Beweis des Schlangenlemmas

Robin Nittka

24. Januar 2005

Satz (Schlangenlemma)

Betrachte das folgende kommutative Diagramm, bei dem die mittleren beiden Zeilen exakt seien.

Hier ist \bar{u}, \bar{v} die Restriktion von u bzw. v, und \bar{u}', \bar{v}' ist die von u' bzw. v' induzierte Abbildung. Dann ist die folgende Sequenz wiederum exakt:

$$\{0\} \to \operatorname{Kern} f' \overset{\bar{u}}{\to} \operatorname{Kern} f \overset{\bar{v}}{\to} \operatorname{Kern} f'' \overset{d}{\to} \operatorname{Cokern} f' \overset{\bar{u}'}{\to} \operatorname{Cokern} f \overset{\bar{v}'}{\to} \operatorname{Cokern} f'' \to \{0\}$$

Hierbei ist d folgendermassen definiert:

Sei $x'' \in \text{Kern } f''$ beliebig vorgegeben. Da v surjektiv ist, gibt es ein $x \in M$ mit v(x) = x''. Nun gilt v'(f(x)) = f''(v(x)) = f''(x'') = 0, also $f(x) \in \text{Kern } v' = \text{Bild } u'$, daher $\exists y' \in N' : u'(y') = f(x)$. Nun definiert man d(x'') := y' + Bild f'.

Bemerkung

Unter der Voraussetzung, daß d wohldefiniert ist, kann man auch schreiben:

$$d(x'') = y' + \text{Bild } f' : \iff \exists x \in M : v(x) = x'', u'(y') = f(x)$$

Beweis

• \bar{u} und \bar{v} sind wohldefiniert:

$$x' \in \text{Kern } f' \Rightarrow f'(x') = 0 \Rightarrow 0 = u'(f'(x')) = f(u(x')) \Rightarrow u(x') \in \text{Kern } f' \Rightarrow f'(x') = 0 \Rightarrow 0 = u'(f'(x')) = f(u(x')) \Rightarrow u(x') \in \text{Kern } f' \Rightarrow f'(x') = 0 \Rightarrow 0 = u'(f'(x')) = f(u(x')) \Rightarrow u(x') \in \text{Kern } f' \Rightarrow f'(x') = 0 \Rightarrow 0 = u'(f'(x')) = f(u(x')) \Rightarrow u(x') \in \text{Kern } f' \Rightarrow f'(x') = 0 \Rightarrow 0 = u'(f'(x')) = f(u(x')) \Rightarrow u(x') \in \text{Kern } f' \Rightarrow f'(x') \in \text{Kern } f' \Rightarrow f'(x') = 0 \Rightarrow 0 = u'(f'(x')) = f(u(x')) \Rightarrow u(x') \in \text{Kern } f' \Rightarrow f'(x') \in \text{Kern } f' \Rightarrow f'(x') = 0 \Rightarrow 0 = u'(f'(x')) = f(u(x')) \Rightarrow u(x') \in \text{Kern } f' \Rightarrow f'(x') \in \text{Kern } f'$$

• $\bar{u}'(y' + \text{Bild } f') := u'(y') + \text{Bild } f \text{ und } \bar{v}'(y + \text{Bild } f) := v'(y) + \text{Bild } f'' \text{ sind wohldefiniert:}$

$$y' + \text{Bild } f' = \text{Bild } f' \Rightarrow y' \in \text{Bild } f' \Rightarrow \exists x' \in M' : f'(x') = y' \Rightarrow u'(y') = u'(f'(x')) = f(u(x')) \in \text{Bild } f \Rightarrow \bar{u}'(y' + \text{Bild } f') = u'(y') + \text{Bild } f = \text{Bild } f = \bar{u}' \text{ (Bild } f')$$

• $d: \text{Kern } f'' \to \text{Cokern } f' \text{ ist wohldefiniert:}$

Bei der Wahl von y' in der Definition besteht keine Wahlfreiheit, da u' injektiv ist. z.z.: $v(x_1) = v(x_2) = x'', u'(y_1') = f(x_1), u'(y_2') = f(x_2) \Longrightarrow y_1' + \text{Bild } f' = y_2' + \text{Bild } f'$

Seien also
$$x_1, x_2 \in M, v(x_1) = v(x_2) = x'', u'(y_1') = f(x_1), u'(y_2') = f(x_2)$$

 $\Rightarrow x_1 - x_2 \in \text{Kern } v = \text{Bild } u \Rightarrow \exists x' \in M' : u(x') = x_1 - x_2$
 $\Rightarrow u'(y_1' - y_2') = u'(y_1') - u'(y_2') = f(x_1) - f(x_2) = f(x_1 - x_2) = f(u'(x')) = u'(f'(x'))$
 $\stackrel{u'\text{inj.}}{\Longrightarrow} y_1' - y_2' = f'(x') \in \text{Bild } f' \Rightarrow y_1' + \text{Bild } f' = y_2' + \text{Bild } f'$

 $\bullet \ d$ ist ein Homomorphismus:

Seien $x_1'', x_2'' \in \text{Kern } f''$ beliebig vorgegeben. Wähle nun x_1 und x_2 wie in der Definition von d vorgeschrieben mit $v(x_1) = x_1''$ und $v(x_2) = x_2''$. Es ist dann nach Definition $d(x_1'') + d(x_2'') = (u')^{-1}(f(x_1)) + \text{Bild } f' + (u')^{-1}(f(x_2)) + \text{Bild } f' = (u')^{-1}(f(x_1 + x_2)) + \text{Bild } f'.$ Wegen $v(x_1 + x_2) = v(x_1) + v(x_2) = x_1'' + x_2''$ ist nun aber (wegen Wohldefiniertheit) $d(x_1'' + x_2'') = (u')^{-1}(f(x_1 + x_2)) + \text{Bild } f'$, also $d(x_1'' + x_2'') = d(x_1'') + d(x_2'')$.

- Die Sequenz ist exakt in Kern f':
 Dies ist klar, denn \bar{u} ist injektiv als Einschränkung der injektiven Abbildung u.
- Die Sequenz ist exakt in Kern f:
 - Bild $\bar{u} \subset \operatorname{Kern} \bar{v}$ ist klar wegen $\bar{v}(\bar{u}(x')) = v(u(x')) = 0 \ \forall x \in \operatorname{Kern} f' \subset M'$
 - Kern \bar{v} ⊂ Bild \bar{u} : Sei $x \in \text{Kern } \bar{v}$, d.h. $x \in \text{Kern } v \cap \text{Kern } f$. Also gibt es ein $x' \in M'$ mit u(x') = x, also auch u'(f'(x')) = f(u(x')) = f(x) = 0. Da u' injektiv ist, muß f'(x') = 0 sein, also $x' \in \text{Kern } f', \bar{u}(x') = u(x') = x$, d.h. $x \in \text{Bild } \bar{u}$.
- Die Sequenz ist exakt in Kern f'':
 - Bild \bar{v} ⊂ Kern d: Sei $x \in \text{Kern } f$, d.h. $\bar{v}(x)$ ein beliebiges Element von Bild \bar{v} . Zu zeigen ist $d(\bar{v}(x)) = \text{Bild } f'$, d.h. $\exists \tilde{x} \in M : v(\tilde{x}) = \bar{v}(x), u'(0) = f(\tilde{x})$. $x := \tilde{x}$ besitzt die gewünschte Eigenschaft, somit ist $\bar{v}(x) \in \text{Kern } d$.
 - Kern $d \subset \operatorname{Bild} \bar{v}$: Sei $x'' \in \operatorname{Kern} d$, d.h. $\exists y' \in \operatorname{Bild} f', x \in M : v(x) = x'', f(x) = u'(y')$. Also gibt es $x' \in M'$ mit f'(x') = y'. Somit ist f(x) = u'(y') = u'(f'(x')) = f(u(x')). Daher folgt $x - u(x') \in \operatorname{Kern} f$ und damit $\bar{v}(x - u(x')) = v(x - u(x')) = v(x) = x'' \in \operatorname{Bild} \bar{v}$.
- Die Sequenz ist exakt in Cokern f':
 - Bild d ⊂ Kern \bar{u}' : Sei y' + Bild f' ∈ Bild d. Das bedeutet: $\exists x'' \in \text{Kern } f'' \ \exists \tilde{y}' \in y' + \text{Bild } f', x \in M : v(x) = x'', f(x) = u'(\tilde{y}').$ Daher ist $\bar{u}'(y' + \text{Bild } f') = \bar{u}'(\tilde{y}' + \text{Bild } f') = u'(\tilde{y}') + \text{Bild } f = f(x) + \text{Bild } f = \text{Bild } f.$ Dies heißt aber gerade y' + Bild f' ∈ Kern \bar{u}' .

- Kern \bar{u}' ⊂ Bild d: Sei y' + Bild f' ∈ Kern \bar{u}' . Dann ist also $\bar{u}'(y'$ + Bild f') = u'(y') + Bild f = Bild f, also u'(y') ∈ Bild f. Daher gibt es $x \in M$ mit f(x) = u'(y'). Wähle x'' := v(x). Dann ist f''(x'') = f''(v(x)) = v'(f(x)) = v'(u'(y')) = 0, also x'' ∈ Kern f'', und dieses x'' erfüllt die Charakterisierung für d(x'') = y' + Bild f'. Damit gilt nun also y' + Bild f' ∈ Bild d.
- Die Sequenz ist exakt in Cokern f:
 - Bild \bar{u}' ⊂ Kern \bar{v}' : Sei y + Bild f ∈ Bild \bar{u}' , d.h. $\exists y' \in N' : \bar{u}'(y' + \text{Bild } f') = u'(y') + \text{Bild } f = y + \text{Bild } f$. Dann ist $\bar{v}'(y + \text{Bild } f) = \bar{v}'(u'(y') + \text{Bild } f) = v'(u'(y')) + \text{Bild } f'' = \text{Bild } f''$. Also ist y + Bild f ∈ Kern \bar{v}' .
 - Kern \bar{v}' ⊂ Bild \bar{u}' : Sei y + Bild f ∈ Kern \bar{v}' . Dann ist \bar{v}' (y + Bild f) = v'(y) + Bild f'' = Bild f'', d.h. v'(y) ∈ Bild f''. Wähle ein x'' ∈ M'' mit f''(x'') = v'(y). Wegen der Surjektivität von v gibt es ein $x \in M$ mit v(x) = x''. Dann ist v'(f(x)) = f''(v(x)) = f''(x'') = v'(y) und damit y - f(x) ∈ Kern v' = Bild u'. Also gibt es ein y' ∈ N', so daß u'(y') = y - f(x). Und dann ist \bar{u}' (y' + Bild f') = u'(y') + Bild f = y - f(x) + Bild f = y + Bild f, damit also y + Bild f ∈ Bild \bar{u}' .
- Die Sequenz ist exakt in Cokern f'':
 Dies ist klar, denn sei $y'' + \text{Bild } f'' \in \text{Cokern } f''$. Dann ist $y'' \in N''$ und es gibt $y \in N$ mit v'(y) = y''. Also folgt $\bar{v}'(y + \text{Bild } f) = v'(y) + \text{Bild } f'' = y'' + \text{Bild } f''$ und damit $y'' + \text{Bild } f'' \in \text{Bild } \bar{v}'$.