trf (getrf)

compute an LU factorization of a general $M\times N$ matrix A using partial pivoting with row interchanges

Synopsis

```
template <typename FS>
    int
    trf(GeMatrix<FS> &A, DenseVector<Array<int> > &P);
```

Purpose

computes an LU factorization of a general $M \times N$ matrix A using partial pivoting with row interchanges. The factorization has the form A = PLU where P is a permutation matrix, L is lower triangular with unit diagonal elements (lower trapezoidal if m > n), and U is upper triangular (upper trapezoidal if m < n).

Arguments

А	(input/output) On entry, the $M \times N$ matrix to be factored. On exit, the factors L and U from the factorization $A = PLU$; the unit diagonal elements of L
Ρ	are not stored. (output) The pivot indices; for $1 \le i \le \min\{M, N\}$, row <i>i</i> of the matrix was interchanged with row $P(i)$.

Returns

i > 0 then U(i, i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.

tri (getri)

compute the inverse of a matrix using the LU factorization computed by trf

Synopsis

```
template <typename FS>
    int
    tri(GeMatrix<FS> &A, DenseVector<Array<int> > &P);
```

Purpose

tri computes the inverse of a matrix using the LU factorization computed by trf. This function inverts U and then computes A^{-1} by solving the system $A^{-1} * L = U^{-1}$ for A^{-1} .

Arguments

A	(input/output) On entry, the factors L and U from the factorization $A = PLU$ as computed by trf. On successful exit, the inverse of the original matrix A.
Ρ	(input) The pivot indices from trf; for $1 \leq i \leq N$, row <i>i</i> of the matrix was interchanged with row $P(i)$.

Returns

i = 0	successful exit
i > 0	then $U(i, i)$ is exactly zero; the matrix is singular and its inverse could
	not be computed.

trf (gbtrf)

compute an LU factorization of a real $M\times N$ band matrix A using partial pivoting with row interchanges

Synopsis

```
template <typename BS>
    int
    trf(GbMatrix<BS> &A, DenseVector<Array<int> > &P);
```

Purpose

trf computes an LU factorization of a real $M \times N$ band matrix A using partial pivoting with row interchanges. This is the blocked version of the algorithm, calling Level 3 BLAS.

Arguments

A	(input/output) On entry, the matrix A in band storage and on exit overwritten with the LU factorization. Matrix A is required to have a total of k_l subdiagonals and $k_l + k_u$ superdiagonals where on entry only the elements within the k_l subdiagonals and k_u superdiagonals need to be set (See Further Details).
Ρ	(input) The pivot indices; for $1 \le i \le N$, row <i>i</i> of the matrix was interchanged with row $P(i)$.

Returns

i > 0 then U(i, i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.

Further Details

Assume non-zero elements of A reside within a band of k_l subdiagonals and k_u superdiagonals. Then storing its LU factorization requires a band of k_l subdiagonals and $k_l + k_u$ superdiagonals. Hence, the GbMatrix holding the matrix A needs to have k_l subdiagonals and $k_l + k_u$ superdiagonals allocated; but only the elements within its k_l subdiagonals and k_u superdiagonals must be set.

If, for example, A is a tridiagonal matrix (i.e. $k_l = k_u = 1$), then matrix U will have in general two super-diagonals. This requires the GbMatrix storing A has

allocated an additional superdiagonal (as indicated by '*'):

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & * & 0 & 0 \\ a_{2,1} & a_{2,2} & a_{2,3} & * & 0 \\ 0 & a_{3,2} & a_{3,3} & a_{3,4} & * \\ 0 & 0 & a_{4,3} & a_{4,4} & a_{4,5} \\ 0 & 0 & 0 & a_{5,4} & a_{5,5} \end{pmatrix} \quad \rightsquigarrow \quad A_{LU} = \begin{pmatrix} u_{1,1} & u_{1,2} & u_{1,3} & 0 & 0 \\ m_{2,1} & u_{2,2} & u_{2,3} & u_{2,4} & 0 \\ 0 & m_{3,2} & u_{3,3} & u_{3,4} & u_{3,5} \\ 0 & 0 & m_{4,3} & u_{4,4} & u_{4,5} \\ 0 & 0 & 0 & m_{5,4} & u_{5,5} \end{pmatrix}.$$

Elements of L are stored (in general rearranged due to pivoting) on the sub-diagonal of A_{LU} .

trs (getrs)

solve a system of linear equations AX = B or $A^TX = B$ with a general $N \times N$ matrix A using the LU factorization computed by trf

Synopsis

```
template <typename MA, typename MB>
    int
    trs(Transpose trans, const GeMatrix<MA> &A,
        const DenseVector<Array<int> > &P, GeMatrix<MB> &B);
template <typename MA, typename VB>
    int
    trs(Transpose trans, const GeMatrix<MA> &A,
        const DenseVector<Array<int> > &P,
        DenseVector<VB> &B);
```

Purpose

trs solves a system of linear equations AX = B or $A^TX = B$ with a general $N \times N$ matrix A using the LU factorization computed by trf.

Arguments

trans	(input)
	Specifies the form of the system of equations:
	trans = NoTrans $AX = B$ (No transpose)
	trans = Trans $A^T X = B$ (Transpose)
	trans = ConjTrans $A^H X = B$ (Conjugate transpose = Transpose)
А	(input)
	The factors L and U from the factorization $A = PLU$ as computed by
	trf.
Р	(input)
	The pivot indices from trf; for $1 \leq i \leq N$, row i of the matrix was
	interchanged with row $P(i)$.
В	(input/output)
	On entry, the right hand side matrix B. On exit, the solution matrix
	<i>X</i> .

Returns

trs (gbtrs)

solve a system of linear equations AX = B or $A^TX = B$ with a general band matrix A using the LU factorization computed by trf

Synopsis

```
template <typename MA, typename MB>
    int
    trs(Transpose trans, const GbMatrix<MA> &LU,
        const DenseVector<Array<int> > &P, GeMatrix<MB> &B);
template <typename MA, typename VB>
    int
    trs(Transpose trans, const GbMatrix<MA> &LU,
        const DenseVector<Array<int> > &P,
        DenseVector<VB> &B);
```

Purpose

trs solves a system of linear equations AX = B or $A^TX = B$ with a general band matrix A using the LU factorization computed by trf.

Arguments

trans	(input) Specifies the form of the system of equations:
	trans = NoTrans $AX = B$ (No transpose)
	trans = Trans $A^T X = B$ (Transpose)
	trans = ConjTrans $A^H X = B$ (Conjugate transpose = Transpose)
А	(input)
	Details of the LU factorization of the band matrix A , as computed by
	trf. U is stored as an upper triangular band matrix in the diagonal and
	the $k_l + k_u$ superdiagonals of A; the multipliers (i.e. the elements of L
	rearranged due to pivoting) used during the factorization are stored in
	the k_l subdiagonals of A .
Р	(input)
	The pivot indices from trf; for $1 \leq i \leq N$, row i of the matrix was
	interchanged with row $P(i)$.
В	(input/output)
	On entry, the right hand side matrix B . On exit, the solution matrix
	Χ.

Returns

sv (gesv)

compute the solution to a real system of linear equations AX = B

Synopsis

```
template <typename MA, typename MB>
    int
    sv(GeMatrix<MA> &A, DenseVector<Array<int> > &P, GeMatrix<MB> &B);
template <typename MA, typename VB>
    int
    sv(GeMatrix<MA> &A, DenseVector<Array<int> > &P, DenseVector<VB> &B);
```

Purpose

computes the solution to a real or complex system of linear equations AX = B, where A is an $N \times N$ matrix and X and B are $N \times R$ matrices.

The LU decomposition with partial pivoting and row interchanges is used to factor A as

$$A = PLU,$$

where P is a permutation matrix, L is unit lower triangular, and U is upper triangular. The factored form of A is then used to solve the system of equations AX = B.

Arguments

А	(input/output)
	On entry, the $N \times N$ coefficient matrix A. On exit, the factors L and U
	from the factorization $A = PLU$; the unit diagonal elements of L are
	not stored.
Р	(output)
	The pivot indices; for $1 \leq i \leq \min\{M, N\}$, row <i>i</i> of the matrix was
	interchanged with row $P(i)$.
В	(input/output)
	On entry, the $N \times R$ matrix of right hand side matrix B. On exit, if
	function returned 0, the $N \times R$ solution matrix X.

Returns

i = 0 successful exit

i > 0 then U(i, i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, so the solution could not be computed.

sv (gbsv)

compute the solution to a real system of linear equations AX = B, where A is a band matrix of order N with k_l subdiagonals and k_u superdiagonals, and X and B are $N \times R$ matrices

Synopsis

```
template <typename MA, typename MB>
    int
    sv(GbMatrix<MA> &A, DenseVector<Array<int> > &P, GeMatrix<MB> &B);
template <typename MA, typename VB>
    int
    sv(GbMatrix<MA> &A, DenseVector<Array<int> > &P, DenseVector<VB> &B);
```

Purpose

sv computes the solution to a real system of linear equations AX = B, where A is a band matrix of order N with k_l subdiagonals and k_u superdiagonals, and X and B are $N \times R$ matrices. The LU decomposition with partial pivoting and row interchanges is used to factor A as A = LU, where L is a product of permutation and unit lower triangular matrices with k_l subdiagonals, and U is upper triangular with $k_l + k_u$ superdiagonals. The factored form of A is then used to solve the system of equations AX = B.

Arguments

A	(input/output)
	On entry, the matrix A in band storage and on exit overwritten with the
	LU factorization. Matrix A is required to have a total of k_l subdiagonals
	and $k_l + k_u$ superdiagonals where on entry only the elements within
	the k_l subdiagonals and k_u superdiagonals need to be set (See Further
	Details).
Р	(input)
	The pivot indices; for $1 \le i \le N$, row <i>i</i> of the matrix was interchanged
	with row $P(i)$.
В	(input/output)
	On entry, the right hand side matrix B . On exit, the solution matrix
	X.

Returns

i > 0 then U(i, i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.

Further Details

Assume non-zero elements of A reside within a band of k_l subdiagonals and k_u superdiagonals. Then storing its LU factorization requires a band of k_l subdiagonals and $k_l + k_u$ superdiagonals. Hence, the GbMatrix holding the matrix A needs to have k_l subdiagonals and $k_l + k_u$ superdiagonals allocated; but only the elements within its k_l subdiagonals and k_u superdiagonals must be set.

If, for example, A is a tridiagonal matrix (i.e. $k_l = k_u = 1$), then matrix U will have in general two super-diagonals. This requires the GbMatrix storing A has allocated an additional superdiagonal (as indicated by '*'):

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & * & 0 & 0 \\ a_{2,1} & a_{2,2} & a_{2,3} & * & 0 \\ 0 & a_{3,2} & a_{3,3} & a_{3,4} & * \\ 0 & 0 & a_{4,3} & a_{4,4} & a_{4,5} \\ 0 & 0 & 0 & a_{5,4} & a_{5,5} \end{pmatrix} \quad \rightsquigarrow \quad A_{LU} = \begin{pmatrix} u_{1,1} & u_{1,2} & u_{1,3} & 0 & 0 \\ m_{2,1} & u_{2,2} & u_{2,3} & u_{2,4} & 0 \\ 0 & m_{3,2} & u_{3,3} & u_{3,4} & u_{3,5} \\ 0 & 0 & m_{4,3} & u_{4,4} & u_{4,5} \\ 0 & 0 & 0 & m_{5,4} & u_{5,5} \end{pmatrix}$$

Elements of L are stored (in general rearranged due to pivoting) on the subdiagonal of A_{LU} .

trs (trtrs)

solve a triangular system of the form AX = B or $A^T X = B$

Synopsis

```
template <typename MA, typename MB>
    int
    trs(Transpose trans, const TrMatrix<MA> &A, GeMatrix<MB> &B);
template <typename MA, typename VB>
    int
    trs(Transpose trans, const TrMatrix<MA> &A, DenseVector<VB> &B);
```

Purpose

trs solves a triangular system of the form AX = B or $A^TX = B$, where A is a triangular matrix of order N, and B is an $N \times R$ matrix. A check is made to verify that A is nonsingular.

Arguments

trans	(input)
	Specifies the form of the system of equations:
	trans = NoTrans $AX = B$ (No transpose)
	trans = Trans $A^T X = B$ (Transpose)
	trans = ConjTrans $A^H X = B$ (Conjugate transpose = Transpose)
А	(input)
	The (unit or non-unit) triangular matrix A.
В	(input/output)
	On entry, the $N \times R$ matrix of right hand side matrix B. On exit, if
	function returned 0, the $N \times R$ solution matrix X.

Returns

i = 0 successful exit

i > 0 then A(i, i) is zero, indicating that the matrix is singular and the solutions X have not been computed.

qrf (geqrf)

compute a QR factorization of a real $M\times N$ matrix A

Synopsis

```
template <typename MA, typename VT>
    int
    qrf(GeMatrix<MA> &A, DenseVector<VT> &tau);
```

Purpose

qrf computes a QR factorization of a real $M \times N$ matrix A:

$$A = QR$$
.

Arguments

А	(input/output)
	On entry, the $M \times N$ matrix A. On exit, the elements on and above the
	diagonal of the array contain the $\min\{M, N\} \times N$ upper trapezoidal
	matrix R (R is upper triangular if $m \ge n$); the elements below the
	diagonal, with the array tau, represent the orthogonal matrix Q as a
	product of $\min\{m, n\}$ elementary reflectors (see Further Details).
tau	(output)
	The scalar factors τ of the elementary reflectors (see Further Details).

Returns

i = 0 successful exit

Further Details

The matrix Q is represented as a product of elementary reflectors

$$Q = H_1 H_2 \cdots H_k, \text{ where } k = \min\{m, n\}.$$

Each H_i has the form

$$H_i = I - \tau * v * v'$$

where τ is a real scalar, and v is a real vector with $v_1 = \ldots v_{i-1} = 0$ and $v_i = 1$; (v_{i+1}, \ldots, v_m) is stored on exit in A(i+1,i), ..., A(m,i) and τ in tau(i).

orgqr (orgqr)

generate an $M \times N$ real matrix Q with orthonormal columns

Synopsis

```
template <typename MA, typename VT>
    int
    orgqr(GeMatrix<MA> &A, const DenseVector<VT> &tau);
```

Purpose

orgqr generates an $M \times N$ real matrix Q with orthonormal columns, which is defined as the first N columns of a product of k elementary reflectors of order M

$$Q = H_1 H_2 \cdot \dots \cdot H_k$$

as returned by **qrf**.

Arguments

А	(input/output)
	On entry, the i -th column must contain the vector which defines the
	elementary reflector H_i , for $i = 1, 2,, k$, as returned by qrf in the
	first k columns of its matrix argument A. On exit, the $M \times N$ matrix
	Q.
tau	(input)
	TAU(i) must contain the scalar factor of the elementary reflector H_i ,
	as returned by qrf.

Returns

ormqr (ormqr)

Synopsis

```
template <typename MA, typename VT, typename MC>
    int
    ormqr(BlasSide side, Transpose trans,
        const GeMatrix<MA> &A, const DenseVector<VT> &tau,
        GeMatrix<MC> &C);
```

Purpose

ormqr overwrites the general real $M \times N$ matrix C as follows:

$$C \leftarrow \begin{cases} QC & \text{if side=Left and trans=NoTrans} \\ Q^TC & \text{if side=Left and trans=Trans} \\ CQ & \text{if side=Right and trans=NoTrans} \\ CQ^T & \text{if side=Right and trans=Trans} \end{cases}$$

where Q is a real orthogonal matrix defined as the product of k elementary reflectors

$$Q = H_1 H_2 \cdot \dots \cdot H_k$$

as returned by qrf. Q is of order M if side=Left and of order N if side=Right.

Arguments

side	(input) side = Left apply Q or Q^T from left side = Right apply Q or Q^T from right
trans	(input)
	trans=NoTrans No transpose, apply Q
	trans=Trans Transpose, apply Q^T
А	(input)
	On entry, the <i>i</i> -th column must contain the vector which defines the
	elementary reflector H_i , for $i = 1, 2, \ldots, k$, as returned by qrf in the
	first k columns of its matrix argument A . A is modified by the routine
	but restored on exit.
tau	(input)
	TAU(i) must contain the scalar factor of the elementary reflector H_i ,
	as returned by qrf.
С	(input/output)
	On entry, the $M \times N$ matrix C.
	On exit, C is overwritten by QC or Q^TC or CQ^T or CQ .

Returns

ls (gels)

solve overdetermined or under determined real linear systems involving an $M\times N$ matrix A, or its transpose, using a QR or LQ factorization of A

Synopsis

template <typename MA, typename MB>
 int
 ls(Transpose trans, GeMatrix<MA> &A, GeMatrix<MB> &B);

Purpose

Is solves overdetermined or underdetermined real linear systems involving an $M \times N$ matrix A, or its transpose, using a QR or LQ factorization of A. It is assumed that A has full rank. The following options are provided:

1. If trans = NoTrans and $M \ge N$: find the least squares solution of an overdetermined system, i. e. , solve the least squares problem

$$||B - AX|| \to \min.$$

- 2. If trans = NoTrans and M < N: find the minimum norm solution of an underdetermined system AX = B.
- 3. If trans = Trans and $M \ge N$: find the minimum norm solution of an undetermined system $A^T X = B$.
- 4. If trans = Trans and M < N: find the least squares solution of an overdetermined system, i.e., solve the least squares problem

$$||B - A^T * X|| \to \min.$$

Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the $M \times R$ right hand side matrix B and the $N \times R$ solution matrix X.

Arguments

trans	(input)
	trans = NoTrans the linear system involves A ;
	trans = Trans the linear system involves A^T .
А	(input/output)
	On entry, the $M \times N$ matrix A. On exit, if $M \ge N$, A is overwritten
	by details of its QR factorization as returned by qrf; if $M < N$, A is
	overwritten by details of its LQ factorization as returned by lqf.

(input/output)

On entry, the matrix B of right hand side vectors, stored column-wise; B is $M \times R$ if trans=NoTrans, or $N \times R$ if trans=Trans.

On exit, B is overwritten by the solution vectors, stored column-wise:

- 1. if trans=NoTrans and $M \ge N$, rows 1 to N of B contain the least squares solution vectors; the residual sum of squares for the solution in each column is given by the sum of squares of elements N + 1 to M in that column;
- 2. if trans=NoTrans and M < N, rows 1 to N of B contain the minimum norm solution vectors;
- 3. if trans=Trans and $M \ge N$, rows 1 to M of B contain the minimum norm solution vectors;
- 4. if trans=Trans and M < N, rows 1 to M of B contain the least squares solution vectors; the residual sum of squares for the solution in each column is given by the sum of squares of elements M + 1 to N in that column.

Returns

lss (gelss)

compute the minimum norm solution to a real linear least squares problem using a singular value decomposition (SVD)

Synopsis

```
template <typename MA, typename MB>
    int
    lss(GeMatrix<MA> &A, GeMatrix<MB> &B);
```

Purpose

lss computes the minimum norm solution to a real linear least squares problem:

$$||b - Ax||_2 \to \min$$

using the singular value decomposition (SVD) of A. A is an $M \times N$ matrix which may be rank-deficient.

Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the $M \times R$ right hand side matrix B and the $N \times R$ solution matrix X.

The effective rank of A is determined by treating as zero those singular values which are less than RCOND times the largest singular value.

Arguments

А	(input/output)
	On entry, the $M \times N$ matrix A. On exit, the first min $\{m, n\}$ rows of A
	are overwritten with its right singular vectors, stored row-wise.
В	(input/output)
	On entry, the $M \times R$ right hand side matrix B .
	On exit, B is overwritten by the $N \times R$ solution matrix X. If $M \ge N$
	and $\operatorname{rank}(A) = N$, the residual sum-of-squares for the solution in the
	<i>i</i> -th column is given by the sum of squares of elements $B_{N+1,i}, \ldots, B_{M,i}$.

Returns

i = 0	successful exit
i > 0	the algorithm for computing the SVD failed to converge; more precise-
	ly, i off-diagonal elements of an intermediate bi-diagonal form did not
	converge to zero.

To-do

- 1. Provide a version of lss for a single right-hand side, i. e. handle the case where B would be a $M \times 1$ matrix (as was done for sv).
- 2. In this form the wrapper for gelss suppresses some of the output computed by its underlying LAPACK routine (e.g. the singular values).

ev (geev,real)

compute for an $N \times N$ real non-symmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors

Synopsis

```
template <typename MA, typename WR, typename WI, typename VL, typename VR>
    int
    ev(bool leftEV, bool rightEV,
        GeMatrix<MA> &A, DenseVector<WR> &wr, DenseVector<WI> &wi,
        GeMatrix<VL> &vl, GeMatrix<VR> &vr);
```

Purpose

ev computes for an $N \times N$ real non-symmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors. The right eigenvector v_j of A satisfies

$$Av_j = \lambda_j v_j$$

where λ_j is its eigenvalue.

The left eigenvector u_j of A satisfies

$$u_j^H A = \lambda_j u_j^H$$

where u_j^H denotes the conjugate transpose of u_j .

The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.

Arguments

leftEV	(input)
	specifies whether left eigenvectors of A are computed.
rightEV	(input)
	specifies whether right eigenvectors of A are computed.
А	(input/output)
	On entry, the $N \times N$ matrix A.
	On exit, A has been overwritten.
wr,wi	(output)
	wr and wi contain the real and imaginary parts, respectively, of the
	computed eigenvalues. Complex conjugate pairs of eigenvalues appear
	consecutively with the eigenvalue having the positive imaginary part
	first.
vl	(output)

If leftEV=true, the left eigenvectors u_j are stored one after another in the columns of vl, in the same order as their eigenvalues. If leftEV=false, then vl is not referenced.

If the *j*-th eigenvalue is real, then u_j is stored in the *j*-th column of vl. If the *j*-th and (j + 1)-th eigenvalues form a complex conjugate pair, then

$$u_j = vl(_,j) + i * vl(_,j+1)$$

and

$$u_{j+1} = vl(_,j) - i * vl(_,j+1)$$

(output)

If rightEV=true, the left eigenvectors u_j are stored one after another in the columns of vr, in the same order as their eigenvalues. If rightEV=false, then vr is not referenced.

If the *j*-th eigenvalue is real, then u_j is stored in the *j*-th column of vr. If the *j*-th and (j + 1)-th eigenvalues form a complex conjugate pair, then

$$u_j = vr(,j) + i * vr(,j+1)$$

and

$$u_{j+1} = vr(,j) - i * vr(,j+1)$$

Returns

vr

- i = 0 successful exit
- i > 0 the QR algorithm failed to compute all the eigenvalues, and no eigenvectors have been computed; elements i + 1 to N of wr and wi contain eigenvalues which have converged.

ev (geev,complex)

compute for an $N \times N$ complex non-symmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors

Synopsis

template <typename MA, typename W, typename VL, typename VR>
 int
 ev(bool leftEv, bool rightEv,
 GeMatrix<MA> &A, DenseVector<W> &w, GeMatrix<VL> &vl, GeMatrix<VR> &vr);

Purpose

ev computes for an $N \times N$ complex non-symmetric matrix A, the eigenvalues and, optionally, the left and/or right eigenvectors. The right eigenvector v_j of A satisfies

$$Av_j = \lambda_j v_j$$

where λ_j is its eigenvalue.

The left eigenvector u_j of A satisfies

$$u_j^H A = \lambda_j u_j^H$$

where u_j^H denotes the conjugate transpose of u_j .

The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component real.

Arguments

leftEV	(input)
	specifies whether left eigenvectors of A are computed.
rightEV	(input)
	specifies whether right eigenvectors of A are computed.
А	(input/output)
	On entry, the $N \times N$ matrix A .
	On exit, A has been overwritten.
W	(output)
	contains the computed eigenvalues.
vl	(output)
	If leftEV=true, the left eigenvectors u_j are stored one after ano-
	ther in the columns of vl , in the same order as their eigenvalues. If
	leftEV=false, then vl is not referenced.
vr	(output)
	If rightEV=true, the left eigenvectors u_j are stored one after ano-
	ther in the columns of vr, in the same order as their eigenvalues. If
	rightEV=false, then vr is not referenced.

Returns

i > 0 the QR algorithm failed to compute all the eigenvalues, and no eigenvectors have been computed; elements i + 1 to N of wr and wi contain eigenvalues which have converged.

ev (syev)

compute all eigenvalues and, optionally, eigenvectors of a real symmetric matrix ${\cal A}$

Synopsis

```
template <typename MA, typename VW>
    int
    ev(bool compEV, SyMatrix<MA> &A, DenseVector<VW> &w);
```

Purpose

 ev computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix A.

Arguments

compEV	(input)
	specifies whether eigenvectors of A are computed.
А	(input/output)
	On entry, the symmetric matrix A .
	On successful exit and if compEV=true, then the underlying full storage
	scheme of A contains the orthonormal eigenvectors of the matrix A .
	If compEV=false, then on exit the referenced triangle of the underlying
	full storage scheme is destroyed.
W	(output)
	On successful exit, the eigenvalues in ascending order.

Returns

i = 0	successful exit
i > 0	the algorithm failed to converge; i off-diagonal elements of an interme-
	diate tridiagonal form did not converge to zero.

ev (sbev)

compute all the eigenvalues and, optionally, eigenvectors of a real symmetric band matrix ${\cal A}$

Synopsis

```
template <typename MA, typename VW, typename MZ>
    int
    ev(bool compEV, SbMatrix<MA> &A, DenseVector<VW> &w, GeMatrix<MZ> &Z);
```

Purpose

ev computes all the eigenvalues and, optionally, eigenvectors of a real symmetric band matrix A.

Arguments

compEV	(input)
	specifies whether eigenvectors of A are computed.
А	(input/output)
	On entry, the symmetric band matrix A .
	On exit, A is overwritten by values generated during the reduction to
	tridiagonal form.
W	(output)
	On successful exit, the eigenvalues in ascending order.
Z	If $compEV=true$, then on successful exit, Z contains the
	orthonormal eigenvectors of the matrix A , with the <i>i</i> -th column of Z
	holding the eigenvector associated with $w(i)$.
	If $compEV=false$, then Z is not referenced.

Returns

i	= 0	successful exit	
	~	Saccossiai ollic	

i > 0 the algorithm failed to converge; *i* off-diagonal elements of an intermediate tridiagonal form did not converge to zero.

ev (spev)

compute all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix in packed storage

Synopsis

```
template <typename MA, typename VW, typename MZ>
    int
    ev(bool compEV, SpMatrix<MA> &A, DenseVector<VW> &w, GeMatrix<MZ> &Z);
```

Purpose

ev computes all the eigenvalues and, optionally, eigenvectors of a real symmetric matrix in packed storage.

Arguments

compEV	(input)
	specifies whether eigenvectors of A are computed.
А	(input/output)
	On entry, the symmetric matrix A in packed storage format.
	On exit, A is overwritten by values generated during the reduction to
	tridiagonal form.
W	(output)
	On successful exit, the eigenvalues in ascending order.
Z	If $compEV=true$, then on successful exit, Z contains the
	orthonormal eigenvectors of the matrix A , with the <i>i</i> -th column of Z
	holding the eigenvector associated with $w(i)$.
	If $compEV=false$, then Z is not referenced.

Returns

i	= 0	successful exit	
	~	Saccossiai ollic	

i > 0 the algorithm failed to converge; *i* off-diagonal elements of an intermediate tridiagonal form did not converge to zero.

ev (heev)

compute all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix ${\cal A}$

Synopsis

```
template <typename MA, typename VW>
    int
    ev(bool compEV, HeMatrix<MA> &A, DenseVector<VW> &w);
```

Purpose

 ev computes all eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A.

Arguments

compEV	(input)
	specifies whether eigenvectors of A are computed.
А	(input/output)
	On entry, the Hermitian matrix A.
	On successful exit and if $compEV=true$, A contains the orthonormal
	eigenvectors of the matrix A. If compEV=false, then on exit the refe-
	renced triangle of the underlying full storage scheme is destroyed.
W	(output)
	On successful exit, the eigenvalues in ascending order.

Returns

i = 0	successful exit
i > 0	the algorithm failed to converge; i off-diagonal elements of an interme-
	diate tridiagonal form did not converge to zero.

ev (hbev)

compute all the eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix ${\cal A}$

Synopsis

```
template <typename MA, typename VW, typename MZ>
    int
    ev(bool compEV, HbMatrix<MA> &A, DenseVector<VW> &w, GeMatrix<MZ> &Z);
```

Purpose

ev computes all the eigenvalues and, optionally, eigenvectors of a complex Hermitian band matrix A.

Arguments

compEV	(input)
	specifies whether eigenvectors of A are computed.
А	(input/output)
	On entry, the Hermitian band matrix A .
	On exit, A is overwritten by values generated during the reduction to
	tridiagonal form.
W	(output)
	On successful exit, the eigenvalues in ascending order.
Z	If $compEV=true$, then on successful exit, Z contains the
	orthonormal eigenvectors of the matrix A , with the <i>i</i> -th column of Z
	holding the eigenvector associated with $w(i)$.
	If $compEV=false$, then Z is not referenced.

Returns

i	= 0	successful exit	
	~	Saccossiai ollic	

i > 0 the algorithm failed to converge; *i* off-diagonal elements of an intermediate tridiagonal form did not converge to zero.

ev (hpev)

compute all the eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix in packed storage

Synopsis

```
template <typename MA, typename VW, typename MZ>
    int
    ev(bool compEV, HpMatrix<MA> &A, DenseVector<VW> &w, GeMatrix<MZ> &Z);
```

Purpose

ev computes all the eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix in packed storage.

Arguments

compEV	(input)
	specifies whether eigenvectors of A are computed.
А	(input/output)
	On entry, the Hermitian matrix A in packed storage format.
	On exit, A is overwritten by values generated during the reduction to
	tridiagonal form.
W	(output)
	On successful exit, the eigenvalues in ascending order.
Z	If $compEV=true$, then on successful exit, Z contains the
	orthonormal eigenvectors of the matrix A , with the <i>i</i> -th column of Z
	holding the eigenvector associated with $w(i)$.
	If $compEV=false$, then Z is not referenced.

Returns

i	= 0	successful	exit
	*		

i > 0 the algorithm failed to converge; *i* off-diagonal elements of an intermediate tridiagonal form did not converge to zero.

svd (gesvd)

compute the singular value decomposition (SVD) of a complex or real $M \times N$ matrix A, optionally computing the left and/or right singular vectors

Synopsis

```
template <typename MA, typename VS, typename VU, typename VVT>
    int
    svd(SVectorsJob jobu, SVectorsJob jobvt, GeMatrix<MA> &A,
        DenseVector<VS> &S, GeMatrix<VU> &U, GeMatrix<VVT> &VT);
/* calls: svd(All,All,A,s,U,V) */
template <typename MA, typename VS, typename MU, typename MV>
    int
    svd(GeMatrix<MA> &A, DenseVector<VS> &s, GeMatrix<MU> &U, GeMatrix<MV> &VT);
```

Purpose

svd computes the singular value decomposition (SVD) of a real (or complex) $M \times N$ matrix A, optionally computing the left and/or right singular vectors. The SVD is written

$$A = U\Sigma V^T \quad (\text{or } A = U\Sigma V^H)$$

where Σ is an $M \times N$ matrix which is zero except for its min $\{m, n\}$ diagonal elements, U is an $M \times N$ orthogonal (or unitary) matrix, and V is an $N \times N$ orthogonal (or unitary) matrix. The diagonal elements of Σ are the singular values of A; they are real and non-negative, and are returned in descending order. The first min $\{m, n\}$ columns of U and V are the left and right singular vectors of A. **Note** that the routine returns V^T (or V^H), not V.

Arguments

jobu Specifies options for computing all or part of the matrix		omputing all or part of the matrix U :
-	jobu = All	all M columns of U are returned in matrix U
	jobu = SmallDim	the first $\min\{m, n\}$ columns of U (the left sin-
		gular vectors) are returned in the matrix U
	jobu = Overwrite	the first $\min\{m, n\}$ columns of U (the left sin-
		gular vectors) are overwritten on the matrix A
	jobu = None	no columns of U (no left singular vectors) are
		computed
jobvt	Specifies options for c	omputing all or part of the matrix V^T (or V^H):

	jobu = All	all N rows of V^T (or V^H) are returned in matrix
	U	VT
	jobu = SmallDim	the first $\min\{m, n\}$ rows of V^T (or V^H) (the right singular vectors) are returned in the matrix VT
	jobu = Overwrite	the first $\min\{m, n\}$ rows of V^T (or V^H) (the right singular vectors) are overwritten on the matrix A
	jobu = None	no rows of V^T (or V^H) (no right singular vectors) are computed
	Note: jobu and jobu	t can not both be set to be Overwrite.
А	(input/output)	
	On entry, the $M \times N$	
		Overwrite, A is overwritten with the first
		f U (the left singular vectors, stored columnwise);
	of V^T (or V^H) (the r	e, A is overwritten with the first $\min\{m, n\}$ rows ight singular vectors, stored rowwise); if jobu \neq
S	(output)	\neq Overwrite , the contents of A are destroyed.
0	(-)	f A, sorted so that $S(i) \ge S(i+1)$.
U	(output)	$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$
-	(-)	tains the $M \times M$ orthogonal (or unitary) matrix
	C	im, U contains the first $\min\{m, n\}$ columns of U
	(the left singular vect	ors, stored columnwise); if jobu = None, then U
	is not referenced.	
VT	(output)	
	V^T (or V^H); if jobu = of V^T (or V^H) (the r	ontains the $N \times N$ orthogonal (or unitary) matrix = SmallDim, VT contains the first min $\{m, n\}$ rows ight singular vectors, stored rowwise); if jobu =
	None, then VT is not r	ciciciiteu.

Returns

- i = 0 successful exit
- i > 0 the algorithm failed to converge; *i* specifies how many superdiagonals of an intermediate bidiagonal form *B* did not converge to zero.