1 
  2 
  3 
  4 
  5 
  6 
  7 
  8 
  9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 
 43 
 44 
 45 
 46 
 47 
 48 
 49 
 50 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 
 61 
 62 
 63 
 64 
 65 
 66 
 67 
 68 
 69 
 70 
 71 
 72 
 73 
 74 
 75 
 76 
 77 
 78 
 79 
 80 
 81 
 82 
 83 
 84 
 85 
 86 
 87 
 88 
 89 
 90 
 91 
 92 
 93 
 94 
 95 
 96 
 97 
 98 
 99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 
329 
330 
 
 | 
 
      SUBROUTINE ZHERK(UPLO,TRANS,N,K,ALPHA,A,LDA,BETA,C,LDC) 
*     .. Scalar Arguments .. 
      DOUBLE PRECISION ALPHA,BETA 
      INTEGER K,LDA,LDC,N 
      CHARACTER TRANS,UPLO 
*     .. 
*     .. Array Arguments .. 
      DOUBLE COMPLEX A(LDA,*),C(LDC,*) 
*     .. 
* 
*  Purpose 
*  ======= 
* 
*  ZHERK  performs one of the hermitian rank k operations 
* 
*     C := alpha*A*A**H + beta*C, 
* 
*  or 
* 
*     C := alpha*A**H*A + beta*C, 
* 
*  where  alpha and beta  are  real scalars,  C is an  n by n  hermitian 
*  matrix and  A  is an  n by k  matrix in the  first case and a  k by n 
*  matrix in the second case. 
* 
*  Arguments 
*  ========== 
* 
*  UPLO   - CHARACTER*1. 
*           On  entry,   UPLO  specifies  whether  the  upper  or  lower 
*           triangular  part  of the  array  C  is to be  referenced  as 
*           follows: 
* 
*              UPLO = 'U' or 'u'   Only the  upper triangular part of  C 
*                                  is to be referenced. 
* 
*              UPLO = 'L' or 'l'   Only the  lower triangular part of  C 
*                                  is to be referenced. 
* 
*           Unchanged on exit. 
* 
*  TRANS  - CHARACTER*1. 
*           On entry,  TRANS  specifies the operation to be performed as 
*           follows: 
* 
*              TRANS = 'N' or 'n'   C := alpha*A*A**H + beta*C. 
* 
*              TRANS = 'C' or 'c'   C := alpha*A**H*A + beta*C. 
* 
*           Unchanged on exit. 
* 
*  N      - INTEGER. 
*           On entry,  N specifies the order of the matrix C.  N must be 
*           at least zero. 
*           Unchanged on exit. 
* 
*  K      - INTEGER. 
*           On entry with  TRANS = 'N' or 'n',  K  specifies  the number 
*           of  columns   of  the   matrix   A,   and  on   entry   with 
*           TRANS = 'C' or 'c',  K  specifies  the number of rows of the 
*           matrix A.  K must be at least zero. 
*           Unchanged on exit. 
* 
*  ALPHA  - DOUBLE PRECISION            . 
*           On entry, ALPHA specifies the scalar alpha. 
*           Unchanged on exit. 
* 
*  A      - COMPLEX*16       array of DIMENSION ( LDA, ka ), where ka is 
*           k  when  TRANS = 'N' or 'n',  and is  n  otherwise. 
*           Before entry with  TRANS = 'N' or 'n',  the  leading  n by k 
*           part of the array  A  must contain the matrix  A,  otherwise 
*           the leading  k by n  part of the array  A  must contain  the 
*           matrix A. 
*           Unchanged on exit. 
* 
*  LDA    - INTEGER. 
*           On entry, LDA specifies the first dimension of A as declared 
*           in  the  calling  (sub)  program.   When  TRANS = 'N' or 'n' 
*           then  LDA must be at least  max( 1, n ), otherwise  LDA must 
*           be at least  max( 1, k ). 
*           Unchanged on exit. 
* 
*  BETA   - DOUBLE PRECISION. 
*           On entry, BETA specifies the scalar beta. 
*           Unchanged on exit. 
* 
*  C      - COMPLEX*16          array of DIMENSION ( LDC, n ). 
*           Before entry  with  UPLO = 'U' or 'u',  the leading  n by n 
*           upper triangular part of the array C must contain the upper 
*           triangular part  of the  hermitian matrix  and the strictly 
*           lower triangular part of C is not referenced.  On exit, the 
*           upper triangular part of the array  C is overwritten by the 
*           upper triangular part of the updated matrix. 
*           Before entry  with  UPLO = 'L' or 'l',  the leading  n by n 
*           lower triangular part of the array C must contain the lower 
*           triangular part  of the  hermitian matrix  and the strictly 
*           upper triangular part of C is not referenced.  On exit, the 
*           lower triangular part of the array  C is overwritten by the 
*           lower triangular part of the updated matrix. 
*           Note that the imaginary parts of the diagonal elements need 
*           not be set,  they are assumed to be zero,  and on exit they 
*           are set to zero. 
* 
*  LDC    - INTEGER. 
*           On entry, LDC specifies the first dimension of C as declared 
*           in  the  calling  (sub)  program.   LDC  must  be  at  least 
*           max( 1, n ). 
*           Unchanged on exit. 
* 
*  Further Details 
*  =============== 
* 
*  Level 3 Blas routine. 
* 
*  -- Written on 8-February-1989. 
*     Jack Dongarra, Argonne National Laboratory. 
*     Iain Duff, AERE Harwell. 
*     Jeremy Du Croz, Numerical Algorithms Group Ltd. 
*     Sven Hammarling, Numerical Algorithms Group Ltd. 
* 
*  -- Modified 8-Nov-93 to set C(J,J) to DBLE( C(J,J) ) when BETA = 1. 
*     Ed Anderson, Cray Research Inc. 
* 
*  ===================================================================== 
* 
*     .. External Functions .. 
      LOGICAL LSAME 
      EXTERNAL LSAME 
*     .. 
*     .. External Subroutines .. 
      EXTERNAL XERBLA 
*     .. 
*     .. Intrinsic Functions .. 
      INTRINSIC DBLE,DCMPLX,DCONJG,MAX 
*     .. 
*     .. Local Scalars .. 
      DOUBLE COMPLEX TEMP 
      DOUBLE PRECISION RTEMP 
      INTEGER I,INFO,J,L,NROWA 
      LOGICAL UPPER 
*     .. 
*     .. Parameters .. 
      DOUBLE PRECISION ONE,ZERO 
      PARAMETER (ONE=1.0D+0,ZERO=0.0D+0) 
*     .. 
* 
*     Test the input parameters. 
* 
      IF (LSAME(TRANS,'N')) THEN 
          NROWA = N 
      ELSE 
          NROWA = K 
      END IF 
      UPPER = LSAME(UPLO,'U') 
* 
      INFO = 0 
      IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN 
          INFO = 1 
      ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND. 
     +         (.NOT.LSAME(TRANS,'C'))) THEN 
          INFO = 2 
      ELSE IF (N.LT.0) THEN 
          INFO = 3 
      ELSE IF (K.LT.0) THEN 
          INFO = 4 
      ELSE IF (LDA.LT.MAX(1,NROWA)) THEN 
          INFO = 7 
      ELSE IF (LDC.LT.MAX(1,N)) THEN 
          INFO = 10 
      END IF 
      IF (INFO.NE.0) THEN 
          CALL XERBLA('ZHERK ',INFO) 
          RETURN 
      END IF 
* 
*     Quick return if possible. 
* 
      IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR. 
     +    (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN 
* 
*     And when  alpha.eq.zero. 
* 
      IF (ALPHA.EQ.ZERO) THEN 
          IF (UPPER) THEN 
              IF (BETA.EQ.ZERO) THEN 
                  DO 20 J = 1,N 
                      DO 10 I = 1,J 
                          C(I,J) = ZERO 
   10                 CONTINUE 
   20             CONTINUE 
              ELSE 
                  DO 40 J = 1,N 
                      DO 30 I = 1,J - 1 
                          C(I,J) = BETA*C(I,J) 
   30                 CONTINUE 
                      C(J,J) = BETA*DBLE(C(J,J)) 
   40             CONTINUE 
              END IF 
          ELSE 
              IF (BETA.EQ.ZERO) THEN 
                  DO 60 J = 1,N 
                      DO 50 I = J,N 
                          C(I,J) = ZERO 
   50                 CONTINUE 
   60             CONTINUE 
              ELSE 
                  DO 80 J = 1,N 
                      C(J,J) = BETA*DBLE(C(J,J)) 
                      DO 70 I = J + 1,N 
                          C(I,J) = BETA*C(I,J) 
   70                 CONTINUE 
   80             CONTINUE 
              END IF 
          END IF 
          RETURN 
      END IF 
* 
*     Start the operations. 
* 
      IF (LSAME(TRANS,'N')) THEN 
* 
*        Form  C := alpha*A*A**H + beta*C. 
* 
          IF (UPPER) THEN 
              DO 130 J = 1,N 
                  IF (BETA.EQ.ZERO) THEN 
                      DO 90 I = 1,J 
                          C(I,J) = ZERO 
   90                 CONTINUE 
                  ELSE IF (BETA.NE.ONE) THEN 
                      DO 100 I = 1,J - 1 
                          C(I,J) = BETA*C(I,J) 
  100                 CONTINUE 
                      C(J,J) = BETA*DBLE(C(J,J)) 
                  ELSE 
                      C(J,J) = DBLE(C(J,J)) 
                  END IF 
                  DO 120 L = 1,K 
                      IF (A(J,L).NE.DCMPLX(ZERO)) THEN 
                          TEMP = ALPHA*DCONJG(A(J,L)) 
                          DO 110 I = 1,J - 1 
                              C(I,J) = C(I,J) + TEMP*A(I,L) 
  110                     CONTINUE 
                          C(J,J) = DBLE(C(J,J)) + DBLE(TEMP*A(I,L)) 
                      END IF 
  120             CONTINUE 
  130         CONTINUE 
          ELSE 
              DO 180 J = 1,N 
                  IF (BETA.EQ.ZERO) THEN 
                      DO 140 I = J,N 
                          C(I,J) = ZERO 
  140                 CONTINUE 
                  ELSE IF (BETA.NE.ONE) THEN 
                      C(J,J) = BETA*DBLE(C(J,J)) 
                      DO 150 I = J + 1,N 
                          C(I,J) = BETA*C(I,J) 
  150                 CONTINUE 
                  ELSE 
                      C(J,J) = DBLE(C(J,J)) 
                  END IF 
                  DO 170 L = 1,K 
                      IF (A(J,L).NE.DCMPLX(ZERO)) THEN 
                          TEMP = ALPHA*DCONJG(A(J,L)) 
                          C(J,J) = DBLE(C(J,J)) + DBLE(TEMP*A(J,L)) 
                          DO 160 I = J + 1,N 
                              C(I,J) = C(I,J) + TEMP*A(I,L) 
  160                     CONTINUE 
                      END IF 
  170             CONTINUE 
  180         CONTINUE 
          END IF 
      ELSE 
* 
*        Form  C := alpha*A**H*A + beta*C. 
* 
          IF (UPPER) THEN 
              DO 220 J = 1,N 
                  DO 200 I = 1,J - 1 
                      TEMP = ZERO 
                      DO 190 L = 1,K 
                          TEMP = TEMP + DCONJG(A(L,I))*A(L,J) 
  190                 CONTINUE 
                      IF (BETA.EQ.ZERO) THEN 
                          C(I,J) = ALPHA*TEMP 
                      ELSE 
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J) 
                      END IF 
  200             CONTINUE 
                  RTEMP = ZERO 
                  DO 210 L = 1,K 
                      RTEMP = RTEMP + DCONJG(A(L,J))*A(L,J) 
  210             CONTINUE 
                  IF (BETA.EQ.ZERO) THEN 
                      C(J,J) = ALPHA*RTEMP 
                  ELSE 
                      C(J,J) = ALPHA*RTEMP + BETA*DBLE(C(J,J)) 
                  END IF 
  220         CONTINUE 
          ELSE 
              DO 260 J = 1,N 
                  RTEMP = ZERO 
                  DO 230 L = 1,K 
                      RTEMP = RTEMP + DCONJG(A(L,J))*A(L,J) 
  230             CONTINUE 
                  IF (BETA.EQ.ZERO) THEN 
                      C(J,J) = ALPHA*RTEMP 
                  ELSE 
                      C(J,J) = ALPHA*RTEMP + BETA*DBLE(C(J,J)) 
                  END IF 
                  DO 250 I = J + 1,N 
                      TEMP = ZERO 
                      DO 240 L = 1,K 
                          TEMP = TEMP + DCONJG(A(L,I))*A(L,J) 
  240                 CONTINUE 
                      IF (BETA.EQ.ZERO) THEN 
                          C(I,J) = ALPHA*TEMP 
                      ELSE 
                          C(I,J) = ALPHA*TEMP + BETA*C(I,J) 
                      END IF 
  250             CONTINUE 
  260         CONTINUE 
          END IF 
      END IF 
* 
      RETURN 
* 
*     End of ZHERK . 
* 
      END 
 
 |