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Overview

• The MRJD model
⋄ seasonality
⋄ high mean-reversion
⋄ double exponential jumps
⋄ the forward

• Implications of high speed of mean reversion
⋄ forward curves and surfaces
⋄ range of applicability

• A closed-form solution for European-style options
• Application: An interruptible bermudan contract
• Preliminary results
• Conclusions and future research

– p. 2



The model (I)

As presented in Cartea & Figueroa (2005)

lnSt = g(t) + Yt,

where: g(t) := lnG(t), G(t) is a deterministic seasonality function and

dYt = −αYtdt + σ(t)dZ + lnJdq.

We assume this time, as in Kou (2002), that Y = lnJ has an
asymmetric double exponential distribution with density

fY(y) = pη1e
−η1y

1y≥0 + qη2e
η2y

1y<0,

where η1 > 1, η2 > 0, and p,q ≥ 0, p + q = 1, represents the
probabilities of upward and downward jumps.
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The model (II)

The dynamics of the SDE under P are given by

dSt = α(ρ(t) − ln St)Stdt + σ(t)StdZ + St(J − 1)dq,

where the time dependent mean reverting level is given by

ρ(t) =
1

α

(

dg(t)

dt
+

1

2
σ2(t)

)

+ g(t).
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The forward

We price the forward under a Q measure by incoorporating a market
price of risk per unit of volatility, λ, and calibrating it from forward data,
obtaining

F (t, T ′) = E
Q
t [S′

T |Ft] ;

F (t, T ′) = G(T )

(

S(t)

G(t)

)ht

e
σ2

4α (1−h2

t)−λσ
α

(1−ht)

(

η2 + ht

η2 + 1

)

ql
α
(

ht − η1

1 − η1

)

pl
α

,

where ht := e−α(T ′−t) and η1 > 1, η2 > 0.
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Implications of a high mean reversion

• A high mean reversion (α ≈ 100 annualized, 3 days) implies that
option pricing will be driven mainly by:
⋄ seasonality;
⋄ frequency of jumps;
⋄ more importantly, when are these jumps more likely to occur.

• A high α imposes a restriction on the range of applicability of
these models when pricing on forwards,
⋄ for the market of England & Wales we observe variation on the

forwards for up to 30 days between T and T ′.
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Forward curves (I)
Forward with T ′ fixed and varying t, α↓
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Forward curves (II)

Forward surface with T ′ fixed and varying t, α↑
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Spot price and simulations
Simulated and calibrated electricity prices for 1 year
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Closed form solution for the European Call –CFT (I)

Let FT ′

T

(

FT ′

t

)

be the forward at time T maturing at time T ′ conditional

on the forward at time t maturing at time T ′, V̂T the transformed payoff
of the call option and Ψ(−ξ) the characteristic function, defined as

Ψ(−ξ) := Et

[

e
−iξ ln

�

F T ′

T

�]
. Then the price of a T -maturity European

call option written on the underlying FT ′

t with strike price K is given by

V (FT ′

t , t) =
e−r(T−t)

2π

∫ ∞+ib

−∞+ib

V̂T Ψ(−ξ)dξ; max(1, α) < b < β,

where ξ := a + ib, and α, β, a, b ∈ R.

The integration can be performed along any closed-curve within the
contour defined by A = {b: max(1, α) < b < β}.
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Closed form solution for the European Call –CFT (II)

For the proposed model we obtain

V (FT ′

t , t) =
e−r(T−t)

2π

∫ ∞+ib

−∞+ib

V̂T ΨCF (−ξ)dξ, max(1, α) < b < β;

V̂T :=
−K1+iξ

ξ2 − iξ
;

ΨCF (−ξ) := e−iξ ln(F T ′

t )+(iξ−ξ2)σ2

4α (H2

t −h2

t)

×

(

η2 + ht

η2 + Ht

)

iξql

α
(

ht − η1

Ht − η1

)

iξpl

α

(

η2 + ĥt

η2 + Ĥt

)

ql
α
(

ĥt − η1

Ĥt − η1

)

pl
α

where ht := e−α(T ′−t), Ht := e−α(T ′−T ), ĥt := −iξht and Ĥt := −iξHt.
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Option Pricing -European Call Option (I)

Call on a Forward; T ′ = 60, T = 30, K = 25, α↓= 10
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Option Pricing -European Call Option (II)

Call on a Forward; T ′ = 10, T = 7, K = 20, α↑= 104
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Interruptible Contracts –Description (I)

• Callable forwards, introduced as early as 1994 by Gedra (1994),
replicate an interruption strategy on supply of electricity.

• The portfolio held by the supplier/utility is given by
Πt = −FT ′

t + C(St; K, T ′).

• The user, who owns the opposite portfolio, earns a discount on a
the forward bought.

• The supplier benefits by earning the possibility of calling off
supply at expiry.

Consumer Utility
Contract price

energy or KΠ=F-C Π=-F+C

K

ΠT

F
-K

-FT=-ST

0

Consumer Utility
Contract price

energy or KΠ=F-C Π=-F+C

K

ΠT

F
-K

-FT=-ST

0 K

ΠT

F
-K

-FT=-ST

0
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Interruptible Contracts –Description (II)

• A consumer entering such a contract must trade off the probability
of interruption against its shortage cost (∼ K).

• The probability of interruption decreases as the strike price
increases, hence the discount on the forward is lower for the
consumer.

• Those consumers with lower shortage costs will be more likely to
be interrupted and will receive higher discounts.

• A clear drawback is that there will be consumers whose
short-notice interruption costs are too high, thus not providing a
viable strike price.

• Kamat & Oren (2002) introduce an earlier notification date, and
price in closed form with the use of compound options.

• However, only assuming one early possible exercise point is still
unrealistic.
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Pricing a Bermudan Interruptible on a Forward (I)

• We extend to interruptible contracts on forwards, by which a utility
holds Πt = −FT ′

t + C(FT ′

t ; K, T ).

• It allows for the canceling of the forward obligation when exercised
at any early stopping time τi.

• If held until expiry and if T = T ′ it reduces to the previous
interruptible contract.

• Possible incentives for a utility to enter such a contract:
⋄ future unpredicted capacity constraints;
⋄ high volatility in the spot due to extreme variations in weather,

demand or others.
• The consumer benefits in a discount on the forward price.
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Pricing a Bermudan Interruptible on a Forward (II)

• At intermediate exercise dates τi we compare the immediate
exercise value with the expected cash flows from continuing,
exercising if immediate exercise is more valuable.

• The key is defining the conditional expected value of continuation.
• LSM: regresses subsequent realized cash flows from continuation

on a set of basis functions of the values of the relevant state
variables.

• Longstaff & Schwartz show that results are robust for different
choices of basis functions.

Generate matrix of spot prices of M paths 

and N exercise opportunities

Convert to a Fwd 

matrix: [F]MXN

LSM algorithm

t T T’

τ1 τ2 τN-1
[S(mi,τi)]MXN

Generate matrix of spot prices of M paths 

and N exercise opportunities

Convert to a Fwd 

matrix: [F]MXN

LSM algorithm

t T T’

τ1 τ2 τN-1

t T T’

τ1 τ2 τN-1
[S(mi,τi)]MXN
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Preliminary results

F = 10 F = 25

CFT MC CFT MC

∆ 7.66×10−12 5.10×10−3 3.54×10−11 2.86×10−2

τ 0.13 sec. 17.06 sec. 0.14 sec. 17.00 sec.
Parameters: K = 25; t = 0; T = 1; T ′ = 1.5; α = 1.18; σ = 1.77; r = 0.15; n = 100;
m = 100, 000; C(10) = 0.23 and C(25) = 5.14. C(·) denotes the analytical values of
the call option on the forward for Schwartz’ model.

European Bermudan Premium

GBM –Put 3.8443 4.4702 (0.0092) 0.6259
MRJD –Call 1.3931 (0.0079) 1.6804 (0.0070) 0.2873

Parameters-GBM-Put: K = 40; r = 0.06; St = 36; σ = 0.20; t = 0; T = 1; N = 50.
Parameters-MRJD-Call: r = 0.15; K = 23.5; St = 18; σ = 1.60; l=8.58; n=365;
λ∗ = −0.23; α = 104; η1 = 2.80; η2 = 3.85; p = 0.54; q = 0.46; t = 15/09/05;
T ′ = 31d + t; T = 30d + t; N = 30; F T

′

t
= 24.2788.
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Conclusions and future research

• The appeal of spot-based models is that they provide realistic
simulations of spot-price paths.

• In general, it is always possible to obtain closed form expressions
for the forwards, as shown in CF (2005).

• In particular, when assuming exponential jumps the model
becomes very tractable, and closed form solutions using CFT are
obtained; these are very accurate and fast.

• Interruptible contracts are an important tool in risk management
and there is a realistic market interest in such contracts.

• However, it is paramount to be able to solve some critical aspects
of these models which might affect their range of applicability,
such as
⋄ speed of mean reversion –should it be constant?
⋄ arrival of jumps;
⋄ calibration (with scarcity of data) under higher-factor models.
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