## Practice 1: Real Functions

## Exercise 1

We introduce the Function

$$
\Phi(t):= \begin{cases}0, & t \leq 0 \\ t, & t \geq 0\end{cases}
$$

which is continuous and weakly monotonically increasing. Furthermore we define

$$
f^{+}(x):=\Phi(f(x))=\max (f(x), 0), x \in X .
$$

Prove the following properties of the prescription $f \longmapsto f^{+}$for all $x \in X$ :
(i) $f(x) \leq f^{+}(x)$,
(ii) $f(x) \leq g(x) \Rightarrow f^{+}(x) \leq g^{+}(x)$,
(iii) $f(x) \leq g(x) \Rightarrow g^{+}(x)-f^{+}(x) \leq g(x)-f(x)$,
(iv) $f_{n}(x) \rightarrow f(x) \Rightarrow f_{n}^{+}(x) \rightarrow f^{+}(x)$,
(v) $f_{n}(x) \downarrow f(x) \Rightarrow f_{n}^{+}(x) \downarrow f^{+}(x)$,
$(v i) f_{n}(x) \uparrow f(x) \Rightarrow f_{n}^{+}(x) \uparrow f^{+}(x)$.

## Exercise 2

(1) Let the symbols $V(X),-V(X)$ and $M$ be the set of functions defined in the script. If $f \in V \cap(-V)$ holds true, we find sequences $\left(f_{n}\right)_{n \in \mathbb{N}}$ and $\left(g_{n}\right)_{n \in \mathbb{N}}$ in $M$, which fulfill $f_{n} \uparrow f$ and $g_{n} \downarrow f$. Show that $I(f) \in \mathbb{R}, g_{n}-f_{n} \downarrow 0$ and

$$
0=\lim _{n \rightarrow \infty} I\left(g_{n}-f_{n}\right)=\lim _{n \rightarrow \infty} I\left(g_{n}\right)-\lim _{n \rightarrow \infty} I\left(f_{n}\right) .
$$

(2) Prove that from $f \in V$ it follows that $f^{+} \in V$ and that $f \in-V$ implies $f^{-} \in V$.

## Exercise 3

Prove that

$$
a \leq b \Longleftrightarrow b-a \geq 0
$$

for all $a, b \in \overline{\mathbb{R}}$ with $\overline{\mathbb{R}}=\mathbb{R} \cup\{+\infty\} \cup\{-\infty\}$.

