# CHALLENGES OF PRICING INTERRUPTIBLE CONTRACTS IN ELECTRICITY MARKETS WITH HIGH MEAN REVERSION



# FINANCIAL MODELLING WORKSHOP Ulm, September 20-22, 2005



Marcelo G. Figueroa

### Overview

- The MRJD model
  - ◊ seasonality
  - ◊ high mean-reversion
  - ◊ double exponential jumps
  - $\diamond$  the forward
- Implications of high speed of mean reversion
  - $\diamond~$  forward curves and surfaces
  - ◊ range of applicability
- A closed-form solution for European-style options
- Application: An interruptible bermudan contract
- Preliminary results
- Conclusions and future research

# The model (I)

As presented in Cartea & Figueroa (2005)

 $\ln S_t = g(t) + Y_t,$ 

where:  $g(t) := \ln G(t)$ , G(t) is a deterministic seasonality function and

$$dY_t = -\alpha Y_t dt + \sigma(t) dZ + \ln J dq.$$

We assume this time, as in Kou (2002), that  $\mathcal{Y} = \ln J$  has an asymmetric double exponential distribution with density

$$f_{\mathcal{Y}}(y) = p\eta_1 e^{-\eta_1 y} \mathbf{1}_{y \ge 0} + q\eta_2 e^{\eta_2 y} \mathbf{1}_{y < 0},$$

where  $\eta_1 > 1$ ,  $\eta_2 > 0$ , and  $p,q \ge 0$ , p + q = 1, represents the probabilities of upward and downward jumps.

# The model (II)

The dynamics of the SDE under  ${\mathcal P}$  are given by

$$dS_t = \alpha(\rho(t) - \ln S_t)S_t dt + \sigma(t)S_t dZ + S_t (J-1)dq,$$

where the time dependent mean reverting level is given by

$$\rho(t) = \frac{1}{\alpha} \left( \frac{dg(t)}{dt} + \frac{1}{2}\sigma^2(t) \right) + g(t).$$

### The forward

We price the forward under a Q measure by incoorporating a market price of risk per unit of volatility,  $\lambda$ , and calibrating it from forward data, obtaining

$$F(t,T') = \mathbb{E}_{t}^{\mathcal{Q}}\left[S'_{T}|\mathcal{F}_{t}\right];$$

$$F(t,T') = G(T)\left(\frac{S(t)}{G(t)}\right)^{h_{t}} e^{\frac{\sigma^{2}}{4\alpha}\left(1-h_{t}^{2}\right)-\frac{\lambda\sigma}{\alpha}\left(1-h_{t}\right)}\left(\frac{\eta_{2}+h_{t}}{\eta_{2}+1}\right)^{\frac{ql}{\alpha}}\left(\frac{h_{t}-\eta_{1}}{1-\eta_{1}}\right)^{\frac{pl}{\alpha}}$$

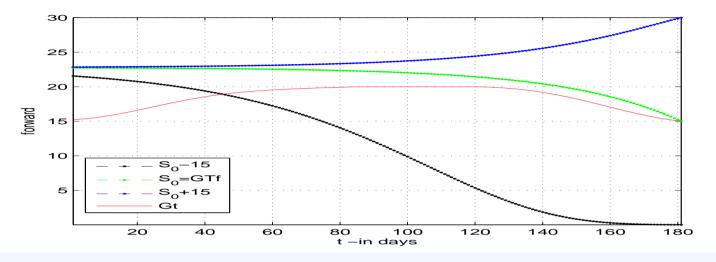
where  $h_t := e^{-\alpha(T'-t)}$  and  $\eta_1 > 1$ ,  $\eta_2 > 0$ .

# Implications of a high mean reversion

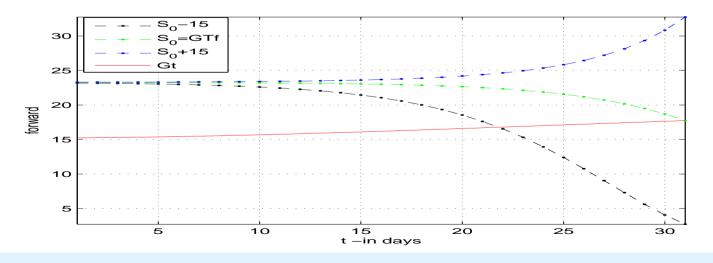
- A high mean reversion ( $\alpha \approx 100$  annualized, 3 days) implies that option pricing will be driven mainly by:
  - ◊ seasonality;
  - ◊ frequency of jumps;
  - ◊ more importantly, <u>when</u> are these jumps more likely to occur.
- A high  $\alpha$  imposes a restriction on the range of applicability of these models when pricing on forwards,
  - $\diamond$  for the market of England & Wales we observe variation on the forwards for up to 30 days between T and T'.

# Forward curves (I)

#### Forward with T' fixed and varying $t, \alpha \downarrow$

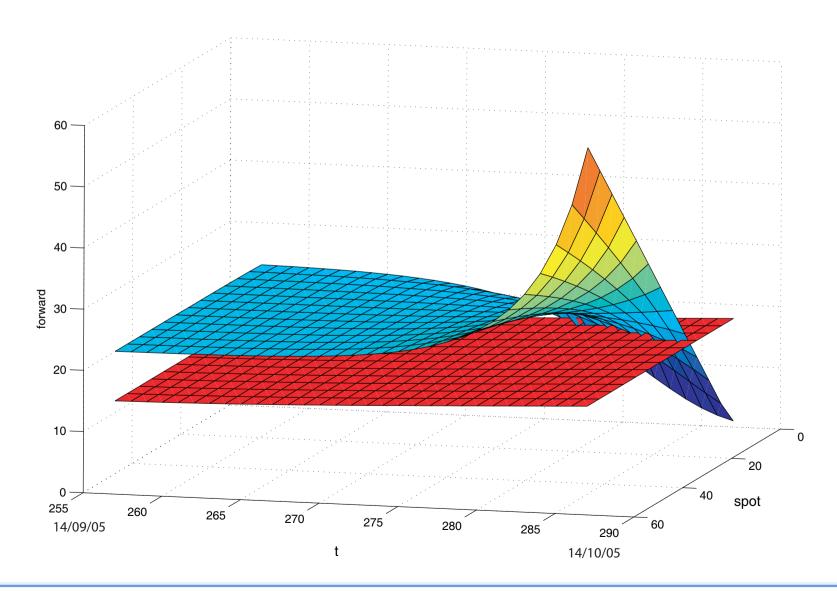


Forward with T' fixed and varying t,  $\alpha\uparrow$ 



# Forward curves (II)

Forward surface with T' fixed and varying  $t, \alpha \uparrow$ 



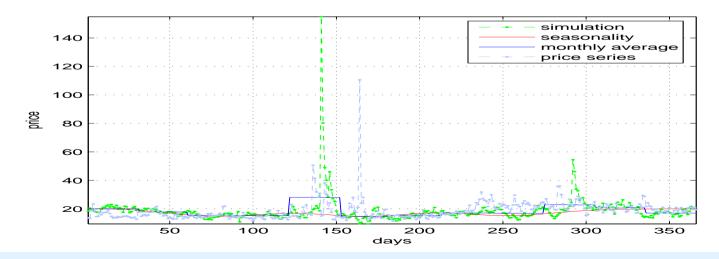
– p. 8

# Spot price and simulations

#### Simulated and calibrated electricity prices for 1 year



#### Simulated and calibrated electricity prices for 1 year



# Closed form solution for the European Call –CFT (I)

Let  $F_T^{T'}(F_t^{T'})$  be the forward at time T maturing at time T' conditional on the forward at time t maturing at time T',  $\hat{V}_T$  the transformed payoff of the call option and  $\Psi(-\xi)$  the characteristic function, defined as  $\Psi(-\xi) := \mathbb{E}_t \left[ e^{-i\xi \ln \left( F_T^{T'} \right)} \right]$ . Then the price of a T-maturity European call option written on the underlying  $F_t^{T'}$  with strike price K is given by

$$V(F_t^{T'}, t) = \frac{e^{-r(T-t)}}{2\pi} \int_{-\infty+ib}^{\infty+ib} \hat{V}_T \Psi(-\xi) d\xi; \qquad \max(1, \alpha) < b < \beta,$$

where  $\xi := a + ib$ , and  $\alpha$ ,  $\beta$ , a,  $b \in \mathbb{R}$ .

The integration can be performed along any closed-curve within the contour defined by  $\mathcal{A} = \{b: \max(1, \alpha) < b < \beta\}.$ 

### Closed form solution for the European Call –CFT (II)

For the proposed model we obtain

$$V(F_{t}^{T'},t) = \frac{e^{-r(T-t)}}{2\pi} \int_{-\infty+ib}^{\infty+ib} \hat{V}_{T} \Psi^{CF}(-\xi) d\xi, \quad \max(1,\alpha) < b < \beta;$$
  

$$\hat{V}_{T} := \frac{-K^{1+i\xi}}{\xi^{2} - i\xi};$$
  

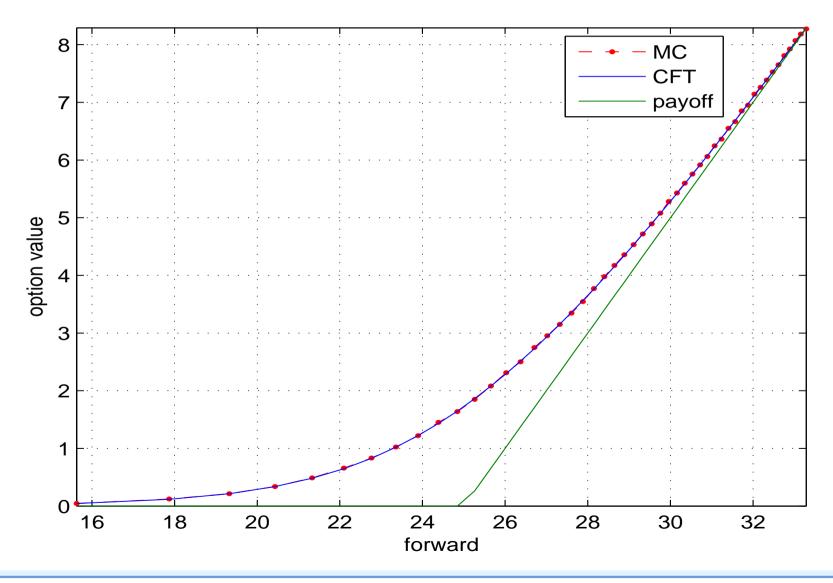
$$\Psi^{CF}(-\xi) := e^{-i\xi \ln(F_{t}^{T'}) + (i\xi - \xi^{2}) \frac{\sigma^{2}}{4\alpha} (H_{t}^{2} - h_{t}^{2})}$$
  

$$\times \left(\frac{\eta_{2} + h_{t}}{\eta_{2} + H_{t}}\right)^{\frac{i\xi gl}{\alpha}} \left(\frac{h_{t} - \eta_{1}}{H_{t} - \eta_{1}}\right)^{\frac{i\xi pl}{\alpha}} \left(\frac{\eta_{2} + \hat{h}_{t}}{\eta_{2} + \hat{H}_{t}}\right)^{\frac{gl}{\alpha}} \left(\frac{\hat{h}_{t} - \eta_{1}}{\hat{H}_{t} - \eta_{1}}\right)^{\frac{pl}{\alpha}}$$

where  $h_t := e^{-\alpha(T'-t)}$ ,  $H_t := e^{-\alpha(T'-T)}$ ,  $\hat{h}_t := -i\xi h_t$  and  $\hat{H}_t := -i\xi H_t$ .

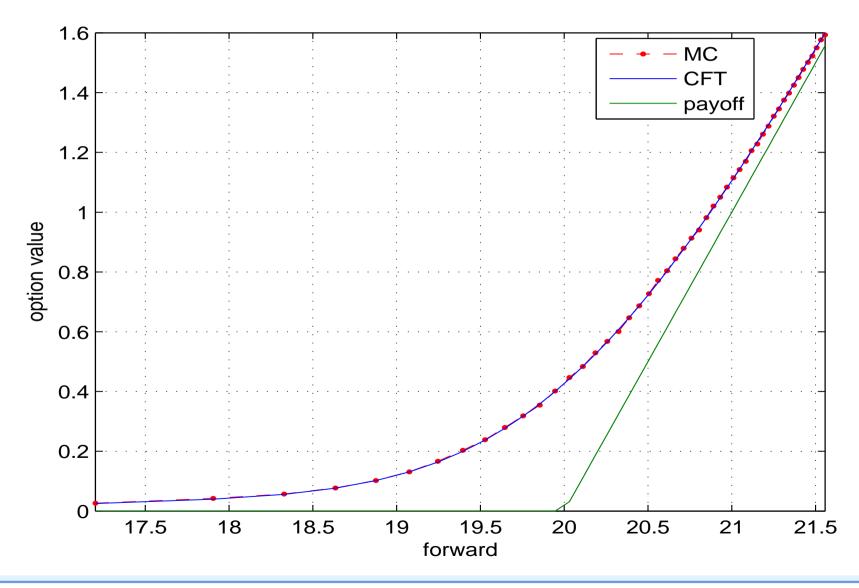
# Option Pricing - European Call Option (I)

Call on a Forward;  $T' = 60, T = 30, K = 25, \alpha \downarrow = 10$ 



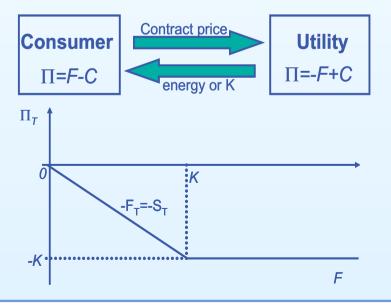
# **Option Pricing - European Call Option (II)**

Call on a Forward; T' = 10, T = 7, K = 20,  $\alpha \uparrow = 104$ 



# Interruptible Contracts – Description (I)

- Callable forwards, introduced as early as 1994 by Gedra (1994), replicate an interruption strategy on supply of electricity.
- The portfolio held by the supplier/utility is given by  $\Pi_t = -F_t^{T'} + C(S_t; K, T').$
- The user, who owns the opposite portfolio, earns a discount on a the forward bought.
- The supplier benefits by earning the possibility of calling off supply at expiry.



# Interruptible Contracts – Description (II)

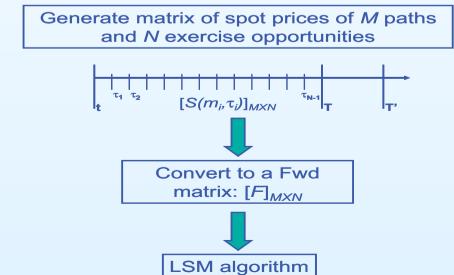
- A consumer entering such a contract must trade off the probability of interruption against its shortage cost ( $\sim K$ ).
- The probability of interruption decreases as the strike price increases, hence the discount on the forward is lower for the consumer.
- Those consumers with lower shortage costs will be more likely to be interrupted and will receive higher discounts.
- A clear drawback is that there will be consumers whose short-notice interruption costs are too high, thus not providing a viable strike price.
- Kamat & Oren (2002) introduce an earlier notification date, and price in closed form with the use of compound options.
- However, only assuming one early possible exercise point is still unrealistic.

# Pricing a Bermudan Interruptible on a Forward (I)

- We extend to interruptible contracts on forwards, by which a utility holds  $\Pi_t = -F_t^{T'} + C(F_t^{T'}; K, T)$ .
- It allows for the canceling of the forward obligation when exercised at any early stopping time  $\tau_i$ .
- If held until expiry and if T = T' it reduces to the previous interruptible contract.
- Possible incentives for a utility to enter such a contract:
  - ◊ future unpredicted capacity constraints;
  - high volatility in the spot due to extreme variations in weather, demand or others.
- The consumer benefits in a discount on the forward price.

# Pricing a Bermudan Interruptible on a Forward (II)

- At intermediate exercise dates  $\tau_i$  we compare the immediate exercise value with the expected cash flows from continuing, exercising if immediate exercise is more valuable.
- The key is defining the conditional expected value of continuation.
- LSM: regresses subsequent realized cash flows from continuation on a set of basis functions of the values of the relevant state variables.
- Longstaff & Schwartz show that results are robust for different choices of basis functions.



### **Preliminary results**

|          | F = 10                 |                       | F = 25                 |                       |
|----------|------------------------|-----------------------|------------------------|-----------------------|
|          | CFT                    | MC                    | CFT                    | MC                    |
| $\Delta$ | $7.66 \times 10^{-12}$ | $5.10 \times 10^{-3}$ | $3.54 \times 10^{-11}$ | $2.86 \times 10^{-2}$ |
| $\tau$   | 0.13 sec.              | 17.06 sec.            | 0.14 sec.              | 17.00 sec.            |

Parameters: K = 25; t = 0; T = 1; T' = 1.5;  $\alpha = 1.18$ ;  $\sigma = 1.77$ ; r = 0.15; n = 100; m = 100,000; C(10) = 0.23 and C(25) = 5.14.  $C(\cdot)$  denotes the analytical values of the call option on the forward for Schwartz' model.

|            | European        | Bermudan        | Premium |
|------------|-----------------|-----------------|---------|
| GBM –Put   | 3.8443          | 4.4702 (0.0092) | 0.6259  |
| MRJD –Call | 1.3931 (0.0079) | 1.6804 (0.0070) | 0.2873  |

Parameters-GBM-Put: K = 40; r = 0.06;  $S_t = 36$ ;  $\sigma = 0.20$ ; t = 0; T = 1; N = 50. Parameters-MRJD-Call: r = 0.15; K = 23.5;  $S_t = 18$ ;  $\sigma = 1.60$ ; l=8.58; n=365;  $\lambda^* = -0.23$ ;  $\alpha = 104$ ;  $\eta_1 = 2.80$ ;  $\eta_2 = 3.85$ ; p = 0.54; q = 0.46; t = 15/09/05; T' = 31d + t; T = 30d + t; N = 30;  $F_t^{T'} = 24.2788$ .

# Conclusions and future research

- The appeal of spot-based models is that they provide realistic simulations of spot-price paths.
- In general, it is always possible to obtain closed form expressions for the forwards, as shown in CF (2005).
- In particular, when assuming exponential jumps the model becomes very tractable, and closed form solutions using CFT are obtained; these are very accurate and fast.
- Interruptible contracts are an important tool in risk management and there is a realistic market interest in such contracts.
- However, it is paramount to be able to solve some critical aspects of these models which might affect their range of applicability, such as
  - ◊ speed of mean reversion –should it be constant?
  - ◊ arrival of jumps;
  - ◊ calibration (with scarcity of data) under higher-factor models.