1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 
 61 
 62 
 63 
 64 
 65 
 66 
 67 
 68 
 69 
 70 
 71 
 72 
 73 
 74 
 75 
 76 
 77 
 78 
 79 
 80 
 81 
 82 
 83 
 84 
 85 
 86 
 87 
 88 
 89 
 90 
 91 
 92 
 93 
 94 
 95 
 96 
 97 
 98 
 99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
347 
348 
349 
 
 | 
 
      SUBROUTINE DTRMM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) 
*     .. Scalar Arguments .. 
      DOUBLE PRECISION ALPHA 
      INTEGER LDA,LDB,M,N 
      CHARACTER DIAG,SIDE,TRANSA,UPLO 
*     .. 
*     .. Array Arguments .. 
      DOUBLE PRECISION A(LDA,*),B(LDB,*) 
*     .. 
* 
*  Purpose 
*  ======= 
* 
*  DTRMM  performs one of the matrix-matrix operations 
* 
*     B := alpha*op( A )*B,   or   B := alpha*B*op( A ), 
* 
*  where  alpha  is a scalar,  B  is an m by n matrix,  A  is a unit, or 
*  non-unit,  upper or lower triangular matrix  and  op( A )  is one  of 
* 
*     op( A ) = A   or   op( A ) = A**T. 
* 
*  Arguments 
*  ========== 
* 
*  SIDE   - CHARACTER*1. 
*           On entry,  SIDE specifies whether  op( A ) multiplies B from 
*           the left or right as follows: 
* 
*              SIDE = 'L' or 'l'   B := alpha*op( A )*B. 
* 
*              SIDE = 'R' or 'r'   B := alpha*B*op( A ). 
* 
*           Unchanged on exit. 
* 
*  UPLO   - CHARACTER*1. 
*           On entry, UPLO specifies whether the matrix A is an upper or 
*           lower triangular matrix as follows: 
* 
*              UPLO = 'U' or 'u'   A is an upper triangular matrix. 
* 
*              UPLO = 'L' or 'l'   A is a lower triangular matrix. 
* 
*           Unchanged on exit. 
* 
*  TRANSA - CHARACTER*1. 
*           On entry, TRANSA specifies the form of op( A ) to be used in 
*           the matrix multiplication as follows: 
* 
*              TRANSA = 'N' or 'n'   op( A ) = A. 
* 
*              TRANSA = 'T' or 't'   op( A ) = A**T. 
* 
*              TRANSA = 'C' or 'c'   op( A ) = A**T. 
* 
*           Unchanged on exit. 
* 
*  DIAG   - CHARACTER*1. 
*           On entry, DIAG specifies whether or not A is unit triangular 
*           as follows: 
* 
*              DIAG = 'U' or 'u'   A is assumed to be unit triangular. 
* 
*              DIAG = 'N' or 'n'   A is not assumed to be unit 
*                                  triangular. 
* 
*           Unchanged on exit. 
* 
*  M      - INTEGER. 
*           On entry, M specifies the number of rows of B. M must be at 
*           least zero. 
*           Unchanged on exit. 
* 
*  N      - INTEGER. 
*           On entry, N specifies the number of columns of B.  N must be 
*           at least zero. 
*           Unchanged on exit. 
* 
*  ALPHA  - DOUBLE PRECISION. 
*           On entry,  ALPHA specifies the scalar  alpha. When  alpha is 
*           zero then  A is not referenced and  B need not be set before 
*           entry. 
*           Unchanged on exit. 
* 
*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m 
*           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'. 
*           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k 
*           upper triangular part of the array  A must contain the upper 
*           triangular matrix  and the strictly lower triangular part of 
*           A is not referenced. 
*           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k 
*           lower triangular part of the array  A must contain the lower 
*           triangular matrix  and the strictly upper triangular part of 
*           A is not referenced. 
*           Note that when  DIAG = 'U' or 'u',  the diagonal elements of 
*           A  are not referenced either,  but are assumed to be  unity. 
*           Unchanged on exit. 
* 
*  LDA    - INTEGER. 
*           On entry, LDA specifies the first dimension of A as declared 
*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then 
*           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r' 
*           then LDA must be at least max( 1, n ). 
*           Unchanged on exit. 
* 
*  B      - DOUBLE PRECISION array of DIMENSION ( LDB, n ). 
*           Before entry,  the leading  m by n part of the array  B must 
*           contain the matrix  B,  and  on exit  is overwritten  by the 
*           transformed matrix. 
* 
*  LDB    - INTEGER. 
*           On entry, LDB specifies the first dimension of B as declared 
*           in  the  calling  (sub)  program.   LDB  must  be  at  least 
*           max( 1, m ). 
*           Unchanged on exit. 
* 
*  Further Details 
*  =============== 
* 
*  Level 3 Blas routine. 
* 
*  -- Written on 8-February-1989. 
*     Jack Dongarra, Argonne National Laboratory. 
*     Iain Duff, AERE Harwell. 
*     Jeremy Du Croz, Numerical Algorithms Group Ltd. 
*     Sven Hammarling, Numerical Algorithms Group Ltd. 
* 
*  ===================================================================== 
* 
*     .. External Functions .. 
      LOGICAL LSAME 
      EXTERNAL LSAME 
*     .. 
*     .. External Subroutines .. 
      EXTERNAL XERBLA 
*     .. 
*     .. Intrinsic Functions .. 
      INTRINSIC MAX 
*     .. 
*     .. Local Scalars .. 
      DOUBLE PRECISION TEMP 
      INTEGER I,INFO,J,K,NROWA 
      LOGICAL LSIDE,NOUNIT,UPPER 
*     .. 
*     .. Parameters .. 
      DOUBLE PRECISION ONE,ZERO 
      PARAMETER (ONE=1.0D+0,ZERO=0.0D+0) 
*     .. 
* 
*     Test the input parameters. 
* 
      LSIDE = LSAME(SIDE,'L') 
      IF (LSIDE) THEN 
          NROWA = M 
      ELSE 
          NROWA = N 
      END IF 
      NOUNIT = LSAME(DIAG,'N') 
      UPPER = LSAME(UPLO,'U') 
* 
      INFO = 0 
      IF ((.NOT.LSIDE) .AND. (.NOT.LSAME(SIDE,'R'))) THEN 
          INFO = 1 
      ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN 
          INFO = 2 
      ELSE IF ((.NOT.LSAME(TRANSA,'N')) .AND. 
     +         (.NOT.LSAME(TRANSA,'T')) .AND. 
     +         (.NOT.LSAME(TRANSA,'C'))) THEN 
          INFO = 3 
      ELSE IF ((.NOT.LSAME(DIAG,'U')) .AND. (.NOT.LSAME(DIAG,'N'))) THEN 
          INFO = 4 
      ELSE IF (M.LT.0) THEN 
          INFO = 5 
      ELSE IF (N.LT.0) THEN 
          INFO = 6 
      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN 
          INFO = 9 
      ELSE IF (LDB.LT.MAX(1,M)) THEN 
          INFO = 11 
      END IF 
      IF (INFO.NE.0) THEN 
          CALL XERBLA('DTRMM ',INFO) 
          RETURN 
      END IF 
* 
*     Quick return if possible. 
* 
      IF (M.EQ.0 .OR. N.EQ.0) RETURN 
* 
*     And when  alpha.eq.zero. 
* 
      IF (ALPHA.EQ.ZERO) THEN 
          DO 20 J = 1,N 
              DO 10 I = 1,M 
                  B(I,J) = ZERO 
   10         CONTINUE 
   20     CONTINUE 
          RETURN 
      END IF 
* 
*     Start the operations. 
* 
      IF (LSIDE) THEN 
          IF (LSAME(TRANSA,'N')) THEN 
* 
*           Form  B := alpha*A*B. 
* 
              IF (UPPER) THEN 
                  DO 50 J = 1,N 
                      DO 40 K = 1,M 
                          IF (B(K,J).NE.ZERO) THEN 
                              TEMP = ALPHA*B(K,J) 
                              DO 30 I = 1,K - 1 
                                  B(I,J) = B(I,J) + TEMP*A(I,K) 
   30                         CONTINUE 
                              IF (NOUNIT) TEMP = TEMP*A(K,K) 
                              B(K,J) = TEMP 
                          END IF 
   40                 CONTINUE 
   50             CONTINUE 
              ELSE 
                  DO 80 J = 1,N 
                      DO 70 K = M,1,-1 
                          IF (B(K,J).NE.ZERO) THEN 
                              TEMP = ALPHA*B(K,J) 
                              B(K,J) = TEMP 
                              IF (NOUNIT) B(K,J) = B(K,J)*A(K,K) 
                              DO 60 I = K + 1,M 
                                  B(I,J) = B(I,J) + TEMP*A(I,K) 
   60                         CONTINUE 
                          END IF 
   70                 CONTINUE 
   80             CONTINUE 
              END IF 
          ELSE 
* 
*           Form  B := alpha*A**T*B. 
* 
              IF (UPPER) THEN 
                  DO 110 J = 1,N 
                      DO 100 I = M,1,-1 
                          TEMP = B(I,J) 
                          IF (NOUNIT) TEMP = TEMP*A(I,I) 
                          DO 90 K = 1,I - 1 
                              TEMP = TEMP + A(K,I)*B(K,J) 
   90                     CONTINUE 
                          B(I,J) = ALPHA*TEMP 
  100                 CONTINUE 
  110             CONTINUE 
              ELSE 
                  DO 140 J = 1,N 
                      DO 130 I = 1,M 
                          TEMP = B(I,J) 
                          IF (NOUNIT) TEMP = TEMP*A(I,I) 
                          DO 120 K = I + 1,M 
                              TEMP = TEMP + A(K,I)*B(K,J) 
  120                     CONTINUE 
                          B(I,J) = ALPHA*TEMP 
  130                 CONTINUE 
  140             CONTINUE 
              END IF 
          END IF 
      ELSE 
          IF (LSAME(TRANSA,'N')) THEN 
* 
*           Form  B := alpha*B*A. 
* 
              IF (UPPER) THEN 
                  DO 180 J = N,1,-1 
                      TEMP = ALPHA 
                      IF (NOUNIT) TEMP = TEMP*A(J,J) 
                      DO 150 I = 1,M 
                          B(I,J) = TEMP*B(I,J) 
  150                 CONTINUE 
                      DO 170 K = 1,J - 1 
                          IF (A(K,J).NE.ZERO) THEN 
                              TEMP = ALPHA*A(K,J) 
                              DO 160 I = 1,M 
                                  B(I,J) = B(I,J) + TEMP*B(I,K) 
  160                         CONTINUE 
                          END IF 
  170                 CONTINUE 
  180             CONTINUE 
              ELSE 
                  DO 220 J = 1,N 
                      TEMP = ALPHA 
                      IF (NOUNIT) TEMP = TEMP*A(J,J) 
                      DO 190 I = 1,M 
                          B(I,J) = TEMP*B(I,J) 
  190                 CONTINUE 
                      DO 210 K = J + 1,N 
                          IF (A(K,J).NE.ZERO) THEN 
                              TEMP = ALPHA*A(K,J) 
                              DO 200 I = 1,M 
                                  B(I,J) = B(I,J) + TEMP*B(I,K) 
  200                         CONTINUE 
                          END IF 
  210                 CONTINUE 
  220             CONTINUE 
              END IF 
          ELSE 
* 
*           Form  B := alpha*B*A**T. 
* 
              IF (UPPER) THEN 
                  DO 260 K = 1,N 
                      DO 240 J = 1,K - 1 
                          IF (A(J,K).NE.ZERO) THEN 
                              TEMP = ALPHA*A(J,K) 
                              DO 230 I = 1,M 
                                  B(I,J) = B(I,J) + TEMP*B(I,K) 
  230                         CONTINUE 
                          END IF 
  240                 CONTINUE 
                      TEMP = ALPHA 
                      IF (NOUNIT) TEMP = TEMP*A(K,K) 
                      IF (TEMP.NE.ONE) THEN 
                          DO 250 I = 1,M 
                              B(I,K) = TEMP*B(I,K) 
  250                     CONTINUE 
                      END IF 
  260             CONTINUE 
              ELSE 
                  DO 300 K = N,1,-1 
                      DO 280 J = K + 1,N 
                          IF (A(J,K).NE.ZERO) THEN 
                              TEMP = ALPHA*A(J,K) 
                              DO 270 I = 1,M 
                                  B(I,J) = B(I,J) + TEMP*B(I,K) 
  270                         CONTINUE 
                          END IF 
  280                 CONTINUE 
                      TEMP = ALPHA 
                      IF (NOUNIT) TEMP = TEMP*A(K,K) 
                      IF (TEMP.NE.ONE) THEN 
                          DO 290 I = 1,M 
                              B(I,K) = TEMP*B(I,K) 
  290                     CONTINUE 
                      END IF 
  300             CONTINUE 
              END IF 
          END IF 
      END IF 
* 
      RETURN 
* 
*     End of DTRMM . 
* 
      END 
 
 |