Practice 2: Real Functions

Exercise 4

We introduce the Function

$$
f(x):= \begin{cases}+1, & x>0 \\ -1, & x<0\end{cases}
$$

Complete the function for $f(0)$, so that
(i) $f \in V$ and
(ii) $f \in-V$.

Does $f(x)$ belong to V and/or $-V$ if $f(0)=0$?

Exercise 5

A function $f: I \subset \mathbb{R} \rightarrow \mathbb{R} \cup-\infty$ is said to be upper semicontinuous at the point $a \in I$, if for all $\varepsilon>0$ there is $\delta>0$ with

$$
f(x)<f(a)+\varepsilon \text { for all } x \in I,|x-a|<\delta
$$

Analoguously a function $f: I \subset \mathbb{R} \rightarrow \mathbb{R} \cup+\infty$ is said to be lower semicontinuous at the point $a \in I$ if for all $\varepsilon>0$ there is $\delta>0$ with

$$
f(x)>f(a)-\varepsilon \text { for all } x \in I,|x-a|<\delta
$$

Show that f is upper semicontinuous if and only if $f \in-V$ and that f is lower semicontinuous if and only if $f \in V$.

Exercise 6

Let $\pi: a=x_{0}<x_{1}<\cdots<x_{n}=b$ be a decomposition of the compact interval $I=[a, b], a<b$ and $f: I \rightarrow \mathbb{R}$ a bounded function, i. e. there is $Z>0$ so that $|f(x)| \leq Z$ for all $x \in I$. We define

$$
Z_{k}:=\sup _{x \in I_{k}} f(x), z_{k}:=\inf _{x \in I_{k}} f(x)
$$

for $1 \leq k \leq n$. Then f is Riemann-integrable over I if for all $\varepsilon>0$ there is a decomposition $\pi=\pi_{\varepsilon}$ with

$$
\sum_{k=1}^{n} Z_{k}\left|I_{k}\right|-\sum_{k=1}^{n} z_{k}\left|I_{k}\right|<\varepsilon
$$

Show that every Riemann-integrable function $f: I \rightarrow \mathbb{R}$ is also Lebesgue-integrable.

