1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
/*
 *             Automatically Tuned Linear Algebra Software v3.10.1
 *                   (C) Copyright 2000 Antoine P. Petitet
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *   1. Redistributions of source code must retain the above copyright
 *      notice, this list of conditions and the following disclaimer.
 *   2. Redistributions in binary form must reproduce the above copyright
 *      notice, this list of conditions, and the following disclaimer in the
 *      documentation and/or other materials provided with the distribution.
 *   3. The name of the ATLAS group or the names of its contributers may
 *      not be used to endorse or promote products derived from this
 *      software without specific written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ATLAS GROUP OR ITS CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 */
#include "atlas_misc.h"
#include "atlas_tst.h"

static void ATL_ladd
(
   int *                      J,
   int *                      K,
   int *                      I
)
{
/*
 * Purpose
 * =======
 *
 * ATL_ladd adds  without carry two long positive integers  K and J  an
 * put the result into I.  The long integers  I, J, K are encoded on 31
 * bits using an array of 2 integers.  The 16-lower bits  are stored  i
 * the  first  entry  of each array,  the 15-higher bits  in the second
 * entry.
 *
 * Arguments
 * =========
 *
 * J       (local input)                 int *
 *         On entry, J is an integer array of dimension 2 containing the
 *         encoded long integer J.
 *
 * K       (local input)                 int *
 *         On entry, K is an integer array of dimension 2 containing the
 *         encoded long integer K.
 *
 * I       (local output)                int *
 *         On entry, I is an integer array of dimension 2. On exit, this
 *         array contains the encoded long integer result.
 *
 * ---------------------------------------------------------------------
 */
   int                        itmp0 = K[0] + J[0], itmp1;
/*
 *    K[1] K[0] K  I[0]  = (K[0]+J[0]) % 2^16
 *    0XXX XXXX    carry = (K[0]+J[0]) / 2^16
 *
 * +  J[1] J[0] J  I[1] = K[1] + J[1] + carry
 *    0XXX XXXX    I[1] = I[1] % 2^15
 *    -------------
 *    I[1] I[0]
 *    0XXX XXXX I
 */
   itmp1 = itmp0 >> 16;         I[0] = itmp0 - ( itmp1 << 16 );
   itmp0 = itmp1 + K[1] + J[1]; I[1] = itmp0 - (( itmp0 >> 15 ) << 15);
}

static void ATL_lmul
(
   int *                      K,
   int *                      J,
   int *                      I
)
{
/*
 * Purpose
 * =======
 *
 * ATL_lmul multiplies  without carry two long positive integers K and J
 * and put the result into I.  The long integers  I, J, K are encoded on
 * 31 bits using an array of 2 integers. The 16-lower bits are stored in
 * the first entry of each array, the 15-higher bits in the second entry
 * of each array. For efficiency purposes, the  intrisic modulo function
 * is inlined.
 *
 * Arguments
 * =========
 *
 * K       (local input)                 int *
 *         On entry, K is an integer array of dimension 2 containing the
 *         encoded long integer K.
 *
 * J       (local input)                 int *
 *         On entry, J is an integer array of dimension 2 containing the
 *         encoded long integer J.
 *
 * I       (local output)                int *
 *         On entry, I is an integer array of dimension 2. On exit, this
 *         array contains the encoded long integer result.
 *
 * ---------------------------------------------------------------------
 */
   static int                 ipow30 = ( 1 << 30 );
   int                        kt, lt;
/*
 *    K[1] K[0] K  kt = K[0]*J[0]
 *    0XXX XXXX    if(kt < 0) kt += 2^31
 * x               I[0] = kt % 2^16
 *                 lt = K[0]*J[1] + K[1]*J[0]
 *    J[1] J[0] J  if(lt < 0) lt += 2^31
 *    0XXX XXXX    kt = (kt / 2^16) + lt
 * --------------  if(kt < 0) kt += 2^31
 *    I[1] I[0]    I[1] = kt % 2^15
 *    0XXX XXXX I
 */
   kt   = K[0] * J[0]; if( kt < 0 ) kt = ( kt + ipow30 ) + ipow30;
   I[0] = kt - ( ( kt >> 16 ) << 16 );
   lt   = K[0] * J[1] + K[1] * J[0];
   if( lt < 0 ) lt = ( lt + ipow30 ) + ipow30;
   kt = ( kt >> 16 ) + lt;
   if( kt < 0 ) kt = ( kt + ipow30 ) + ipow30;
   I[1] = kt - ( ( kt >> 15 ) << 15 );
}

static void ATL_setran
(
   const int                  OPTION,
   int *                      IRAN
)
{
/*
 * Purpose
 * =======
 *
 * ATL_setran initializes  the random generator with the encoding of the
 * first number X(0) in the sequence,  and the constants a and c used to
 * compute the next element in the sequence: X(n+1) = a*X(n) + c.  X(0),
 * a and c are stored in the static variables  irand, ias and ics.  When
 * OPTION is 0 (resp. 1 and 2),  irand  (resp. ia and ic)  is set to the
 * values of the input array IRAN.  When OPTION is 3, IRAN is set to the
 * current value of irand, and irand is then incremented.
 *
 * Arguments
 * =========
 *
 * OPTION  (local input)                 const int
 *         On entry, OPTION  is an integer that specifies the operations
 *         to be performed on the random generator as specified above.
 *
 * IRAN    (local input/output)          int *
 *         On entry,  IRAN is an array of dimension 2, that contains the
 *         16-lower and 15-higher bits of a random number.
 *
 * ---------------------------------------------------------------------
 */
   static int                 ias[2], ics[2], irand[2];
   int                        j[2];

   if(      OPTION == 3 )
   {                                       /* return current value */
      IRAN[0] = irand[0]; IRAN[1] = irand[1];
      ATL_lmul( irand, ias, j );         /* j     = irand * ias;   */
      ATL_ladd( j, ics, irand );         /* irand = j     + ics;   */
   }
   else if( OPTION == 0 ) { irand[0] = IRAN[0]; irand[1] = IRAN[1]; }
   else if( OPTION == 1 ) { ias  [0] = IRAN[0]; ias  [1] = IRAN[1]; }
   else if( OPTION == 2 ) { ics  [0] = IRAN[0]; ics  [1] = IRAN[1]; }
}

static void ATL_xjumpm
(
   const int                  JUMPM,
   int *                      MULT,
   int *                      IADD,
   int *                      IRANN,
   int *                      IRANM,
   int *                      IAM,
   int *                      ICM
)
{
/*
 * Purpose
 * =======
 *
 * ATL_xjumpm computes  the constants  A and C  to jump JUMPM numbers in
 * the random sequence: X(n+JUMPM) = A*X(n)+C.  The constants encoded in
 * MULT and IADD  specify  how to jump from one entry in the sequence to
 * the next.
 *
 * Arguments
 * =========
 *
 * JUMPM   (local input)                 const int
 *         On entry,  JUMPM  specifies  the  number  of entries  in  the
 *         sequence to jump over. When JUMPM is less or equal than zero,
 *         A and C are not computed, IRANM is set to IRANN corresponding
 *         to a jump of size zero.
 *
 * MULT    (local input)                 int *
 *         On entry, MULT is an array of dimension 2,  that contains the
 *         16-lower  and 15-higher bits of the constant  a  to jump from
 *         X(n) to X(n+1) = a*X(n) + c in the random sequence.
 *
 * IADD    (local input)                 int *
 *         On entry, IADD is an array of dimension 2,  that contains the
 *         16-lower  and 15-higher bits of the constant  c  to jump from
 *         X(n) to X(n+1) = a*X(n) + c in the random sequence.
 *
 * IRANN   (local input)                 int *
 *         On entry, IRANN is an array of dimension 2. that contains the
 *         16-lower and 15-higher bits of the encoding of X(n).
 *
 * IRANM   (local output)                int *
 *         On entry,  IRANM  is an array of dimension 2.   On exit, this
 *         array  contains respectively  the 16-lower and 15-higher bits
 *         of the encoding of X(n+JUMPM).
 *
 * IAM     (local output)                int *
 *         On entry, IAM is an array of dimension 2. On exit, when JUMPM
 *         is  greater  than  zero,  this  array  contains  the  encoded
 *         constant  A  to jump from  X(n) to  X(n+JUMPM)  in the random
 *         sequence. IAM(0:1)  contains  respectively  the  16-lower and
 *         15-higher  bits  of this constant  A. When  JUMPM  is less or
 *         equal than zero, this array is not referenced.
 *
 * ICM     (local output)                int *
 *         On entry, ICM is an array of dimension 2. On exit, when JUMPM
 *         is  greater  than  zero,  this  array  contains  the  encoded
 *         constant  C  to jump from  X(n)  to  X(n+JUMPM) in the random
 *         sequence. ICM(0:1)  contains  respectively  the  16-lower and
 *         15-higher  bits  of this constant  C. When  JUMPM  is less or
 *         equal than zero, this array is not referenced.
 *
 * ---------------------------------------------------------------------
 */
   int                        j[2], k;

   if( JUMPM > 0 )
   {
      IAM[0] = MULT[0]; IAM[1] = MULT[1];   /* IAM   = MULT;          */
      ICM[0] = IADD[0]; ICM[1] = IADD[1];   /* ICM   = IADD;          */
      for( k = 1; k <= JUMPM-1; k++ )
      {
         ATL_lmul( IAM, MULT, j );          /* j     = IAM   * MULT;  */
         IAM[0] = j[0]; IAM[1] = j[1];      /* IAM   = j;             */
         ATL_lmul( ICM, MULT, j );          /* j     = ICM   * MULT;  */
         ATL_ladd( IADD, j, ICM );          /* ICM   = IADD  + j;     */
      }
      ATL_lmul( IRANN, IAM, j );            /* j     = IRANN * IAM;   */
      ATL_ladd( j, ICM, IRANM );            /* IRANM = j     + ICM;   */
   }
   else
   {                                        /* IRANM = IRANN          */
      IRANM[0] = IRANN[0]; IRANM[1] = IRANN[1];
   }
}


void ATL_srand(int iseed)
{
   int iadd[2], ia1[2], ic1[2], iran1[2], jseed[2], mult[2];

   mult [0] = 20077; mult[1] = 16838;
   iadd [0] = 12345; iadd [1] = 0;
   jseed[0] = iseed; jseed[1] = (iseed>>16);

   ATL_xjumpm( 1, mult, iadd, jseed, iran1, ia1, ic1 );
   ATL_setran( 0, iran1 ); ATL_setran( 1, ia1 ); ATL_setran( 2, ic1 );
}

int ATL_rand(void)
{
   int j[2];

   ATL_setran( 3, j );
   return(j[0] + ((j[1])<<16));
}