successful exit
i > 0 the algorithm failed to converge; i specifies how many superdiagonals

of an intermediate bidiagonal form B did not converge to zero.

