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1 Introduction

Let P = |X| be a d-dimensional (convex) polytope in R
d with vertices in Z

d, let

L(X, n) = ♯{(n · |X|) ∩ Z
d}

be the number of integer-valued vectors in n · |X| and let

L(X − ∂X, n) = ♯{int(n · |X|) ∩ Z
d}

be the number of integer-valued vectors in the interior of n · |X| , where n ∈ N.

It was shown that there exists a polynomial fX of degree d, such that

L(X, n) = fX(n).
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We will now show that

L(X − ∂X, n) = (−1)d · fX(−n).

Definition 1.1. A set of p+1 points in R
d, {a0, a1, ..., ap}, is said to be (affine) independent,

if for real coefficients λ0, ..., λp

(

p
∑

i=0

λiai = 0 and

p
∑

i=0

λi = 0 ) ⇒ ( λi = 0 ∀i ∈ {0, ..., p} ) .

Remark 1.2. A single point is always independent.
If p + 1 ≥ 2, then p + 1 points are independent if and only if they do not lie in an affine
subspace of dimension ≤ p − 1.

Definition 1.3. Let {a0, a1, ..., ap} be an indenpendent set of p+1 points in R
d. The (open)

p-simplex σ with vertices a0, a1, ..., ap is given by

σ = (a0, a1, ..., ap) = {

p
∑

i=0

λiai |

p
∑

i=0

λi = 1 and λi > 0 ∀i ∈ {0, ..., p} }.

Definition 1.4. A simplex τ is a face of the simplex σ = (a0, a1, ..., ap) if the set of vertices
of τ , vert τ , is a subset of vert σ = {a0, a1, ..., ap}. In this case we write τ � σ.

Definition 1.5. A finite simplicial complex X is a finite collection of simplexes, such that

1. (σ ∈ X and τ � σ) ⇒ τ ∈ X (X is ”closed”) and

2. (σ1, σ2 ∈ X and σ1 6= σ2) ⇒ σ1 ∩ σ2 = ∅ (distinct simplexes of X are disjoint).

Definition 1.6. For a collection of simplexes X we write |X| for the underlying space of
X, i.e.

|X| =
⋃

σ∈X

σ.

If X is a simplicial complex, |X| is called polyhedron.

Proposition 1.7. Every polytope P is a polyhedron. Moreover, for every polytope P exists
a simplicial complex X such that |X| = P and vert X = vert P .

Proof. Constructively, using induction on the dimension of the polytope P .

Definition 1.8. The topological closure of the simplex σ = (a0, a1, ..., ap), σ, is called closed
p-simplex.

σ = {

p
∑

i=0

λiai |

p
∑

i=0

λi = 1 and λi ≥ 0 ∀i ∈ {0, ..., p}}.

In an abuse of notation we shall sometimes write σ for the simplicial complex whose polyhe-
dron is σ, i.e.

σ = {τ | τ � σ}.
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2 The main theorem for a simplex

Theorem 2.1. Let σ be a simplex in R
d with vertices in Z

d. Then for n ∈ N :

L(σ, n) = (−1)dim σ L(σ,−n).

Proof. Without loss of generality dim σ = d.
(If dim σ < d, then the affine hull spanned by σ intersected with Z

d is an affine sublattice
of Z

d whose underlying sublattice is Z-generated by dimσ linearly independent vectors. We
can look at this lattice in the corresponding subspace of dimension dim σ.)
Let e1, ..., ed a basis of Z

d. See R
d as a subspace of R

d+1 and let e0, e1, ..., ed a basis of Z
d+1.

Let σ = (u0, ..., ud), vi = e0 + ui (0 ≤ i ≤ d) and σ′ = (v0, ..., vd).
Let M = Zv0 + ... + Zvd be the sublattice of Z

d+1 that is Z-generated by v0, ..., vd.
Note that v0, ..., vd is an R-basis for R

n+1.

Γ := {x ∈ Z
d+1 | x =

d
∑

i=0

µivi with 0 ≤ µi < 1 ∀i}

is a complete set of represesentatives for M in Z
d+1. Especially the index [Zd+1 : M ] is equal

to |Γ|, the number of points in Γ.

Γ′ = {x ∈ Z
d+1 | x =

d
∑

i=0

µ′
ivi with 0 < µ′

i ≤ 1 ∀i}

is also a complete set of representatives for M .

L(σ, n) is equal to the number of points y ∈ Z
d+1 that lie in n σ′ = (n v0, ..., n vd)

Each point y ∈ Z
d+1 ∩ n σ′ is congruent mod M to exactly one point x of Γ, i.e. there exists

integers m0, ..., md, s.t.

y = x +

d
∑

i=0

mi vi (1)

Here mi ≥ 0 ∀i, since provided x =
∑d

i=0 µi vi with µi ∈ [0, 1) ∀i we have x +
∑d

i=0 mi vi =
∑d

i=0
(µi+mi)

n
n vi ∈ n σ′ and therefore µi + mi ≥ 0 ∀i.

Comparing the e0-coordinates of both sides of (1) gives

n = x0 +
d

∑

i=0

mi (2)

where x0 is the e0-coordinate of x.
So each point y ∈ Z

d+1 ∩ nσ′ gives rise to exactly one solution (m0, ..., md)
′ ∈ Z

d+1
≥0 of (2).

Viceversa, if m0, ..., md are non-negative integers that solve (2), then they give rise to a point
y ∈ Z

d+1 ∩ nσ′.
So the number of those points y ∈ Z

d+1 ∩ nσ′ that are congruent to a fix x ∈ Γ is equal to
the number of solutions in Z

d+1
≥0 of (2). This is the number of possibilities of adding d + 1

non-negative integers to x0 to get n. This number is equal to the coefficient of un in

ux0(1 + u + u2 + ...)d+1 = ux0(

∞
∑

k=0

(

k + d

d

)

uk).
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So it is equal to
(

n+d−x0

d

)

.
Hence

L(σ, n) =
∑

x∈Γ

(

n + d − x0

d

)

. (3)

This is a polynomial in n of degree d.

Similarly, L(σ, n) is equal to the number of points y ∈ Z
d+1 that lie in n σ′ = (n v0, ..., n vd).

Using now Γ′ as set of representatives for M in Z
d+1 we see that every y ∈ Z

d+1 ∩ n σ′ has a
unique representation

y = x′ +
d

∑

i=0

mi vi (4)

with x′ ∈ Γ′ and non-negative integers m0, ..., md.
Comparing the e0-coordinates of (4) gives now

n = x′
0 +

d
∑

i=0

mi (5)

where x′
0 is the e0-coordinate of x′.

Viceversa, non-negative integers m0, ..., md that solve (5) give rise to a point y ∈ Z
d+1 ∩n σ′.

Hence this time

L(σ, n) =
∑

x′∈Γ′

(

n + d − x′
0

d

)

. (6)

The mapping φ : Γ → Γ′ defined by φ(x) = v0 + ...+vd−x is bijective. The e0-coordinate
of φ(x) is d + 1 − x0, where x0 is again the eo-coordinate of x. Therefore

L(σ, n) =
∑

x∈Γ

(

n + d − (d + 1 − x0)

d

)

=
∑

x∈Γ

(

n − 1 + x0

d

)

.

Finally

L(σ,−n) =
∑

x∈Γ

(

−n − 1 + x0

d

)

=
∑

x∈Γ

(−n − 1 + x0) · ... · (−n − d + x0)

d!

=
∑

x∈Γ

(−1)d (n + d − x0) · ... · (n + 1 − x0)

d!
= (−1)d

∑

x∈Γ

(

n + d − x0

d

)

= (−1)dL(σ, n).

3 The main theorem

To generalize theorem 2.1 for poloytopes we need another tool:
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Definition 3.1. Let X be a simplicial dissection of a polytope P , i.e. X is a simplicial
complex with |X| = P . We define the boundary subcomplex ∂X of X as the collection of
simplexes whose points are on the topological boundary of P = |X| in the affine hull of P .

Remark 3.2. Let P be a d-dimensional polytope in R
d whith integer-valued vertices. Then

there exists a simplicial complex X with integer-valued vertices such that |X| = P (Proposi-
tion 1.7). For this complex we have:

int P = |X − ∂X| .

Lemma 3.3. Let P be a d-dimensional polytope and X be a simplicial complex with |X| = P .
For every τ ∈ X we have

∑

σ�τ

(−1)dim σ−dim τ =

{

(−1)d−dim τ , if τ /∈ ∂X

0, if τ ∈ ∂X

Proof. Since we need to know a good amount of Algebraic Topology in order to prove this,
we skip the proof here.

From now on let X be a simplicial complex whose underlying space |X| =
⋃

σ∈X σ is a
d-dimensional polytope.
Let V be a real vector space and φ : X → V be a function.
For any subset Y of X we define

S(Y, φ) =
∑

σ∈Y

(−1)1+dim σφ(σ). (7)

And we define the function φ∗ : X → V by

φ∗(σ) = S(σ, φ) =
∑

τ�σ

(−1)1+dim τφ(τ). (8)

Proposition 3.4.

S(X, φ∗) = (−1)d+1 · S(X − ∂X, φ)

Proof.

S(X, φ∗) =
∑

σ∈X

(−1)1+dim σφ∗(σ) =
∑

σ∈X

(−1)1+dim σ
∑

τ�σ

(−1)1+dim τφ(τ)

=
∑

τ∈X

φ(τ)
∑

σ�τ

(−1)dim σ−dim τ =
∑

τ /∈∂X

(−1)d−dim τφ(τ) = (−1)d+1S(X − ∂X, φ).

The third equality holds since for fix τ ∈ X the coefficient for φ(τ) is (−1)dim τ
∑

σ�τ (−1)dim σ.
For the fourth equality we use Lemma 3.3.

Now we are able to prove the main result.

Theorem 3.5. Let P be a polytope with integer-valued vertices and let X be a simplicial
complex that triangulates P , s.t. |X| = P and vert X = vert P . Then

L(X − ∂X, n) = (−1)dL(X,−n).
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Proof. Define φ : X → R[n] by φ(τ) = (−1)1+dim τL(τ, n).
Then by definition for any subset Y of X:

S(Y, φ) =
∑

τ∈Y

(−1)1+dim τφ(τ) =
∑

τ∈Y

L(τ, n) = L(Y, n)

and
φ∗(σ) = S(σ, φ) = L(σ, n) = (−1)dim σL(σ,−n).

Therefore

S(X, φ∗) =
∑

σ∈X

(−1)1+dim σφ∗(σ) = −
∑

σ∈X

L(σ,−n) = −L(X,−n).

Using Proposition 3.4 we conclude

L(X,−n) = −S(X, φ∗) = (−1)dS(X − ∂X, φ) = (−1)dL(X − ∂X, n).

6


