1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 
 61 
 62 
 63 
 64 
 65 
 66 
 67 
 68 
 69 
 70 
 71 
 72 
 73 
 74 
 75 
 76 
 77 
 78 
 79 
 80 
 81 
 82 
 83 
 84 
 85 
 86 
 87 
 88 
 89 
 90 
 91 
 92 
 93 
 94 
 95 
 96 
 97 
 98 
 99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
 
 | 
 
      SUBROUTINE CTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX) 
*     .. Scalar Arguments .. 
      INTEGER INCX,N 
      CHARACTER DIAG,TRANS,UPLO 
*     .. 
*     .. Array Arguments .. 
      COMPLEX AP(*),X(*) 
*     .. 
* 
*  Purpose 
*  ======= 
* 
*  CTPMV  performs one of the matrix-vector operations 
* 
*     x := A*x,   or   x := A**T*x,   or   x := A**H*x, 
* 
*  where x is an n element vector and  A is an n by n unit, or non-unit, 
*  upper or lower triangular matrix, supplied in packed form. 
* 
*  Arguments 
*  ========== 
* 
*  UPLO   - CHARACTER*1. 
*           On entry, UPLO specifies whether the matrix is an upper or 
*           lower triangular matrix as follows: 
* 
*              UPLO = 'U' or 'u'   A is an upper triangular matrix. 
* 
*              UPLO = 'L' or 'l'   A is a lower triangular matrix. 
* 
*           Unchanged on exit. 
* 
*  TRANS  - CHARACTER*1. 
*           On entry, TRANS specifies the operation to be performed as 
*           follows: 
* 
*              TRANS = 'N' or 'n'   x := A*x. 
* 
*              TRANS = 'T' or 't'   x := A**T*x. 
* 
*              TRANS = 'C' or 'c'   x := A**H*x. 
* 
*           Unchanged on exit. 
* 
*  DIAG   - CHARACTER*1. 
*           On entry, DIAG specifies whether or not A is unit 
*           triangular as follows: 
* 
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular. 
* 
*              DIAG = 'N' or 'n'   A is not assumed to be unit 
*                                  triangular. 
* 
*           Unchanged on exit. 
* 
*  N      - INTEGER. 
*           On entry, N specifies the order of the matrix A. 
*           N must be at least zero. 
*           Unchanged on exit. 
* 
*  AP     - COMPLEX          array of DIMENSION at least 
*           ( ( n*( n + 1 ) )/2 ). 
*           Before entry with  UPLO = 'U' or 'u', the array AP must 
*           contain the upper triangular matrix packed sequentially, 
*           column by column, so that AP( 1 ) contains a( 1, 1 ), 
*           AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) 
*           respectively, and so on. 
*           Before entry with UPLO = 'L' or 'l', the array AP must 
*           contain the lower triangular matrix packed sequentially, 
*           column by column, so that AP( 1 ) contains a( 1, 1 ), 
*           AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) 
*           respectively, and so on. 
*           Note that when  DIAG = 'U' or 'u', the diagonal elements of 
*           A are not referenced, but are assumed to be unity. 
*           Unchanged on exit. 
* 
*  X      - COMPLEX          array of dimension at least 
*           ( 1 + ( n - 1 )*abs( INCX ) ). 
*           Before entry, the incremented array X must contain the n 
*           element vector x. On exit, X is overwritten with the 
*           tranformed vector x. 
* 
*  INCX   - INTEGER. 
*           On entry, INCX specifies the increment for the elements of 
*           X. INCX must not be zero. 
*           Unchanged on exit. 
* 
*  Further Details 
*  =============== 
* 
*  Level 2 Blas routine. 
*  The vector and matrix arguments are not referenced when N = 0, or M = 0 
* 
*  -- Written on 22-October-1986. 
*     Jack Dongarra, Argonne National Lab. 
*     Jeremy Du Croz, Nag Central Office. 
*     Sven Hammarling, Nag Central Office. 
*     Richard Hanson, Sandia National Labs. 
* 
*  ===================================================================== 
* 
*     .. Parameters .. 
      COMPLEX ZERO 
      PARAMETER (ZERO= (0.0E+0,0.0E+0)) 
*     .. 
*     .. Local Scalars .. 
      COMPLEX TEMP 
      INTEGER I,INFO,IX,J,JX,K,KK,KX 
      LOGICAL NOCONJ,NOUNIT 
*     .. 
*     .. External Functions .. 
      LOGICAL LSAME 
      EXTERNAL LSAME 
*     .. 
*     .. External Subroutines .. 
      EXTERNAL XERBLA 
*     .. 
*     .. Intrinsic Functions .. 
      INTRINSIC CONJG 
*     .. 
* 
*     Test the input parameters. 
* 
      INFO = 0 
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN 
          INFO = 1 
      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. 
     +         .NOT.LSAME(TRANS,'C')) THEN 
          INFO = 2 
      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN 
          INFO = 3 
      ELSE IF (N.LT.0) THEN 
          INFO = 4 
      ELSE IF (INCX.EQ.0) THEN 
          INFO = 7 
      END IF 
      IF (INFO.NE.0) THEN 
          CALL XERBLA('CTPMV ',INFO) 
          RETURN 
      END IF 
* 
*     Quick return if possible. 
* 
      IF (N.EQ.0) RETURN 
* 
      NOCONJ = LSAME(TRANS,'T') 
      NOUNIT = LSAME(DIAG,'N') 
* 
*     Set up the start point in X if the increment is not unity. This 
*     will be  ( N - 1 )*INCX  too small for descending loops. 
* 
      IF (INCX.LE.0) THEN 
          KX = 1 - (N-1)*INCX 
      ELSE IF (INCX.NE.1) THEN 
          KX = 1 
      END IF 
* 
*     Start the operations. In this version the elements of AP are 
*     accessed sequentially with one pass through AP. 
* 
      IF (LSAME(TRANS,'N')) THEN 
* 
*        Form  x:= A*x. 
* 
          IF (LSAME(UPLO,'U')) THEN 
              KK = 1 
              IF (INCX.EQ.1) THEN 
                  DO 20 J = 1,N 
                      IF (X(J).NE.ZERO) THEN 
                          TEMP = X(J) 
                          K = KK 
                          DO 10 I = 1,J - 1 
                              X(I) = X(I) + TEMP*AP(K) 
                              K = K + 1 
   10                     CONTINUE 
                          IF (NOUNIT) X(J) = X(J)*AP(KK+J-1) 
                      END IF 
                      KK = KK + J 
   20             CONTINUE 
              ELSE 
                  JX = KX 
                  DO 40 J = 1,N 
                      IF (X(JX).NE.ZERO) THEN 
                          TEMP = X(JX) 
                          IX = KX 
                          DO 30 K = KK,KK + J - 2 
                              X(IX) = X(IX) + TEMP*AP(K) 
                              IX = IX + INCX 
   30                     CONTINUE 
                          IF (NOUNIT) X(JX) = X(JX)*AP(KK+J-1) 
                      END IF 
                      JX = JX + INCX 
                      KK = KK + J 
   40             CONTINUE 
              END IF 
          ELSE 
              KK = (N* (N+1))/2 
              IF (INCX.EQ.1) THEN 
                  DO 60 J = N,1,-1 
                      IF (X(J).NE.ZERO) THEN 
                          TEMP = X(J) 
                          K = KK 
                          DO 50 I = N,J + 1,-1 
                              X(I) = X(I) + TEMP*AP(K) 
                              K = K - 1 
   50                     CONTINUE 
                          IF (NOUNIT) X(J) = X(J)*AP(KK-N+J) 
                      END IF 
                      KK = KK - (N-J+1) 
   60             CONTINUE 
              ELSE 
                  KX = KX + (N-1)*INCX 
                  JX = KX 
                  DO 80 J = N,1,-1 
                      IF (X(JX).NE.ZERO) THEN 
                          TEMP = X(JX) 
                          IX = KX 
                          DO 70 K = KK,KK - (N- (J+1)),-1 
                              X(IX) = X(IX) + TEMP*AP(K) 
                              IX = IX - INCX 
   70                     CONTINUE 
                          IF (NOUNIT) X(JX) = X(JX)*AP(KK-N+J) 
                      END IF 
                      JX = JX - INCX 
                      KK = KK - (N-J+1) 
   80             CONTINUE 
              END IF 
          END IF 
      ELSE 
* 
*        Form  x := A**T*x  or  x := A**H*x. 
* 
          IF (LSAME(UPLO,'U')) THEN 
              KK = (N* (N+1))/2 
              IF (INCX.EQ.1) THEN 
                  DO 110 J = N,1,-1 
                      TEMP = X(J) 
                      K = KK - 1 
                      IF (NOCONJ) THEN 
                          IF (NOUNIT) TEMP = TEMP*AP(KK) 
                          DO 90 I = J - 1,1,-1 
                              TEMP = TEMP + AP(K)*X(I) 
                              K = K - 1 
   90                     CONTINUE 
                      ELSE 
                          IF (NOUNIT) TEMP = TEMP*CONJG(AP(KK)) 
                          DO 100 I = J - 1,1,-1 
                              TEMP = TEMP + CONJG(AP(K))*X(I) 
                              K = K - 1 
  100                     CONTINUE 
                      END IF 
                      X(J) = TEMP 
                      KK = KK - J 
  110             CONTINUE 
              ELSE 
                  JX = KX + (N-1)*INCX 
                  DO 140 J = N,1,-1 
                      TEMP = X(JX) 
                      IX = JX 
                      IF (NOCONJ) THEN 
                          IF (NOUNIT) TEMP = TEMP*AP(KK) 
                          DO 120 K = KK - 1,KK - J + 1,-1 
                              IX = IX - INCX 
                              TEMP = TEMP + AP(K)*X(IX) 
  120                     CONTINUE 
                      ELSE 
                          IF (NOUNIT) TEMP = TEMP*CONJG(AP(KK)) 
                          DO 130 K = KK - 1,KK - J + 1,-1 
                              IX = IX - INCX 
                              TEMP = TEMP + CONJG(AP(K))*X(IX) 
  130                     CONTINUE 
                      END IF 
                      X(JX) = TEMP 
                      JX = JX - INCX 
                      KK = KK - J 
  140             CONTINUE 
              END IF 
          ELSE 
              KK = 1 
              IF (INCX.EQ.1) THEN 
                  DO 170 J = 1,N 
                      TEMP = X(J) 
                      K = KK + 1 
                      IF (NOCONJ) THEN 
                          IF (NOUNIT) TEMP = TEMP*AP(KK) 
                          DO 150 I = J + 1,N 
                              TEMP = TEMP + AP(K)*X(I) 
                              K = K + 1 
  150                     CONTINUE 
                      ELSE 
                          IF (NOUNIT) TEMP = TEMP*CONJG(AP(KK)) 
                          DO 160 I = J + 1,N 
                              TEMP = TEMP + CONJG(AP(K))*X(I) 
                              K = K + 1 
  160                     CONTINUE 
                      END IF 
                      X(J) = TEMP 
                      KK = KK + (N-J+1) 
  170             CONTINUE 
              ELSE 
                  JX = KX 
                  DO 200 J = 1,N 
                      TEMP = X(JX) 
                      IX = JX 
                      IF (NOCONJ) THEN 
                          IF (NOUNIT) TEMP = TEMP*AP(KK) 
                          DO 180 K = KK + 1,KK + N - J 
                              IX = IX + INCX 
                              TEMP = TEMP + AP(K)*X(IX) 
  180                     CONTINUE 
                      ELSE 
                          IF (NOUNIT) TEMP = TEMP*CONJG(AP(KK)) 
                          DO 190 K = KK + 1,KK + N - J 
                              IX = IX + INCX 
                              TEMP = TEMP + CONJG(AP(K))*X(IX) 
  190                     CONTINUE 
                      END IF 
                      X(JX) = TEMP 
                      JX = JX + INCX 
                      KK = KK + (N-J+1) 
  200             CONTINUE 
              END IF 
          END IF 
      END IF 
* 
      RETURN 
* 
*     End of CTPMV . 
* 
      END 
 
 |