1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 
 61 
 62 
 63 
 64 
 65 
 66 
 67 
 68 
 69 
 70 
 71 
 72 
 73 
 74 
 75 
 76 
 77 
 78 
 79 
 80 
 81 
 82 
 83 
 84 
 85 
 86 
 87 
 88 
 89 
 90 
 91 
 92 
 93 
 94 
 95 
 96 
 97 
 98 
 99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
 
 | 
 
      SUBROUTINE DSYR2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA) 
*     .. Scalar Arguments .. 
      DOUBLE PRECISION ALPHA 
      INTEGER INCX,INCY,LDA,N 
      CHARACTER UPLO 
*     .. 
*     .. Array Arguments .. 
      DOUBLE PRECISION A(LDA,*),X(*),Y(*) 
*     .. 
* 
*  Purpose 
*  ======= 
* 
*  DSYR2  performs the symmetric rank 2 operation 
* 
*     A := alpha*x*y**T + alpha*y*x**T + A, 
* 
*  where alpha is a scalar, x and y are n element vectors and A is an n 
*  by n symmetric matrix. 
* 
*  Arguments 
*  ========== 
* 
*  UPLO   - CHARACTER*1. 
*           On entry, UPLO specifies whether the upper or lower 
*           triangular part of the array A is to be referenced as 
*           follows: 
* 
*              UPLO = 'U' or 'u'   Only the upper triangular part of A 
*                                  is to be referenced. 
* 
*              UPLO = 'L' or 'l'   Only the lower triangular part of A 
*                                  is to be referenced. 
* 
*           Unchanged on exit. 
* 
*  N      - INTEGER. 
*           On entry, N specifies the order of the matrix A. 
*           N must be at least zero. 
*           Unchanged on exit. 
* 
*  ALPHA  - DOUBLE PRECISION. 
*           On entry, ALPHA specifies the scalar alpha. 
*           Unchanged on exit. 
* 
*  X      - DOUBLE PRECISION array of dimension at least 
*           ( 1 + ( n - 1 )*abs( INCX ) ). 
*           Before entry, the incremented array X must contain the n 
*           element vector x. 
*           Unchanged on exit. 
* 
*  INCX   - INTEGER. 
*           On entry, INCX specifies the increment for the elements of 
*           X. INCX must not be zero. 
*           Unchanged on exit. 
* 
*  Y      - DOUBLE PRECISION array of dimension at least 
*           ( 1 + ( n - 1 )*abs( INCY ) ). 
*           Before entry, the incremented array Y must contain the n 
*           element vector y. 
*           Unchanged on exit. 
* 
*  INCY   - INTEGER. 
*           On entry, INCY specifies the increment for the elements of 
*           Y. INCY must not be zero. 
*           Unchanged on exit. 
* 
*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ). 
*           Before entry with  UPLO = 'U' or 'u', the leading n by n 
*           upper triangular part of the array A must contain the upper 
*           triangular part of the symmetric matrix and the strictly 
*           lower triangular part of A is not referenced. On exit, the 
*           upper triangular part of the array A is overwritten by the 
*           upper triangular part of the updated matrix. 
*           Before entry with UPLO = 'L' or 'l', the leading n by n 
*           lower triangular part of the array A must contain the lower 
*           triangular part of the symmetric matrix and the strictly 
*           upper triangular part of A is not referenced. On exit, the 
*           lower triangular part of the array A is overwritten by the 
*           lower triangular part of the updated matrix. 
* 
*  LDA    - INTEGER. 
*           On entry, LDA specifies the first dimension of A as declared 
*           in the calling (sub) program. LDA must be at least 
*           max( 1, n ). 
*           Unchanged on exit. 
* 
*  Further Details 
*  =============== 
* 
*  Level 2 Blas routine. 
* 
*  -- Written on 22-October-1986. 
*     Jack Dongarra, Argonne National Lab. 
*     Jeremy Du Croz, Nag Central Office. 
*     Sven Hammarling, Nag Central Office. 
*     Richard Hanson, Sandia National Labs. 
* 
*  ===================================================================== 
* 
*     .. Parameters .. 
      DOUBLE PRECISION ZERO 
      PARAMETER (ZERO=0.0D+0) 
*     .. 
*     .. Local Scalars .. 
      DOUBLE PRECISION TEMP1,TEMP2 
      INTEGER I,INFO,IX,IY,J,JX,JY,KX,KY 
*     .. 
*     .. External Functions .. 
      LOGICAL LSAME 
      EXTERNAL LSAME 
*     .. 
*     .. External Subroutines .. 
      EXTERNAL XERBLA 
*     .. 
*     .. Intrinsic Functions .. 
      INTRINSIC MAX 
*     .. 
* 
*     Test the input parameters. 
* 
      INFO = 0 
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN 
          INFO = 1 
      ELSE IF (N.LT.0) THEN 
          INFO = 2 
      ELSE IF (INCX.EQ.0) THEN 
          INFO = 5 
      ELSE IF (INCY.EQ.0) THEN 
          INFO = 7 
      ELSE IF (LDA.LT.MAX(1,N)) THEN 
          INFO = 9 
      END IF 
      IF (INFO.NE.0) THEN 
          CALL XERBLA('DSYR2 ',INFO) 
          RETURN 
      END IF 
* 
*     Quick return if possible. 
* 
      IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN 
* 
*     Set up the start points in X and Y if the increments are not both 
*     unity. 
* 
      IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN 
          IF (INCX.GT.0) THEN 
              KX = 1 
          ELSE 
              KX = 1 - (N-1)*INCX 
          END IF 
          IF (INCY.GT.0) THEN 
              KY = 1 
          ELSE 
              KY = 1 - (N-1)*INCY 
          END IF 
          JX = KX 
          JY = KY 
      END IF 
* 
*     Start the operations. In this version the elements of A are 
*     accessed sequentially with one pass through the triangular part 
*     of A. 
* 
      IF (LSAME(UPLO,'U')) THEN 
* 
*        Form  A  when A is stored in the upper triangle. 
* 
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN 
              DO 20 J = 1,N 
                  IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN 
                      TEMP1 = ALPHA*Y(J) 
                      TEMP2 = ALPHA*X(J) 
                      DO 10 I = 1,J 
                          A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2 
   10                 CONTINUE 
                  END IF 
   20         CONTINUE 
          ELSE 
              DO 40 J = 1,N 
                  IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN 
                      TEMP1 = ALPHA*Y(JY) 
                      TEMP2 = ALPHA*X(JX) 
                      IX = KX 
                      IY = KY 
                      DO 30 I = 1,J 
                          A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2 
                          IX = IX + INCX 
                          IY = IY + INCY 
   30                 CONTINUE 
                  END IF 
                  JX = JX + INCX 
                  JY = JY + INCY 
   40         CONTINUE 
          END IF 
      ELSE 
* 
*        Form  A  when A is stored in the lower triangle. 
* 
          IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN 
              DO 60 J = 1,N 
                  IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN 
                      TEMP1 = ALPHA*Y(J) 
                      TEMP2 = ALPHA*X(J) 
                      DO 50 I = J,N 
                          A(I,J) = A(I,J) + X(I)*TEMP1 + Y(I)*TEMP2 
   50                 CONTINUE 
                  END IF 
   60         CONTINUE 
          ELSE 
              DO 80 J = 1,N 
                  IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN 
                      TEMP1 = ALPHA*Y(JY) 
                      TEMP2 = ALPHA*X(JX) 
                      IX = JX 
                      IY = JY 
                      DO 70 I = J,N 
                          A(I,J) = A(I,J) + X(IX)*TEMP1 + Y(IY)*TEMP2 
                          IX = IX + INCX 
                          IY = IY + INCY 
   70                 CONTINUE 
                  END IF 
                  JX = JX + INCX 
                  JY = JY + INCY 
   80         CONTINUE 
          END IF 
      END IF 
* 
      RETURN 
* 
*     End of DSYR2 . 
* 
      END 
 
 |