1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
#include <ulmblas.h>
#include <stdio.h>
#include <immintrin.h>

#define MC  384
#define KC  384
#define NC  4096

#define MR  8
#define NR  4

//
//  Local buffers for storing panels from A, B and C
//
static double _A[MC*KC] __attribute__ ((aligned (32)));
static double _B[KC*NC] __attribute__ ((aligned (32)));
static double _C[MR*NR] __attribute__ ((aligned (32)));

//
//  Packing complete panels from A (i.e. without padding)
//
static void
pack_MRxk(int k, const double *A, int incRowA, int incColA,
          double *buffer)
{
    int i, j;

    for (j=0; j<k; ++j) {
        for (i=0; i<MR; ++i) {
            buffer[i] = A[i*incRowA];
        }
        buffer += MR;
        A      += incColA;
    }
}

//
//  Packing panels from A with padding if required
//
static void
pack_A(int mc, int kc, const double *A, int incRowA, int incColA,
       double *buffer)
{
    int mp  = mc / MR;
    int _mr = mc % MR;

    int i, j;

    for (i=0; i<mp; ++i) {
        pack_MRxk(kc, A, incRowA, incColA, buffer);
        buffer += kc*MR;
        A      += MR*incRowA;
    }
    if (_mr>0) {
        for (j=0; j<kc; ++j) {
            for (i=0; i<_mr; ++i) {
                buffer[i] = A[i*incRowA];
            }
            for (i=_mr; i<MR; ++i) {
                buffer[i] = 0.0;
            }
            buffer += MR;
            A      += incColA;
        }
    }
}

//
//  Packing complete panels from B (i.e. without padding)
//
static void
pack_kxNR(int k, const double *B, int incRowB, int incColB,
          double *buffer)
{
    int i, j;

    for (i=0; i<k; ++i) {
        for (j=0; j<NR; ++j) {
            buffer[j] = B[j*incColB];
        }
        buffer += NR;
        B      += incRowB;
    }
}

//
//  Packing panels from B with padding if required
//
static void
pack_B(int kc, int nc, const double *B, int incRowB, int incColB,
       double *buffer)
{
    int np  = nc / NR;
    int _nr = nc % NR;

    int i, j;

    for (j=0; j<np; ++j) {
        pack_kxNR(kc, B, incRowB, incColB, buffer);
        buffer += kc*NR;
        B      += NR*incColB;
    }
    if (_nr>0) {
        for (i=0; i<kc; ++i) {
            for (j=0; j<_nr; ++j) {
                buffer[j] = B[j*incColB];
            }
            for (j=_nr; j<NR; ++j) {
                buffer[j] = 0.0;
            }
            buffer += NR;
            B      += incRowB;
        }
    }
}

//
//  Micro kernel for multiplying panels from A and B.
//
static void
dgemm_micro_kernel(int kc,
                   double alpha, const double *A, const double *B,
                   double beta,
                   double *C, int incRowC, int incColC)
{
    double AB[MR*NR] __attribute__ ((aligned (32)));

    // Cols of AB in SSE registers
    __m256d   ab_00_10_20_30,  ab_40_50_60_70;
    __m256d   ab_01_11_21_31,  ab_41_51_61_71;
    __m256d   ab_02_12_22_32,  ab_42_52_62_72;
    __m256d   ab_03_13_23_33,  ab_43_53_63_73;

    __m256d   a_0123, a_4567;
    __m256d   b_0000, b_1111, b_2222, b_3333;
    __m256d   tmp1, tmp2;

    int i, j, l;

    ab_00_10_20_30 = _mm256_setzero_pd(); ab_40_50_60_70 = _mm256_setzero_pd();
    ab_01_11_21_31 = _mm256_setzero_pd(); ab_41_51_61_71 = _mm256_setzero_pd();
    ab_02_12_22_32 = _mm256_setzero_pd(); ab_42_52_62_72 = _mm256_setzero_pd();
    ab_03_13_23_33 = _mm256_setzero_pd(); ab_43_53_63_73 = _mm256_setzero_pd();

//
//  Compute AB = A*B
//
    for (l=0; l<kc; ++l) {
        a_0123 = _mm256_load_pd(A);
        a_4567 = _mm256_load_pd(A+4);

        b_0000 = _mm256_broadcast_sd(B);
        b_1111 = _mm256_broadcast_sd(B+1);
        b_2222 = _mm256_broadcast_sd(B+2);
        b_3333 = _mm256_broadcast_sd(B+3);

        // col 0 of AB
        tmp1 = a_0123;
        tmp2 = a_4567;
        tmp1 = _mm256_mul_pd(tmp1, b_0000);
        tmp2 = _mm256_mul_pd(tmp2, b_0000);
        ab_00_10_20_30 = _mm256_add_pd(tmp1, ab_00_10_20_30);
        ab_40_50_60_70 = _mm256_add_pd(tmp2, ab_40_50_60_70);

        // col 1 of AB
        tmp1 = a_0123;
        tmp2 = a_4567;
        tmp1 = _mm256_mul_pd(tmp1, b_1111);
        tmp2 = _mm256_mul_pd(tmp2, b_1111);
        ab_01_11_21_31 = _mm256_add_pd(tmp1, ab_01_11_21_31);
        ab_41_51_61_71 = _mm256_add_pd(tmp2, ab_41_51_61_71);

        // col 2 of AB
        tmp1 = a_0123;
        tmp2 = a_4567;
        tmp1 = _mm256_mul_pd(tmp1, b_2222);
        tmp2 = _mm256_mul_pd(tmp2, b_2222);
        ab_02_12_22_32 = _mm256_add_pd(tmp1, ab_02_12_22_32);
        ab_42_52_62_72 = _mm256_add_pd(tmp2, ab_42_52_62_72);

        // col 3 of AB
        tmp1 = a_0123;
        tmp2 = a_4567;
        tmp1 = _mm256_mul_pd(tmp1, b_3333);
        tmp2 = _mm256_mul_pd(tmp2, b_3333);
        ab_03_13_23_33 = _mm256_add_pd(tmp1, ab_03_13_23_33);
        ab_43_53_63_73 = _mm256_add_pd(tmp2, ab_43_53_63_73);

        A += 8;
        B += 4;
    }

    _mm256_store_pd(AB+ 0, ab_00_10_20_30);
    _mm256_store_pd(AB+ 4, ab_40_50_60_70);

    _mm256_store_pd(AB+ 8, ab_01_11_21_31);
    _mm256_store_pd(AB+12, ab_41_51_61_71);

    _mm256_store_pd(AB+16, ab_02_12_22_32);
    _mm256_store_pd(AB+20, ab_42_52_62_72);

    _mm256_store_pd(AB+24, ab_03_13_23_33);
    _mm256_store_pd(AB+28, ab_43_53_63_73);

//
//  Update C <- beta*C
//
    if (beta==0.0) {
        for (j=0; j<NR; ++j) {
            for (i=0; i<MR; ++i) {
                C[i*incRowC+j*incColC] = 0.0;
            }
        }
    } else if (beta!=1.0) {
        for (j=0; j<NR; ++j) {
            for (i=0; i<MR; ++i) {
                C[i*incRowC+j*incColC] *= beta;
            }
        }
    }

//
//  Update C <- C + alpha*AB (note: the case alpha==0.0 was already treated in
//                                  the above layer dgemm_nn)
//
    if (alpha==1.0) {
        for (j=0; j<NR; ++j) {
            for (i=0; i<MR; ++i) {
                C[i*incRowC+j*incColC] += AB[i+j*MR];
            }
        }
    } else {
        for (j=0; j<NR; ++j) {
            for (i=0; i<MR; ++i) {
                C[i*incRowC+j*incColC] += alpha*AB[i+j*MR];
            }
        }
    }
}

//
//  Compute Y += alpha*X
//
static void
dgeaxpy(int           m,
        int           n,
        double        alpha,
        const double  *X,
        int           incRowX,
        int           incColX,
        double        *Y,
        int           incRowY,
        int           incColY)
{
    int i, j;


    if (alpha!=1.0) {
        for (j=0; j<n; ++j) {
            for (i=0; i<m; ++i) {
                Y[i*incRowY+j*incColY] += alpha*X[i*incRowX+j*incColX];
            }
        }
    } else {
        for (j=0; j<n; ++j) {
            for (i=0; i<m; ++i) {
                Y[i*incRowY+j*incColY] += X[i*incRowX+j*incColX];
            }
        }
    }
}

//
//  Compute X *= alpha
//
static void
dgescal(int     m,
        int     n,
        double  alpha,
        double  *X,
        int     incRowX,
        int     incColX)
{
    int i, j;

    if (alpha!=0.0) {
        for (j=0; j<n; ++j) {
            for (i=0; i<m; ++i) {
                X[i*incRowX+j*incColX] *= alpha;
            }
        }
    } else {
        for (j=0; j<n; ++j) {
            for (i=0; i<m; ++i) {
                X[i*incRowX+j*incColX] = 0.0;
            }
        }
    }
}

//
//  Macro Kernel for the multiplication of blocks of A and B.  We assume that
//  these blocks were previously packed to buffers _A and _B.
//
static void
dgemm_macro_kernel(int     mc,
                   int     nc,
                   int     kc,
                   double  alpha,
                   double  beta,
                   double  *C,
                   int     incRowC,
                   int     incColC)
{
    int mp = (mc+MR-1) / MR;
    int np = (nc+NR-1) / NR;

    int _mr = mc % MR;
    int _nr = nc % NR;

    int mr, nr;
    int i, j;

    for (j=0; j<np; ++j) {
        nr    = (j!=np-1 || _nr==0) ? NR : _nr;

        for (i=0; i<mp; ++i) {
            mr    = (i!=mp-1 || _mr==0) ? MR : _mr;

            if (mr==MR && nr==NR) {
                dgemm_micro_kernel(kc, alpha, &_A[i*kc*MR], &_B[j*kc*NR],
                                   beta,
                                   &C[i*MR*incRowC+j*NR*incColC],
                                   incRowC, incColC);
            } else {
                dgemm_micro_kernel(kc, alpha, &_A[i*kc*MR], &_B[j*kc*NR],
                                   0.0,
                                   _C, 1, MR);
                dgescal(mr, nr, beta,
                        &C[i*MR*incRowC+j*NR*incColC], incRowC, incColC);
                dgeaxpy(mr, nr, 1.0, _C, 1, MR,
                        &C[i*MR*incRowC+j*NR*incColC], incRowC, incColC);
            }
        }
    }
}

//
//  Compute C <- beta*C + alpha*A*B
//
void
dgemm_nn(int            m,
         int            n,
         int            k,
         double         alpha,
         const double   *A,
         int            incRowA,
         int            incColA,
         const double   *B,
         int            incRowB,
         int            incColB,
         double         beta,
         double         *C,
         int            incRowC,
         int            incColC)
{
    int mb = (m+MC-1) / MC;
    int nb = (n+NC-1) / NC;
    int kb = (k+KC-1) / KC;

    int _mc = m % MC;
    int _nc = n % NC;
    int _kc = k % KC;

    int mc, nc, kc;
    int i, j, l;

    double _beta;

    if (alpha==0.0 || k==0) {
        dgescal(m, n, beta, C, incRowC, incColC);
        return;
    }

    for (j=0; j<nb; ++j) {
        nc = (j!=nb-1 || _nc==0) ? NC : _nc;

        for (l=0; l<kb; ++l) {
            kc    = (l!=kb-1 || _kc==0) ? KC   : _kc;
            _beta = (l==0) ? beta : 1.0;

            pack_B(kc, nc,
                   &B[l*KC*incRowB+j*NC*incColB], incRowB, incColB,
                   _B);

            for (i=0; i<mb; ++i) {
                mc = (i!=mb-1 || _mc==0) ? MC : _mc;

                pack_A(mc, kc,
                       &A[i*MC*incRowA+l*KC*incColA], incRowA, incColA,
                       _A);

                dgemm_macro_kernel(mc, nc, kc, alpha, _beta,
                                   &C[i*MC*incRowC+j*NC*incColC],
                                   incRowC, incColC);
            }
        }
    }
}