Übungen zur Vorlesung Kryptographie

Abt. Reine Mathematik

SS 06 - Blatt 10

Abgabetermin: Fr., 14.07.2006 um 12:30 Uhr vor Beginn der Übung

- 1. (a) Schreibe eine Funktion in Maple, die zwei Punkte auf einer elliptischen Kurve über $\mathbb C$ addiert.
 - (b) Wiederhole (a) für eine elliptische Kurve über einem endlichen Körper \mathbb{F}_p , p eine Primzahl.

Man beschränke sich der Einfachheit halber auf elliptische Kurven der Form $y^2 = x^3 + ax + b$, $a, b \in \mathbb{C}$ bzw. $a, b \in \mathbb{F}_p$.

- 2. (a) Betrachte die elliptische Kurve $y^2=x^3-43x+166$ über $\mathbb C$ und den Punkt P=(3,8) . Finde die Ordnung von P .
 - (b) Betrachte die elliptische Kurve $y^2=x^3+22x+472$ über \mathbb{F}_p mit p:=1234567891. Berechne alle y, so dass der Punkt $P_y=(1,y)$ auf der Kurve liegt. Berechne jeweils $10000\cdot P_y$.
- 3. Betrachte die elliptische Kurve $y^2=x^3+x+1$ über \mathbb{F}_7 . Gib alle Punkte an und konstruiere die Verknüpfungstafel der Gruppenoperation.
- 4. Sei $i^2=-1$, $R=\mathbb{Z}[i]=\{a+ib:a,b\in\mathbb{Z}\}$. Wir wählen folgendes Vertretersystem aller Primelemente von R:
 - 1+i
 - p Primzahl mit $p \equiv 3 \pmod{4}$
 - s = a + ib, t = a ib mit $a \ge b > 0$, wobei $p = a^2 + b^2 = st \equiv 1 \pmod{4}$ eine Primzahl ist

Bestimme die eindeutige Primfaktorzerlegung der folgenden Elemente von R.

- (a) 4 + 5i
- (b) 13 + 11i
- (c) 41 + 169i