The number of integer-valued vectors in the interior of a polytope

Tim Breitenstein

July 10, 2007

literature:

- I. G. MacDonald, "The volume of a lattice polyhedron", Proc. Cambridge Philos. Soc., 59 (1963), 719-726.
- G. MacDonald, "Polynomials associated with finite cell-complexes", J. London Math. Soc. (2), 4 (1971), 181-192.
- 3. B. Grünbaum, Convex Polytopes (Interscience 1967).
- 4. P. J. Hilton and S. Wylie, Homology Theory (Cambridge 1967).
- 5. J. J. Rotman, An introduction to Algebraic Topology (Springer 1988).
- 6. A. Dold, Lectures on Algebraic Topology (Springer 1980).
- 7. W. S. Massey, Singular Homology Theory (Springer 1980).

1 Introduction

Let P = |X| be a d-dimensional (convex) polytope in \mathbb{R}^d with vertices in \mathbb{Z}^d , let

$$L(X,n) = \sharp\{(n \cdot |X|) \cap \mathbb{Z}^d\}$$

be the number of integer-valued vectors in $n \cdot |X|$ and let

$$L(X - \partial X, n) = \sharp \{ int(n \cdot |X|) \cap \mathbb{Z}^d \}$$

be the number of integer-valued vectors in the interior of $n \cdot |X|$, where $n \in \mathbb{N}$.

It was shown that there exists a polynomial f_X of degree d, such that

$$L(X,n) = f_X(n).$$

We will now show that

$$L(X - \partial X, n) = (-1)^d \cdot f_X(-n).$$

Definition 1.1. A set of p+1 points in \mathbb{R}^d , $\{a_0, a_1, ..., a_p\}$, is said to be (affine) independent, if for real coefficients $\lambda_0, ..., \lambda_p$

$$\left(\sum_{i=0}^{p} \lambda_{i} a_{i} = 0 \text{ and } \sum_{i=0}^{p} \lambda_{i} = 0\right) \Rightarrow \left(\lambda_{i} = 0 \forall i \in \{0, ..., p\}\right).$$

Remark 1.2. A single point is always independent.

If $p + 1 \ge 2$, then p + 1 points are independent if and only if they do not lie in an affine subspace of dimension $\le p - 1$.

Definition 1.3. Let $\{a_0, a_1, ..., a_p\}$ be an independent set of p+1 points in \mathbb{R}^d . The (open) p-simplex σ with vertices $a_0, a_1, ..., a_p$ is given by

$$\sigma = (a_0, a_1, ..., a_p) = \{ \sum_{i=0}^p \lambda_i a_i \mid \sum_{i=0}^p \lambda_i = 1 \text{ and } \lambda_i > 0 \ \forall i \in \{0, ..., p\} \}.$$

Definition 1.4. A simplex τ is a face of the simplex $\sigma = (a_0, a_1, ..., a_p)$ if the set of vertices of τ , vert τ , is a subset of vert $\sigma = \{a_0, a_1, ..., a_p\}$. In this case we write $\tau \preceq \sigma$.

Definition 1.5. A finite simplicial complex X is a finite collection of simplexes, such that

- 1. $(\sigma \in X \text{ and } \tau \preceq \sigma) \Rightarrow \tau \in X \quad (X \text{ is "closed"}) \text{ and}$
- 2. $(\sigma_1, \sigma_2 \in X \text{ and } \sigma_1 \neq \sigma_2) \Rightarrow \sigma_1 \cap \sigma_2 = \emptyset$ (distinct simplexes of X are disjoint).

Definition 1.6. For a collection of simplexes X we write |X| for the underlying space of X, *i.e.*

$$|X| = \bigcup_{\sigma \in X} \sigma.$$

If X is a simplicial complex, |X| is called polyhedron.

Proposition 1.7. Every polytope P is a polyhedron. Moreover, for every polytope P exists a simplicial complex X such that |X| = P and vert X = vert P.

Proof. Constructively, using induction on the dimension of the polytope P.

Definition 1.8. The topological closure of the simplex $\sigma = (a_0, a_1, ..., a_p)$, $\overline{\sigma}$, is called closed p-simplex.

$$\overline{\sigma} = \{\sum_{i=0}^{p} \lambda_{i} a_{i} \mid \sum_{i=0}^{p} \lambda_{i} = 1 \text{ and } \lambda_{i} \ge 0 \forall i \in \{0, ..., p\}\}$$

In an abuse of notation we shall sometimes write $\overline{\sigma}$ for the simplicial complex whose polyhedron is $\overline{\sigma}$, i.e.

$$\overline{\sigma} = \{ \tau \mid \tau \preceq \sigma \}.$$

2 The main theorem for a simplex

Theorem 2.1. Let σ be a simplex in \mathbb{R}^d with vertices in \mathbb{Z}^d . Then for $n \in \mathbb{N}$:

$$L(\sigma, n) = (-1)^{\dim \sigma} L(\overline{\sigma}, -n).$$

Proof. Without loss of generality $\dim \sigma = d$.

(If $\dim \sigma < d$, then the affine hull spanned by σ intersected with \mathbb{Z}^d is an affine sublattice of \mathbb{Z}^d whose underlying sublattice is \mathbb{Z} -generated by $\dim \sigma$ linearly independent vectors. We can look at this lattice in the corresponding subspace of dimension $\dim \sigma$.)

Let $e_1, ..., e_d$ a basis of \mathbb{Z}^d . See \mathbb{R}^d as a subspace of \mathbb{R}^{d+1} and let $e_0, e_1, ..., e_d$ a basis of \mathbb{Z}^{d+1} . Let $\sigma = (u_0, ..., u_d), v_i = e_0 + u_i \ (0 \le i \le d)$ and $\sigma' = (v_0, ..., v_d)$.

Let $M = \mathbb{Z}v_0 + ... + \mathbb{Z}v_d$ be the sublattice of \mathbb{Z}^{d+1} that is \mathbb{Z} -generated by $v_0, ..., v_d$. Note that $v_0, ..., v_d$ is an \mathbb{R} -basis for \mathbb{R}^{n+1} .

$$\Gamma := \{ x \in \mathbb{Z}^{d+1} \mid x = \sum_{i=0}^{d} \mu_i v_i \text{ with } 0 \le \mu_i < 1 \,\forall i \}$$

is a complete set of representatives for M in \mathbb{Z}^{d+1} . Especially the index $[\mathbb{Z}^{d+1} : M]$ is equal to $|\Gamma|$, the number of points in Γ .

$$\Gamma' = \{ x \in \mathbb{Z}^{d+1} \mid x = \sum_{i=0}^{d} \mu'_i v_i \text{ with } 0 < \mu'_i \le 1 \,\forall i \}$$

is also a complete set of representatives for M.

 $L(\overline{\sigma}, n)$ is equal to the number of points $y \in \mathbb{Z}^{d+1}$ that lie in $n \overline{\sigma'} = \overline{(n v_0, ..., n v_d)}$ Each point $y \in \mathbb{Z}^{d+1} \cap \overline{n \sigma'}$ is congruent mod M to exactly one point x of Γ , i.e. there exists integers $m_0, ..., m_d$, s.t.

$$y = x + \sum_{i=0}^{d} m_i v_i \tag{1}$$

Here $m_i \ge 0 \ \forall i$, since provided $x = \sum_{i=0}^d \mu_i v_i$ with $\mu_i \in [0,1) \ \forall i$ we have $x + \sum_{i=0}^d m_i v_i = \sum_{i=0}^d \frac{(\mu_i + m_i)}{n} n v_i \in n \ \overline{\sigma'}$ and therefore $\mu_i + m_i \ge 0 \ \forall i$.

Comparing the e_0 -coordinates of both sides of (1) gives

$$n = x_0 + \sum_{i=0}^{d} m_i$$
 (2)

where x_0 is the e_0 -coordinate of x.

So each point $y \in \mathbb{Z}^{d+1} \cap n\overline{\sigma'}$ gives rise to exactly one solution $(m_0, ..., m_d)' \in \mathbb{Z}_{\geq 0}^{d+1}$ of (2). Viceversa, if $m_0, ..., m_d$ are non-negative integers that solve (2), then they give rise to a point $y \in \mathbb{Z}^{d+1} \cap n\overline{\sigma'}$.

So the number of those points $y \in \mathbb{Z}^{d+1} \cap n\overline{\sigma'}$ that are congruent to a fix $x \in \Gamma$ is equal to the number of solutions in $\mathbb{Z}_{\geq 0}^{d+1}$ of (2). This is the number of possibilities of adding d+1 non-negative integers to x_0 to get n. This number is equal to the coefficient of u^n in

$$u^{x_0}(1+u+u^2+...)^{d+1} = u^{x_0}(\sum_{k=0}^{\infty} \binom{k+d}{d}u^k).$$

So it is equal to $\binom{n+d-x_0}{d}$. Hence

$$L(\overline{\sigma}, n) = \sum_{x \in \Gamma} \binom{n + d - x_0}{d}.$$
(3)

This is a polynomial in n of degree d.

Similarly, $L(\sigma, n)$ is equal to the number of points $y \in \mathbb{Z}^{d+1}$ that lie in $n \sigma' = (n v_0, ..., n v_d)$. Using now Γ' as set of representatives for M in \mathbb{Z}^{d+1} we see that every $y \in \mathbb{Z}^{d+1} \cap n \sigma'$ has a unique representation

$$y = x' + \sum_{i=0}^{d} m_i v_i$$
 (4)

with $x' \in \Gamma'$ and non-negative integers $m_0, ..., m_d$. Comparing the e_0 -coordinates of (4) gives now

$$n = x_0' + \sum_{i=0}^d m_i$$
 (5)

where x'_0 is the e_0 -coordinate of x'.

Viceversa, non-negative integers $m_0, ..., m_d$ that solve (5) give rise to a point $y \in \mathbb{Z}^{d+1} \cap n \sigma'$. Hence this time

$$L(\sigma, n) = \sum_{x' \in \Gamma'} \binom{n+d-x'_0}{d}.$$
(6)

The mapping $\phi: \Gamma \to \Gamma'$ defined by $\phi(x) = v_0 + \ldots + v_d - x$ is bijective. The e_0 -coordinate of $\phi(x)$ is $d + 1 - x_0$, where x_0 is again the e_o -coordinate of x. Therefore

$$L(\sigma, n) = \sum_{x \in \Gamma} \binom{n + d - (d + 1 - x_0)}{d} = \sum_{x \in \Gamma} \binom{n - 1 + x_0}{d}.$$

Finally

$$L(\sigma, -n) = \sum_{x \in \Gamma} \binom{-n - 1 + x_0}{d} = \sum_{x \in \Gamma} \frac{(-n - 1 + x_0) \cdot \dots \cdot (-n - d + x_0)}{d!}$$
$$= \sum_{x \in \Gamma} (-1)^d \frac{(n + d - x_0) \cdot \dots \cdot (n + 1 - x_0)}{d!} = (-1)^d \sum_{x \in \Gamma} \binom{n + d - x_0}{d} = (-1)^d L(\overline{\sigma}, n).$$

3 The main theorem

To generalize theorem 2.1 for poloytopes we need another tool:

Definition 3.1. Let X be a simplicial dissection of a polytope P, i.e. X is a simplicial complex with |X| = P. We define the boundary subcomplex ∂X of X as the collection of simplexes whose points are on the topological boundary of P = |X| in the affine hull of P.

Remark 3.2. Let P be a d-dimensional polytope in \mathbb{R}^d which integer-valued vertices. Then there exists a simplicial complex X with integer-valued vertices such that |X| = P (Proposition 1.7). For this complex we have:

$$int P = |X - \partial X|.$$

Lemma 3.3. Let P be a d-dimensional polytope and X be a simplicial complex with |X| = P. For every $\tau \in X$ we have

$$\sum_{\sigma \succeq \tau} (-1)^{\dim \sigma - \dim \tau} = \begin{cases} (-1)^{d - \dim \tau}, & \text{if } \tau \notin \partial X \\ 0, & \text{if } \tau \in \partial X \end{cases}$$

Proof. Since we need to know a good amount of Algebraic Topology in order to prove this, we skip the proof here. \Box

From now on let X be a simplicial complex whose underlying space $|X| = \bigcup_{\sigma \in X} \sigma$ is a d-dimensional polytope.

Let V be a real vector space and $\phi:X\to V$ be a function. For any subset Y of X we define

$$S(Y,\phi) = \sum_{\sigma \in Y} (-1)^{1+\dim\sigma} \phi(\sigma).$$
(7)

And we define the function $\phi^* : X \to V$ by

$$\phi^*(\sigma) = S(\overline{\sigma}, \phi) = \sum_{\tau \preceq \sigma} (-1)^{1 + \dim \tau} \phi(\tau).$$
(8)

Proposition 3.4.

$$S(X,\phi^*) = (-1)^{d+1} \cdot S(X - \partial X,\phi)$$

Proof.

$$S(X,\phi^*) = \sum_{\sigma \in X} (-1)^{1+\dim\sigma} \phi^*(\sigma) = \sum_{\sigma \in X} (-1)^{1+\dim\sigma} \sum_{\tau \preceq \sigma} (-1)^{1+\dim\tau} \phi(\tau)$$
$$= \sum_{\tau \in X} \phi(\tau) \sum_{\sigma \succeq \tau} (-1)^{\dim\sigma-\dim\tau} = \sum_{\tau \notin \partial X} (-1)^{d-\dim\tau} \phi(\tau) = (-1)^{d+1} S(X - \partial X, \phi).$$

The third equality holds since for fix $\tau \in X$ the coefficient for $\phi(\tau)$ is $(-1)^{\dim \tau} \sum_{\sigma \succeq \tau} (-1)^{\dim \sigma}$. For the fourth equality we use Lemma 3.3.

Now we are able to prove the main result.

Theorem 3.5. Let P be a polytope with integer-valued vertices and let X be a simplicial complex that triangulates P, s.t. |X| = P and vert X = vert P. Then

$$L(X - \partial X, n) = (-1)^d L(X, -n).$$

Proof. Define $\phi: X \to \mathbb{R}[n]$ by $\phi(\tau) = (-1)^{1+\dim \tau} L(\tau, n)$. Then by definition for any subset Y of X:

$$S(Y,\phi) = \sum_{\tau \in Y} (-1)^{1 + \dim \tau} \phi(\tau) = \sum_{\tau \in Y} L(\tau, n) = L(Y, n)$$

and

$$\phi^*(\sigma) = S(\overline{\sigma}, \phi) = L(\overline{\sigma}, n) = (-1)^{\dim \sigma} L(\sigma, -n).$$

Therefore

$$S(X,\phi^*) = \sum_{\sigma \in X} (-1)^{1+\dim\sigma} \phi^*(\sigma) = -\sum_{\sigma \in X} L(\sigma,-n) = -L(X,-n).$$

Using Proposition 3.4 we conclude

$$L(X, -n) = -S(X, \phi^*) = (-1)^d S(X - \partial X, \phi) = (-1)^d L(X - \partial X, n).$$