1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 
 61 
 62 
 63 
 64 
 65 
 66 
 67 
 68 
 69 
 70 
 71 
 72 
 73 
 74 
 75 
 76 
 77 
 78 
 79 
 80 
 81 
 82 
 83 
 84 
 85 
 86 
 87 
 88 
 89 
 90 
 91 
 92 
 93 
 94 
 95 
 96 
 97 
 98 
 99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
 
 | 
 
      SUBROUTINE SSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC) 
*     .. Scalar Arguments .. 
      REAL ALPHA,BETA 
      INTEGER LDA,LDB,LDC,M,N 
      CHARACTER SIDE,UPLO 
*     .. 
*     .. Array Arguments .. 
      REAL A(LDA,*),B(LDB,*),C(LDC,*) 
*     .. 
* 
*  Purpose 
*  ======= 
* 
*  SSYMM  performs one of the matrix-matrix operations 
* 
*     C := alpha*A*B + beta*C, 
* 
*  or 
* 
*     C := alpha*B*A + beta*C, 
* 
*  where alpha and beta are scalars,  A is a symmetric matrix and  B and 
*  C are  m by n matrices. 
* 
*  Arguments 
*  ========== 
* 
*  SIDE   - CHARACTER*1. 
*           On entry,  SIDE  specifies whether  the  symmetric matrix  A 
*           appears on the  left or right  in the  operation as follows: 
* 
*              SIDE = 'L' or 'l'   C := alpha*A*B + beta*C, 
* 
*              SIDE = 'R' or 'r'   C := alpha*B*A + beta*C, 
* 
*           Unchanged on exit. 
* 
*  UPLO   - CHARACTER*1. 
*           On  entry,   UPLO  specifies  whether  the  upper  or  lower 
*           triangular  part  of  the  symmetric  matrix   A  is  to  be 
*           referenced as follows: 
* 
*              UPLO = 'U' or 'u'   Only the upper triangular part of the 
*                                  symmetric matrix is to be referenced. 
* 
*              UPLO = 'L' or 'l'   Only the lower triangular part of the 
*                                  symmetric matrix is to be referenced. 
* 
*           Unchanged on exit. 
* 
*  M      - INTEGER. 
*           On entry,  M  specifies the number of rows of the matrix  C. 
*           M  must be at least zero. 
*           Unchanged on exit. 
* 
*  N      - INTEGER. 
*           On entry, N specifies the number of columns of the matrix C. 
*           N  must be at least zero. 
*           Unchanged on exit. 
* 
*  ALPHA  - REAL            . 
*           On entry, ALPHA specifies the scalar alpha. 
*           Unchanged on exit. 
* 
*  A      - REAL             array of DIMENSION ( LDA, ka ), where ka is 
*           m  when  SIDE = 'L' or 'l'  and is  n otherwise. 
*           Before entry  with  SIDE = 'L' or 'l',  the  m by m  part of 
*           the array  A  must contain the  symmetric matrix,  such that 
*           when  UPLO = 'U' or 'u', the leading m by m upper triangular 
*           part of the array  A  must contain the upper triangular part 
*           of the  symmetric matrix and the  strictly  lower triangular 
*           part of  A  is not referenced,  and when  UPLO = 'L' or 'l', 
*           the leading  m by m  lower triangular part  of the  array  A 
*           must  contain  the  lower triangular part  of the  symmetric 
*           matrix and the  strictly upper triangular part of  A  is not 
*           referenced. 
*           Before entry  with  SIDE = 'R' or 'r',  the  n by n  part of 
*           the array  A  must contain the  symmetric matrix,  such that 
*           when  UPLO = 'U' or 'u', the leading n by n upper triangular 
*           part of the array  A  must contain the upper triangular part 
*           of the  symmetric matrix and the  strictly  lower triangular 
*           part of  A  is not referenced,  and when  UPLO = 'L' or 'l', 
*           the leading  n by n  lower triangular part  of the  array  A 
*           must  contain  the  lower triangular part  of the  symmetric 
*           matrix and the  strictly upper triangular part of  A  is not 
*           referenced. 
*           Unchanged on exit. 
* 
*  LDA    - INTEGER. 
*           On entry, LDA specifies the first dimension of A as declared 
*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then 
*           LDA must be at least  max( 1, m ), otherwise  LDA must be at 
*           least  max( 1, n ). 
*           Unchanged on exit. 
* 
*  B      - REAL             array of DIMENSION ( LDB, n ). 
*           Before entry, the leading  m by n part of the array  B  must 
*           contain the matrix B. 
*           Unchanged on exit. 
* 
*  LDB    - INTEGER. 
*           On entry, LDB specifies the first dimension of B as declared 
*           in  the  calling  (sub)  program.   LDB  must  be  at  least 
*           max( 1, m ). 
*           Unchanged on exit. 
* 
*  BETA   - REAL            . 
*           On entry,  BETA  specifies the scalar  beta.  When  BETA  is 
*           supplied as zero then C need not be set on input. 
*           Unchanged on exit. 
* 
*  C      - REAL             array of DIMENSION ( LDC, n ). 
*           Before entry, the leading  m by n  part of the array  C must 
*           contain the matrix  C,  except when  beta  is zero, in which 
*           case C need not be set on entry. 
*           On exit, the array  C  is overwritten by the  m by n updated 
*           matrix. 
* 
*  LDC    - INTEGER. 
*           On entry, LDC specifies the first dimension of C as declared 
*           in  the  calling  (sub)  program.   LDC  must  be  at  least 
*           max( 1, m ). 
*           Unchanged on exit. 
* 
*  Further Details 
*  =============== 
* 
*  Level 3 Blas routine. 
* 
*  -- Written on 8-February-1989. 
*     Jack Dongarra, Argonne National Laboratory. 
*     Iain Duff, AERE Harwell. 
*     Jeremy Du Croz, Numerical Algorithms Group Ltd. 
*     Sven Hammarling, Numerical Algorithms Group Ltd. 
* 
*  ===================================================================== 
* 
*     .. External Functions .. 
      LOGICAL LSAME 
      EXTERNAL LSAME 
*     .. 
*     .. External Subroutines .. 
      EXTERNAL XERBLA 
*     .. 
*     .. Intrinsic Functions .. 
      INTRINSIC MAX 
*     .. 
*     .. Local Scalars .. 
      REAL TEMP1,TEMP2 
      INTEGER I,INFO,J,K,NROWA 
      LOGICAL UPPER 
*     .. 
*     .. Parameters .. 
      REAL ONE,ZERO 
      PARAMETER (ONE=1.0E+0,ZERO=0.0E+0) 
*     .. 
* 
*     Set NROWA as the number of rows of A. 
* 
      IF (LSAME(SIDE,'L')) THEN 
          NROWA = M 
      ELSE 
          NROWA = N 
      END IF 
      UPPER = LSAME(UPLO,'U') 
* 
*     Test the input parameters. 
* 
      INFO = 0 
      IF ((.NOT.LSAME(SIDE,'L')) .AND. (.NOT.LSAME(SIDE,'R'))) THEN 
          INFO = 1 
      ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN 
          INFO = 2 
      ELSE IF (M.LT.0) THEN 
          INFO = 3 
      ELSE IF (N.LT.0) THEN 
          INFO = 4 
      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN 
          INFO = 7 
      ELSE IF (LDB.LT.MAX(1,M)) THEN 
          INFO = 9 
      ELSE IF (LDC.LT.MAX(1,M)) THEN 
          INFO = 12 
      END IF 
      IF (INFO.NE.0) THEN 
          CALL XERBLA('SSYMM ',INFO) 
          RETURN 
      END IF 
* 
*     Quick return if possible. 
* 
      IF ((M.EQ.0) .OR. (N.EQ.0) .OR. 
     +    ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN 
* 
*     And when  alpha.eq.zero. 
* 
      IF (ALPHA.EQ.ZERO) THEN 
          IF (BETA.EQ.ZERO) THEN 
              DO 20 J = 1,N 
                  DO 10 I = 1,M 
                      C(I,J) = ZERO 
   10             CONTINUE 
   20         CONTINUE 
          ELSE 
              DO 40 J = 1,N 
                  DO 30 I = 1,M 
                      C(I,J) = BETA*C(I,J) 
   30             CONTINUE 
   40         CONTINUE 
          END IF 
          RETURN 
      END IF 
* 
*     Start the operations. 
* 
      IF (LSAME(SIDE,'L')) THEN 
* 
*        Form  C := alpha*A*B + beta*C. 
* 
          IF (UPPER) THEN 
              DO 70 J = 1,N 
                  DO 60 I = 1,M 
                      TEMP1 = ALPHA*B(I,J) 
                      TEMP2 = ZERO 
                      DO 50 K = 1,I - 1 
                          C(K,J) = C(K,J) + TEMP1*A(K,I) 
                          TEMP2 = TEMP2 + B(K,J)*A(K,I) 
   50                 CONTINUE 
                      IF (BETA.EQ.ZERO) THEN 
                          C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2 
                      ELSE 
                          C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) + 
     +                             ALPHA*TEMP2 
                      END IF 
   60             CONTINUE 
   70         CONTINUE 
          ELSE 
              DO 100 J = 1,N 
                  DO 90 I = M,1,-1 
                      TEMP1 = ALPHA*B(I,J) 
                      TEMP2 = ZERO 
                      DO 80 K = I + 1,M 
                          C(K,J) = C(K,J) + TEMP1*A(K,I) 
                          TEMP2 = TEMP2 + B(K,J)*A(K,I) 
   80                 CONTINUE 
                      IF (BETA.EQ.ZERO) THEN 
                          C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2 
                      ELSE 
                          C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) + 
     +                             ALPHA*TEMP2 
                      END IF 
   90             CONTINUE 
  100         CONTINUE 
          END IF 
      ELSE 
* 
*        Form  C := alpha*B*A + beta*C. 
* 
          DO 170 J = 1,N 
              TEMP1 = ALPHA*A(J,J) 
              IF (BETA.EQ.ZERO) THEN 
                  DO 110 I = 1,M 
                      C(I,J) = TEMP1*B(I,J) 
  110             CONTINUE 
              ELSE 
                  DO 120 I = 1,M 
                      C(I,J) = BETA*C(I,J) + TEMP1*B(I,J) 
  120             CONTINUE 
              END IF 
              DO 140 K = 1,J - 1 
                  IF (UPPER) THEN 
                      TEMP1 = ALPHA*A(K,J) 
                  ELSE 
                      TEMP1 = ALPHA*A(J,K) 
                  END IF 
                  DO 130 I = 1,M 
                      C(I,J) = C(I,J) + TEMP1*B(I,K) 
  130             CONTINUE 
  140         CONTINUE 
              DO 160 K = J + 1,N 
                  IF (UPPER) THEN 
                      TEMP1 = ALPHA*A(J,K) 
                  ELSE 
                      TEMP1 = ALPHA*A(K,J) 
                  END IF 
                  DO 150 I = 1,M 
                      C(I,J) = C(I,J) + TEMP1*B(I,K) 
  150             CONTINUE 
  160         CONTINUE 
  170     CONTINUE 
      END IF 
* 
      RETURN 
* 
*     End of SSYMM . 
* 
      END 
 
 |