- Testklausur II -

Sommersemester 2008

Matrikelnummer:
Vorname:
Name:
Studiengang:

Punkte Aufgabe	1	
Punkte Aufgabe	2	
Punkte Aufgabe	3	
Punkte Aufgabe	4	
Punkte Aufgabe	5	
Punkte Aufgabe	6	
Punkte Aufgabe	7	
Punkte Aufgabe	8	
Punkte Aufgabe	9	
Summe der Punkt	te	

Es sind maximal 32 Punkte zu erreichen. Die erreichten Punkte zählen als Übungspunkte.

Bearbeitungszeit: 100 Minuten.

- Testklausur II - 4. Juli 2008

Matrikelnummer: _____

Aufgabe 1

4 Punkte

- (a) Wie ist die Darstellungsmatrix $\frac{v}{\underline{w}}M(f)$ einer linearen Abbildung $f:V\to W$ definiert?
- (b) Bestimmen Sie die Darstellungsmatrix $\frac{v}{\underline{v}}M(f)$ für $U=V=\mathbb{R}^3$ und

$$\underline{v} = \left(\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right) , f(x, y, z) = (2z, 2x, 2y - 2x).$$

	A 1 1 1
Linaara	/\lankara l
LIHEATE	Algebra I

- Testklausu	ur II -	4. Juli 2008
	a	11 Jun 2000

Matrikelnummer: _____

Aufgabe 2

2 Punkte

- (a) Es seien $\underline{v},\underline{w}$ Basen eines endlichdimensionalen Vektorraums V und $f\in \mathrm{Hom}(V,V)$. Drücken Sie $\frac{w}{w}M(f)$ durch $\frac{v}{v}M(f)$ aus.
- (b) Zeigen Sie: Ist $\,\underline{w}=\lambda\cdot\underline{v}\,$ für ein Skalar $\,\lambda\neq0$, so stimmt $\,\underline{\underline{v}}M(f)\,$ mit $\,\underline{\underline{w}}M(f)\,$ überein.

- Testklausur II - 4. Juli 2008

Matrikelnummer: _____

Aufgabe 3

3 Punkte

Bestimmen Sie die Inverse der Matrix

$$C = \begin{pmatrix} \overline{1} & \overline{2} & \overline{1} \\ \overline{2} & \overline{3} & \overline{2} \\ \overline{1} & \overline{1} & \overline{4} \end{pmatrix} \in M(3 \times 3, \mathbb{Z}/\mathbb{Z}5).$$

Die Multiplikationstabelle für den Körper $\,K=\mathbb{Z}/\mathbb{Z} 5\,$ ist

- Testklausur II - 4. Juli 2008

Matrikelnummer: _____

Aufgabe 4

8 Punkte

Geben seien

$$A \,=\, \begin{pmatrix} 0 & 2 & 2 & 0 & 0 \\ 1 & 0 & -1 & 2 & 1 \\ -1 & 2 & 1 & -2 & -1 \\ 1 & 1 & 1 & 2 & 1 \end{pmatrix} \,\in\, M(4\times 5,\mathbb{R}) \ \ \mathrm{und} \ \ b \,=\, \begin{pmatrix} 6 \\ 1 \\ 1 \\ 6 \end{pmatrix} \,\in\, \mathbb{R}^4 \,.$$

- (a) Berechnen Sie die Dimension $\dim(L(A;0))$.
- (b) Geben Sie eine Basis von L(A; 0) an.
- (c) Geben Sie eine Lösung von Ax = b an.
- (d) Geben Sie die allgemeine Lösung von Ax = b an.
- (e) Geben Sie eine Basis des Spaltenraums von A an, bestehend aus Spalten von A, und die Darstellung der übrigen Spalten von A in der ausgewählten Basis.
- (f) Geben Sie einen Vektor $c \in \mathbb{R}^4$ an, so dass Ax = c keine Lösung besitzt.

		Λ Ι	- 1	
Line	are	Αld	reh	ra I
	aıc	/ 115	ミしい	ı a ı

Testklausur II -	4. Juli 2008
lestklausur II -	4. Juli 2

Matrikelnummer: _____

Aufgabe 5

2 Punkte

- (a) Geben Sie die Leibniz-Darstellung der Determinante $\det: M(n \times n, K) \to K$ an.
- (b) Zeigen Sie mit Hilfe der Leibniz-Darstellung: $\det(\lambda A) = \lambda^n \det(A)$ für $\lambda \in K$.

- Testklausur II - 4. Juli 2008

Matrikelnummer: _____

Aufgabe 6

3 Punkte

Berechnen Sie für gerades $\ n \geq 2$ die Determinante von

$$A_n = \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 & 1 \\ 0 & 0 & \cdots & 0 & 1 & 0 \\ 0 & 0 & \cdots & 1 & 0 & 0 \\ \vdots & & & & & \vdots \\ 0 & 1 & \cdots & 0 & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 & 0 \end{pmatrix} \in M(n \times n, \mathbb{R}).$$

Lineare	$Algeb_{I}$	ra l
---------	-------------	------

Matrikelnummer: _____

Aufgabe 7

3 Punkte

- (a) Was ist ein Eigenwert eines Endomorphismus $\,f:\,V o V\,$ ($V\,$ endlichdimensional)?
- (b) Bestimmen Sie die Eigenwerte des Endomorphismus $f:\mathbb{R}^3\to\mathbb{R}^3$ mit $f(x,y,z)\ =\ (x,y+2x,z+y+x)\ .$

- Testklausur II -	4. Juli 2008
--------------------	--------------

Matrikelnummer: _____

Aufgabe 8

4 Punkte

Es sei p(X) ein Polynom über K . Zeigen Sie: Ist $\lambda \in K$ ein Eigenwert von $A \in M(n \times n, K)$, so ist $p(\lambda)$ ein Eigenwert der Matrix p(A) .

Hinweis: Zeigen Sie die Aussage zunächst für Monome $\ p(X) = X^n$.

- Testklausur II -	4. Juli 2008
- TESTRIAUSUL II -	4. Juli 2000

Matrikelnummer: _____

Aufgabe 9

3 Punkte

Es sei $A \in M(n \times n, K)$. Zeigen Sie, dass die folgenden Aussagen äquivalent sind:

- (1) Es gilt det(A) = 0.
- (2) Es gibt $0 \neq B \in M(n \times n, K)$ mit $A \cdot B = 0$.
- (3) Es gibt $0 \neq C \in M(n \times n, K)$ mit $C \cdot A = 0$.