Lösung.

Ableiten der Verteilung $ \mbox{$F(x)$}$ ergibt

$ \mbox{$\displaystyle
f(x) =
\begin{cases}
\alpha\,\exp(-\alpha\, x) & \text{f\uml ur }x \geq 0\\
0 & \text{ sonst.}
\end{cases}$}$

Partielle Integration ergibt

$ \mbox{$\displaystyle
\begin{array}{rcl}
{\operatorname{E}}(X) &=& \int_0^\in...
...
&=& \int_0^\infty\exp(-\alpha x)\,dx\\
&=& \alpha^{-1}\; .
\end{array}$}$

Partielle Integration ergibt

$ \mbox{$\displaystyle
\begin{array}{rcl}
{\operatorname{E}}(X^2) &=& \int_0^\...
... 2\int_0^\infty x\, \exp(-\alpha x)\,dx\\
&=& 2\alpha^{-2}\; ,
\end{array}$}$
damit folgt
$ \mbox{$\displaystyle
{\operatorname{Var}}(X) \; =\; {\operatorname{E}}(X^2)-(...
...atorname{E}}(X))^2 \; =\; 2\,\alpha^{-2} - (\alpha^{-1})^2 = \alpha^{-2}\; .
$}$