The number of integer-valued vectors in the interior of a polytope

Tim Breitenstein

July 10, 2007

literature:

1. I. G. MacDonald, "The volume of a lattice polyhedron", Proc. Cambridge Philos. Soc., 59 (1963), 719-726.
2. G. MacDonald, "Polynomials associated with finite cell-complexes", J. London Math. Soc. (2), 4 (1971), 181-192.
3. B. Grünbaum, Convex Polytopes (Interscience 1967).
4. P. J. Hilton and S. Wylie, Homology Theory (Cambridge 1967).
5. J. J. Rotman, An introduction to Algebraic Topology (Springer 1988).
6. A. Dold, Lectures on Algebraic Topology (Springer 1980).
7. W. S. Massey, Singular Homology Theory (Springer 1980).

1 Introduction

Let $P=|X|$ be a d-dimensional (convex) polytope in \mathbb{R}^{d} with vertices in \mathbb{Z}^{d}, let

$$
L(X, n)=\sharp\left\{(n \cdot|X|) \cap \mathbb{Z}^{d}\right\}
$$

be the number of integer-valued vectors in $n \cdot|X|$ and let

$$
L(X-\partial X, n)=\sharp\left\{\operatorname{int}(n \cdot|X|) \cap \mathbb{Z}^{d}\right\}
$$

be the number of integer-valued vectors in the interior of $n \cdot|X|$, where $n \in \mathbb{N}$.
It was shown that there exists a polynomial f_{X} of degree d, such that

$$
L(X, n)=f_{X}(n)
$$

We will now show that

$$
L(X-\partial X, n)=(-1)^{d} \cdot f_{X}(-n)
$$

Definition 1.1. A set of $p+1$ points in $\mathbb{R}^{d},\left\{a_{0}, a_{1}, \ldots, a_{p}\right\}$, is said to be (affine) independent, if for real coefficients $\lambda_{0}, \ldots, \lambda_{p}$

$$
\left(\sum_{i=0}^{p} \lambda_{i} a_{i}=0 \text { and } \sum_{i=0}^{p} \lambda_{i}=0\right) \Rightarrow\left(\lambda_{i}=0 \forall i \in\{0, \ldots, p\}\right) .
$$

Remark 1.2. A single point is always independent.
If $p+1 \geq 2$, then $p+1$ points are independent if and only if they do not lie in an affine subspace of dimension $\leq p-1$.
Definition 1.3. Let $\left\{a_{0}, a_{1}, \ldots, a_{p}\right\}$ be an indenpendent set of $p+1$ points in \mathbb{R}^{d}. The (open) p-simplex σ with vertices $a_{0}, a_{1}, \ldots, a_{p}$ is given by

$$
\sigma=\left(a_{0}, a_{1}, \ldots, a_{p}\right)=\left\{\sum_{i=0}^{p} \lambda_{i} a_{i} \mid \sum_{i=0}^{p} \lambda_{i}=1 \text { and } \lambda_{i}>0 \forall i \in\{0, \ldots, p\}\right\} .
$$

Definition 1.4. A simplex τ is a face of the simplex $\sigma=\left(a_{0}, a_{1}, \ldots, a_{p}\right)$ if the set of vertices of τ, vert τ, is a subset of vert $\sigma=\left\{a_{0}, a_{1}, \ldots, a_{p}\right\}$. In this case we write $\tau \preceq \sigma$.
Definition 1.5. A finite simplicial complex X is a finite collection of simplexes, such that

1. $(\sigma \in X$ and $\tau \preceq \sigma) \Rightarrow \tau \in X \quad(X$ is "closed") and
2. $\left(\sigma_{1}, \sigma_{2} \in X\right.$ and $\left.\sigma_{1} \neq \sigma_{2}\right) \Rightarrow \sigma_{1} \cap \sigma_{2}=\emptyset \quad$ (distinct simplexes of X are disjoint).

Definition 1.6. For a collection of simplexes X we write $|X|$ for the underlying space of X, i.e.

$$
|X|=\bigcup_{\sigma \in X} \sigma
$$

If X is a simplicial complex, $|X|$ is called polyhedron.
Proposition 1.7. Every polytope P is a polyhedron. Moreover, for every polytope P exists a simplicial complex X such that $|X|=P$ and vert $X=$ vert P.
Proof. Constructively, using induction on the dimension of the polytope P.
Definition 1.8. The topological closure of the simplex $\sigma=\left(a_{0}, a_{1}, \ldots, a_{p}\right), \bar{\sigma}$, is called closed p-simplex.

$$
\bar{\sigma}=\left\{\sum_{i=0}^{p} \lambda_{i} a_{i} \mid \sum_{i=0}^{p} \lambda_{i}=1 \text { and } \lambda_{i} \geq 0 \forall i \in\{0, \ldots, p\}\right\}
$$

In an abuse of notation we shall sometimes write $\bar{\sigma}$ for the simplicial complex whose polyhedron is $\bar{\sigma}$, i.e.

$$
\bar{\sigma}=\{\tau \mid \tau \preceq \sigma\} .
$$

2 The main theorem for a simplex

Theorem 2.1. Let σ be a simplex in \mathbb{R}^{d} with vertices in \mathbb{Z}^{d}. Then for $n \in \mathbb{N}$:

$$
L(\sigma, n)=(-1)^{\operatorname{dim} \sigma} L(\bar{\sigma},-n)
$$

Proof. Without loss of generality $\operatorname{dim} \sigma=d$.
(If $\operatorname{dim} \sigma<d$, then the affine hull spanned by σ intersected with \mathbb{Z}^{d} is an affine sublattice of \mathbb{Z}^{d} whose underlying sublattice is \mathbb{Z}-generated by $\operatorname{dim} \sigma$ linearly independent vectors. We can look at this lattice in the corresponding subspace of dimension $\operatorname{dim} \sigma$.)
Let e_{1}, \ldots, e_{d} a basis of \mathbb{Z}^{d}. See \mathbb{R}^{d} as a subspace of \mathbb{R}^{d+1} and let $e_{0}, e_{1}, \ldots, e_{d}$ a basis of \mathbb{Z}^{d+1}. Let $\sigma=\left(u_{0}, \ldots, u_{d}\right), v_{i}=e_{0}+u_{i}(0 \leq i \leq d)$ and $\sigma^{\prime}=\left(v_{0}, \ldots, v_{d}\right)$.
Let $M=\mathbb{Z} v_{0}+\ldots+\mathbb{Z} v_{d}$ be the sublattice of \mathbb{Z}^{d+1} that is \mathbb{Z}-generated by v_{0}, \ldots, v_{d}.
Note that v_{0}, \ldots, v_{d} is an \mathbb{R}-basis for \mathbb{R}^{n+1}.

$$
\Gamma:=\left\{x \in \mathbb{Z}^{d+1} \mid x=\sum_{i=0}^{d} \mu_{i} v_{i} \text { with } 0 \leq \mu_{i}<1 \forall i\right\}
$$

is a complete set of represesentatives for M in \mathbb{Z}^{d+1}. Especially the index $\left[\mathbb{Z}^{d+1}: M\right]$ is equal to $|\Gamma|$, the number of points in Γ.

$$
\Gamma^{\prime}=\left\{x \in \mathbb{Z}^{d+1} \mid x=\sum_{i=0}^{d} \mu_{i}^{\prime} v_{i} \text { with } 0<\mu_{i}^{\prime} \leq 1 \forall i\right\}
$$

is also a complete set of representatives for M.
$L(\bar{\sigma}, n)$ is equal to the number of points $y \in \mathbb{Z}^{d+1}$ that lie in $n \overline{\sigma^{\prime}}=\overline{\left(n v_{0}, \ldots, n v_{d}\right)}$
Each point $y \in \mathbb{Z}^{d+1} \cap \overline{n \sigma^{\prime}}$ is congruent $\bmod M$ to exactly one point x of Γ, i.e. there exists integers m_{0}, \ldots, m_{d}, s.t.

$$
\begin{equation*}
y=x+\sum_{i=0}^{d} m_{i} v_{i} \tag{1}
\end{equation*}
$$

Here $m_{i} \geq 0 \forall i$, since provided $x=\sum_{i=0}^{d} \mu_{i} v_{i}$ with $\mu_{i} \in[0,1) \forall i$ we have $x+\sum_{i=0}^{d} m_{i} v_{i}=$ $\sum_{i=0}^{d} \frac{\left(\mu_{i}+m_{i}\right)}{n} n v_{i} \in n \overline{\sigma^{\prime}}$ and therefore $\mu_{i}+m_{i} \geq 0 \forall i$.

Comparing the e_{0}-coordinates of both sides of (1) gives

$$
\begin{equation*}
n=x_{0}+\sum_{i=0}^{d} m_{i} \tag{2}
\end{equation*}
$$

where x_{0} is the e_{0}-coordinate of x.
So each point $y \in \mathbb{Z}^{d+1} \cap n \overline{\sigma^{\prime}}$ gives rise to exactly one solution $\left(m_{0}, \ldots, m_{d}\right)^{\prime} \in \mathbb{Z}_{\geq 0}^{d+1}$ of (2).
Viceversa, if m_{0}, \ldots, m_{d} are non-negative integers that solve (2), then they give rise to a point $y \in \mathbb{Z}^{d+1} \cap n \overline{\sigma^{\prime}}$.
So the number of those points $y \in \mathbb{Z}^{d+1} \cap n \overline{\sigma^{\prime}}$ that are congruent to a fix $x \in \Gamma$ is equal to the number of solutions in $\mathbb{Z}_{\geq 0}^{d+1}$ of (2). This is the number of possibilities of adding $d+1$ non-negative integers to x_{0} to get n. This number is equal to the coefficient of u^{n} in

$$
u^{x_{0}}\left(1+u+u^{2}+\ldots\right)^{d+1}=u^{x_{0}}\left(\sum_{k=0}^{\infty}\binom{k+d}{d} u^{k}\right) .
$$

So it is equal to $\binom{n+d-x_{0}}{d}$.
Hence

$$
\begin{equation*}
L(\bar{\sigma}, n)=\sum_{x \in \Gamma}\binom{n+d-x_{0}}{d} . \tag{3}
\end{equation*}
$$

This is a polynomial in n of degree d.
Similarly, $L(\sigma, n)$ is equal to the number of points $y \in \mathbb{Z}^{d+1}$ that lie in $n \sigma^{\prime}=\left(n v_{0}, \ldots, n v_{d}\right)$. Using now Γ^{\prime} as set of representatives for M in \mathbb{Z}^{d+1} we see that every $y \in \mathbb{Z}^{d+1} \cap n \sigma^{\prime}$ has a unique representation

$$
\begin{equation*}
y=x^{\prime}+\sum_{i=0}^{d} m_{i} v_{i} \tag{4}
\end{equation*}
$$

with $x^{\prime} \in \Gamma^{\prime}$ and non-negative integers m_{0}, \ldots, m_{d}.
Comparing the e_{0}-coordinates of (4) gives now

$$
\begin{equation*}
n=x_{0}^{\prime}+\sum_{i=0}^{d} m_{i} \tag{5}
\end{equation*}
$$

where x_{0}^{\prime} is the e_{0}-coordinate of x^{\prime}.
Viceversa, non-negative integers m_{0}, \ldots, m_{d} that solve (5) give rise to a point $y \in \mathbb{Z}^{d+1} \cap n \sigma^{\prime}$. Hence this time

$$
\begin{equation*}
L(\sigma, n)=\sum_{x^{\prime} \in \Gamma^{\prime}}\binom{n+d-x_{0}^{\prime}}{d} \tag{6}
\end{equation*}
$$

The mapping $\phi: \Gamma \rightarrow \Gamma^{\prime}$ defined by $\phi(x)=v_{0}+\ldots+v_{d}-x$ is bijective. The e_{0}-coordinate of $\phi(x)$ is $d+1-x_{0}$, where x_{0} is again the e_{o}-coordinate of x. Therefore

$$
L(\sigma, n)=\sum_{x \in \Gamma}\binom{n+d-\left(d+1-x_{0}\right)}{d}=\sum_{x \in \Gamma}\binom{n-1+x_{0}}{d}
$$

Finally

$$
\begin{gathered}
L(\sigma,-n)=\sum_{x \in \Gamma}\binom{-n-1+x_{0}}{d}=\sum_{x \in \Gamma} \frac{\left(-n-1+x_{0}\right) \cdot \ldots \cdot\left(-n-d+x_{0}\right)}{d!} \\
=\sum_{x \in \Gamma}(-1)^{d} \frac{\left(n+d-x_{0}\right) \cdot \ldots \cdot\left(n+1-x_{0}\right)}{d!}=(-1)^{d} \sum_{x \in \Gamma}\binom{n+d-x_{0}}{d}=(-1)^{d} L(\bar{\sigma}, n) .
\end{gathered}
$$

3 The main theorem

To generalize theorem 2.1 for poloytopes we need another tool:

Definition 3.1. Let X be a simplicial dissection of a polytope P, i.e. X is a simplicial complex with $|X|=P$. We define the boundary subcomplex ∂X of X as the collection of simplexes whose points are on the topological boundary of $P=|X|$ in the affine hull of P.

Remark 3.2. Let P be a d-dimensional polytope in \mathbb{R}^{d} whith integer-valued vertices. Then there exists a simplicial complex X with integer-valued vertices such that $|X|=P$ (Proposition 1.7). For this complex we have:

$$
\text { int } P=|X-\partial X|
$$

Lemma 3.3. Let P be a d-dimensional polytope and X be a simplicial complex with $|X|=P$. For every $\tau \in X$ we have

$$
\sum_{\sigma \succeq \tau}(-1)^{\operatorname{dim} \sigma-\operatorname{dim} \tau}= \begin{cases}(-1)^{d-\operatorname{dim} \tau}, & \text { if } \tau \notin \partial X \\ 0, & \text { if } \tau \in \partial X\end{cases}
$$

Proof. Since we need to know a good amount of Algebraic Topology in order to prove this, we skip the proof here.

From now on let X be a simplicial complex whose underlying space $|X|=\bigcup_{\sigma \in X} \sigma$ is a d-dimensional polytope.
Let V be a real vector space and $\phi: X \rightarrow V$ be a function.
For any subset Y of X we define

$$
\begin{equation*}
S(Y, \phi)=\sum_{\sigma \in Y}(-1)^{1+\operatorname{dim} \sigma} \phi(\sigma) . \tag{7}
\end{equation*}
$$

And we define the function $\phi^{*}: X \rightarrow V$ by

$$
\begin{equation*}
\phi^{*}(\sigma)=S(\bar{\sigma}, \phi)=\sum_{\tau \preceq \sigma}(-1)^{1+\operatorname{dim} \tau} \phi(\tau) . \tag{8}
\end{equation*}
$$

Proposition 3.4.

$$
S\left(X, \phi^{*}\right)=(-1)^{d+1} \cdot S(X-\partial X, \phi)
$$

Proof.

$$
\begin{gathered}
S\left(X, \phi^{*}\right)=\sum_{\sigma \in X}(-1)^{1+\operatorname{dim} \sigma} \phi^{*}(\sigma)=\sum_{\sigma \in X}(-1)^{1+\operatorname{dim} \sigma} \sum_{\tau \preceq \sigma}(-1)^{1+\operatorname{dim} \tau} \phi(\tau) \\
=\sum_{\tau \in X} \phi(\tau) \sum_{\sigma \succeq \tau}(-1)^{\operatorname{dim} \sigma-\operatorname{dim} \tau}=\sum_{\tau \notin \partial X}(-1)^{d-\operatorname{dim} \tau} \phi(\tau)=(-1)^{d+1} S(X-\partial X, \phi) .
\end{gathered}
$$

The third equality holds since for fix $\tau \in X$ the coefficient for $\phi(\tau)$ is $(-1)^{\operatorname{dim} \tau} \sum_{\sigma \succeq \tau}(-1)^{\operatorname{dim} \sigma}$. For the fourth equality we use Lemma 3.3.

Now we are able to prove the main result.
Theorem 3.5. Let P be a polytope with integer-valued vertices and let X be a simplicial complex that triangulates P, s.t. $|X|=P$ and vert $X=$ vert P. Then

$$
L(X-\partial X, n)=(-1)^{d} L(X,-n)
$$

Proof. Define $\phi: X \rightarrow \mathbb{R}[n]$ by $\phi(\tau)=(-1)^{1+\operatorname{dim} \tau} L(\tau, n)$.
Then by definition for any subset Y of X :

$$
S(Y, \phi)=\sum_{\tau \in Y}(-1)^{1+\operatorname{dim} \tau} \phi(\tau)=\sum_{\tau \in Y} L(\tau, n)=L(Y, n)
$$

and

$$
\phi^{*}(\sigma)=S(\bar{\sigma}, \phi)=L(\bar{\sigma}, n)=(-1)^{\operatorname{dim} \sigma} L(\sigma,-n) .
$$

Therefore

$$
S\left(X, \phi^{*}\right)=\sum_{\sigma \in X}(-1)^{1+\operatorname{dim} \sigma} \phi^{*}(\sigma)=-\sum_{\sigma \in X} L(\sigma,-n)=-L(X,-n)
$$

Using Proposition 3.4 we conclude

$$
L(X,-n)=-S\left(X, \phi^{*}\right)=(-1)^{d} S(X-\partial X, \phi)=(-1)^{d} L(X-\partial X, n)
$$

