1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 
 61 
 62 
 63 
 64 
 65 
 66 
 67 
 68 
 69 
 70 
 71 
 72 
 73 
 74 
 75 
 76 
 77 
 78 
 79 
 80 
 81 
 82 
 83 
 84 
 85 
 86 
 87 
 88 
 89 
 90 
 91 
 92 
 93 
 94 
 95 
 96 
 97 
 98 
 99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
 
 | 
 
      SUBROUTINE DTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX) 
*     .. Scalar Arguments .. 
      INTEGER INCX,K,LDA,N 
      CHARACTER DIAG,TRANS,UPLO 
*     .. 
*     .. Array Arguments .. 
      DOUBLE PRECISION A(LDA,*),X(*) 
*     .. 
* 
*  Purpose 
*  ======= 
* 
*  DTBMV  performs one of the matrix-vector operations 
* 
*     x := A*x,   or   x := A**T*x, 
* 
*  where x is an n element vector and  A is an n by n unit, or non-unit, 
*  upper or lower triangular band matrix, with ( k + 1 ) diagonals. 
* 
*  Arguments 
*  ========== 
* 
*  UPLO   - CHARACTER*1. 
*           On entry, UPLO specifies whether the matrix is an upper or 
*           lower triangular matrix as follows: 
* 
*              UPLO = 'U' or 'u'   A is an upper triangular matrix. 
* 
*              UPLO = 'L' or 'l'   A is a lower triangular matrix. 
* 
*           Unchanged on exit. 
* 
*  TRANS  - CHARACTER*1. 
*           On entry, TRANS specifies the operation to be performed as 
*           follows: 
* 
*              TRANS = 'N' or 'n'   x := A*x. 
* 
*              TRANS = 'T' or 't'   x := A**T*x. 
* 
*              TRANS = 'C' or 'c'   x := A**T*x. 
* 
*           Unchanged on exit. 
* 
*  DIAG   - CHARACTER*1. 
*           On entry, DIAG specifies whether or not A is unit 
*           triangular as follows: 
* 
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular. 
* 
*              DIAG = 'N' or 'n'   A is not assumed to be unit 
*                                  triangular. 
* 
*           Unchanged on exit. 
* 
*  N      - INTEGER. 
*           On entry, N specifies the order of the matrix A. 
*           N must be at least zero. 
*           Unchanged on exit. 
* 
*  K      - INTEGER. 
*           On entry with UPLO = 'U' or 'u', K specifies the number of 
*           super-diagonals of the matrix A. 
*           On entry with UPLO = 'L' or 'l', K specifies the number of 
*           sub-diagonals of the matrix A. 
*           K must satisfy  0 .le. K. 
*           Unchanged on exit. 
* 
*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ). 
*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) 
*           by n part of the array A must contain the upper triangular 
*           band part of the matrix of coefficients, supplied column by 
*           column, with the leading diagonal of the matrix in row 
*           ( k + 1 ) of the array, the first super-diagonal starting at 
*           position 2 in row k, and so on. The top left k by k triangle 
*           of the array A is not referenced. 
*           The following program segment will transfer an upper 
*           triangular band matrix from conventional full matrix storage 
*           to band storage: 
* 
*                 DO 20, J = 1, N 
*                    M = K + 1 - J 
*                    DO 10, I = MAX( 1, J - K ), J 
*                       A( M + I, J ) = matrix( I, J ) 
*              10    CONTINUE 
*              20 CONTINUE 
* 
*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) 
*           by n part of the array A must contain the lower triangular 
*           band part of the matrix of coefficients, supplied column by 
*           column, with the leading diagonal of the matrix in row 1 of 
*           the array, the first sub-diagonal starting at position 1 in 
*           row 2, and so on. The bottom right k by k triangle of the 
*           array A is not referenced. 
*           The following program segment will transfer a lower 
*           triangular band matrix from conventional full matrix storage 
*           to band storage: 
* 
*                 DO 20, J = 1, N 
*                    M = 1 - J 
*                    DO 10, I = J, MIN( N, J + K ) 
*                       A( M + I, J ) = matrix( I, J ) 
*              10    CONTINUE 
*              20 CONTINUE 
* 
*           Note that when DIAG = 'U' or 'u' the elements of the array A 
*           corresponding to the diagonal elements of the matrix are not 
*           referenced, but are assumed to be unity. 
*           Unchanged on exit. 
* 
*  LDA    - INTEGER. 
*           On entry, LDA specifies the first dimension of A as declared 
*           in the calling (sub) program. LDA must be at least 
*           ( k + 1 ). 
*           Unchanged on exit. 
* 
*  X      - DOUBLE PRECISION array of dimension at least 
*           ( 1 + ( n - 1 )*abs( INCX ) ). 
*           Before entry, the incremented array X must contain the n 
*           element vector x. On exit, X is overwritten with the 
*           tranformed vector x. 
* 
*  INCX   - INTEGER. 
*           On entry, INCX specifies the increment for the elements of 
*           X. INCX must not be zero. 
*           Unchanged on exit. 
* 
*  Further Details 
*  =============== 
* 
*  Level 2 Blas routine. 
*  The vector and matrix arguments are not referenced when N = 0, or M = 0 
* 
*  -- Written on 22-October-1986. 
*     Jack Dongarra, Argonne National Lab. 
*     Jeremy Du Croz, Nag Central Office. 
*     Sven Hammarling, Nag Central Office. 
*     Richard Hanson, Sandia National Labs. 
* 
*  ===================================================================== 
* 
*     .. Parameters .. 
      DOUBLE PRECISION ZERO 
      PARAMETER (ZERO=0.0D+0) 
*     .. 
*     .. Local Scalars .. 
      DOUBLE PRECISION TEMP 
      INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L 
      LOGICAL NOUNIT 
*     .. 
*     .. External Functions .. 
      LOGICAL LSAME 
      EXTERNAL LSAME 
*     .. 
*     .. External Subroutines .. 
      EXTERNAL XERBLA 
*     .. 
*     .. Intrinsic Functions .. 
      INTRINSIC MAX,MIN 
*     .. 
* 
*     Test the input parameters. 
* 
      INFO = 0 
      IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN 
          INFO = 1 
      ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. 
     +         .NOT.LSAME(TRANS,'C')) THEN 
          INFO = 2 
      ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN 
          INFO = 3 
      ELSE IF (N.LT.0) THEN 
          INFO = 4 
      ELSE IF (K.LT.0) THEN 
          INFO = 5 
      ELSE IF (LDA.LT. (K+1)) THEN 
          INFO = 7 
      ELSE IF (INCX.EQ.0) THEN 
          INFO = 9 
      END IF 
      IF (INFO.NE.0) THEN 
          CALL XERBLA('DTBMV ',INFO) 
          RETURN 
      END IF 
* 
*     Quick return if possible. 
* 
      IF (N.EQ.0) RETURN 
* 
      NOUNIT = LSAME(DIAG,'N') 
* 
*     Set up the start point in X if the increment is not unity. This 
*     will be  ( N - 1 )*INCX   too small for descending loops. 
* 
      IF (INCX.LE.0) THEN 
          KX = 1 - (N-1)*INCX 
      ELSE IF (INCX.NE.1) THEN 
          KX = 1 
      END IF 
* 
*     Start the operations. In this version the elements of A are 
*     accessed sequentially with one pass through A. 
* 
      IF (LSAME(TRANS,'N')) THEN 
* 
*         Form  x := A*x. 
* 
          IF (LSAME(UPLO,'U')) THEN 
              KPLUS1 = K + 1 
              IF (INCX.EQ.1) THEN 
                  DO 20 J = 1,N 
                      IF (X(J).NE.ZERO) THEN 
                          TEMP = X(J) 
                          L = KPLUS1 - J 
                          DO 10 I = MAX(1,J-K),J - 1 
                              X(I) = X(I) + TEMP*A(L+I,J) 
   10                     CONTINUE 
                          IF (NOUNIT) X(J) = X(J)*A(KPLUS1,J) 
                      END IF 
   20             CONTINUE 
              ELSE 
                  JX = KX 
                  DO 40 J = 1,N 
                      IF (X(JX).NE.ZERO) THEN 
                          TEMP = X(JX) 
                          IX = KX 
                          L = KPLUS1 - J 
                          DO 30 I = MAX(1,J-K),J - 1 
                              X(IX) = X(IX) + TEMP*A(L+I,J) 
                              IX = IX + INCX 
   30                     CONTINUE 
                          IF (NOUNIT) X(JX) = X(JX)*A(KPLUS1,J) 
                      END IF 
                      JX = JX + INCX 
                      IF (J.GT.K) KX = KX + INCX 
   40             CONTINUE 
              END IF 
          ELSE 
              IF (INCX.EQ.1) THEN 
                  DO 60 J = N,1,-1 
                      IF (X(J).NE.ZERO) THEN 
                          TEMP = X(J) 
                          L = 1 - J 
                          DO 50 I = MIN(N,J+K),J + 1,-1 
                              X(I) = X(I) + TEMP*A(L+I,J) 
   50                     CONTINUE 
                          IF (NOUNIT) X(J) = X(J)*A(1,J) 
                      END IF 
   60             CONTINUE 
              ELSE 
                  KX = KX + (N-1)*INCX 
                  JX = KX 
                  DO 80 J = N,1,-1 
                      IF (X(JX).NE.ZERO) THEN 
                          TEMP = X(JX) 
                          IX = KX 
                          L = 1 - J 
                          DO 70 I = MIN(N,J+K),J + 1,-1 
                              X(IX) = X(IX) + TEMP*A(L+I,J) 
                              IX = IX - INCX 
   70                     CONTINUE 
                          IF (NOUNIT) X(JX) = X(JX)*A(1,J) 
                      END IF 
                      JX = JX - INCX 
                      IF ((N-J).GE.K) KX = KX - INCX 
   80             CONTINUE 
              END IF 
          END IF 
      ELSE 
* 
*        Form  x := A**T*x. 
* 
          IF (LSAME(UPLO,'U')) THEN 
              KPLUS1 = K + 1 
              IF (INCX.EQ.1) THEN 
                  DO 100 J = N,1,-1 
                      TEMP = X(J) 
                      L = KPLUS1 - J 
                      IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J) 
                      DO 90 I = J - 1,MAX(1,J-K),-1 
                          TEMP = TEMP + A(L+I,J)*X(I) 
   90                 CONTINUE 
                      X(J) = TEMP 
  100             CONTINUE 
              ELSE 
                  KX = KX + (N-1)*INCX 
                  JX = KX 
                  DO 120 J = N,1,-1 
                      TEMP = X(JX) 
                      KX = KX - INCX 
                      IX = KX 
                      L = KPLUS1 - J 
                      IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J) 
                      DO 110 I = J - 1,MAX(1,J-K),-1 
                          TEMP = TEMP + A(L+I,J)*X(IX) 
                          IX = IX - INCX 
  110                 CONTINUE 
                      X(JX) = TEMP 
                      JX = JX - INCX 
  120             CONTINUE 
              END IF 
          ELSE 
              IF (INCX.EQ.1) THEN 
                  DO 140 J = 1,N 
                      TEMP = X(J) 
                      L = 1 - J 
                      IF (NOUNIT) TEMP = TEMP*A(1,J) 
                      DO 130 I = J + 1,MIN(N,J+K) 
                          TEMP = TEMP + A(L+I,J)*X(I) 
  130                 CONTINUE 
                      X(J) = TEMP 
  140             CONTINUE 
              ELSE 
                  JX = KX 
                  DO 160 J = 1,N 
                      TEMP = X(JX) 
                      KX = KX + INCX 
                      IX = KX 
                      L = 1 - J 
                      IF (NOUNIT) TEMP = TEMP*A(1,J) 
                      DO 150 I = J + 1,MIN(N,J+K) 
                          TEMP = TEMP + A(L+I,J)*X(IX) 
                          IX = IX + INCX 
  150                 CONTINUE 
                      X(JX) = TEMP 
                      JX = JX + INCX 
  160             CONTINUE 
              END IF 
          END IF 
      END IF 
* 
      RETURN 
* 
*     End of DTBMV . 
* 
      END 
 
 |