Modelling Electricity Spot Prices A Regime-Switching Approach

Dr. Gero Schindlmayr EnBW Trading GmbH Financial Modelling Workshop Ulm

September 2005

Energie braucht Impulse

Agenda

- > Model Overview
- > Daily Price Process
- > Hourly Profile Process
- Backtesting
- > Applications
- Outlook

Electricity Spot Prices

Features

> seasonality (yearly, weekly, daily)

> spikes

Explanation

> power not efficiently storable => no cash-and-carry arbitrage

- inelastic demand curve
- > seasonal weather-dependent demand pattern
- events can cause market shocks
 (plant outages, low water levels, extreme temperature)

Gero Schindlmayr, EnBW Trading GmbH

BΜ

Fundamental and Stochastic Approaches

Fundamental

- > model system generation and load
- > price = marginal generation costs
- > needs fuel prices and data about generation capacity
- many sources of uncertainty (generation, import/export, ...)

Stochastic

> view power prices as time series

EnBW

- choose appropriate stochastic process
- > calibrate to price data
- > needs only prices as input data

Hybrid

> use both approaches (e.g. SMaPS¹)

Here we concentrate on the stochastic approach!

¹M.Burger, B.Klar, A.Müller, G.Schindlmayr

A spot market model for pricing derivatives in electricity markets, Quantitative Finance 4 (2004) 109-122

6 Financial Modelling Workshop Ulm, September 2005

Model Overview

Notation:

- > $S_t = (S_t^1, \dots, S_t^{24})$: Vector of hourly spot prices on day t
- $\mathbf{s}_t = \log \mathbf{S}_t$: vector of logarithmic hourly spot prices
- $s_t = \frac{1}{24} \sum_{i=1}^{24} \mathbf{s}_i$: mean logarithmic price

Different processes for business days and non-business days

7 Financial Modelling Workshop Ulm, September 2005

Daily Price Process: Seasonality

Seasonal component:

- > dummy variables for weekdays, holidays, vacation periods (1,..,N_d)
- > sin/cos regressors for yearly seasonality
- Inear trend

$$s_{t} = \sum_{d=1}^{N_{d}} \mathbf{1}_{J_{d}}(t) \beta_{d}^{A} + \mathbf{1}_{J_{d}^{DT}}(t) \cos(2\pi t/365) \beta_{d}^{B} + \mathbf{1}_{J_{d}^{DT}}(t) \sin(2\pi t/365) \beta_{d}^{C} + \mathbf{1}_{J_{d}^{DT}}(t) t \beta_{d}^{D} + \mathbf{1}_{J_{d}^{DT}}(t) \mathbf{1}_{J^{VP}}(t) \beta_{d}^{E} + y_{t},$$

coefficient	description
eta^A_d	mean level
eta^B_d,eta^C_d	Amplitudes for yearly seasonality
eta_d^D	deterministic drift
eta_d^E	price effect of vacation period

Daily Price Process: Regime-Switching AR(1)

Model:

$$y_k - \mu_{r_k} = \phi_{r_k} \left(y_{k-1} - \mu_{r_{k-1}} \right) + \sigma_{r_k} \varepsilon_k$$

 r_{k} = regime at time k

> transition matrix (for two regimes):

$$P = \left(\begin{array}{cc} p_{11} & p_{21} \\ p_{12} & p_{22} \end{array}\right)$$

> calibration: Hamilton filter (max. likelihood optimization)

> example: EEX (Jan 01 – Mav 05)					
		μ	ϕ	σ	
	regime 1	-0.004	0.74	0.11	
	regime 2	-0.02	0.68	0.30	

$$P = \left(\begin{array}{cc} 0.94 & 0.28\\ 0.06 & 0.72 \end{array}\right)$$

10 Financial Modelling Workshop Ulm, September 2005

Gero Schindlmayr, EnBW Trading GmbH

Daily Price Process: Regime Identification

Gero SchindImayr, EnBW Trading GmbH

Hourly Profiles: PCA Decomposition

For spike regime: take random historical profile according to season and weekday

14 Financial Modelling Workshop Ulm, September 2005

Gero Schindlmayr, EnBW Trading GmbH

Hourly Profiles: Seasonal Component

15 Financial Modelling Workshop Ulm, September 2005

Gero Schindlmayr, EnBW Trading GmbH

Gero Schindlmayr, EnBW Trading GmbH

Gero Schindlmayr, EnBW Trading GmbH

The Long-Term Dynamics

Model: $\mathbf{s}_t = f(t) + y_t + \mathbf{h}_t + l_t$

- > f(t) : seasonal (deterministic) component
- > y_t : regime-switching process
- \mathbf{b} **h**_t : hourly profile process
- > l_t : long term process $l_{t+1} = (\mu_t \frac{1}{2}\sigma_l^2) + \sigma_l \varepsilon_t^l$

Future price: for T>>t

- > short term dynamics: $\mathbf{E}_t [y_T] \approx \mathbf{E}[y_T] \quad \mathbf{E}_t [\mathbf{h}_T] \approx \mathbf{E}[\mathbf{h}_T]$ $F_{t,T} = \mathbf{E}_t [S_T] \approx C(T) \mathbf{E}_t [\exp(l_t)]$
- > long term dynamics
- Iong-term approximation: Black's future price model

Calibration

> historical volatility or implied volatility (depending on application)
 19 Financial Modelling Workshop Ulm, September 2005
 Gero Schindlmayr, Enter

Gero Schindlmayr, EnBW Trading GmbH

22 Financial Modelling Workshop Ulm, September 2005

Gero Schindlmayr, EnBW Trading GmbH

Backtesting: 1-Day-Forecasting Quality

		Regime	-Switching-N	Model	
	$0 \ 2R$	2 3R	$3 2^B 1^{nB}$		6 $3^B 1^{nB}$
Business Days					
MAE	4,520	$4,\!492$	4,157	4,132	4,130
RMSE	6,877	6,839	$6,\!429$	$6,\!455$	6,385
MAPE	11,488	$11,\!436$	$10,\!476$	10,360	10,430
Non-Business Days (excl. Holidays)					
MAE	$3,\!106$	3,130	$3,\!615$	$3,\!678$	3,710
RMSE	3,905	4,032	$4,\!635$	4,719	4,740
MAPE	$11,\!562$	$11,\!562$	$13,\!537$	13,708	13,892
Holidays					
MAE	4,250	5,396	5,535	$5,\!446$	4,764
RMSE	5,597	6,249	6,308	6,295	5,620
MAPE	18,017	23,315	23,803	23,769	20,580

Gero Schindlmayr, EnBW Trading GmbH

Backtesting: Quantile-Statistics

How do the probability distributions compare?

- > histogram to analyze, how often the real spot price falls into which quantile of the model distribution
- > period: 01.07.2004 30.06.2005
- > calibration off-sample (uses data from 01.01.2001- 30.06.2005)

Gero Schindlmayr, EnBW Trading GmbH

Applications: Option Pricing and Hedging

|--|

> period:	01/01/2006 - 01/01/2007
> strike:	60 €/MWh
> capacity:	10 MW
Pricing results	
> price:	380.000 €
> inner value:	190.000 €
profit-at-risk (95%):	160.000 €
> mean exercise	16 GWh (1600 h)

26 Financial Modelling Workshop Ulm, September 2005

Gero Schindlmayr, EnBW Trading GmbH

ยาว

Applications: Mean Exercise Schedule

27 Financial Modelling Workshop Ulm, September 2005

Gero Schindlmayr, EnBW Trading GmbH

Applications: Hedging Strategies

energetic hedging

- > calculate mean exercise schedule
- > sell energetic equivalent base and peak contracts

delta hedging

> calculate delta sensitivities with respect to base/peak forward prices

> construct delta neutral portfolio

variance-minimizing hedge

> calculate hedge ratios by minimizing portfolio variance

Տոթր

Applications: Analyzing Hedging Strategies

Gero Schindlmayr, EnBW Trading GmbH

- > better coupling of business days and non-business days
- > improve dynamics of hourly profiles, especially during spike regime
- > integration of spot and future price models
- > multi-commodity model: integrate fuel and CO2 prices