David Kaiser

SS08

Practice 1: Real Functions

Exercise 1

We introduce the Function

$$\Phi(t) := \begin{cases} 0, & t \le 0\\ t, & t \ge 0 \end{cases}$$

which is continuous and weakly monotonically increasing. Furthermore we define

$$f^+(x) := \Phi(f(x)) = \max(f(x), 0), x \in X.$$

Prove the following properties of the prescription $f \mapsto f^+$ for all $x \in X$:

- (i) $f(x) \le f^+(x)$,
- (*ii*) $f(x) \le g(x) \Rightarrow f^+(x) \le g^+(x),$
- (iii) $f(x) \le g(x) \Rightarrow g^+(x) f^+(x) \le g(x) f(x),$
- (iv) $f_n(x) \to f(x) \Rightarrow f_n^+(x) \to f^+(x),$
- (v) $f_n(x) \downarrow f(x) \Rightarrow f_n^+(x) \downarrow f^+(x),$
- (vi) $f_n(x) \uparrow f(x) \Rightarrow f_n^+(x) \uparrow f^+(x)$.

Exercise 2

(1) Let the symbols V(X), -V(X) and M be the set of functions defined in the script. If $f \in V \cap (-V)$ holds true, we find sequences $(f_n)_{n \in \mathbb{N}}$ and $(g_n)_{n \in \mathbb{N}}$ in M, which fulfill $f_n \uparrow f$ and $g_n \downarrow f$. Show that $I(f) \in \mathbb{R}$, $g_n - f_n \downarrow 0$ and

$$0 = \lim_{n \to \infty} I(g_n - f_n) = \lim_{n \to \infty} I(g_n) - \lim_{n \to \infty} I(f_n).$$

(2) Prove that from $f \in V$ it follows that $f^+ \in V$ and that $f \in -V$ implies $f^- \in V$.

Exercise 3

Prove that

 $a \le b \Longleftrightarrow b - a \ge 0$

for all $a, b \in \overline{\mathbb{R}}$ with $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$.